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Fork/Join graphs constraint ||-ism	
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  Fork/Join models restrict task graphs to be series-parallel	


  Can not describe                    without hampering ||-ism	


  Fork/Join models constrain control and data dependences	


  Tasks can only be created after all data dependences satisfied	


  Necessitates ordering task creation to conform to that 
restriction	


  May hamper performance	




Macro-dataflow for intuitive ||-ism	
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  Kernel based programming	


  Build a task graph of kernel instantiations	


  Restrict dependences to true dependences	

 race-freedom, determinism	


  Provides productivity	
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Futures [Baker & Hewitt 1977] 	
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  future = (storage, resolvingProcess, waitingTasks)	


Future F = {stmt1;…; return v;}!

 ! ! ! !task g = {stmt; F.get();…;}!
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  Creation 	

 Create an empty Data-Driven Future (DDF) object	


  Resolution ( put )	

 Resolve what value a DDF is referring to	


  Data-Driven Tasks (DDTs) ( async await(…) )	

 A task provides a consumer list of DDFs on declaration	

 A task can only read DDFs that it is registered to	


  Difference from futures: 	

 Creation of container (DDF) and computation (DDT) are 

separate events	


Data-Driven Futures (DDFs) &���
Data-Driven Tasks (DDTs)	
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DataDrivenFuture = (storage, waitingTasks)	


 (resolvingProcess)	




DDF/DDT Code Sample	
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DataDrivenFuture left = new DataDrivenFuture ();	


DataDrivenFuture right = new DataDrivenFuture();	

finish {	


    async await ( left ) useLeftChild(left); // Task1	


    async await ( right ) useRightChild(right); // Task2	


    async await ( left, right ) useBothChildren( left, right ); // Task3 	


    async left.put(leftChildCreator()); // Task4	


    async right.put(rightChildCreator()); // Task5	


}	
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DDTs provide	


  Non-series-parallel task 
dependence graph support	

  Less restricted parallelism	

  Better scheduling opportunities	


  Single assignment (SA)	

  Race-freedom on DDF 

accesses	


  Determinism if all shared data 
is expressed as DDFs	


  SA-value lifetime restriction	


  Smaller than graph lifetime	


  DDF creator: 	

  Provides DDF reference to 

producers and consumers	


  DDF lifetime depends on	

  Creator lifetime	


  Resolver lifetime	


  Consumers’ lifetimes	
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Data-Driven Scheduling	
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  Steps register self to items wrapped into DDFs	
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DDF left = new DDF(); 	

DDF right = new DDF(); 	


TaskC	


async await (left) use(left);  // Task1 	

async await (right) use(right); // Task2 	


async builder(right);  // Task5	


PlaceHolderright	

✕	
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resolve DDFleft 	

async await (left,right) use(left,right); // Task3  	

async builder(left);    // Task4 	
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Mapping Macro-Dataflow to Task-Parallelism	
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  Control & data dependences as first level constructs	

  Task-parallel frameworks have them coupled e.g., OpenMP, Cilk	


  Kernel instantiations may have multiple predecessors	

  Need to wait for all	


  Staged readiness concepts	

  Created ( control dependence satisfied )	


  Data dependences satisfied	


  Schedulable / Ready	


  DDTs provide a natural implementation for Macro-
Dataflow	

  Every kernel instantiation is a DDT 	


  Data dependences between DDTs are expressed through DDFs	


  Provides race freedom 	




Experimental Results	
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  Compared DDT implementation with four macro-
data schedulers from past work	


  that used Concurrent Collections (CnC) 	


 CnC uses global data collections to synchronize tasks	


  DDT/DDF results obtained at task-parallel level 	


 without allocating global data collections	


 CnC can be automatically translated to DDFs (ongoing 
work)	




  Use Java wait/notify for premature data access	

  Blocking granularity	


  Instance level vs Collection level (fine-grain vs. coarse-
grain)	


  A blocked task blocks an entire worker thread	

 Need to create more worker threads to avoid deadlock	


Blocking Schedulers	
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  Every kernel instantiation is a guarded execution	

