
RICE UNIVERSITY

Portable Programming Models for Heterogeneous

Platforms

by

Deepak Majeti

A Thesis Submitted
in Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Approved, Thesis Committee:

Vivek Sarkar, Chair
E.D. Butcher Chair of Engineering.
Professor of Computer Science

John Mellor-Crummey
Professor of Computer Science

Timothy C. Warburton
Professor of Computational and Applied
Mathematics

Rajkishore Barik
Senior Research Scientist at Intel Labs

Houston, Texas

May, 2015

ABSTRACT

Portable Programming Models for Heterogeneous Platforms

by

Deepak Majeti

With the end of Dennard scaling and emergence of dark silicon, the bets are high

on heterogeneous architectures to achieve both application performance and energy

efficiency. However, diversity in heterogeneous architectures poses severe program-

ming challenges in terms of data layout, memory coherence, task partitioning, data

distribution, and sharing of virtual addresses. Existing high-level programming lan-

guages are inadequate to address these new architectural features since they lack the

necessary abstractions to address the challenges mentioned above. It is necessary for

existing languages to be extended minimally with high-level constructs while main-

taining existing standards of portability, performance, and productivity. The compiler

and runtime together must efficiently map these constructs to a target architecture.

We introduce Concord, a C++ based programming model that extends the Intel

Threading Building Blocks onto integrated heterogeneous CPU+GPU architectures

that do not share the same virtual address between CPU and GPU. Concord supports

many C++ features including virtual functions. We implement Shared Virtual Mem-

ory to map applications with pointer intensive data structures onto heterogeneous

architectures that do not share the same virtual address.

We introduce Heterogeneous Habanero-C (H2C), an implementation of the Ha-

banero execution model targeting modern heterogeneous architectures with multiple

devices. H2C provides high-level constructs to specify the computation, communi-

cation and synchronization in a given application. The H2C compiler and runtime

frameworks efficiently map these high-level constructs onto underlying heterogeneous

hardware. The highlights of H2C include: a data layout framework to generate code

with best data layout suited for a given memory hierarchy; constructs to specify a

task partition, leaving the complex analysis of determining the resultant data dis-

tribution to the compiler; and a unified event framework that allows a programmer

to implement applications with a macro data-flow model for current heterogeneous

architectures.

Experimental results show that Concord and H2C provide good portability, pro-

ductivity, and performance. We believe that programming systems like H2C and

Concord that have a tight integration of language, compiler and runtime are the right

way to target current and future heterogeneous systems.

Acknowledgments

I am grateful to my thesis advisor Prof. Vivek Sarkar for his guidance, encourage-

ment, and patience. His constant feedback and suggestions made my journey through

graduate school very memorable and worthwhile. He motivated me in all my aca-

demic and personal endeavors. It is an honor to have worked with him. I would like

to thank my other thesis committee members Prof. Timothy C. Warburton and Prof.

John Mellor-Crummey for their time and feedback. I am very thankful to my the-

sis co-chair, mentor, and friend, Rajkishore Barik for his guidance and collaboration

throughout my doctoral studies in both research and personal fronts. He motivated

me to think beyond my threshold and helped me overcome my shortcomings.

I am fortunate to have worked with many collaborators and friends during my

graduate career including Mauricio Breternitz at AMD, Kuldeep Meel, Dragos Sb̂ırlea,

Alina Sb̂ırlea, Shams Imam, Jisheng Zhao, Karthik Murthy, Rishi Surendran, Milind

Chabbi, Nikita Kozin, Prasanth Chatarasi, Vivek Kumar and Max Grossman at Rice

University. I am thankful to all the members of the Habanero group for their support

and technical discussions. During my graduate program, I am fortunate to have

worked on projects in collaboration with various organizations including Intel, AMD,

IBM, Texas Instruments, Halliburton, UCLA, LLNL and Cray. The experience gained

from these projects is invaluable.

I would like to thank the Rice University Computer Science department for pro-

viding a scholarly environment. I would also like to thank the administrative staff

who promptly helped me in various administrative works. I am also thankful to the

members of the Indian Students at Rice (ISAR) and Graduate Student Association

for organizing various activities and ensuring a stress-free graduate life. My role as

v

the president for ISAR during 2012 - 2013 is a memorable experience.

Finally, I am indebted to my parents Jagan Mohan Majeti and Shanthi Mohan

Majeti for their patience and support. My brother Karthik Majeti played an impor-

tant role in encouraging me through the doctoral program. I am more than lucky

to have met my wife Priyanka Raja at Rice. She stood by me during my worst

times and was always there to cheer me up. I would also like to thank my other

friends who made my stay in Houston enjoyable including Rajesh Gandham, Aarthi

Muthuswamy, Reshmy Mohanan, Shruti Kashinath, Gaurav Patel, Rajoshi Biswas

and Rahul Kumar.

This work was supported in part by the Ken Kennedy Institute for Information

Technology 2014/15 ExxonMobil Graduate Fellowship.

Contents

Abstract ii

Acknowledgments iv

List of Figures ix

List of Tables xiii

List of Algorithms xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Challenges Programming Heterogeneous Architectures 9

1.3 Thesis Statement . 12

1.4 Thesis Contributions . 13

1.5 Thesis Organization . 17

2 Concord Programming Model 18

2.1 Introduction . 18

2.2 Background . 20

2.2.1 OpenCL . 21

2.2.2 LLVM/Clang . 21

2.3 Programming Model . 22

2.3.1 Programming Constructs . 22

2.3.2 Shared Virtual Memory(SVM) Support 24

2.3.3 Support for C++ . 25

2.4 Implementation . 25

2.4.1 CPU-GPU Shared Pointers (SVM) 26

vii

2.4.2 Virtual Functions . 29

2.4.3 Reduction . 31

2.4.4 Code Generation . 33

2.4.5 Reducing SVM Implementation Overhead 33

2.5 Experimental Evaluation . 36

2.5.1 Experimental Setup . 36

2.5.2 Performance and Energy Efficiency 42

2.6 Summary . 46

3 Heterogeneous Habanero-C (H2C) 47

3.1 Introduction . 47

3.2 Background . 48

3.2.1 ROSE Compiler Framework 49

3.2.2 PolyOpt (Polyhedral Framework) 49

3.3 Programming Model . 50

3.4 Implementation . 59

3.4.1 Asynchronous Computation and Communication 59

3.4.2 Iteration Partitioning . 61

3.4.3 Memory Management . 65

3.4.4 Compiling for Scratchpad Buffers 65

3.4.5 Unified Event Framework . 67

3.5 Experimental Evaluation . 68

3.6 Extensions . 74

3.7 Summary . 76

4 Data Layout for Heterogeneous Architectures 77

4.1 Introduction . 77

4.2 Meta-data Layout Framework . 80

4.2.1 Data Layout Transformation 83

viii

4.2.2 Memory Management . 84

4.3 ADHA: Automatic Data layout framework for Heterogeneous

Architectures . 86

4.3.1 Motivating Example . 86

4.3.2 Problem Formulation . 88

4.3.3 ADHA Implementation . 98

4.4 Evaluation . 111

4.4.1 Experimental Setup . 111

4.4.2 Meta-data Layout Evaluation 114

4.4.3 ADHA Evaluation . 120

4.5 Extensions . 125

4.6 Summary . 126

5 Related Work 128

5.1 Languages for Heterogenous Architectures 128

5.2 Data Layout . 132

5.3 Data Management among Heterogeneous devices 134

5.4 Hybrid CPU-GPU Execution . 135

5.5 Advanced GPU Support . 137

6 Conclusions and Future Work 139

Bibliography 142

Illustrations

List of Figures

1.1 Non-coherent memory + Non-shared virtual memory 4

1.2 Coherent memory + Non-shared virtual memory 5

1.3 Coherent memory + Shared virtual memory 6

1.4 Driver managed: Coherent memory + Shared virtual memory 7

1.5 Thesis overview . 13

2.1 Concord program to convert an array of node objects to a linked list

in parallel. 23

2.2 parallel reduce hetero example . 24

2.3 Overall flow diagram of the Concord framework 26

2.4 CPU and GPU shared pointer transformation 28

2.5 OpenCL generated by Concord compiler for operator(). 29

2.6 Example showing handling of virtual functions by Concord 31

2.7 Reduction on GPU: private reduction followed by hierarchical

reduction in local memory . 32

2.8 Illustration of lazy vs. eager compiler transformation of shared

pointers . 34

2.9 Example showing eager, lazy and best approaches 35

x

2.10 Dynamic estimates of irregularity for each application. Benchmarks

which have more than 50% irregularity have been circled in red. . . . 41

2.11 Runtime performance of Concord CPU on the desktop system

compared to TBB Library on CPU 43

2.12 Runtime and energy performance relative to multi-core CPU

execution on the ultrabook system 43

2.13 Runtime and energy performance relative to multi-core CPU

execution on the desktop system . 44

3.1 Sample output SCoP for a vector add program 50

3.2 Overall compilation flow . 52

3.3 Example H2C vector add program . 54

3.4 Generated OpenCL kernel . 55

3.5 Generated host program . 55

3.6 Generated C program . 56

3.7 Iteration partition example . 57

3.8 Output from H2C utility tool containing device IDs and architectural

information . 58

3.9 Partition example to determine the amount of data to be copied . . . 62

3.10 Disjoint but overlapping partition . 64

3.11 hc malloc implementation . 65

3.12 Reuse patterns for scratchpad optimization 66

3.13 OpenCL code generated for locality reuse 67

3.14 Unified Event framework using Event Blocks 68

3.15 Execution time (msec/step) of Jacobi1D and Seismic due to iteration

partition on multiple devices . 71

3.16 Execution time (sec/step) of NBody and NBody opt(locality optimized) 72

3.17 LBM implementation of “finish” (left) and “await”(right) 73

xi

3.18 LBM execution time (msec) for “finish” (bottom) and “await”(top) . 73

3.19 Hierarchy of devices for a single node and a two node cluster. The

value in each node represents the partition of the work on each device. 75

3.20 H2C program with HDT . 76

4.1 SoA layout (left) and AoS layout (right) for arrays A[0− 5], B[0− 5] . 78

4.2 Meta-data grammar (left) and Meta-data file example (right) 80

4.3 Compilation flow of Meta-data framework 81

4.4 H2C program + meta-data file with data layout specification 82

4.5 Generated OpenCL kernel with AoS layout specified in Figure 4.4

and re-use optimization of H2C . 82

4.6 Microbenchmark in H2C. Best mapping is obtained when Kernel-1

executes with AoS layout, followed by data remapping from AoS to

SoA and then Kernel-2 executes with SoA layout. 87

4.7 Possible configurations for PDL . 92

4.8 Example data layout instance . 95

4.9 Compiler framework for automatic data layout 99

4.10 PIR control flow transformation . 101

4.11 Global data remapping (Top), Local data remapping (Bottom) 105

4.12 Remapping costs on an Intel Xeon CPU 106

4.13 Remapping costs on an NVIDIA Tesla GPU 106

4.14 Combine cost model on an Intel Xeon CPU for a memory-bound

kernel with varying partition size . 110

4.15 Combine cost model on an NVIDIA Tesla GPU for a memory-bound

kernel with varying partition size . 110

4.16 Performance of NBody with AoS and AoSP relative to SoA layout on

various devices . 116

xii

4.17 Performance of Seismic with AoS relative to SoA layout on various

devices . 117

4.18 Performance of SRAD with AoS and AoSE relative to SoA layout on

various devices . 117

4.19 Performance of MRIQ with AoS relative to SoA layout on various

devices . 118

4.20 Performance of Medical with AoS and AoSU relative to SoA layout on

various devices . 119

4.21 Speedup for all data-parallel kernels on the CPU and GPU by using

our SDL algorithm compared to the programmer specified default layout121

4.22 Speedup for multi-kernel benchmarks on the CPU and GPU by using

our PDL algorithm compared to the programmer specified default

layout . 123

List of Tables

1.1 Classification of heterogeneous architectures 3

1.2 Energy and performance comparison of heterogeneous architectures . 8

2.1 Concord C++ workloads and their characteristics.

parallel for hetero(PFH), parallel reduce hetero(PRH) 38

3.1 Characteristics of benchmarks used in the evaluation. 69

3.2 Comparison of Lines of Code (LOC), Cyclomatic Complexity (CC),

Mental Effort (ME) for H2C and OpenCL (OCL) (Lower is better for

all metrics) . 70

4.1 Compile-time statistics for the benchmarks used in the evaluation. . . 112

4.2 Hardware architectures. IGPU: Integrated GPU, DGPU: Discrete GPU 114

4.3 Data layouts description . 115

xiv

List of Algorithms

1 Generate OpenCL kernel . 60

2 Forasync partitioning . 63

3 Meta-data layout transformation . 84

4 Determine clustering . 98

5 Affinity graph construction from a parallel section 104

6 Compute remap cost . 107

7 Compute combine cost . 109

1

Chapter 1

Introduction

1.1 Motivation

Over the years, we have observed Moore’s law [1], which states that the “number of

transistors per square inch double every two years”. Robert Dennard, in his classic

1974 paper [2] formulated MOSFET scaling which showed that as transistors get

smaller, they can switch faster and consume less power. As a result from Moore

and Dennard’s work, when transistors shrank (along with changes to the doping

and lithography process), we enjoyed faster processors. However, Dennard did not

consider leakage currents that were insignificant at the micrometer scale. Around

2005, these leakage currents came to dominate the total power consumption, and

Dennard scaling came to an end. A reduction in transistor size could no longer

lead to faster processors. A direct consequence of the end of Dennard scaling is

the emergence of Dark Silicon [3]. Dark Silicon describes the growing gap between

how many transistors fit into a chip with each lithography shrink vs. how many

transistors can be used simultaneously for a given power budget. Essentially, Dark

Silicon prevents all the transistors on a chip from being operational at the same

instance. To take advantage of the abundant transistors available, chip manufacturers

are adopting heterogeneous architectures to achieve increased performance and energy

efficiency.

In the last decade, various heterogeneous architectures have become pervasive from

2

mobile phones to supercomputers. We define a heterogeneous architecture to be a sys-

tem that has more than one kind of processor. Few examples include CellBE [4] from

IBM; CPU+GPU architectures [5], [6], [7] from Intel, AMD, NVIDIA; CPU+DSP

architectures [8] from Texas Instruments; CPU+FPGA architectures [9] from Altera,

Xilinx and other custom processors [10] from vendors like Cadence. These heteroge-

neous systems with their superior computational capabilities have opened opportuni-

ties to solve massive computational problems that include DNA sequencing, medical

imaging, big-data analytics, human brain simulation, and particle simulations. The

current top two supercomputers: Tianhe-2 from China, and Titan from United States

have heterogeneous hardware [11]. Most mobile smartphones today are increasingly

becoming heterogeneous. For instance, the Apple iPhone6 has a motion co-processor,

a multi-core CPU + GPU processor and various sensors including a barometer, ac-

celerometers, gyroscopes and compasses.

We claim that heterogeneous architectures are here to stay. There are at least

two reasons why we believe heterogeneous architectures will remain for many years

to come. The first reason is that the relationship between Moore’s law and Dennard

scaling has come to an end. This is due to the leakage currents introduced by the

transistors at the nanometer scale. As a result, decreasing transistor sizes along with

lithographic changes fail to increase the clock frequency. Hardware manufacturers are

resorting to heterogeneous multicore architectures to deliver increased performance

and energy savings. Dark Silicon is another potential source of heterogeneity as

hardware designers have begun to utilize the extra transistors to implement different

kind of cores [12].

The second reason we believe heterogeneous architectures will prevail is because of

Internet of Things (IoT) [13]. IoT is fast catching up and has the potential to disrupt

3

Classification Of Heterogeneous Architectures Examples

1 Non-coherent Memory + Non-shared Virtual Memory Intel CPU + Discrete GPU

2 Coherent Memory + Non-shared Virtual Memory Intel Ivy-Bridge

3 Coherent Memory + Shared Virtual Memory HSA, NVIDIA UVA

Table 1.1 : Classification of heterogeneous architectures

the processor ecosystem and influence the way we build our next super-computer.

IoT not only consists of “big data” generated from various sensors, but also involves

a constant feedback mechanism. Not many years from now, when you wake up, your

pillow will communicate your sleep pattern to the coffee machine and this will in turn

decide the strength of the coffee you are served. Your wardrobe will suggest your

clothes based on the weather forecast and your calendar schedule for the day. This

feedback mechanism requires a constant interaction with heterogeneous devices. Your

home could be the next heterogeneous architecture!

Classification of Heterogeneous Architectures

Recent heterogeneous hardware can be classified into three main categories as de-

scribed in Table 1.1. We briefly describe some terminology below to better understand

this classification.

• Virtual Memory Sharing: If two processors have the same virtual address to

physical memory mapping, then the system is termed as a Shared Virtual Mem-

ory (otherwise Non-shared Virtual Memory).

• Memory Coherence: If a write to a memory location by one processor can be

immediately seen by another processor without any additional programming,

4

Device-1 Device-2

Memory

Scratchpad
 Memory

Memory

PCI-E write 0xff 4
create dmem 0xed
copy 0xed 0xff

read 0xed

Figure 1.1 : Non-coherent memory + Non-shared virtual memory

the memory sub-system is termed a Coherent Memory (otherwise Non-coherent

Memory).

