
DATA-DRIVEN TASKS ���
AND���

THEIR IMPLEMENTATION	

SAĞNAK TAŞIRLAR, VIVEK SARKAR

DEPARTMENT OF COMPUTER SCIENCE. RICE UNIVERSITY

1	

Fork/Join graphs constraint ||-ism	

2	

  Fork/Join models restrict task graphs to be series-parallel	

  Can not describe without hampering ||-ism	

  Fork/Join models constrain control and data dependences	

  Tasks can only be created after all data dependences satisfied	

  Necessitates ordering task creation to conform to that
restriction	

  May hamper performance	

Macro-dataflow for intuitive ||-ism	

3	

  Kernel based programming	

  Build a task graph of kernel instantiations	

  Restrict dependences to true dependences	

 race-freedom, determinism	

  Provides productivity	

TaskA	
 TaskB	

TaskA	
 TaskB	

TaskA	

TaskC	

main	

TaskB	

TaskC	

single-assignment data	

Futures [Baker & Hewitt 1977] 	

4	

  future = (storage, resolvingProcess, waitingTasks)	

Future F = {stmt1;…; return v;}!

 ! ! ! !task g = {stmt; F.get();…;}!

TaskF	
addressF	
 TaskG	
 TaskH	
 TaskJ	

  Creation 	

 Create an empty Data-Driven Future (DDF) object	

  Resolution (put)	

 Resolve what value a DDF is referring to	

  Data-Driven Tasks (DDTs) (async await(…))	

 A task provides a consumer list of DDFs on declaration	

 A task can only read DDFs that it is registered to	

  Difference from futures: 	

 Creation of container (DDF) and computation (DDT) are

separate events	

Data-Driven Futures (DDFs) &���
Data-Driven Tasks (DDTs)	

5	

DataDrivenFuture = (storage, waitingTasks)	

 (resolvingProcess)	

DDF/DDT Code Sample	

6	

DataDrivenFuture left = new DataDrivenFuture ();	

DataDrivenFuture right = new DataDrivenFuture();	

finish {	

 async await (left) useLeftChild(left); // Task1	

 async await (right) useRightChild(right); // Task2	

 async await (left, right) useBothChildren(left, right); // Task3 	

 async left.put(leftChildCreator()); // Task4	

 async right.put(rightChildCreator()); // Task5	

}	

Task5	

Task4	

Task2	

Task1	

Task3	

DDTs provide	

  Non-series-parallel task
dependence graph support	

  Less restricted parallelism	

  Better scheduling opportunities	

  Single assignment (SA)	

  Race-freedom on DDF

accesses	

  Determinism if all shared data
is expressed as DDFs	

  SA-value lifetime restriction	

  Smaller than graph lifetime	

  DDF creator: 	

  Provides DDF reference to

producers and consumers	

  DDF lifetime depends on	

  Creator lifetime	

  Resolver lifetime	

  Consumers’ lifetimes	

7	

DDTA	

DDTC	

DDTD	

DDTB	

DDTE	

DDTF	

DDF	

Data-Driven Scheduling	

8	

  Steps register self to items wrapped into DDFs	

PlaceHolderleft	

DDFleft	
 Task1	

DDFleft	

DDFright	

Valueright	

Task3	

DDFleft	
 DDFright	

✕	

DDF left = new DDF(); 	

DDF right = new DDF(); 	

TaskC	

async await (left) use(left); // Task1 	

async await (right) use(right); // Task2 	

async builder(right); // Task5	

PlaceHolderright	

✕	

Task4	

resolve DDFleft 	

async await (left,right) use(left,right); // Task3 	

async builder(left); // Task4 	

Task4	

ready queue	

Valueleft	

Task2	

DDFright	

Task5	

Task5	

resolve DDFright	

Task1	
Task3	
 Task2	

Mapping Macro-Dataflow to Task-Parallelism	

9	

  Control & data dependences as first level constructs	

  Task-parallel frameworks have them coupled e.g., OpenMP, Cilk	

  Kernel instantiations may have multiple predecessors	

  Need to wait for all	

  Staged readiness concepts	

  Created (control dependence satisfied)	