 Guard condition is the availability of input data 	


 Task can be created eagerly before input data is available	

  Promoted to ready when data provided	


Delayed async Scheduling	
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Value left = new Value ();	

Value right = new Value ();	

finish {	

   async when ( left.isReady() ) useLeftChild(left); // Task1	


   async when ( right.isReady()) useRightChild(right); // Task2	


   async when ( right.isReady() && left.isReady() ) 	

      useBothChildren( left, right ); // Task3 	

   async left.put(leftChildCreator()); // Task4	


   async right.put(rightChildCreator()); // Task5	


}	
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Data Driven Rollback & Replay	
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Experimental Setup	
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  4-socket Xeon quad-core Intel E7730 2.4 GHz 	

  Shared 3MB L2 cache per pair of cores. 	

 Main memory 32 GBs. 	

  #worker threads:16	


  8-way SMT 8-core Niagara Sun UltraSPARC T2	

  Shared 4MB L2 cache	

  #worker threads: 64	


  32-bit Sun Hotspot JDK 1.6 JVM 	

 GCC 4.1.2 for JNI	


  30 runs for statistical soundness	

  Read ‘Serial’ as single-threaded execution of || code	




Cholesky decomposition	
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Average execution times and 90% confidence interval of 30 runs of single threaded and 16-
threaded executions for blocked Cholesky decomposition CnC application with Habanero-
Java steps on 16-core Xeon with input matrix size 2000 × 2000 and with tile size 125 × 125	
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Black-Scholes formula ( PARSEC )	
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Average execution times and 90% confidence interval of 30 runs of single threaded and 
16-threaded executions for blocked Black-Scholes CnC application with Habanero-Java 
steps on 16-core Xeon with input size 1,000,000 and with tile size 62,500	
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Rician Denoising ( Medical Imaging )	

17	


498,776	
 499,666	
 483,770	


349,051	


81,502	

58,313	
 53,569	
 53,817	


0	


100,000	


200,000	


300,000	


400,000	


500,000	


Coarse Grain Blocking *	
Fine Grain Blocking *	
 Delayed Async *	
 Data Driven Futures	


E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	


Serial	
 Parallel	


Average execution times and 90% confidence interval of 30 runs of single threaded and 16-threaded 
executions for blocked Rician Denoising CnC application with Habanero-Java steps on Xeon with 
input image size 2937 × 3872 and with tile size 267 × 484	
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* Explicit memory management required for non-DDT schedules to avoid out-of-memory exception 	




Heart Wall Tracking Dependence Graph	
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Heart Wall Tracking ( Rodinia )	
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Related Work	
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  Futures	

  Can build arbitrary task graphs 	


  get()/force() is usually a blocking operation	


  future task creation is bound to container at creation time	


  Dataflow	

  Typically blocks on one datum (Ivar) at a time, unlike async await (…)	


  Nabbit ( Cilk library )	

  Can build arbitrary task graphs, more explicit than DDTs	


  No garbage collection and unwinding of task graph	


  Concurrent Collections ( CnC )	

  Globalized data collections and general tags (keys) makes memory 

management challenging	


  DDTs can be used to obtain more efficient implementations of CnC	




Conclusions	

21	


 Data-Driven Futures and Data-Driven Tasks	


  help build arbitrary task graphs and extend task-parallel 
frameworks 	


  introduce the more-intuitive macro-dataflow to 
programmers on task-parallel frameworks	


  support Data-Driven scheduling that outperforms alternative 
schedulers in both execution time and memory 
requirements	


  help to implement blocking in tasks without blocking 
workers	




  Compile Concurrent Collections down to DDTs	


  Compiler optimizations to move DDF allocations to 
further reduce lifetimes	


  Hierarchical DDTs for granularity optimizations	


  Work-stealing support for DDTs	


  Use DDTs to implement all blocking synchronizations 
without blocking worker, i.e. replace each waiting 
continuation as a DDT	


  Locality aware scheduling with DDTs	


Future Work	
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For a hands-on trial, visit 	
http://habanero.rice.edu/hj	


	
 	
 	
 	
 	
http://habanero.rice.edu/cnc	