We now describe the classification of heterogeneous architectures in more detail.

Figure 1.1 depicts the first category of heterogeneous systems where each device has

its own physical memory, and the underlying memory subsystem is not coherent

and the processors do not share a virtual address space. To communicate data,

the two devices must perform a series of commands that include: creating buffers

on remote memory locations, copying data, and a mechanism to convert the virtual

address mapping. In this scenario, for Device-1 to communicate a value 4 to Device-

2, it must first write the value to a local memory location say 0xff. It has to then

create a memory location 0xed on the Device-2 memory, and then copy the memory

location 0xff to 0xed. Device-2 can now read the value 4 from its local memory

0xed. Most generic host+accelerator systems belong to this category including Intel

CPU + Discrete AMD/NVIDIA GPU.

5

Device-1 Device-2

Memory

Scratchpad
 Memory

write 0xff 4 read 0xed

Figure 1.2 : Coherent memory + Non-shared virtual memory

Figure 1.2 depicts the second category of heterogeneous systems where both the

devices share a single physical memory, and the underlying memory subsystem is

coherent and the processors do not share a virtual address space. In this scenario,

for Device-1 to communicate a value 4 to Device-2, it must first write the value to

a virtual memory location say 0xff. A mechanism such as a system driver API is

used to find the virtual address mapping of 0xff on Device-2 say 0xed. Device-2

can now read the value 4 from its virtual memory location 0xed. To communicate

data, the programmer is responsible to map a virtual address from one device to

another. Examples of these systems include Intel Ivy-Bridge (CPU + Integrated

GPU), TI-KeystoneII (CPU + DSP).

Figure 1.3 depicts the third category of heterogeneous systems where all the

devices share a single physical memory, and the underlying memory subsystem is

fully-coherent and the processors share a virtual address space. In this scenario, for

Device-1 to communicate a value 4 to Device-2, it must first write the value to a

virtual memory location say 0xff. Device-2 can now read the value 4 from the same

6

Device-1 Device-2

Memory

Scratchpad
 Memory

MMU
write 0xff 4 read 0xff

Figure 1.3 : Coherent memory + Shared virtual memory

virtual memory location 0xff. These systems are easy to program since they do not

require any explicit data movement or virtual memory mapping. However, the draw-

back of these systems is that they incur a significant cost for managing coherency,

which has energy implications. Examples of systems include Intel Broadwell, AMD

HSA, Multicore processors.

Figure 1.4 is similar to the third category of heterogeneous systems where each

device has its own physical memory, and the underlying memory subsystem is coherent

and the processors share a virtual address space. However, the coherence and sharing

of virtual memory is achieved with the help of drivers provided by the vendor. In this

scenario, for Device-1 to communicate a value 4 to Device-2, it must first write the

value to a virtual memory location say 0xff. Device-2 can now read the value 4 from

the same virtual memory location 0xff. The device driver automatically handles

the memory coherence and virtual memory management. Examples of these systems

include NVIDIA CUDA Unified Virtual Addressing (UVA). The implementation of

UVA from NVIDIA is not publicly available. However, similar systems have been

7

Device-1 Device-2

Memory

Scratchpad
 Memory

PCI-E
Driver

write 0xff 4 read 0xff

Figure 1.4 : Driver managed: Coherent memory + Shared virtual memory

implemented in literature [14] [15].

From the above description, it is evident that today’s heterogeneous architectures

differ in their architectural features. The memory hierarchy and cache structures are

very different on these heterogeneous devices. With such diverse characteristics, it is

not only hard to program these systems in a portable manner, but also very challeng-

ing to optimize them. The implication now is that both current and future software

must run on these newer heterogeneous hardware. At the same time, the current

standards of productivity, performance and portability must be met. A key challenge

is that existing programming languages used to develop software applications are not

able to utilize the full potential of these newer and faster processors. Consequently,

application programmers have to deal with low-level programming languages; further-

more, these languages involve non-trivial learning and training. Extensive training

has always been a barrier to the adoption of any new language. Furthermore, legacy

software applications as well as libraries need re-targeting for these newer hardware

causing a portability challenge.

8

Execution Mode
Time × Power = Energy

MFLOPS/Watt
(sec/step) (J/Step)

Single Core CPU 2.40 × 20W = 48.0 100

CPU OpenCL 1.30 × 30W = 39.0 123

GPU OpenCL 0.87 × 13W = 11.3 425

Table 1.2 : Energy and performance comparison of heterogeneous architectures

Heterogeneous architectures also provide an interesting trade-off with respect to

energy. Application performance can be tuned either for execution time or energy

consumption. To study the extent of energy savings, we perform an experiment on a

standard laptop, which has an Intel(R) Core(TM)2 Duo CPU device running at 2530

MHz and a GeForce 9400M GPU device running at 1100 MHz. The energy measure-

ments were performed using a watt-meter, which reports the power consumption of

the whole system including CPU, GPU, memory and I/O subsystem. Precautions

were taken to avoid extraneous readings. For instance, the battery was fully charged

before performing the experiments.

We ran an NBody application with 15K bodies on three execution modes shown

in Table 1.2. NBody is a version of the molecular dynamics which iterates over a time-

stepping loop updating the position, acceleration and velocities of the bodies. We see

that the single core CPU version runs for 2.4 seconds per time step and consumes

an average of 20 watts of power (as observed on the watt meter) with a total energy

consumption of 48 joules per time step. The NBody application for the given input

computes a total of 20 × 15K × 15K floating point operations and this translates

to 100 mega-flops per watt on the single core CPU. The CPU OpenCL (using both

9

the CPU cores) runs faster at 1.3 seconds, but at the same time consumes 30 watts

of power on average with a total energy consumption of 39 joules per time step.

This translates to a total of 123 mega-flops per watt on the CPU. Finally, the GPU

OpenCL (using the GPU) not only runs faster at 0.87 seconds, but also consumes

less power at an average of 13 watts with a total energy consumption of 11.3 joules

per time step. This translates to a total of 425 mega-flops per watt on the GPU. For

this application, GPU is best in terms of both energy consumed and execution time.

Energy consumption is particularly critical for embedded and mobile systems.

Programming systems for heterogeneous architectures must also provide features to

optimize energy consumption along with performance.

1.2 Challenges Programming Heterogeneous Architectures

Some of the key programming challenges facing today’s heterogeneous hardware in-

clude task partitioning, data distribution and coherence, data layout and handling

devices with non-shared virtual memory some of which are explained below.

Data Layout

Data layout refers to the storage pattern of data in main memory. There are many

storage choices including row-major [16], column-major [16], array-of-structures and

structure-of-arrays [17]. Data layout is critical for application performance. An im-

proper layout can lead to poor cache utilization resulting in performance degrada-

tion. Data layout is a well-studied problem in the context of single and multi-core

CPUs [17–20]. However, in a heterogeneous environment, data layout becomes chal-

lenging since different processors may expect a different layout. For instance, CPUs

prefer array-of-structures layout since they can benefit from prefetching and spatial

10

locality. On the other hand, GPUs prefer a structure-of-arrays layout since they can

benefit from coalescing of memory loads. Data layout also impacts mapping of tasks.

Task Partitioning and Data Management

Task partitioning involves mapping a set of tasks (in an application) onto the available

heterogeneous processors. Each of these processors vary in number and the kind of

computation units, memory hierarchy, and other hardware limitations present. Some

challenges involved in mapping a task onto heterogeneous processors are listed below.

• Each task can run on all or a subset of the available processors.

• The performance of each task varies for each processor. The mapping is based

on purely execution time, total energy consumed or a combination of both.

• Mapping influences data locality and data movement.

• Data layout and mapping are dependent.

Sophisticated tuning and heuristics are required to optimize all the above parameters

and automatically map a given program. Auto-tuning approaches so far have not been

very successful. Alternatively, these tasks can also be mapped adaptively at runtime.

However, runtime techniques are limited since they have to make mapping decisions

during program execution and evaluating all the parameters and restrictions incur

considerable overhead. These challenges can be simplified by enabling the program-

mer to make high-level decisions about the mapping and let the compiler/runtime

efficiently map the tasks onto the specified processor units.

Once the task mapping is specified, the data required to execute these tasks has to

be distributed among the different memory locations. The challenge now is to deter-

11

mine the optimal distribution of data among the devices. Data transfer technologies

such as PCI-E are used to move data from one device to another. However, these

current technologies suffer from low bandwidth and high latency and are far behind

the memory bandwidths within a device. This latency gap leads to an imbalance

making data movement between devices very expensive. Thus, programmers have to

minimize the data movement to get the maximum performance. Alternatively, the

programmers can choose to overlap the data movement with computation to reduce

the communication latency. In the presence of complex data access patterns, the

amount of data that needs to be moved can be hard to determine. For large pro-

grams, the problems of task mapping, data layout, and data distribution must be

handled together since decisions at one portion of the program might influence other

portions of the programs.

Non-shared Virtual Memory and Memory Coherence

Other challenges in programming these heterogeneous architectures include devices

that do not have the same virtual memory and managing the coherence of data across

the memory hierarchy. The problem of non-shared virtual memory becomes severe

when programs use data-structures that include pointers to data. Such applications

are very common today and in order to execute them, the programmer has to trans-

late these pointers to different virtual addresses for each device. The data coherence

problem can occur at various levels in the memory hierarchy. Some heterogeneous

processors like integrated CPU+GPU processors share the same physical memory but

have semi-coherent caches. The programmer has to determine where in a program the

data needs to be consistent and has to manually flush the data. The memory coher-

ence can also occur in the DRAM memory across the devices. When the programmer

12

distributes data, it is possible that the data is duplicated across these devices. It is

the responsibility of the programmer to maintain copies only when it is legal to do

so.

1.3 Thesis Statement

Existing programming systems are not productive for targeting current heterogeneous

architectures. The thesis of this dissertation is that minimal extensions to existing

programming languages can yield programming models that target modern heteroge-

neous architectures with portability, productivity, and performance We establish this

thesis by demonstrating extensions to C and C++ that enable a user to write produc-

tive machine-independent portable programs, from which the compiler and runtime

maximize program performance and energy efficiency by generating executables tuned

towards both multi-core CPUs and heterogeneous hardware.

Thesis Overview

Figure 1.5 shows the high-level overview of this dissertation, which explores exten-

sions to existing programming languages such as C/C++ with minimal high-level

constructs to target heterogeneous architectures. These extensions should be suitable

to target both current and future applications. However, these extensions should meet

existing standards of productivity, portability and performance, and at the same time

handle some of the challenges including data layout, task partitioning, data distribu-

tion, event management, exploiting hardware specific resources and virtual memory

sharing which modern heterogeneous architectures pose.

13

Heterogeneous Architectures

Current and Future
Applications

Executable

CPU GPU APU DSP

Concord
(C++ & TBB)

Heterogeneous
Habanero C (H2C)

Challenges

Portability, Productivity and Performance

High-level Language High-level Language

Virtual Memory
Sharing

Data Layout Task
Partitioning

Data
Distribution

Event
Framework

Scratchpad
Buffers

Figure 1.5 : Thesis overview

1.4 Thesis Contributions

This dissertation, makes the following contributions:

Concord

Integrated CPU+GPU heterogeneous processors became pervasive in the last decade.

Intel introduced heterogeneous systems starting with the Sandy-Bridge series and are

now widely available on most desktops and server computers. The GPU occupies a sig-

nificant portion of the die and is also power efficient. However, it is very challenging to

take advantage of the GPU for computation due to restrictions on its programmabil-

ity and high development effort. The goal of Concord is to take advantage of the GPU

14

seamlessly without any additional programming effort. We design and implement a

C++ based programming model (aka Concord) for integrated CPU+GPU heteroge-

neous architectures based on the Intel Threading Building Block [21] library interface.

Concord is open-source and is available at https://github.com/IntelLabs/iHRC. It is

in use by various product groups at Intel, and in various academic and research in-

stitutions.

Challenges

Processors such as GPUs pose restrictions on programmability. For instance, both

the CPU cores and GPUs can access the same physical memory, but some GPUs

lack hardware and OS support for a shared virtual memory across the CPU+GPU

cores. The lack of shared virtual memory restricts execution of applications with

recursive data structures and pointers on the GPU. Traditional approaches use tech-

niques that incur high-overheads such as serialization and un-serialization [22] of the

data structures to overcome this limitation. Further, GPUs do not support function

calls. Due to these limitations, supporting C++ virtual functions on a GPU becomes

challenging.

Highlights of Concord

The key contribution of Concord is to efficiently implement Shared Virtual Memory

(SVM) in software to enable traversals of the same pointer-based data structure from

the CPU and the GPU. We implement C++ virtual functions on the GPU. We use

a “de-virtualization + inline” scheme to support virtual functions. De-virtualization

on GPUs is complicated because, it requires copying the virtual tables to the SVM

regions supported by Concord and make the corresponding code changes inside the

15

GPU kernel. We also provide an efficient scheme to implement parallel reductions

on a GPU from a high-level language. Finally, we port many regular and irregular

C++ CPU applications to Concord and report their performance on these integrated

CPU+GPU devices.

Heterogeneous Habanero-C (H2C)

The philosophy of H2C is to provide a machine-independent programming model

on today’s diverse heterogeneous hardware. The idea is similar to High Performance

Fortran (HPF) [23], which was introduced in the early 90s with a goal of supporting a

single program, multiple target programming system, for distributed cluster machines.

HPF introduced many high-level constructs including FORALL, data alignment, and

data distributions. A single HPF program can compile to any distributed cluster.

However, to get good performance, the programmer might have to tune the source

code for a specific target cluster.

Challenges

Todays heterogeneous processors on a single node pose software challenges analogous

to those of the distributed cluster machines. Some of these challenges include data

layout and coherence, “heterogeneous” data distribution and task partitioning, and

point-to-point synchronization across heterogeneous devices. Also, these architectures

are diverse. One has to generate different versions of the program for each device.

H2C Programming Model

Analogous to HPF, the goal of H2C is to provide a machine-independent programming

model for today’s heterogeneous architectures. H2C is an extension of the Habanero-

16

C [24] programming model with a target of achieving productivity and performance

portability on these devices. The programming model of H2C is a mix of task-

based programming model [24] (across devices) and SPMD [25] (within a device).

Currently, H2C is implemented to support heterogeneous devices present on a single

node. Extensions to support a distributed heterogeneous cluster are discussed in the

future work section.

OpenCL [26] is provided by many vendors today to program heterogeneous devices

in a portable manner. However, OpenCL is too low-level for easy adoption. H2C

combines the high-level language features of the Habanero model with the ubiquity

of OpenCL. The result is that H2C can be used to program a variety of heterogeneous

devices including CPU+GPU integrated and discrete devices, DSPs, and even FPGAs

in some cases.

The data layout framework pushes H2C a step further with extensions to manage

the data layout of a program in a portable manner. Our meta-data layout frame-

work allows programmers to specify different data layouts for different devices. The

automatic data layout framework in H2C extends the data layout formulation in

HPF [16]. The extensions include mapping of tasks onto heterogeneous devices and

handling data duplication on devices with local memories. A key novelty of the auto-

matic data layout approach in H2C is that it unifies the two problems of task mapping

and data layout into a single problem.

H2C provides partitioning constructs to specify “heterogeneous” task partitions

and data distributions. Our implementation takes advantage of a polyhedral [27]

framework and explicit parallel semantics of H2C constructs to efficiently implement

task partitions and data distributions. These partitioning constructs highlight an-

other novelty of H2C, which is a first step to enable a PGAS [28] like programming

17

model for heterogeneous systems with discrete memories.

Apart from flat synchronization offered by “forasync-finish” constructs, H2C al-

lows implementation of point-to-point dependencies across multiple devices using the

“forasync-await” constructs. The most efficient way to manage events on top of het-

erogeneous architectures is to use the “event” implementation provided by the vendor

OpenCL library. However, these events created are only limited to a single device.

H2C overcomes this limitation with the help of a novel and efficient light-weight

Unified Event (UE) framework created as part of this work. UE consists of a com-

bination of compiler analysis and runtime implementation to manage dependencies

across devices. The novelty of UE is that it enables macro-dataflow [29] programs to

run unchanged on heterogeneous devices.

1.5 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 describes the Concord

programming model which is a C++ TBB extension that targets heterogeneous pro-

cessors, which do not share the same virtual addressing. Chapter 3 describes Hetero-

geneous Habanero-C(H2C) that is an extension of the Habanero model for heteroge-

neous architectures. Chapter 4 describes the data layout framework implemented in

H2C. Chapter 5 describes the related work and finally, Chapter 6 summarizes our

conclusions and describes future extensions to this work.

18

Chapter 2

Concord Programming Model

2.1 Introduction

Today’s heterogeneous systems are tightly coupled or loosely coupled that is they

may not share the virtual address to physical address mappings. Examples of loosely

coupled heterogeneous architectures include integrated CPU+GPU and CPU+DSP

architectures. In these architectures, the CPU and the accelerator (GPU/DSP) share

the same physical memory but use different virtual addresses to access the physi-

cal memory (Classification 2 in Table 1.1). Loosely coupled systems tend to offer

more benefits in terms of energy consumption due to lack of full coherency (includ-

ing sharing page tables) mechanism. Maintaining full CPU-GPU coherency increases

processor complexity and die area, and it is unrealistic to expect all GPUs, includ-

ing low-end GPUs for mobile devices, to support page table sharing in hardware.