  Data dependences satisfied	

  Schedulable / Ready	

  DDTs provide a natural implementation for Macro-
Dataflow	

  Every kernel instantiation is a DDT 	

  Data dependences between DDTs are expressed through DDFs	

  Provides race freedom 	

Experimental Results	

10	

  Compared DDT implementation with four macro-
data schedulers from past work	

  that used Concurrent Collections (CnC) 	

 CnC uses global data collections to synchronize tasks	

  DDT/DDF results obtained at task-parallel level 	

 without allocating global data collections	

 CnC can be automatically translated to DDFs (ongoing
work)	

  Use Java wait/notify for premature data access	

  Blocking granularity	

  Instance level vs Collection level (fine-grain vs. coarse-
grain)	

  A blocked task blocks an entire worker thread	

 Need to create more worker threads to avoid deadlock	

Blocking Schedulers	

11	

WorkerC	

step1	

Get (keyc)	

ItemCollectionΘ	

keyα	

keyβ	
 valueβ	

valueα	

wait	

WorkerD	

step2	

Put(keyc,valuec)	

notify	

time	

  Every kernel instantiation is a guarded execution	

 Guard condition is the availability of input data 	

 Task can be created eagerly before input data is available	

  Promoted to ready when data provided	

Delayed async Scheduling	

12	

Value left = new Value ();	

Value right = new Value ();	

finish {	

 async when (left.isReady()) useLeftChild(left); // Task1	

 async when (right.isReady()) useRightChild(right); // Task2	

 async when (right.isReady() && left.isReady()) 	

 useBothChildren(left, right); // Task3 	

 async left.put(leftChildCreator()); // Task4	

 async right.put(rightChildCreator()); // Task5	

}	
 Work Sharing Ready Task Queue	

push	

async1	

async2	

async5	

Schedule	

Yes	
No	

Evaluate
guard	

Is true?	

Yes	

Requeue	

No	

async3	

async4	

pop	
 Popped Task	

Delayed?	

Data Driven Rollback & Replay	

13	

WorkerC	

step1	

Get (keyc)	

ItemCollectionΘ	

keya	

keyb	
 valueb	

valuea	

WorkerD	

step2	

Put(keyc,valuec)	

waitlista	

waitlistb	

keyc	
 empty	
 waitlistc	

Insert step1 to waitlistc 	

Throw exception to
unwind	

step3	

Re-execute steps in waitlistc on Put()	

step1	

Get (keyc)	

Get (keyd)	

valuec	

step1	
 ✕	

Experimental Setup	

14	

  4-socket Xeon quad-core Intel E7730 2.4 GHz 	

  Shared 3MB L2 cache per pair of cores. 	

 Main memory 32 GBs. 	

  #worker threads:16	

  8-way SMT 8-core Niagara Sun UltraSPARC T2	

  Shared 4MB L2 cache	

  #worker threads: 64	

  32-bit Sun Hotspot JDK 1.6 JVM 	

 GCC 4.1.2 for JNI	

  30 runs for statistical soundness	

  Read ‘Serial’ as single-threaded execution of || code	

Cholesky decomposition	

15	

10,081	
 10,010	
 10,305	
 10,309	

8,748	

2,472	

1,197	
 979	
 853	
 790	

0	

2,000	

4,000	

6,000	

8,000	

10,000	

12,000	

Coarse Grain
Blocking	

Fine Grain
Blocking	

Delayed Async	
 Data Driven
Rollback&Replay	

Data Driven
Futures	

E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	

Serial	
 Parallel	

Average execution times and 90% confidence interval of 30 runs of single threaded and 16-
threaded executions for blocked Cholesky decomposition CnC application with Habanero-
Java steps on 16-core Xeon with input matrix size 2000 × 2000 and with tile size 125 × 125	