Example: Intel Bay Trail tablet.

However, lack of virtual memory page sharing restricts the programmability since

applications with recursive data structures (data pointers) cannot be executed easily

across different processors on the same system. The application developer has to seri-

alize and de-serialize those data structures with pointers to overcome this limitation.

This is also a source of portability problems since the programmer has to maintain

two versions of the program: one for architectures where the virtual memory is shared

and another for those it isn’t. Hence, if the programming framework can handle the

19

virtual memory sharing automatically, one can implement applications in a portable

manner, thereby improving programmer productivity.

The interest to support virtual memory sharing on such architectures is also fueled

by the ubiquity of integrated CPU+GPU processors from major hardware vendors

such as Intel and AMD. These processors integrate a CPU and GPU onto the same

die where they share resources like physical memory and the last-level cache. The

advantage of integrated GPUs is that they benefit from low-latency communication

and eliminate data copying, which significantly lowers the cost of offloading work

to the GPU. However, integrated GPUs are limited by the power and size budget

allocated for the integrated processor.

One way to reduce the complexity of GPU programming is to use the same data-

parallel programming models that are already used for programming multi-core CPUs.

The question, though, remains whether benefits of GPU execution can be extended to

irregular applications written in an object-oriented programming style that features

object references, virtual functions, and functor-based parallel constructs.

In this chapter, we describe Concord, a heterogeneous C++ programming frame-

work for processors with integrated GPUs designed to allow general-purpose, object-

oriented, data-parallel programs to take advantage of GPU execution. Concord sup-

ports most C++ features, including namespaces, templates, multiple inheritance,

operator and function overloading, as well as virtual functions. It supports two par-

allel constructs for offloading computation to the GPU: a parallel-for loop and a

parallel-reduce loop. These constructs are modeled after ones provided by Intel’s

Threading Building Blocks (TBB) [21], and are similar to those provided by other

CPU parallelism frameworks such as OpenMP, TPL [30], and Cilk [31]. Most impor-

tantly, Concord supports seamless sharing of data between the CPU and GPU via an

20

efficient software implementation of shared virtual memory (SVM) augmented with

compiler optimizations to reduce the overhead of shared pointer translations. SVM

enables programs to directly share pointer-containing data structures between the

CPU and GPU. Since object-oriented programs make heavy use of objects that point

to other objects, SVM is a prerequisite for GPU execution of object-oriented C++

programs. Our SVM solution is implemented purely in software and targets inte-

grated GPUs with no virtual pages shared between CPU and GPU such as processors

readily available today from Intel and AMD.

We evaluate Concord using seventeen realistic regular and irregular C++ appli-

cations running on two computer systems with Intel 4th Generation Core processors.

Some of these applications are pointer-intensive as they operate on irregular data

structures (trees and graphs) represented in the traditional C/C++ fashion using

pointers. Concord is now an open source project [32] and has been used by many

researchers including the Galois group [33] at UT-Austin to evaluate their irregular

applications.

The rest of this chapter is organized as follows. Section 2.2 presents some back-

ground for the the Concord programming model. Section 2.3 presents the Concord

programming language constructs and restrictions. Section 2.4 then describes the

details of our prototype implementation. Sections 2.5 provides experimental results.

2.2 Background

In this section, we briefly summarize important frameworks that are used to imple-

ment the Concord programming model.

21

2.2.1 OpenCL

OpenCL [26] is an open standard to program modern heterogeneous hardware. An

OpenCL implementation provides a low-level API to compile, execute and also map a

program on a heterogeneous architecture. The API also provides constructs to specify

asynchronous computations and communication along with synchronization. OpenCL

follows the offload model where the main program is executed on a “host” which

launches tasks onto “devices”. Many vendors today including Intel(CPU/CPU/Xeon

Phi), AMD(CPU/GPU/APU), NVIDIA(GPU), Texas Instruments(CPU/DSP), Xil-

inx(FPGA) and Altera(FPGA) provide implementations of OpenCL to program their

hardware. OpenCL is increasingly being adopted by various developers to write ap-

plications for current heterogeneous hardware. However, OpenCL is challenging for

average programmers to learn, thereby limiting its rate of adoption onto newer archi-

tectures.

2.2.2 LLVM/Clang

LLVM [34] is an open source compiler tool-chain designed to provide modern static

and dynamic compilation strategies. A source language is compiled down to an SSA

based intermediate representation called “LLVM byte-code”. All optimizations are

performed on this byte-code. This byte-code is further lowered down by a back-end to

target specific assembly/binary code. Clang is the front-end parser module of LLVM.

LLVM has recently gained a lot of popularity due to its modular and reusable features

and is widely adopted by industry and academic institutions.

22

2.3 Programming Model

Concord supports most C++ features with some exceptions. It provides two API

functions for data-parallel iterations and reductions and has SVM support that en-

ables programs to transparently share pointer-containing data structures.

2.3.1 Programming Constructs

Concord’s template API functions for data-parallel computation are modeled after

the corresponding ones in Intel Threading Building Blocks (TBB).

template <class Body>

void p a r a l l e l f o r h e t e r o (int n , const Body &b , bool on GPU) ;

template <class Body>

void p a r a l l e l r e d u c e h e t e r o (int n , const Body &b , bool on GPU) ;

Both template functions take a parameter n that specifies the iteration space,

[0..n) to be done in parallel. For both functions, the second parameter b must be an

instance of a class Body that defines a method void operator(int i) specifying

the body of the parallel loop or reduction. The third parameter controls whether ex-

ecution should be on the CPU or GPU. For parallel reduce hetero, the Body

class must define an additional method join to combine the results for two Body

objects. The programming model ensures mutual exclusion for the join method.

Concord does not guarantee that different loop iterations will be executed in par-

allel. Also, as in TBB, programmers should make no assumption about the order in

which different iterations are done. Similarly, floating point determinism in reductions

is not guaranteed.

23

1 c l a s s LoopBody {

2 Node ∗ nodes ; // a r r a y o f nodes

3 pub l i c :

4 LoopBody (Node ∗ a r r) : nodes (a r r) {}

5 void operator () (i n t i) { // execu t ed i n p a r a l l e l

6 nodes [i] . nex t = &(nodes [i +1]) ;

7 }

8 } ;

9 void conve r tToL inkedL i s tF romAr ray (Node ∗ a r ray , i n t N) {

10 LoopBody ∗b = new LoopBody (a r r a y) ;

11 p a r a l l e l f o r h e t e r o (N, ∗b , GPU) ;

12 }

Figure 2.1 : Concord program to convert an array of node objects to a linked list in

parallel.

An example showing the use of parallel for hetero appears in Figure 2.1.

This example illustrates how it might be used to convert an array of pointers to

a singly-linked list data structure in parallel. The main kernel is written in the

operator() of class LoopBody. An instance of this class is passed as an argu-

ment to the parallel for hetero along with the number of iterations N and the

target device (GPU).

To illustrate the use of parallel reduce hetero, Figure 2.2 shows how it can

be used to compute the sum over the result of applying a function to each element of

an array. The operator() computes the result of the function applied to each array

index A[i] and the join() reduces the result in parallel.

24

1 c l a s s Body {

2 f l o a t ∗A, r e s u l t ;

3 pub l i c :

4 Body (f l o a t ∗aa) : A(aa) , r e s u l t (0 . 0 f) { }

5 void operator () (i n t i) { // execu t ed i n p a r a l l e l

6 r e s u l t = f (A[i]) ; // compute l o c a l r e s u l t

7 }

8 void j o i n (Body &rh s) {

9 r e s u l t += rh s . r e s u l t ; // r e d u c t i o n : sum r e s u l t s

10 }

11 } ;

12 . . .

13 Body ∗body = new Body (A) ;

14 p a r a l l e l r e d u c e h e t e r o (v e c t o r s i z e , ∗body , GPU) ;

Figure 2.2 : parallel reduce hetero example

2.3.2 Shared Virtual Memory(SVM) Support

In order to make existing C++ programs portable on integrated processor with non-

shared virtual memory, Concord provides SVM. This allows programs running on the

CPU and GPU to directly share complex, pointer-containing data structures such as

trees and linked lists. SVM also eliminates the need to marshal data between the

CPU and GPU.

25

2.3.3 Support for C++

Concord supports most C++ features in the GPU code including classes, virtual

functions, multiple inheritance, operator and function overloading, templates, and

namespaces. However, due to compiler and GPU hardware limitations, there are re-

strictions to its C++ support, violations of which result in compile-time warnings and

parallel for hetero or parallel reduce hetero code being executed on

the CPU. In particular, Concord does not support recursion (except for tail-recursion

that can be eliminated at the compile time), function calls via a function pointer,

taking the address of a local variable, memory allocation on GPU, and exceptions.

We plan to lift the last two restrictions as part of the future work. Note that although

Concord does not support function calls via a function pointer, it supports virtual

and externally defined functions.

2.4 Implementation

Figure 2.3 depicts the components of our Concord framework along with their interac-

tion with other components. We use the Clang and LLVM infrastructure to compile

Concord C++ programs. A compiler pass identifies the heterogeneous loop body

functions (i.e., the operator() and join methods of a body class) and generates

CPU code as well as GPU OpenCL kernel code for them. We generate a host-side

executable that embeds the generated OpenCL. Later, to execute a heterogeneous

loop, the runtime extracts its OpenCL code, just-in-time compiles it to GPU ISA if

necessary via the vendor-specific OpenCL compiler, and then, based on the on GPU

flag, decides whether to execute it on the CPU or GPU.

26

Figure 2.3 : Overall flow diagram of the Concord framework

2.4.1 CPU-GPU Shared Pointers (SVM)

Concord’s SVM support allows the GPU to share the same pointers as the CPU.

Concord represents a shared pointer using the CPU virtual memory address, and

the compiler generates code to translate virtual addresses on the GPU at runtime.

The challenge of implementing this translation is that the CPU and GPU may have

separate virtual-to-physical mappings and different pointer representations. These

details differ greatly from one processor architecture to the next. The remainder of

this section describes our implementation on Intel’s 4th Generation Core processor.

On this processor, the GPU and CPU use separate page tables. The GPU’s virtual

27

address space is segmented into surfaces and each surface is referenced by a binding

table entry. A GPU pointer is represented as a binding table index plus an offset. To

access memory, the offset is added to the surface’s base address obtained by looking

up that surface’s binding table entry. Thus, when we dereference a shared pointer on

the GPU, we must translate that CPU virtual address so that it refers to the same

physical memory location on both GPU and CPU.

To do this translation, we create a virtual memory region at program startup

that is shared between the CPU and GPU∗. Any shared pointer that the GPU needs

to dereference must be allocated in this shared memory region. We achieve this by

redirecting malloc and free to specialized routines that allocate and free memory in

the shared memory region. The shared memory region is pinned during GPU kernel

execution and has a backing GPU surface with a binding table entry that is constant

during runtime. This approach substantially reduces the cost of Concord’s shared

pointer translation.

Figure 2.4 depicts the compiler transformation necessary to synchronize the virtual

addresses of shared pointers between CPU and GPU. Given the base addresses of CPU

and GPU for the shared region as cpu base and gpu base respectively, a pointer ptr p

in the CPU virtual address space has a corresponding GPU virtual address gpu ptr p

where

gpu ptr p = gpu base+ (ptr p− cpu base)

. This address translation can be optimized by using the runtime constant

svm const = gpu base− cpu base

∗On Intel’s 4th Generation Core processor, all physical memory is shared between CPU and GPU.

28

CPU Virtual
Address Space

GPU Virtual
Address Space DRAM Physical Memory

gpu_ptr_p = ptr_p + (gpu_base – cpu_base);
0x0

cpu_base

ptr_p

gpu_base

gpu_ptr_p

Single Buffer

Figure 2.4 : CPU and GPU shared pointer transformation

that is computed only once. Then, before dereferencing ptr p on the GPU, it can be

translated to gpu ptr p by simply adding the runtime constant svm const.

Figure 2.5 presents the compiler generated OpenCL code for the operator(int i)

method in Figure 2.1 using the pointer transformation described in this section. The

OpenCL kernel offload takes additional arguments for gpu base, cpu base, and the

pointer cpu ptr to the Body object (which is same as b in the source program). The

shared pointers, cpu ptr and gpu ptr p[i].next are translated from the CPU address

space to the GPU address space using the GPU PTR macro.

Our pointer translation technique can be generalized to scenarios where CPU and

GPU use different encoding schemes and lengths. For example, if CPU memory is

addressed using 64-bits and GPU memory uses 32-bits, we can apply the same pointer

arithmetic as long as the shared region does not exceed 4GB.

29

1 typedef uns i gned long CpuPtr ;

2 #def ine GPU PTR(T, p) (g l oba l T ∗) (&svm const [(p)])

3 #def ine CPU PTR(T, p) (g l oba l T ∗) (& svm rcons t [(p)])

4 ke rne l void o f f l o a d (g l oba l char ∗ gpu base ,

5 CpuPtr cpu base , CpuPtr cpu p t r) {

6 u int i = g e t g l o b a l i d (0) ;

7 g l oba l char ∗ svm const = (gpu base − cpu base) ;

8 g l oba l char ∗ s vm rcons t = (cpu base − gpu base) ;

9 g l oba l Node ∗ gpu p t r = GPU PTR(Node , c pu p t r) ;

10 ∗(GPU PTR(Node , gpu p t r [i] . nex t)) = &gpu p t r [i +1] ;

11 }

Figure 2.5 : OpenCL generated by Concord compiler for operator().

In this implementation, we restrict the SVM framework to a single buffer to reduce

the overhead of SVM. Multiple buffers can be handled using a scheme similar to cache

associativity implementations, where the bits of the original address can be used to

identify the buffer. Once the buffer has been identified, the final address can be

computed using the offset and base address corresponding to the identified buffer.

2.4.2 Virtual Functions

One of the most widely used dynamic features of C++ is its virtual function sup-

port. Although there are a variety of different ways to implement virtual functions,

the vtable (virtual table) approach is common in modern C++ compilers. In this

approach, a compiler creates a separate vtable for each class and when creating an

instance of that class (an object), adds to that object a pointer to the class’s vtable.

A call to a virtual function is then handled by dereferencing the underlying runtime

30

object’s vtable pointer, locating the corresponding virtual function entry and finally

dereferencing that pointer to call the function. To implement virtual functions on the

GPU, vtables need to be allocated in the shared region and more importantly, func-

tion pointers are required on the GPU. Current integrated GPU hardware designs are

not yet capable of supporting function pointers, so we use a compiler-based solution.

To support virtual functions on the GPU, the Concord compiler implements three

key operations: a) move necessary vtables and runtime-type information to the shared

region; b) share the global symbols of relevant virtual functions between the CPU and

GPU using shared memory; c) translate a virtual function call into an inline sequence

of tests of the call target against the possible target function pointer values for that

call. The compiler implements global symbol sharing between CPU and GPU by

allocating a new structure in the shared memory region that encapsulates all global

symbols needed for the virtual function calls executed by a GPU function. It also

determines the set of call targets for a given virtual function using class hierarchy

analysis and alias analysis.

Figure 2.6 shows the implementation of virtual functions in Concord. Figure 2.6(a)

shows a C++ program with virtual function area() (called on line 12). Figure 2.6(b)

shows the virtual table layout generated by the compiler. These virtual table data

structures have to be copied to the SVM region. Figure 2.6(c) shows the code gen-

erated for the area() virtual call. The code generated for the CPU virtual call (lines

2-3) is the standard function pointer call. However, the GPU virtual call (lines 5-8) is

implemented by de-virtualizing. Essentially, all possible targets of a virtual function

call are identified and a jump table is built for these targets with the corresponding

functions in-lined.

31

1 // o r i g i n a l h i e r a r c h y

2 c l a s s Shape {

3 v i r t u a l void i n i t () ;

4 v i r t u a l i n t a r ea () ;

5 } ;

6 c l a s s Tr i a n g l e : Shape {

7 v i r t u a l i n t a r ea () ;

8 } ;

9

10 i n t f oo () {

11 // v i r t u a l f u n c t i o n c a l l

12 Shape ∗ s ;

13 i n t v a l ;

14 v a l = s−>a r ea () ;

15 r e t u r n v a l ;

16 }

(a) C++ Program with Virtual

Functions

	 	 	 vtableptr	 area	

init	

Shape	 Shape::vtable	

	 	 	 vtableptr	 area	

Shape::init	

Triangle	 Triangle::vtable	

copy	 to	
SVM	
region	

(b) Object Layout with Virtual Tables

1 Shape ∗ s ;

2 i n t v a l ;

3 //CPU V i r t u a l Func t i on c a l l :

4 (s−>v t a b l e p t r [1]) () ;

5 //GPU V i r t u a l Func t i on c a l l :

6 i f (s−>v t a b l e p t r [1] == Ctx−>Shape : : a r ea)

7 v a l = Shape : : a r ea () ; // i n l i n e

8 e l s e

9 v a l = T r i a n g l e : a r ea () ; // i n l i n e

(c) Generated code

Figure 2.6 : Example showing handling of virtual functions by Concord

2.4.3 Reduction

When using parallel reduce hetero, the Body object’s join method contains

reduction code that combines two Body objects. We modified our compiler and

runtime to perform hierarchical reduction of the body objects on the GPU using local

memory, the high-speed on-GPU memory that is shared among all work-items of a

work-group in OpenCL.

32

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

 B0 B8

 B

Hierarchical	 	
reduc,on	 	
in	 local	 	
memory	

Private	 	
copies	 of	 B	 	
&	 parallel	 	
opera,on	 	

join join

Figure 2.7 : Reduction on GPU: private reduction followed by hierarchical reduction

in local memory

The compiler generates OpenCL code for the join method similar to the code

generation technique for operator(). We generate additional wrapper OpenCL code

that makes multiple copies of the shared Body object in each thread’s private memory,

invokes the operator() function to compute the thread’s value that participates in

reduction, moves the private objects to local memory, and finally, iteratively performs

reduction using local memory until a single value is left. The local memory copies hold

intermediate reduction results. The final reduced value is copied back to the original

shared Body object. Figure 2.7 describes this process. The original sequential join

function pointer is also passed to the runtime to perform sequential reduction if local

memory is insufficient or if the GPU is busy.

33

2.4.4 Code Generation

The Concord compiler translates parallel for hetero and

parallel reduce hetero to the runtime API functions offload and

offload reduce respectively. These runtime functions take additional compiler-

generated arguments: (1) a gpu program t structure for the entire program to hold

the OpenCL code and its cached JIT-compiled GPU binary; (2) a gpu function t

structure to cache per-function GPU binary code in order to reuse the JIT-compiled

code. The gpu function t also carries the user-specified device information

per kernel as specified in the third argument of parallel for hetero and

parallel reduce hetero.

Concord compiler performs standard compiler optimization techniques like loop-

unrolling and scratchpad memory optimizations. Apart for these optimizations, we

devise another optimization in Concord to reduce the S/W-based SVM implementa-

tion overheads. This optimization is described in detail below.

2.4.5 Reducing SVM Implementation Overhead

The pointer arithmetic operations inserted as described in Section 2.4.1 must be min-

imized by the compiler whenever possible. Depending on how shared pointers are

used on the GPU, it may be beneficial to retain the CPU virtual address represen-

tation for a shared pointer instead of eagerly translating it to GPU address space.

For example, if the GPU code loads a shared pointer and stores it into a memory

location without dereferencing it, then it is better never to convert the CPU virtual

address. Hence, there are some situations when it is better to translate eagerly CPU

to GPU addresses, and other situations when lazy translation is better. For example,

consider the code sample shown in Figure 2.8.

34

// Pointer convers ion r e q u i r e d on GPU

int ∗∗a = data−>a , ∗∗b = data−>b ;

for (int i =0; i<N; i++)

// Pointer convers ion r e q u i r e d on GPU

b [i] = a [i] ;

// a i s not used on GPU a f t e r t h i s

Figure 2.8 : Illustration of lazy vs. eager compiler transformation of shared pointers

In this code fragment, pointer a[i] is loaded from memory and written into b[i]

at each iteration of the loop. With eager translation (i.e., convert to GPU virtual

memory representation as soon as the pointer is loaded), we need pointer arithmetic

operations to translate the array addresses a and b only immediately after their defi-

nitions, which are outside the for-loop.

Using lazy translation (i.e., keep the CPU virtual memory representation as is and

translate to GPU representation just before dereferencing it), we must add pointer

arithmetic to translate a and b from the CPU to the GPU representation on every

loop iteration. The eager approach is clearly beneficial in this case.

On the other hand, eagerly converting the address of an array element a[i] to a

GPU virtual address results in wasted work because a[i] is never dereferenced on the

GPU. It would convert all a[i] pointers to GPU addresses only to immediately convert

them back to CPU addresses in order to store them in array b. The lazy approach is

preferable in this case.

Both eager and lazy approaches have their advantages and disadvantages and can

35

1 i n t ∗∗a = data−>a ;

2 f o r (i n t i =0; i<N; i++)

3 = GPU PTR(i n t ∗ , a) [i] ;

4 //Overhead : N

(a) Lazy Translation

1 i n t ∗∗a = GPU PTR(i n t ∗ , data−>a) ;

2 f o r (i n t i =0; i<N; i++)

3 = CPU PTR(int , GPU PTR(int , a [i])) ;

4 //Overhead : 2N + 1

(b) Eager Translation

1 i n t ∗∗a = AS GPU PTR(i n t ∗ , data−>a) ;

2 f o r (i n t i =0; i<N; i++)

3 = a [i] ;

4 //Overhead : 1

(c) Best (Eager + Lazy) Translation

Figure 2.9 : Example showing eager, lazy and best approaches

perform better or worse depending on the code patterns in a program. We devise

a strategy where we keep both the CPU representation and GPU representation

for every pointer. The GPU representation is obtained by converting the pointer

eagerly when it is loaded from memory. If at a later use the pointer is stored into a

memory location (as a[i] in Figure 2.8), we replace the use by the CPU representation.

Otherwise, we use GPU representation. If a pointer is never dereferenced on the GPU,

a standard dead code elimination pass eliminates the redundant conversion to GPU

address space. Figure 2.9 describes the translation overheads due to these three

approaches when applied to the code in Figure 2.8.

We optimize the placement of GPU pointer conversion operations using standard

live-range shrinking techniques used in optimal code motion [35].

36

2.5 Experimental Evaluation

This section evaluates the Concord system using a set of regular and irregular data-

parallel C++ programs. We first present the overhead comparison between Concord

and Intel TBB library implementations. We then present comprehensive execution

time performance and energy measurements for these workloads using the GPU as

well as CPU-only execution. Finally, we demonstrate that our software-based SVM

implementation has minimal overhead.

2.5.1 Experimental Setup

We evaluated our Concord framework on two systems with integrated Intel 4th gener-

ation Core processors running the Windows 7 64-bit operating system: (1) a 1.7GHz

Dual-Core i7-4650U Ultrabook with 4GB memory, and (2) a 3.4GHz Quad-Core

i7-4770 desktop with 8GB memory. The processor in (2) targets high-performance

desktops and servers whereas the processor in (1) is a mobile processor that targets

laptops and other mobile devices. While the desktop processor has a higher TDP

(Thermal Design Power) budget of 84W, the Ultrabook operates at a low TDP bud-

get of 15W. Energy efficiency is particularly important for mobile systems such as the

Ultrabook as it increases battery life. The integrated GPUs on the two systems each

have seven hardware threads, each of which is 16-wide SIMD. The desktop GPU is

an Intel HD Graphics 4600 with 20 execution units (EUs) and runs at a turbo-mode

controlled frequency from 350MHz to 1.25GHz. On the other hand, the Ultrabook

GPU is an Intel HD Graphics 5000 with 40 EUs and runs at a turbo-mode controlled

frequency from 200MHz to 1.1GHz. We compiled all workloads using CLANG and

LLVM version 3.3 with Concord extensions and using optimization level -O2. We per-

formed energy measurements by using an internal tool to Intel that measures package

37

energy by sampling the machine-specific register MSR PKG ENERGY STATUS.

Our evaluation used several regular and irregular data-parallel C++ workloads

most of which use pointers extensively. Most of these were ported from existing

TBB or multi-core C++ programs. Some were taken from the Rodinia benchmark

suite [37], and OpenCV [40], while others were written manually. The origins and

static characteristics of the workloads are presented in Table 2.1. The benchmark are

summarized below:

1. Barnes-Hut: This program uses the efficient Barnes-Hut algorithm for n-body

simulation. It partitions the bodies into subregions using an octree so that forces

from nearby bodies are computed exactly while forces from far-away particles

are approximated. We target force calculations to the GPU. Since the octree

is unbalanced and traversed recursively to compute the force on each body, the

code is highly irregular.

2. Breadth-first search (BFS): This program does a breadth-first search in a graph

that computes the distance of each node from a specified source node. It uses a

compressed row representation and exhibits memory irregularity that depends

on the input graph. Our results are for the Western USA road network.

3. BTree: This workload uses an n-ary search tree with records stored on leaves of

the tree. Searching is targeted to the GPU. Since the search tree is unbalanced,

the search process is irregular.

4. Black-Scholes: This program calculates the option prices using the Black-

Scholes Partial Differential Equation (PDE). It uses a data parallel kernel to

iterate over the five features for each option and analytically computes the final

price of the option.

38

Benchmarks Origin Input LoC Device Parallel

size LoC Construct

Barnes-Hut In-house 1000000 bodies 828 105 PFH

BFS Galois [36] |V |=6.2M, |E|=15.2M 866 19 PFH

BTree Rodinia [37] command.txt 3111 84 PFH

Blackscholes PARSEC [38] 64K 713 163 PRH

ClothPhysics Intel [39] 50K nodes & 9234 411 PRH

200K connections

CC Galois [36] |V |=6.2M, |E|=15.2M 473 36 PFH

Facedetect OpenCV [40] 3000x2171 3691 378 PFH

GameOfLife TBB [21] 10sec 2438 181 PFH

Mandelbrot TBB [41] 1920x1080 1375 41 PFH

Matmult In-house 2048x2048 113 11 PFH

NBody Intel [42] 4096 501 41 PFH

PetMe Intel [39]
2563 nodes &

9234 411 PRH10242 connections

Raytracer In-house [43] SP=256, MA=3, LI=5 843 134 PFH

Seismic TBB [21] 1950x1326 733 16 PFH

Skip list In-house 50000000 keys 467 21 PFH

StringFinder TBB [21] 17711 (N=22) 208 14 PFH

SSSP Galois [36] |V |=6.2M, |E|=15.2M 1196 19 PFH

Table 2.1 : Concord C++ workloads and their characteristics.

parallel for hetero(PFH), parallel reduce hetero(PRH)

39

5. ClothPhysics: This application models cloth soft-body using a graph consist-

ing of distinct points (nodes) joined by springs (edges). As the cloth moves,

new tension and torsion forces are computed for every node by traversing the

neighboring nodes.

6. Connected Component (CC): This program executes a topology-driven search

in a connected-component graph. The search depends on the input graph and

so is irregular.

7. Facedetect: This program detects faces using Haar-like features that encode

information about the faces. A cascade of classifiers is first trained and then

applied to an input image. That cascade data structure is traversed during

face detection process. The workload comes from OpenCV [40] computer vision

library.

8. GameOfLife: This program runs two simultaneous instances of the classic Con-

way’s “Game of Life”. One of these instances uses serial calculations to update

the board while the other executes the games in parallel.

9. Mandelbrot: This application computes a Mandelbrot set, a set of points in the

complex plane that forms a fractal.

10. Matmult: Standard matrix multiplication application.

11. NBody: NBody is a popular molecular dynamics code that simulates the move-

ment of particles in a 3D space. The algorithm has two kernels executed in a

time-step loop. The first kernel computes the acceleration of the particles and

has a O(N2) complexity where N is the number of particles, and the second

40

kernel updates the position of the particles based on the new acceleration and

has O(N) complexity.

12. PetMe: This application simulates entire soft-body characters using cloth simu-

lation techniques. Soft body physics is an increasingly popular feature in video

games. Due to their computational intensity, soft body physics is presently used

sparingly to depict the movement of cloth, hair, and other flexible elements.

13. Raytrace: The key data structure used in raytracing algorithms is a scene graph

consisting of objects and lights, each represented using a pointer vector. The

program uses a parallel version of the algorithm in [43]. During each pixel’s color

computation, scene graph components are intersected several times. Virtual

function dispatch is used to intersect objects.

14. Seismic: This application simulates a seismic wave in parallel.

15. Skip list: A skip list stores a sorted list of values using a hierarchy of linked lists,

which enables efficient searches in O(log n) steps. While searching for values,

this program traverses the intermediate linked-list structures that depend on

the input data.

16. StringFinder: This example uses parallel for construct to find a substring

match. For each position in a string, the program displays the length of the

largest matching substring elsewhere in the string and displays the location of

a largest match for each position.

17. Single source shortest path (SSSP): This application uses the Bellman-Ford

algorithm to compute the shortest path of all nodes from a fixed start node

41

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

BarnesHut
BFS

Btree

ClothPhysics

ConnectedComponent

FaceDetect

Raytracer

SkipList
SSSP

control memory remaining

Figure 2.10 : Dynamic estimates of irregularity for each application. Benchmarks

which have more than 50% irregularity have been circled in red.

in a directed graph with weighted edges. It exhibits irregular memory access

patterns that depend on the input graph.

Irregular workloads tend to show large amount of control flow divergence or un-

coalesced memory accesses. To understand the irregularities in our workloads, we

collected static measurements of irregularity at the IR level. Figure 2.10 shows the

dynamic estimated of ir-regularity in the program. Each bar shows the amount of

control flow(yellow), memory operations such as read/write(red) and rest of the com-

putations(green) for a given application.

Pointer-based data-parallel programs are traditionally difficult to port to GPUs

without significant software engineering effort. However, since Concord supports

pointer sharing using SVM and provides TBB-like APIs, We ported most bench-

42

marks with little effort. Once ported, the same C++ code could run transparently

on either the CPU or GPU. As an example of the effort involved, one of us ported the

ClothPhysics application, which consists of 9234 lines of TBB code, to Concord

in one day without any prior experience with it.

We report execution times for all benchmarks without any hand optimization after

the port to Concord. We averaged the runtime performance of five runs. Our CPU

execution times do not include compilation whereas our GPU execution times include

a one-time compilation for each kernel. That is; multiple invocations of a kernel use

the cached GPU binary as described in Section 2.4.4.

2.5.2 Performance and Energy Efficiency

Figure 2.11 shows the runtime performance of Concord on CPU on the desktop system

compared to the TBB library version on CPU. Note that the Concord on CPU is

compiled down to OpenCL which internally is implemented on top of the TBB library.

Hence, the comparison between the CPU version and the TBB version gives us an

indication of the overhead due to our Concord framework. The CPU version in certain

cases beats the TBB version because the back-end compiler is able to better vectorize

the OpenCL kernel(generated from Concord) due to its parallel semantics.

Figure 2.12 shows the overall GPU speedup and energy savings compared to mul-

ticore CPU execution on the ultrabook system. With GPU execution, we found

performance improvement ranged from 1.11× to 9.88× with a geometric mean im-

provement of 2.5× compared to multi-core CPU execution. It is not surprising to

see that all workloads show performance improvement from offloading work to the

GPU since the integrated 40 EU GPU on this system is more powerful than the dual-

core CPU. Raytracer, in particular, achieves the best performance improvement

43

0

0.5

1

1.5

2

2.5

3

3.5

Blackscholes

Facedetect

Game_of_life

Mandelbrot

MatMult
Nbody

PetMe

Raytracer

Seismic

Sub_strin
g_finder

Sp
ee

du
p

re
la

tiv
e

to
 s

eq
ue

nt
ia

l e
xe

cu
tio

n Concord on CPU TBB on CPU

Figure 2.11 : Runtime performance of Concord CPU on the desktop system compared

to TBB Library on CPU

0
1
2
3
4
5
6
7
8
9

10

BarnesHut
BFS

BTree

ClothPhysics

ConnectedComponent

FaceDetect

Raytracer

SkipList
SSSP

GEOMEAN

H
ig

he
r t

he
 b

et
te

r

GPU-SPEEDUP GPU-ENERGY-SAVINGS

Figure 2.12 : Runtime and energy performance relative to multi-core CPU execution

on the ultrabook system

44

0

0.5

1

1.5

2

2.5

3

3.5

4

BarnesHut
BFS

BTree

ClothPhysics

ConnectedComponent

FaceDetect

Raytracer

SkipList
SSSP

GEOMEAN

H
ig

he
r t

he
 b

et
te

r
GPU-SPEEDUP GPU-ENERGY-SAVINGS

Figure 2.13 : Runtime and energy performance relative to multi-core CPU execution

on the desktop system

of 9.88× as it exhibits the least amount of irregularity compared to other workloads

(as shown in Figure 2.10). We also observe energy savings ranged from 0.93× to

6.03× with an geometric mean savings of 2.04× using GPU execution compared to

multi-core CPU execution. All workloads except FaceDetect show energy savings

from GPU execution. Raytracer has the highest energy savings of 6.04×, which is

primarily due to its high performance on the GPU.

Figure 2.13 shows the overall speedup and energy savings compared to multi-

core execution on the desktop system. With GPU execution, we found a geometric

mean energy savings of 1.69× compared to multi-core CPU execution. All workloads

except FaceDetect show energy savings from offloading work to the GPU. GPU

execution of BFS, Raytracer, SkipList, and BTree yield especially significant

energy savings–2.94×, 3.52×, 2.27×, and 2.43×, respectively–compared to multi-core

45

CPU execution. Interestingly, GPU execution results in significant energy savings

even though it gives on geometric mean only 1% performance benefit (as shown in

Figure 2.13) compared to multi-core CPU on the desktop system. The discrepancy

between performance and energy efficiency on GPU vs. CPU is especially pronounced

for Barnes-Hut, a tree traversal algorithm where the memory coalescing opportu-

nity for two neighboring iterations of the parallel for hetero loop may depend

on the input data. This workload is 47% slower on the GPU than the multi-core

CPU, and yet it is 48% more energy efficient.