Tasks	

Black-Scholes formula (PARSEC)	

16	

33,871	
 33,966	
 34,311	
 34,121	
 34,729	

4,300	
 4,309	
 4,279	

5,061	

2,353	

0	

5,000	

10,000	

15,000	

20,000	

25,000	

30,000	

35,000	

40,000	

Coarse Grain
Blocking	

Fine Grain
Blocking	

Delayed Async	
 Data Driven
Rollback&Replay	

Data Driven
Futures	

E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	

Serial	
 Parallel	

Average execution times and 90% confidence interval of 30 runs of single threaded and
16-threaded executions for blocked Black-Scholes CnC application with Habanero-Java
steps on 16-core Xeon with input size 1,000,000 and with tile size 62,500	

Tasks	

Rician Denoising (Medical Imaging)	

17	

498,776	
 499,666	
 483,770	

349,051	

81,502	

58,313	
 53,569	
 53,817	

0	

100,000	

200,000	

300,000	

400,000	

500,000	

Coarse Grain Blocking *	
Fine Grain Blocking *	
 Delayed Async *	
 Data Driven Futures	

E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	

Serial	
 Parallel	

Average execution times and 90% confidence interval of 30 runs of single threaded and 16-threaded
executions for blocked Rician Denoising CnC application with Habanero-Java steps on Xeon with
input image size 2937 × 3872 and with tile size 267 × 484	

Tasks	

* Explicit memory management required for non-DDT schedules to avoid out-of-memory exception 	

Heart Wall Tracking Dependence Graph	

18	

Step1

Step3

Step4

Step5

Step6

Step7

Step8

Step9

Step10

Step2

Step1

Step3

Step4

Step5

Step6

Step7

Step8

Step9

Step10

Step2

IterationJ IterationJ+1

Heart Wall Tracking (Rodinia)	

19	

162,248	
 157,554	
 156,159	

47,989	

11,076	
 9,897	

0	

20,000	

40,000	

60,000	

80,000	

100,000	

120,000	

140,000	

160,000	

180,000	

Delayed Async	
 Data Driven Rollback&Replay	
 Data Driven Futures	

E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	

Serial	
 Parallel	

Minimum execution times of 13 runs of single threaded and 16-threaded executions for
Heart Wall Tracking CnC application with C steps on Xeon with 104 frames	

Tasks	

Related Work	

20	

  Futures	

  Can build arbitrary task graphs 	

  get()/force() is usually a blocking operation	

  future task creation is bound to container at creation time	

  Dataflow	

  Typically blocks on one datum (Ivar) at a time, unlike async await (…)	

  Nabbit (Cilk library)	

  Can build arbitrary task graphs, more explicit than DDTs	

  No garbage collection and unwinding of task graph	

  Concurrent Collections (CnC)	

  Globalized data collections and general tags (keys) makes memory

management challenging	

  DDTs can be used to obtain more efficient implementations of CnC	

Conclusions	

21	

 Data-Driven Futures and Data-Driven Tasks	

  help build arbitrary task graphs and extend task-parallel
frameworks 	

  introduce the more-intuitive macro-dataflow to
programmers on task-parallel frameworks	

  support Data-Driven scheduling that outperforms alternative
schedulers in both execution time and memory
requirements	

  help to implement blocking in tasks without blocking
workers	

  Compile Concurrent Collections down to DDTs	

  Compiler optimizations to move DDF allocations to
further reduce lifetimes	

  Hierarchical DDTs for granularity optimizations	

  Work-stealing support for DDTs	

  Use DDTs to implement all blocking synchronizations
without blocking worker, i.e. replace each waiting
continuation as a DDT	

  Locality aware scheduling with DDTs	

Future Work	

22	

For a hands-on trial, visit 	
http://habanero.rice.edu/hj	

	
 	
 	
 	
 	
http://habanero.rice.edu/cnc	