For the desktop systems, the similar performance on the CPU and GPU for irregu-

lar workloads is not surprising since (1) the CPU cores have much higher main memory

bandwidth than the integrated GPU cores, and (2) the CPU cores are equipped with

highly accurate branch predictors that handle control flow divergence very well. Thus,

even though there is a large amount of parallelism on the GPU, GPU performance is

hindered by application irregularity.

Overhead of our SW-based SVM

To study the overhead of our SVM implementation, we took one pointer-intensive

Concord workload, Raytracer. We implemented an equivalent OpenCL 1.2 pro-

gram. Since OpenCL 1.2 doesn’t support pointer sharing between the CPU and

GPU, the OpenCL Raytracer’s host CPU program had to flatten the pointer-based

scene graph data structure, convert its embedded vectors into linear arrays, and cre-

ate OpenCL buffer objects in order to share that scene graph with the GPU. In

addition, the Concord Raytracer code executing on the GPU had to be translated

to OpenCL C and modified to traverse the flattened scene graph representation using

integer offsets. We found negligible overhead for small images while, for even the

46

largest image size, We observed only a 6% overhead.

2.6 Summary

A number of specialized languages have been developed for offloading work to GPUs,

but their use has been restricted by their complexity and required architectural un-

derstanding. Furthermore, these languages are targeted at accelerating regular data-

parallel applications operating on array-based data structures, not the kind of pointer-

based applications typical in multi-core C++ programming that operate on irregular

data structures such as trees and graphs.

This thesis chapter describes the Concord C++ programming framework for pro-

cessors with integrated GPUs. With its support for SVM and most C++ constructs,

Concord is designed to allow object-oriented C++ data-parallel programs to take

advantage of GPU execution. Its compiler optimizations reduce the cost of software-

based SVM. Using seventeen realistic regular and irregular C++ applications, we

demonstrate that C++ applications using pointers and other object-oriented features

can be automatically mapped to GPUs. Furthermore, we demonstrate that GPU

execution can bring significant energy benefits to irregular applications even without

sophisticated algorithm or data restructuring changes: our results show an average

energy savings of 2.04× on an Ultrabook and 1.69× on a desktop over multi-core

CPU execution.

Much research has gone into improving the performance of regular data-parallel

GPU applications. Our work on accelerating irregular C++ programs is complemen-

tary to this research, and could be combined with it for even better results.

47

Chapter 3

Heterogeneous Habanero-C (H2C)

3.1 Introduction

Today’s heterogeneous architectures are diverse and pose severe programmability

challenges. The optimization challenges include minimizing the overheads due to

communication of data, mapping and scheduling of tasks and maximizing the utiliza-

tion of the available resources. Current approaches use heuristics to automatically

solve some of these challenges, but these approaches are limited to only certain appli-

cations or to a single architecture. For example, automatic approaches to mapping of

tasks assume that all the processors resources are available for a given task. However,

in practice the resources could be shared or are limited. For instance, the memory of

a GPU is limited to at-most 12GB in state-of-art devices, and the automatic mapper

must now be aware of these constraints and make decisions at runtime which could

result in performance degradation. In general, a productive approach is to provide the

programmer with high-level constructs to specify the parallelism and possible opti-

mizations in a program, and enable the compiler and runtime to map the specification

efficiently. Such an approach has worked well in the case of SMPs where automatic

parallelization schemes were limited, but enabling programmers with high-level con-

structs (like OpenMP) to specify the parallelism eliminated these limitations.

We develop Heterogeneous Habanero-C (H2C) by extending Habanero-C [24] (an

extension of the popular C programming language) to target multiple heterogeneous

48

CPU, GPU and APU architectures. The idea is to enable a common programming

platform for domain experts, software developers and “ninja” parallel programmers

while also providing portability, performance, and productivity. Our main goal is

that “the user writes a machine independent program in H2C, and the compiler and

runtime generates an executable tuned to the particular hardware”. The principles are

similar to High Performance Fortran (HPF), which was introduced in the early 90s for

distributed cluster machines. A single HPF program can compile to any distributed

cluster. The programming model of H2C combines task-based programming model

(across devices) and SPMD (within a device).

Some of the constructs introduced in H2C handle programmer-specified task par-

titioning, based on which the compiler and runtime automatically determine the data

distributions and necessary data transfers. This approach allows the programmer to

use multiple heterogeneous devices with minimal additional programming effort. We

also implement compiler optimizations for locality by taking advantage of scratchpad

buffers available on heterogeneous hardware. Finally, we implement a lightweight

Uniform Event framework that supports point to point synchronization across mul-

tiple heterogeneous devices and enabling programming of data-flow applications. We

used H2C to implement a variety of benchmarks, and observed that H2C is more

productive, portable and achieves performance similar to expert written programs in

low-level languages that target heterogeneous processors.

3.2 Background

In this section, we briefly summarize key tools components/frameworks that are used

to implement the H2C programming model.

49

3.2.1 ROSE Compiler Framework

The ROSE compiler framework [44], being developed at Lawrence Livermore National

Laboratory, is an open source compiler capable of generating source-to-source code

translators and analyzers. ROSE supports multiple languages including C, C++,

and Fortran and represents them in a common intermediate representation consisting

of an Abstract Syntax Tree, symbol tables, and other data structures. The simple

interfaces it provides to modify the IR allow quick development. ROSE uses Edison

Design Group’s (EDG) C++ front-end to parse C and C++ applications. One can

add new language constructs to EDG to extend the base C/C++ languages. The

original Habanero-C implementation is based on ROSE.

3.2.2 PolyOpt (Polyhedral Framework)

PolyOpt [45] is a polyhedral loop optimization framework that interfaces with ROSE.

The philosophy of polyhedral optimizations is to use mathematical abstractions to

analyze and optimize programs. Polyhedral analysis enables many loop optimizations

like loop-reversal, loop skewing and can also be applied to data locality optimizations,

memory management optimizations, communication optimizations, etc. However, one

of the drawbacks is that polyhedral optimizations are limited to loop bounds, array

accesses and conditionals that are affine functions of the loop iterators. Program

regions that are amenable to polyhedral optimizations are called static control parts

(SCoP) [46]. Figure 3.1 shows a sample output SCoP that is in a matrix format.

50

// i N K M cons t

//# I t e r a t i o n domain

//1 1 0 0 0 0 ## i >= 0

//1 −1 1 0 0 −1 ## − i + N − 1 >= 0

//# Read a c c e s s i n f o rma t i o n s

//1 1 0 1 0 0 ## B[i + K]

//1 1 0 0 −1 0 ## B[i − M]

//# Write a c c e s s i n f o rma t i o n s

//2 1 0 0 0 0 ## A[i]

f o r (i = 0 ; i < N; i++)

A[i] = B[i + K] + B[i − M] ;

Figure 3.1 : Sample output SCoP for a vector add program

3.3 Programming Model

H2C is a high-level programming language that targets heterogeneous architectures

by building on Habanero-C constructs. The high-level parallel constructs in H2C are

as follows:

Language Extensions

• comm async copyin〈args〉 copyout〈args〉 at〈device〉: Asynchronously copy

data specified by the arguments “from” and “to” the device. These communi-

cation operations are assumed to be initiated by the host. The at clause is used

to specify the device where the data is located.

• forasync point〈args〉 range〈args〉 (optional clauses) at〈device〉{Body}: Multi-

51

dimensional data parallel loop. The loop indices are specified by the point

clause. The loop bounds are specified by the range clause and at clause is

used to specify the mapping of the kernel to the available devices. There is

no implicit barrier at the end of the forasync construct. The programmer is

responsible for ensuring that the loop iterations are logically independent and

can be executed in parallel (no ordering is assumed even in the presence of

floating-point computations).

Optional forasync Clauses:

seq〈args〉: forasync is compiled down to multiple tasks based on the underlying

architecture. The granularity of each task can be specified using the seq clause.

scratchpad〈args〉: Specify the variables to take advantage of the available

scratchpad buffers. Example: On the GPU this clause could be used to promote

the specified variables to take advantage of local shared memory buffer.

partition〈args〉: Specify the mapping of the tasks onto the available processors.

• finish 〈Body〉: Ensures that comm async and forasync tasks spawned inside

Body are completed.

• await 〈events〉: Wait until the specified events are completed.

• phased-next: Enables point-to-point synchronization. The default is a flat

barrier.

• single{Body}: Used inside a parallel region to ensure only a single thread

executes the Body.

52

Compiler Framework

Coherence Domains

Data Layout

Task Partitioning

Heterogeneous
Habanero-C

 (H2C)

C Program + OpenCL
 + Host Program

H2C Compiler
(AST + Polyhedral)

(Rose)

H2C-Runtime
(Unified Event Framework)

C Compiler
(GCC)

Executable

CPU

Machine Independent Program Stephanie
domain expert

Joe
parallelism
specialist

Tuner specialized
for heterogeneous

architectures Hardware Constraints

Optional
Machine Specific Modules

GPU APU DSP

Optional Annotations

Figure 3.2 : Overall compilation flow

The compilation framework consists of a static compiler based on the ROSE in-

frastructure. The given H2C program is translated to a C program. The static

compiler automatically generates host-side binary with embedded OpenCL code (for

the comm async and forasyncs). It also uses PolyOpt to extract the polyhedral infor-

mation (SCoP) from forasync constructs.

Figure 3.2 shows the overall compilation framework of H2C. Following our goal of

a single source and multiple targets, the H2C compiler takes a machine independent

program and generates OpenCL tuned to a particular processor. To generate target

specific OpenCL code, the compiler uses information such as “coherence domains”

53

to avoid communication where possible. Different “data layouts” can be specified for

each processor and a set of arrays. “Scheduling details” indicate the type of executions

units present such as SIMT(GPU) or SMP(CPU). Additional “hardware constraints”

such as lack of function call support or availability of special instructions can be

specified either by the programmer or an auto-tuner specialized for heterogeneous

architectures. These optional annotations are specified in a file or can be inferred

from the H2C utility tool described later. Optionally, expert programmers can now

add hand-coded and “ninja” optimized OpenCL modules separately. The generated

C program is linked with the H2C runtime, and a target specific executable is built.

Figure 3.3 shows a sample program written in H2C. The program performs a

vector addition on a gpu device. Lines 1-4 initialize parameters used for the kernel

execution. Lines 5-7 allocate memory for arrays A,B,C. The memory is allocated

via a special memory allocator introduced in Section 3.3. Line 8 initializes these

arrays. Line 9 creates a new finish scope. Line 11 launches a comm async(data

movement) task that copies arrays B,C from host to device gpu. The parent task

continues to execute method call foo1 (line 12) in parallel with the communication

task. The end of the finish scope on line 13 ensures both foo1 method call execution

and the communication task are completed. Line 14 creates a new finish scope. Lines

16-18 show a forasync construct that specifies an array addition kernel task to be

launched asynchronously. The kernel will be executed on device gpu if all the device

constraints are satisfied defaulting to host otherwise. The parent task continues to

execute method call foo2. The end of the finish scope on line 20 ensures the kernel

task and method foo2 are completed. Finally, line 21-25 copy the data back from the

device to host and execute method call foo3. The data movement is overlapped with

the execution of method call foo3. The end of the finish scope on line 25 ensures

54

1 i n t dev cn t = 1 , M = 1024 , N=1024;

2 i n t s i z e = N ∗ M ∗ s i z eo f (f l o a t) ;

3 i n t gpu=2; // dev i d 2 i s TESLA M2050 GPU

4 i n t d e v l s t [d e v cn t] = {gpu } ;

5 f l o a t ∗A = hc malloc (s i z e , dev cnt , d e v l s t) ;

6 f l o a t ∗B = hc malloc (s i z e , dev cnt , d e v l s t) ;

7 f l o a t ∗C = hc malloc (s i z e , dev cnt , d e v l s t) ;

8 i n i t i a l i z e (A,B,C) ;

9 f i n i s h {

10 // a s yn ch r onou s l y copy data from hos t to d e v i c e

11 comm async copyout (B,C) at (gpu) ;

12 foo1 () ;

13 }// wa i t f o r the c o p i e s to complete

14 f i n i s h {

15 // a s yn ch r onou s l y e x e cu t e the k e r n e l

16 forasync point (i , j) range (0 :M, 0 :N) at (gpu) {

17 A[i ∗ N + j] = B[i ∗ N + j] + C [i ∗ N + j] ;

18 }

19 foo2 () ;

20 }// wa i t f o r the k e r n e l e x e c u t i o n

21 f i n i s h {

22 // a s yn ch r onou s l y copy data from de v i c e to hos t

23 comm async copy i n (A) at (gpu) ;

24 foo3 () ;

25 }// wa i t f o r the copy to complete

Figure 3.3 : Example H2C vector add program

55

1 ke rne l void k e r n e l 1 (g l oba l f l o a t ∗a , g l oba l f l o a t ∗b ,

2 g l oba l f l o a t ∗c , i n t N) {

3 i = g e t g l o b a l i d (1) ; j = g e t g l o b a l i d (0) ;

4 i f (i<M && j<N) //Padding f o r body

5 a [i ∗ N + j] = b [i ∗ N + j] + c [i ∗ N + j] ;

6 }

Figure 3.4 : Generated OpenCL kernel

1 void o f f l o a d (f l o a t ∗a , f l o a t ∗b , f l o a t ∗c , i n t N, char ∗ kerne l name ,

2 i n t dev , domain r) {

3 k l = g e t k e r n e l (ke rne l name , dev) ;

4 i nd0 = g e t b u f f e r (C , dev) ;

5 c l S e tKe r n e lA r g (k l , 0 , s i z eo f (cl mem) , &ind0) ;

6

7 clEnqueueNDRangeKernel (cmmnd , k l , 2 , r . o f f s e t , r . g l o ba l , r . l o c a l ,

8 0 , NULL , NULL) ;

9 }

Figure 3.5 : Generated host program

both foo3 method call execution and the communication task are completed.

Figures 3.4 shows the generated OpenCL kernel. The pseudo-code for the kernel

generation is described in Algorithm 1 described later.

Figure 3.5, shows the generated host program. The host program contains the

necessary OpenCL glue code required for kernel execution and data movement. This

is auto-generated by the compiler.

56

1 h c r u n t i m e i n i t () ; // added by comp i l e r

2 // a l l o c a t e memory

3 h c s t a r t f i n i s h (gpu) ;

4 h c s t a r t a s y n c (gpu) ;

5 c o p y t o d e v i c e (b , gpu) ;

6 c o p y t o d e v i c e (c , gpu) ;

7 foo1 () ;

8 h c s t o p a s y n c (gpu) ;

9 h c s t o p f i n i s h (gpu) ;

10 h c s t a r t f i n i s h (gpu) ;

11 h c s t a r t a s y n c (gpu) ;

12 domain range = ;

13 o f f l o a d (a , b , c , N, ” k e r n e l 1 ” , gpu , range) ;

14 bar () ;

15 h c s t o p a s y n c (gpu) ;

16 h c s t o p f i n i s h (gpu) ;

17

18 c op y f r om de v i c e (a , gpu) ;

19 foo2 () ;

20 h c s t o p a s y n c (gpu) ;

21 h c s t o p f i n i s h (gpu) ;

Figure 3.6 : Generated C program

Figure 3.6 shows the generated C program. The C program contains the original

application code along with H2C runtime API (H2C constructs are lowered to H2C

runtime API).

The novelty of H2C comes from the support of the partition clause. This clause

57

forasync point (i) range (0 :N) at (dev1 , dev2) partition (N
3

, 2∗N
3

){

A[i] = B[i + K] + B[i − M] ;

}

Figure 3.7 : Iteration partition example

is used with the forasync construct to specify the iteration partitions. The partition

clause helps utilize all the available processors and also enables the programmer to

specify a heterogeneous distribution of tasks. Figure 3.7 shows an example H2C

program that uses the partition clause. In this example, the partition semantics mean

that the N iterations of the forasync clause are to be partitioned such that, the first

N/3 iterations are to be executed on device dev1, and the remaining 2∗N
3

iterations

are to be executed on the device dev2. The compiler now automatically determines

the data distributions for each device. The arguments to the at clause are device ids

that are an integer type. The device ids are generated by an H2C utility tool for a

given heterogeneous architecture. Figure 3.8 shows a sample list of devices and their

device ids along with some architectural details generated by the tool.

H2C supports two compilation modes: “implicit” and “explicit”, with the later as

the default mode. In the implicit mode, the compiler automatically generates code for

the data communication and coherence using a dependency analysis. In the explicit

mode, the user is responsible for data movement and coherence across device. The

implicit mode makes conservative assumptions based on the dependency analysis and

may not generate the optimal code. On the other hand, the “explicit” mode gives

more freedom to the programmer and allows the communication to move beyond

function calls and file modules.

58

−−

| ID | Name | Type | #Cores | Memory(MB) |

−−

| 0 | I n t e l Xeon | CPU | 12 | 48255.9 |

| 1 | Tes l a M2050 | GPU | 14 | 2687 .4 |

| 2 | Radeon HD 5970 | GPU | 20 | 4087 .1 |

−−

Figure 3.8 : Output from H2C utility tool containing device IDs and architectural

information

Runtime Framework

The memory allocation in H2C is via hc malloc, that is a special wrapper over stan-

dard malloc.

void ∗ hc malloc (s i z e t s i z e , i n t dev count , i n t ∗ d e v l i s t) ;

The arguments include the size of the memory requested, the number of devices and

the corresponding device ids where the memory is to be allocated. The allocator

creates buffers on the host and on the devices specified. All the data movement

between these memory buffers happen via the host. Note: If the host and device

share the same physical memory (e.g.,: Integrated GPU), there is no need for data

transfer.

Events (hc event) form a powerful component of the H2C runtime as they provide

point-to-point synchronization support. Events also enable applications to run effi-

ciently by overlapping the computation and communication. The await clause is used

to specify a dependency between two tasks. We implement unified event framework

59

to manage events across multiple heterogeneous devices.

3.4 Implementation

In this section, we describe our H2C compiler and runtime implementation. As de-

scribed earlier, the compiler generates C program from a given H2C program and in-

serts calls to the H2C runtime. The H2C runtime is implemented on top of OpenCL.

Each device vendor provides an OpenCL implementation, and the H2C runtime acts

as a uniform layer on top of them. At the beginning of an H2C program, a call to the

“hc runtime init()” is made that initializes the H2C runtime. During initialization,

the H2C runtime instantiates available OpenCL devices for each processor and assigns

device ids for each processor similar to the H2C utility tool described in Figure 3.8.

For each device, it creates contexts, command queues, builds OpenCL kernels and

stores few hardware specific details such a workgroup size limits and available DRAM

memory. These entities are accessed via the device id corresponding to the device.

3.4.1 Asynchronous Computation and Communication

The comm async construct is used to communicate the data between devices asyn-

chronously. The “copyout” construct copies the data from the host to the device

and is translated to “copy to device(void *host ptr, int dev)” runtime call. The

“copyin” construct copies the data from the device to the host and is translated to

“copy from device(void *host ptr, int dev)” runtime call. These calls are implemented

on top of the OpenCL read/write buffer API.

The forasync construct is a multi-dimensional data parallel loop construct. The

body of the forasync construct is translated to an OpenCL kernel specialized to a

particular device. The devices are specified by the at clause. The iteration domain

60

Algorithm 1 Generate OpenCL kernel

Input: F ::forasync body

Output: body::OpenCL kernel

1: body = F.outline();

2: Append OpenCL attr(body);

3: InsertPad(body);

4: InsertGlobalDecls(body);

5: if MetaFile().present then

6: PerformDataLayout(body);

7: end if

8: if (CheckReuse(body)&&IsScratchpad()) then

9: Tile(body)

10: else if (CheckStencil(body)&&IsScratchpad()) then

11: StencilTile(body)

12: else if (CheckReduce(body)&&IsScratchpad()) then

13: ReduceTile(body)

14: end if

15: return body

is derived from the clauses specified to the forasync. The algorithm to generate the

OpenCL kernel is shown in Algorithm 1. Line 1 outlines the body of the forasync.

Line 2 appends OpenCL specific attributes such as “ kernel”, “ global”, etc. to

variables and parameters of the outlined body. Line 3 inserts padding to the body

of the outlined call. The padding is required to handle cases when the global work-

group size is not a multiple of the local work-group size. Line 4 then inserts global

constants, structure declaration, and other globals used by the body. Line 5 performs

the data layout transformation of the array accesses if specified. The data layout

transformation framework is described in another paper [47]. Lines 8-14 check for

reuse, stencil, and reduction patterns in order to take advantage of scratchpad buffers

like shared memory on the GPU. This optimization is explained in section 3.4.4.

61

The forasync construct is replaced by a call to “offload(...)” with the corresponding

arguments including kernel name and domain of the kernel. The programmer specifies

the work-group size via the range clauses. “offload(...)” executes the corresponding

OpenCL kernel using the “clEnqueueNDRangeKernel” API call. A runtime call to

“hc start async(int dev)” is made at the start of the forasync, comm async scopes.

A call to “hc stop async(int dev)” is made at the end of the forasync, comm async

scopes. Each asynchronous task creates a new command queue.

Finally, the finish construct is a synchronization point (barrier) and ensures all the

tasks (communication + computation) executed within its scope are completed. A

runtime call to “hc start finish()” is made at the start of the finish scope and a call to

“hc stop finish()” is made at the end of the finish scope. The “hc stop finish()” calls

the OpenCL “clFinish()” API. The command queues are derived from the at clause

arguments provided in the finish scope.

Each call to hc start async creates a new command queue for the specified de-

vice. All the communication and computation tasks in the scope of the async (until

hc stop async is reached) are now enqueued into this command queue. Two command

queues can logically execute in parallel, and this follows the async semantics. A call

to the hc start finish begins a new finish scope and all the commands queues cre-

ated within this scope are recorded. When the execution reaches the corresponding

hc stop finish, a cl finish for the recorded command queues ensures all the tasks in

the scope are completed.

3.4.2 Iteration Partitioning

The partition clause is used to specify the forasync iteration partitions. Figure 3.9

shows the partition clause used for the forasync construct with integer values as ar-

62

forasync point (i) range (6 : 1030) at (dev1 , dev2) pa r t i t i o n (512 ,512) {

A[i] = B[i + 8] + B[i − 6] ;

}

Figure 3.9 : Partition example to determine the amount of data to be copied

guments. The arguments to the partition pragma are the iteration domain, one for

each device specified in the at clause. In the task partitioning scheme, the program-

mer provides a partition of the iteration space (applies to forasync construct) and the

compiler determines the data distribution. The data distribution is used to determine

the amount of memory that needs to be allocated and communicated to each device.

We only consider block distributions in our work.

For example, the data parallel loop in Figure 3.9 has an iteration domain ranging

from 6 to 1030, a total of 1024 iterations (1030 is excluded). The data domain of

array A varies from [6, 1030). Array B has two data domains, [14, 1038) and [0, 1024)

for the two data references. Let’s assume the programmer decides to partition the

iteration domain onto two devices(dev1, dev2) with 512 iterations each. Array A is

distributed into two blocks of 512 elements each. However, the data domain of array

B for the dev1 is [14, 526), [0, 512) which when combined are data elements [0, 526)

while that of the dev2 device is [526, 1038), [512, 1024) which when combined are data

elements [512, 1038). This optimal data distribution is copied to the corresponding

devices.

H2C determines the data distribution with the help of the SCoP information gen-

erated by the Polyopt framework and PIP [48] library. At compile-time, PIP takes as

input, a matrix of linear inequalities(loop bounds, array references) obtained from the

63

Algorithm 2 Forasync partitioning

Input: f ::forasync

Output: MapRead:: Read data partition, MapWrite:: Write data partition

1: PartList = f.partition();

2: SCoP B = PolyOpt(f);

3: for R ε ArrayReferences(B) do

4: //min/max value for each array affine index in terms of the partition values

5: Quast = ComputeBounds(R,B,PartList);

6: MinDom = Quast.Min();

7: MaxDom = Quast.Max();

8: if WRITE(R) then

9: MapWrite.add(R,(MinDom,MaxDom));

10: else if READ(R) then

11: MapRead.add(R,(MinDom,MaxDom));

12: end if

13: end for

14: CoalesceDomains(MapRead);

15: GenerateCopies(MapRead);

polyhedral SCoP format. This matrix is used to generate the lexicographic minimum

and maximum expressions of the given affine array references. These minimum and

maximum expressions are used to generate the code for data movement. Note that

these expressions might contain symbolic variables and constants. The actual data

movement is performed at runtime when the symbolic parameter values are known.

Algorithm 2 describes the steps involved in the forasync partition. The partitions

and the SCoP are extracted from the forasync construct on lines 2-3. On lines 4-

15, the corresponding read/write data distributions are inferred from the PIPLib.

These values are in terms of the partition parameters. Finally, on lines 17-18 the read

domains that overlap are merged into one domain, and the corresponding code for data

copies is generated. The domain merging is similar to the communication coalescing

64

forasync point (i) range (0 : 1024) at (cpu , gpu) {

i f (i%2==0)

A[2∗ i] = 1 ;

e l s e

A[2∗ i +1] = 2 ;

}

Figure 3.10 : Disjoint but overlapping partition

work by Chavarria-Miranda [49]. The semantics of the forasync construct ensure that

the write references do not overlap. Note that we approximate the distributions to

be copied by computing the rectangular and cubic domains (convex hull), and these

are efficiently supported in OpenCL.

We duplicate the read reference where necessary. Essentially, all the read data

is local to a processor before the execution begins. Once the execution completes,

the write data is merged at the synchronization point. Merging the output buffers

after the kernel execution might be non-trivial. It is possible that the write indices

are disjoint, but the domains overlap with each other. Figure 3.10 shows an example

where the even iterations write to even indices and vice-versa. If we partition the

kernel into two 512 iteration domains, the output buffers will have to be manually

combined elements by element on the host side. This problem also occurs in runtimes

that automatically manage the coherence among heterogeneous processors. However,

in our work we only partition the iteration domain if the data distributions of the

write references are non-overlapping. A compiler error is generated in this case of

overlapping write references.

65

Figure 3.11 : hc malloc implementation

3.4.3 Memory Management

The buffer management module implements the H2C memory allocator described in

Section 3.3. A call to the memory allocator instantiates a fat pointer that contains

the information of the base addresses of each device and the range of the buffer. This

fat pointer is indexed using the host base address and the device id. Figure 3.11 show

an example of hc malloc for buffer allocation size of 1024 for three devices. The call

creates buffers of sizes 1024 on each of the devices specified and also the host. The

hc malloc call now returns a fat pointer with the device-id and device buffer base

address. This fat pointer is stored on the host. Now, for a given device-id, the base

address can be retrieved in constant time.

3.4.4 Compiling for Scratchpad Buffers

Some processors have low-latency memory buffers (local shared, constant memory on

GPU and MSMC on a DSP). One can copy frequently used data to these buffers

to improve the access time. H2C is capable of taking advantage of these buffers by

looking for patterns in the forasync body. Figure 3.12 shows three sample patterns

that can be re-written to exploit data locality. These patterns can also be considered

66

1 // L o c a l i t y Reuse Pa t t e rn

2 forasync point (i) range (0 :N) at (gpu) {

3 f o r (i n t j = 0 ; j < N; j++){

4 A[i] = (B[i] + B[j]) /2 ;

5 }

6 }

7 // S t e n c i l Reuse Pa t t e rn

8 forasync point (i , j) range (0 :M, 0 :N) at (gpu) {

9 A[(i ∗N) + j] = B [(i ∗N) + j] + B [(i ∗N) + j + 1]

10 + B[(i ∗(N + 1)) + j] + B [(i ∗(N − 1)) + j] ;

11 }

12 // Reduct ion Pat t e rn

13 forasync point (i , j) range (0 :M, 0 :N) at (gpu) {

14 A[i] += B[i ∗N + j] ;

15 }

Figure 3.12 : Reuse patterns for scratchpad optimization

as an “embedded domain specific language”. Optionally, the “scratchpad” clause can

be used as a hint to the compiler to promote only the specified variables. H2C

tiles the code when it is legal do so and generates code to copy the data to these

scratchpad buffers. It then changes the corresponding accesses via these scratch pad

buffers. Figure 3.13 shows the OpenCL code generated for the locality reuse pattern

in Figure 3.12.

67

1 #def ine LOCAL SZ 256

2 ke rne l void k e r n e l 1 (g l oba l f l o a t ∗A, g l oba l f l o a t ∗B, i n t N) {

3 i n t i = g e t g l o b a l i d (0) , o u t j , i n j ;

4 i n t l o c a l i d = g e t l o c a l i d (0) ;

5 l o c a l f l o a t l o c B [LOCAL SZ] ;

6 f o r (o u t j =0; o u t j < N/LOCAL SZ;++ou t j) {

7 i n t j = o u t j ∗LOCAL SZ + l o c a l i d ;

8 l o c B [l o c a l i d] = B[j] ;

9 b a r r i e r (CLK LOCAL MEM FENCE) ;

10 f o r (i n j = 0 ; i n j < LOCAL SZ;++ i n j) {

11 A[i] = (B[i] + loc B [j]) /2 ;

12 }

13 b a r r i e r (CLK LOCAL MEM FENCE) ;

14 }

15 }

Figure 3.13 : OpenCL code generated for locality reuse

3.4.5 Unified Event Framework

A programmer can use hc event to specify dependencies between 2 tasks. The await

clause is used to specify the sink of the dependency. H2C runtime implements the

hc event on top of OpenCL events. However, dependencies in OpenCL are associated

only with a single context. The complexity of the event management arises from

the fact that the programmer can now specify a dependency between events in two

different contexts (devices). An event in one context cannot be resolved from another

context. To overcome this limitation, we implement a unified event (UE) framework

on top of different OpenCL contexts. UE is implemented on the host with the help

68

dev2_event

dev3_event

hc_event = comm_async copyin(A) at(dev1)

comm_async copyout(A) at(dev2, dev3) await(hc_event)

Callback! Event Block

dev1_event

Figure 3.14 : Unified Event framework using Event Blocks

of an Event Block. Figure 3.14 describes the Event Block (hc event) implementation.

Each Event Block consists of a set of events (input event, output events), one per

each context (device). An input event, (dev1 event) is registered with the context of

device1. The output events, dev2 event, dev3 event are registered with contexts of

device2 and device3. A callback is implemented such that output events are satisfied

when the input event is satisfied.

3.5 Experimental Evaluation

In this section, we evaluate the productivity, portability, and performance of

the H2C programming language.

We use an Intel X5660 Xeon CPU with 6 cores (each 2 HT), running at 2.8 GHz,

and an NVIDIA Tesla M2050 GPU, with 14 SMs (each 32 cores) running at 1.1 GHz,

to evaluate the performance of H2C. The compiler used to compile the generated

C versions of each application is GCC 4.4.6 (with the flags -g -O2). All OpenCL

kernels were compiled with their default optimizations enabled. Intel CPU tests were

69

Name Description # Kernels Data Type Input

Seismic [21] Seismic Wave Simulation 2 Float 10K × 10K

LBM [50] [51] CFD Simulation 2 Float 300×300×300

NBody [21] Molecular Dynamics 2 Float 100K

Jacobi1D Smoothening Algorithm 1 Float 102400K

Table 3.1 : Characteristics of benchmarks used in the evaluation.

performed using 2011 Release of Intel OpenCL SDK, v1.5. NVIDIA GPU tests were

performed using NVIDIA SDK v5.0. Table 3.1 summarizes the benchmarks we use

in the evaluation including their description and compile-time characteristics. The

H2C implementation have been extended from OpenMP and sequential versions of

the programs. OpenCL implementations have been hand-written.

Productivity Evaluation

We measure the productivity using software productivity metrics. Lines of code (LoC)

is used to compare the ease of programming. Cyclomatic Complexity (CC) metric [52]

measures the control flow structure of programs and indicates the divergence in a given

program. Halstead’s metrics [53] help evaluate software complexity. The Mental

Effort (ME) is computed using a set of Halstead metrics and represents the effort

required to develop and understand a program in a specific programming language. A

lesser value is desired for all three metrics. We use these metrics and evaluate the ease

of programming with H2C compared to OpenCL. Table 3.2 shows the comparison of

these productivity metrics between H2C and OpenCL. We observe that H2C requires

lesser lines of code (LoC), involves less complex control flow(CC) and also requires

70

Name
LoC CC ME (×103)

H2C OCL H2C OCL H2C OCL

Seismic 114 210 12 14 864.9 1111.4

LBM 1395 3426 147 578 2981.8 10164.9

NBody 101 197 9 10 861.4 1874.2

Jacobi1D 30 117 3 6 71.9 390.5

Table 3.2 : Comparison of Lines of Code (LOC), Cyclomatic Complexity (CC), Mental

Effort (ME) for H2C and OpenCL (OCL) (Lower is better for all metrics)

less mental effort (ME) for development. The difference for LBM is notably high since

the corresponding OpenCL program was written in a more generic manner resulting

in higher code size. However, this generalized code does not affect the execution time.

Portability and Performance Evaluation

We show the portability by compiling the same H2C program onto multiple ar-

chitectures. The OpenCL GPU versions of Jacobi1D and NBody require explicit

communication from the host and custom kernel modifications to take advantage of

scratchpad buffers. H2C language and compiler can generate different kernels from

the same source. We evaluate the performance using the partitioning constructs of

[H2C]. The timings reported are the average of five runs and include both compu-

tation and communication time. We partition the forasync loops of each application

onto a single CPU, single GPU, two GPUs, and a combination of two GPUs + single

CPU. The partition sizes for each of these configurations have been determined based

on the individual timings on each device. We also measure the execution time of the

71

Figure 3.15 : Execution time (msec/step) of Jacobi1D and Seismic due to iteration

partition on multiple devices

hand-coded OpenCL implementations on a single GPU device.

Figure 3.15 shows the execution time for Jacobi1D and Seismic applications when

partitioned onto multiple platforms. The performance of these programs increases

when partitioned onto multiple GPUs but tends to flatten out when including the

CPU device. This is because the additional communication overhead involved with

the boundary regions negates any potential performance benefit from adding a CPU.

Both Jacobi1D and Seismic are memory-bound applications. Bars 2,3 show that the

performance of H2C programs is similar to the corresponding hand-coded OpenCL

versions.

Figure 3.16 shows the performance of two versions of the NBody program when

partitioned onto multiple platforms. The first version (NBody) does not take ad-

vantage of locality optimizations. We observe an improvement in performance when

executed onto multiple heterogeneous devices. NBody application is compute bound,

and overhead due to communication is low. The second version (NBody Opt) takes

72

Figure 3.16 : Execution time (sec/step) of NBody and NBody opt(locality optimized)

advantage of the locality optimizations (scratchpad buffers). We observe almost a 2×

improvement over the unoptimized version. This version also scales well over multi-

ple heterogeneous devices. Bars 2, 3 show that the performance of NBody written

in H2C is similar to the corresponding OpenCL versions. Note that the H2C ver-

sion automatically generates the locality optimized code. The compile-time overhead

from PIPlib to evaluate the data distribution parameters from the task partitions is

insignificant in all the benchmarks.

We evaluate our unified event framework by implementing two versions of the

Lattice Boltzmann Method (LBM) application. LBM simulation is widely used in

the oil and gas industry to identify the porosity of rocks. It has the common stencil

pattern where the first kernel computes the grid; then the ghost regions are exchanged

and finally merged locally. However, LBM can suffer from dynamic load imbalance

based on the input data. The first version uses comm async, forasync and finish con-

structs to implement the LBM application. This version restricts the overlap between

communication and computation because the finish acts as a flat barrier. The second

73

Comm Comm

finish()

Device 1

Kernel-1 Kernel-1

Device 2

Kernel-2 Kernel-2

Merge Merge

finish()

finish()

finish()
loop

Comm Comm

Device 1

Kernel-1 Kernel-1

Device 2

Kernel-2 Kernel-2

Merge Merge

await() await()

await() await()

await() await()

await() await()

Figure 3.17 : LBM implementation of “finish” (left) and “await”(right)

Figure 3.18 : LBM execution time (msec) for “finish” (bottom) and “await”(top)

version uses comm async, forasync and await constructs to implement the LBM ap-

plication. This version allows the overlap between communication and computation

because the await construct enables point to point synchronization support between

various tasks. Figure 3.17 shows two implementations of LBM. On the left is the

finish implementation and on the right is the await implementation. The await clause

74

uses the H2C unified event framework to synchronize across devices.

Figure 3.18 shows the benefits of using events in the LBM application. The finish

version incurs high communication overhead due to the flat barrier. However, the

await version can overlap the communication with the computation. We observe a

speedup of 1.23× for the await version relative to the finish version.

3.6 Extensions

H2C currently support only a single node (H2C can handle multiple devices on a single

node). Extending them to a distributed cluster of heterogeneous nodes will expand

its scope. We describe extensions to H2C to program a distributed heterogeneous

cluster.

We propose Hierarchical Device Trees (HDT) to achieve this. HDT has been

influenced from Hierarchical Place Trees (HPT) [54]. The idea is to specify the at

and the corresponding partition arguments in an XML file. The programmer can now

maintain different HDT topologies for different clusters and nodes.

Hierarchical Device Trees (HDT) Model

In the Hierarchical Device Trees (HPT) model, each core of a CPU, GPU, APU

(Integrated CPU+GPU) or an FPGA is abstracted as a single leaf node, and the

heterogeneous system is abstracted as a device tree. The device tree abstracts the

underlying hardware (cluster, node, device, thread). Each tree node has a value that

can be used to specify a partition at a given device node level. For instance, the leaf

level nodes can be used to specify the chunk-size (CPU) or work-group size (GPU).

Essentially, each level of the tree represents a hierarchy of the parallelism available

on the underlying hardware.

75

Node	
1	

	
GPU1	
0.40	

	
GPU2	
0.36	

	
CPU	
0.24	

0.01	 0.01	 0.01	

#cores=14 #cores=10 #cores=24

(a) HDT: 2 GPUs and 1 CPU

Node1	
0.5	

	
GPU1	
0.5	

	
GPU2	
0.5	

0.01	 0.01	
#cores=14 #cores=14

	
GPU1	
0.5	

	
GPU2	
0.5	

0.01	 0.01	
#cores=14 #cores=14

Cluster	
1	

Node2	
0.5	

(b) HDT: Cluster of 2 nodes with 2 GPUs each

Figure 3.19 : Hierarchy of devices for a single node and a two node cluster. The value

in each node represents the partition of the work on each device.

Figure 3.19 shows two sample HDTs. Figure 3.19(a) shows an HDT for a single

node with two GPU devices and a single CPU device. The values of each node specify

the maximum partition. For example, if the total number of tasks are 100K, GPU1

gets 40K, GPU2 gets 36K and CPU gets 24K tasks each. Further the programmer

can specify another level of parallelism on each device. Essentially, the work-group

sizes become 400 and 360 for the GPUs and chunk size becomes 240 for the CPU.

Similarly Figure 3.19(b) shows an HDT for a cluster with two nodes and two GPUs

devices each. If the total number of tasks are 200K, both the nodes get 100K each

and each GPU gets 50K each. We denote each node in the HDT as a device place.

Figure 3.20 show a sample H2C program that uses an HDT.

76

1 HDT ∗ t opo l ogy = Input HDT (” i n p u t t o p . xml”) ;

2 forasync point (i) range (0 : 100000) at (t opo l ogy) {

3 A[i] = B[i] + C [i] ;

4 }

Figure 3.20 : H2C program with HDT

3.7 Summary

The contributions of this thesis chapter are as follows:

• Introduce Heterogeneous Habanero-C (H2C), a high-level programming lan-

guage that can be used to program heterogeneous processors and achieve pro-

ductivity, portability and performance.

• The highlights of H2C include high-level constructs to overlap communica-

tion and computation, task partitioning, data distributions and a unified event

framework.

• The H2C compiler takes advantage of both AST and polyhedral optimizations

to generate code tuned to a particular hardware.

• Evaluation of four benchmarks shows H2C to be portable, productive and also

achieve performance similar to hand-coded low-level OpenCL implementations.

• Propose extension for H2C to target a distributed heterogeneous cluster.

77

Chapter 4

Data Layout for Heterogeneous Architectures

4.1 Introduction

An important aspect of heterogeneous systems is that different devices have different

kinds of memory hierarchies. For example, NVIDIA GPUs have L1 and L2 caches

that are connected to the system memory via PCIe whereas the integrated GPUs from

Intel (e.g., Ivy Bridge and Haswell) have an L3 cache that is connected to the system

memory on the same die with a last-level cache (LLC) that is shared between the

CPU and GPU. On the host side, the CPU cores have memory hierarchy consisting

of L1, L2, L3, and LLC. Recent studies [55–57] have shown that data layouts play

a major role in determining application performance on both the CPU and GPU.

Determining the optimal data layout, however, remains a challenging task since the

performance of a data layout depends on factors such as (a) number of parallel hard-

ware threads/contexts available; (b) memory hierarchy; (c) data access pattern in

the program; (d) input size of the program. For example, CPU usually performs

well with an Array-Of-Struct (AoS) layout because an AoS layout can help improve

pre-fetching and cache sharing on CPUs. On the other hand, GPU performs well

with a Struct-Of-Array (SoA) layout in general case since an SoA layout can improve

the performance on GPUs due to coalescing of memory accesses. The GPU memory

performance depends upon the number of coalesced accesses, whereas the host CPU

memory performance depends on factors such as false sharing and data reuse. Hence,

78

Figure 4.1 : SoA layout (left) and AoS layout (right) for arrays A[0− 5], B[0− 5]

the data layout impacts performance and is different for different architectures. Given

the proliferation of device technologies on heterogeneous architectures and their differ-

ing memory hierarchies, it is best to provide the programmer a high-level framework

to specify the data layout and leave the code generation to an optimizing compiler.

However, none of the existing languages that target heterogeneous architectures pro-

vide mechanisms to specify the data layout. We believe that a compiler-driven data

layout transformation framework can help bridge this gap. Figure 4.1 shows the AoS

and SoA layouts for two arrays A and B of six elements each.

We present a meta-data framework that allows both programmers and tuning

experts to specify architecture specific and domain-specific information for parallel-

for loops of a program. A meta-data file is created for an application and is populated

with entries on the data layout to be used for a device on the heterogeneous system.

The data layout We focus on in this paper include structure-of-array (SOA) and

array-of-structure (AOS). Any high-level language, which has parallel-for loops can be

extended to accommodate the meta-data framework. In our work, we target the data-

parallel forasync construct in H2C programming language and integrate our meta-

data framework with the H2C compiler and runtime. The meta-data information is

very useful in guiding our compiler optimization passes for the generation of efficient

code for a device.

Using the metadata framework, the programmer can only specify a single data lay-

79

out to the entire program. However, in programs with multiple kernels, a single layout

may not be optimal for the entire program. To manage the data layout automatically,

we designed ADHA: a two-level compiler based automatic data layout framework and

a reference implementation of the same in the Heterogeneous Habanero-C (H2C) pro-

gramming system. The lower level formulation deals with the data layout problem

for a parallel code region and provides a greedy algorithm that uses an affinity graph

to obtain approximate solutions. The higher level formulation targets data layouts

for the entire program, for which we provide a graph-based shortest path algorithm

that uses the data layouts for the code regions computed in the lower level. The final

data layout could be a single layout for the entire program or multiple layouts for

different code regions with layout re-mapping in between kernels.

Overall, in this thesis chapter, we present a meta-data framework in H2C that

allows both the programmer and the tuning expert to specify the underlying archi-

tecture and domain-specific knowledge for parallel-for loops; A compiler and runtime

framework to automatically generate efficient code based on the meta-data informa-

tion. We also introduce ADHA: a two-level compiler based automatic data layout

framework and a reference implementation of the same in H2C programming system.

The lower level formulation deals with the data layout problem for a parallel code

region, and provides a greedy algorithm that uses an affinity graph to obtain ap-

proximate solutions. The higher level formulation targets data layouts for the entire

program, for which we provide a graph-based shortest path algorithm that uses the

data layouts for the code regions computed in the lower level.

We currently focus on AoS-to-SoA and SoA-to-AoS transformations in the H2C

compiler. Note that an exponential AoS layouts are possible for a given number of

fields.

80

arch name −> Arch name meta data

meta data −> (struct def)∗ (scratchpad def)∗

struct def −> Struct name (field def)∗

scratchpad def −> Scratchpad name

(field def tile size line num)∗

field def −> Field type name length

type = fp | dp | ip

length −> (digit)∗

tile size −> (digit)∗

line num −> (digit)∗

name = (letter)(letter|digit)∗

letter −> |A|B|C| . . . |Z|a|b|c| . . . |z|

digit −> 1|2|3|4|5|6|7|8|9|0

Arch Intel GPU

Struct bodypos

Field fp posx Field fp posy Field fp posz

Struct bodyacc

Field fp accx Field fp accy Field fp accz

Scratchpad Field fp posx 256

Scratchpad Field fp posy 256

Scratchpad Field fp posz 256

Arch AMD GPU

Struct bodypos

Field fp posx Field fp posy Field fp posz

Field fp accx Field fp accy Field fp accz

Scratchpad Field fp accx 1024

Figure 4.2 : Meta-data grammar (left) and Meta-data file example (right)

4.2 Meta-data Layout Framework

Our meta-data framework is built on top of Heterogeneous Habanero-C (H2C) com-

piler and runtime infrastructure. For each device on a heterogeneous system, it is

possible to specify the desired data layout for an array-based or structure-based data

structures of a given forasync loop. The data layouts that we focus on are: (1) AOS:

array-of-structure; and (2) SOA: structure-of-array.

The grammar for the meta-data and an example is shown in Figure 4.2. The

meta-data file consists of a set architecture specific optimization information. The

architectural details consist of the data layout information and scratchpad memory

allocation information for a given program. Each struct definition has a label Struct,

a name for the struct and a set of fields. Each field in turn has a label Field, the type

of the field and the name of the field. The type of fields can be fp: a pointer to an

81

Data Layout
Specification H2C Program

C Program + OpenCL + Host Program

H2C Compiler

H2C Runtime C Compiler

Executable	

GPU	 CPU	

Figure 4.3 : Compilation flow of Meta-data framework

array of float values, dp: a pointer to an array of double values or ip: a pointer to an

array of integer values. The scratchpad memory allocation information consists of a

set of buffer descriptions. It begins with a label Scratchpad, the field type, the field

name and the buffer size to be cached. Optionally, the programmer can choose to

pass the scratchpad variables through the scratchpad clause of the forasync construct.

Our overall meta-data framework is shown in Figure 4.3. The application user

writes a program in H2C using the forasync construct. Followed by which, either

the developer or the tuning expert specifies the data layout specification for the

application in a file. We extend the H2C compiler infrastructure to (1) perform data

layout transformation based on the meta information; (2) generate OpenCL host and

device code for a given meta-data specification. The original H2C program and the

generated OpenCL code are linked together to provide a single executable, which runs

82

1 forasync point (i) range (0 :N) at (gpu) {

2 f o r (i n t j = 0 ; j < N; j++){

3 A[i] = (C [i] + B[j]) /2 ;

4 }

5 }

(a) H2C program with re-use pattern

Arch I n t e l CPU

Struct AC

F ie ld f p a

F ie ld f p c

Scratchpad F ie ld f p b

(b) Meta-data file for Intel CPU

Figure 4.4 : H2C program + meta-data file with data layout specification

1 s t r u c t AC{ f l o a t a , f l o a t c } ;

2 ke rne l void k e r n e l (g l oba l s t r u c t AC ∗ac , g l oba l f l o a t ∗B, i n t N) {

3 i n t i = g e t g l o b a l i d (0) , o u t j , i n j ;

4 i n t l o c a l i d = g e t l o c a l i d (0) ;

5 l o c a l f l o a t l o c B [LOCAL SZ] ;

6 f o r (o u t j =0; o u t j < N/LOCAL SZ;++ou t j) {

7 i n t j = o u t j ∗LOCAL SZ + l o c a l i d ;

8 l o c B [l o c a l i d] = B[j] ;

9 b a r r i e r (CLK LOCAL MEM FENCE) ;

10 f o r (i n j = 0 ; i n j < LOCAL SZ;++ i n j)

11 ac [i] . A = (ac [i] . C + loc B [j]) /2 ;

12 b a r r i e r (CLK LOCAL MEM FENCE) ;

13 }

14 }

Figure 4.5 : Generated OpenCL kernel with AoS layout specified in Figure 4.4 and

re-use optimization of H2C

83

on the target architecture.

Figure 4.4 shows a sample H2C program and a sample meta-data file with data

layout specification for an Intel CPU device. Figure 4.5 shows the corresponding

OpenCL kernel code generated.

4.2.1 Data Layout Transformation

The compiler pass first parses the specified meta-data file, and it creates a meta-data

map for each architecture. The mapping is between the fields and the struct name

they belong to, and is done for each such struct meta-data information. If it finds

any scratchpad meta-data information, it records them in the IR. The data layout

transformation (DLT) compiler pass then generates the code based on the specified

data layout in the meta-data file. It generates code that includes the new struct

definitions and the code that operates on it.

Algorithm 3 shows the algorithm for transforming the program with a

given data layout. DLT takes the input program and a meta-data file.

createStructDefinitions(M) adds the struct definitions as specified in the

meta-data file to the AST. These structs are defined only once in the global scope.

The DLT pass then iterates over all the functions and performs the steps described

in lines 3-7.

tryAddStructInstances(f) analyzes the function parameters. If any of the

parameter names appear in the meta file, an instance of the corresponding struct

is declared in the function scope. If we abstract the struct as a group of fields

names, then one struct instance is declared per group. In next step, updateInst(I)

checks all pointer or array references in the function body. If any of those references

are via any of the fields in the meta-data file, then the access is replaced with the

84

Algorithm 3 Meta-data layout transformation

Input: Meta-data file M and input program P

Output: Transformed program P’

1: createStructDefinitions(M);

2: for each function F in P do

3: for each formal f in function parameter list do

4: tryAddStructInstances(f);

5: end for

6: end for

7: for each instruction I in function body do

8: updateInst(I);

9: end for

corresponding struct instance.

An important factor here is that the type of the function in the original program

remains the same. Keeping the function types intact will avoid rewriting the direct

and indirect calls to the function.

4.2.2 Memory Management

The memory allocation of H2C is described in section 3.3. We extend the H2C

allocator to support our meta-data layout framework. The name of the field is passed

as an additional argument to the allocator. The syntax of the extended memory

allocator is shown below.

void ∗ hc meta ma l l o c (char ∗name , s i z e t sz , i n t dev c t , i n t ∗ d e v l s t) ;

We implement a memory manager to handle the data layouts and device buffer

management. The memory manager has two important components, the memory

allocator and the layout handler. During the program initialization phase, the layout

handler reads the meta-data file and creates a map of the data layout. The memory

85

manager with the help of the field name looks at the layout map and allocates the

memory based on the following simple rules.

1. If the field does not belong to any struct layout in the meta-data file, it means

that the programmer wishes it to retain the original layout.

2. If the field belongs to a struct layout group the the allocation happens as follows.

Memory is allocated only once per struct group. If memory to the group has

already been allocated, then a pointer to the chunk, offset by the field position

is returned. If the memory is not allocated to the group, then memory for

the whole struct group is allocated. The amount of memory chunk is equal to

the number of fields times the number of bytes requested during the memory

allocation. Then a pointer to the chunk, offset by the field position is returned.

Restrictions of our meta-data framework

The user cannot alias the fields specified in the meta-data file. We plan to resolve

this issue with the help of an alias analysis. Another limitation in the programming

model is that a variable name cannot be repeated in the whole program in different

scopes. A clever variable renaming mechanism can overcome this limitation. Also,

all fields in a struct must be of the same type. We currently do not support more

complex data layouts such as AoSoA (Array-of-structure-of-arrays) and leave it for

future work.

86

4.3 ADHA: Automatic Data layout framework for Hetero-

geneous Architectures

The metadata framework described earlier enables the programmer to specify only

a single data layout for the entire program. However, in programs with multiple

kernels, a single layout may not be optimal for the entire program. The best data

layout could be a single layout for the entire program or different layouts for different

parts of the program and data remapping between the parts.

4.3.1 Motivating Example

In this section, we consider a heterogeneous CPU+GPU architecture and show the

performance impact of various data layouts. The example also illustrates the com-

plexity and intricacies in selecting the best data layout for a given architecture. Let us

consider a micro-benchmark with two data-parallel loops as illustrated in Figure 4.6.

The first data-parallel kernel implements a stencil-like computation involving 5 ar-

rays, x, y, z, w, & e, and the second kernel executes a simple multiply and add

computation involving 3 arrays x, y, & e.

We use H2C forasync syntax for the data-parallel loops (details of H2C are given

in Section 3.3). The clauses in the forasync loops are as follows: index specifies the

loop’s index variable, range describes the iteration domain (M = 10240×10240 in this

example) and at specifies the target device (“NVIDIA Kepler K40C” in our case).

We execute the program on the NVIDIA GPU with two different layouts: AoS

with x,y,z, & w in a structure and SoA where each of these fields are independent

structures. Kernel-1 takes 5.3 msec with the AoS layout and 11.5 msec with SoA

layout. Kernel-2 takes 8.4 msec with the AoS layout and 3.0 msec with SoA layout.

87

struct ABCD{float x; float y; float z;float w;};

float ∗x, ∗y, ∗z, ∗w, ∗e;

init(x, y, z, w, e);

//Kernel−1 on GPU with AoS layout: 5.3 msec

//Kernel−1 on GPU with SoA layout: 11.5 msec

forasync point(i) range(0:M) at(dev){

if(.....){

e[j] = ((x[j] + y[j] + z[j]) / w[j])

+ ((x[j+1] + y[j+1] + z[j+1]) / w[j+1])

+ ((x[j+2] + y[j+2] + z[j+2]) / w[j+2])

+ ((x[j+3] + y[j+3] + z[j+3]) / w[j+3]);

}

}

//Remap from AoS to SoA: 3.3 msec

remap(xyzw, x, y, z, w);

//Kernel−2 on GPU with AoS layout: 8.4 msec

//Kernel−2 on GPU with SoA layout: 3.0 msec

forasync point(i) range(0:M) at(dev){

x[j] = (y[j] + e[j] ∗ 1.432);

}

Figure 4.6 : Microbenchmark in H2C. Best mapping is obtained when Kernel-1 exe-

cutes with AoS layout, followed by data remapping from AoS to SoA and then Kernel-2

executes with SoA layout.

88

Remapping from the AoS layout to SoA layout takes 3.3 msec on the same machine.

If the data layout choice is left to the programmer, the programmer will be forced

to choose either of SoA or AoS. In that case, the best performance programmer can

obtain would be 14.8 msec by choosing SoA. The optimal mapping is to execute the

first kernel on the GPU with the AoS layout, and then remap the data layout from

the AoS to the SoA and then execute the second kernel on the GPU with the SoA

layout. The application now takes the best execution time of 11.9 msec resulting a

speedup of 1.24. Therefore, a single data layout is not optimal in this case.

It is interesting to observe that while popular practice is to use a SoA to achieve

coalesced memory accesses, we instead discover that AoS layout on GPU is more

beneficial in this case. On the GPU, the AoS layout is specified using aligned struc-

tures such as float2 and float4 types. When we profiled the above code using an

NVIDIA profiler [58], we observed that the compiler was generating 128-bit loads

for float4 types, 64-bit loads for float2 types and 32-bit loads for float types. The

benefit from 128-bit loads comes from the fact that there are fewer instructions to

issue (compared to 4 32-bit loads). Therefore, we noticed that as long as the fields

are always accessed together, it is better to arrange them in an AoS layout, which

was also observed in [59].

4.3.2 Problem Formulation

In this section, we formalize the optimal data layout problem and provide correspond-

ing complexity results. The objective of an automatic data layout framework is to

automatically determine the best data layout(s) for a given architecture and generate

the corresponding executable. As illustrated in the previous section, due to the varia-

tions in data access patterns across code regions in a program, a single layout for the

89

entire program may not be always optimal. In the following subsections we propose

a scheme that produces different data layouts for different parts of the program.

To assign different data layouts at different points in a program, we need a mech-

anism to partition the program. To this end, we treat data parallel kernels as the

smallest unit of the program and partition the program into disjoint sections∗ and

initially assign a single data-parallel kernel for each section. In our theoretical analy-

sis, we assume all sections lie in a single control flow path (i.e. there are no branches).

We use the superblock technique [60] to handle the case where there is control-flow

between parallel sections of a program.

Let S = {S1, S2, · · ·Sn} be the set of sections for a program P. We denote the set

of fields of P by F such that F ={f1,, fr}. To avoid notational clutter, we use field

to refer to the fields in both AoS and SoA (which are actually arrays). Accordingly,

the data layout D = {d1, d2, · · · dn} represent the corresponding data layouts of fields

for each section. We assume that the set of fields in data layout di for section Si is

subset F i over the fields.

Problem Statement

We use Cf(Si, di) to denote the cost of executing section Si with data layout di and

C(di, di−1) to denote the cost to obtain data layout di from di−1. Finally, we formulate

the optimal data layout problem as finding the data layout D for program P such that

following is minimum.
N∑
i=1

(Cf(Si, di) + C(di, di−1))

∗We apologize to the reader for overloading the word “section”. We henceforth use “Sec.” refer

to a Section in the chapter organization structure

90

Hierarchical Approach

The above formulation is similar to the formulations in previous related works and

therefore, it is easy to extend past complexity results for High Performance For-

tran [61] and show that the complexity of finding an optimal data layout is NP-

hard [17, 61]. These approaches use expensive approaches such as Integer Linear

Programming to determine the best layout. Previous formulations only provide com-

plexity results and fails to provide more insight into designing an efficient algorithm.

It is, therefore, important to ask if the problem can be formulated differently, which

might provide better insight?

In this chapter, we answer the above question affirmatively and propose a novel

two-level hierarchical formulation of the data layout problem. The bottom level for-

mulation, Section Data Layout (SDL), deals with the data layout selection for a

section based on interactions within a section. On the other hand, the top level for-

mulation, Program Data Layout (PDL), takes in data layouts computed at the SDL

level and computes the optimal data layout for the overall program.

The plan for the rest of this chapter is as follows: we first discuss PDL and prove

that PDL can be computed in polynomial time. Then we move on to the bottom level

and show that SDL is NP-hard. To address the intractability of SDL in practice, we

propose a greedy algorithm that is later employed in our experiments.

Program Data Layout

The problem of Program Data Layout (PDL) is concerned with selecting of data

layout for the entire program while considering inter-section interactions. PDL takes

in the data layouts returned by SDL for each section and returns the data layout for

the entire program.

91

The control flow (limited to structured control flow with a single-level nesting)

among sections allows us to construct a directed acyclic graph with in-degree and

out-degree of nodes restricted to at most one. We later describe the conversion of

programs with loops into acyclic graphs. As discussed above, the data layout for

a section can consist of fields accessed by its predecessors. To felicitate this, we

introduce an operation combine section that takes in optimal data layouts di, dj for

sections Si, Sj such that Sj is successor of Si and returns the data layout by merging

di, dj. We use cost(combine section(di, dj)) to represent the cost of combine operation

for data layouts di and dj.

Another possible operation is remap layout, which remaps the data layout from

di to dj. The cost for remap layout is directly proportional to the number of fields

between data layouts that are remapped. We use

cost(df1 , d
i
2, d

f
2) =

cost(combine section(df1 , d

i
2)) , if(df2 = combine section(df1 , d

i
2))

cost(remap layout(df1 , d
f
2)) , otherwise

(4.1)

to denote the cost of transformation of di2 to df2 where df1 is the data layout of the

preceding section. Therefore, using the notation introduced in Sec. 4.3.2 we have

C(df1 , d
f
2) = cost(df1 , d

i
2, d

f
2).

We formulate the Program Data Layout (PDL) problem as follows: PDL takes

in the set of data layouts {di1, di2, · · · din} computed from SDL and returns a set of

data layouts {df1 , d
f
2 , · · · dfn} such that dfn = din or dfn = combine section(dfn−1, d

i
n) and

the cost computed as
∑n−1

i=1 C(dfi , d
f
i+1) +

∑n
i=1 Cf(dfi , Si) is minimum. For example,

let n = 4 and we have sections S1, S2, S3, S4 and data layouts returned by SDL is

{di1, di2, di3, di4}, where subscript i is used to denote the input to to PDL (We use

superscript f to denote the “final” data layout returned by PDL). One possible final

92

d
1

i

d
2

i d
1

i Ud
2

i

d
3

i

d
4

i d
3

i Ud
4

i d
2

i U d
3

i U d
4

i d
1

i U d
2

i Ud
3

iU d
4

i

d
2

i U d
3

i d
1

i U d
2

i U d
3

i

R

R

R
R

R

R
C

C

C C

C

C

R: Remap
C: Combine

Figure 4.7 : Possible configurations for PDL

configuration is

df1 = di1;

df2 = combine section(di1, d
i
2)

df3 = di3

df4 = combine section(di3, d
i
4)}

and the cost associated with it is cost(combine section(di1, d
i
2)) +

cost(remap layout(df2 , d
i
3)) + cost(remap layout(di3, d

i
4)) +

∑4
i=1 Cf(Si, d

f
i).

Figure 4.7 illustrates all the possible configuration for this case.

Note that there are only four different layouts possible for section

4: di4, combine section(di3, d
i
4), combine section(combine section(di2, d

i
3), d

i
4),

combine section(combine section(combine section(di1, di2), d
i
3), d

i
4). We also note

that every possible data layout can be specified by the last remap layout operation.

For example, in case of di4, the last remap layout was applied at the section 3 and for

93

combine section(di3, d
i
4), the last remap layout operation was applied at the section 2.

The following theorem presents the complexity analysis of PDL.

Theorem 4.3.1 PDL is in PTIME.

Proof To prove PDL is in PTIME, we reduce PDL to finding the shortest path

over a graph. To this end, we construct a DAG for every G = (V,E) where a node

represents a possible data layout for a Section. We call this DAG the PDL-DAG.

From above we know that for section Si there are only i possible data layouts. In

our DAG, an edge represents either combine section or remap layout operation. Let

Di,j(i > j) represent the final data layout for section i obtained such that the last

remap layout operation was at section j. Also, we obtain Di+1,j and Di+1,i by applying

combine section and remap layout operations respectively. Therefore in our DAG G,

V = {Di,j|0≤j<i<n} ∪ Ddest, where n is the total number of sections and Ddest is

an extra node we introduce for technical reasons explained later. We construct all

the combine section and remap layout edges such that the weight of combine section

edge (Di,j, Di+1,j) is sum of the cost of combine section edge and Cf(Di+1,j, Si+1)

. The edges from Dn,j|0<j<n to Ddest are added with weight 0. Therefore, E =

{(Di,j, Di+1,j)} ∪ {(Di,j, Di+1,i)} ∪ {(Dn,j, Ddest)} for 0 ≤ j < i < n. With this

formulation, the problem PDL reduces to finding the shortest (weighted) path from

D1,0 toDdest. The shortest path for this graph can be computed inO(|E|+|V | log |V |).

We now compute the cardinalities of sets V and E. For section Si we have i

nodes in G. Therefore summing up all the nodes and adding 1 for Ddest node we

have |V | = 1 +
∑n

i=1 i = 1 + n(n + 1)/2. Also, for every node Di,j(i < n), we have

2 outgoing edges and for nodes Dn,j we have one outgoing edges. Thus summing up

all the edges, we have |E| = n +
∑n−1

i=1 (2 ∗ i) = O(n2). Therefore, the shortest path

94

for G can be computed in O(n2 + n2 log n) ∈ O(n2 log n). Hence, the problem PDL

can be computed in PTIME.

Section Data Layout

The objective of SDL is to find the optimal data layout for a given section considering

only Array of Structure (AoS) and Structure of Array (SoA) layouts. In any instance

of a data layout, there is a single SoA but multiple AoS possible.

Lemma 4.3.2 The number of possible data layouts Di for a section Si with n fields

follows the Bell number

Bn+1 =
n∑

k=0

(
n

k

)
Bn (4.2)

B1 = 1 (4.3)

Proof The number of candidate layouts ψ, is based on the number of fields F i in that

section Si. Now the fields in F i can be arranged into different structs or independent

arrays. Let us assume each array as struct of size 1. If we assume each struct to be

a set, then the number of layouts is nothing but the number of ways n elements can

be partitioned is exactly the partition set problem. The number of partitions in

the partition set problem follows the Bell number.

Figure 4.8 show an instance of the data layout possible for a section, which uses 7

fields {∗a, ∗b, ∗c, ∗d, ∗e, ∗f, ∗g}. Based on the code and the target architecture, affinity

values are associated with every pair of fields. The computation of affinity values is

discussed in detail in Sec 4.3.3. The fields and the affinity values can be represented as

a weighted complete graph Gcluster = (V,E), where V = F and (v1, v2) ∈ E for every

v1, v2 ∈ V . Let W (e) ∈ N denote the weight of edge e and W (G = (V,E)) denote

95

struct SOA{float ∗a; float ∗b;}ab;

struct AOS1{float c;float d;}cd[100];

struct AOS2{float e;float f;float g;}efg[100];

Figure 4.8 : Example data layout instance

sum of weights for all the edges e ∈ E . An optimal data layout would combine fields

into cluster such that the sum of weights of inter-cluster edges would be minimum,

therefore sum of weights of clusters edges to be maximum. This stems from the

observation that sum of weights of inter-cluster edges is proportional to cache misses.

Due to factors such as pre-fetch size, the size of every cluster is bounded to a given

constant, henceforth denoted as k. Therefore, optimal data layout problem for a

section, denoted as SDL, can be formulated as follows:

SDL(G, k): Given a weighted complete graph Gcluster = (V,E) with integer

weights, find a partition OC = {C1, C2,Ci} such that |Ci| < k and
∑

W (Ci)

is maximum.

The following decision problem formulation, denoted as SDLD, comes handy in

analyzing complexity of SDL.

SDLD(G, k, c): Given a weighted complete graph Gcluster = (V,E) with integer

weights, does there exist a partition OC = {C1, C2, · · ·Ci} such that |Ci| < k and∑
W (Ci) = c .

Our complexity analysis of SDL and SDLD uses the reduction from following

problem, denoted as PART.

PART: Given a Graph G = (V,E) with |V | = 3q for some integer q, can G be par-

titioned into q disjoint sets V1, V2, · · · , Vn, each containing exactly 3 vertices such that

96

for each Vi = ui, vi, wi, 1 ≤ i ≤ q, all three of the edges {ui, vi}, {ui, wi} and {vi, wi}

belong to E.

The following theorem provides the complexity analysis of PART (stated as GT11

in [62]).

Theorem 4.3.3 PART is NP-complete.

The following theorem provides the complexity analysis of SDL.

Theorem 4.3.4 SDL(G, k) is NP-hard.

Proof We prove SDL(G, k) is NP-hard by proving that SDLD(G, k, c) is NP-Complete

for k = 3.

To prove SDLD is NP-complete for k = 3, we reduce PART to SDLDas follows: For

a given PART instance Gp = (V,E) with |V | = 3q, we construct a complete graph

Gc = (V ′, E ′) such that V = V ′ and for every vi, vj ∈ V ′, (vi, vj) ∈ E ′. We assign

weights for edges in Gc as follows: for (vi, vj) ∈ E,W ((vi, vj)) = 1, otherwise 0. Now

we claim that for Gc and k = 3, there exists a partition OC = {C1, C2, · · ·Cn} with∑
W (Ci) = 3q iff Gp can be partitioned into q disjoint sets. If Gp can be partitioned

into q disjoint sets, then weight of each subset is 3, so the total weight is 3q. The proof

is now completed by proving the “only if” part of the claim below by contradiction.

We assume that there exists a partition OC such that
∑

W (Ci) = 3q and Gp can

not be partitioned into q disjoint sets. The set of clusters in OC can be divided into

six categories: (1) clusters with 3 vertices and all the edges of the cluster belong to

E (2) clusters with 3 vertices and two edges belong to E, (3) clusters with 3 vertices

and one edge belong to E, (4) clusters with three vertices and no edge belongs to

E, (5) cluster with two vertices and the edge belongs to E and (6) cluster with two

97

vertices and the edge does not belong to E. Let x, y, z, u, v, w denote the number of

clusters in the order described above. Since the total number of vertices is 3q, we

have 3x+3y+3z+3u+2v+2w = 3q. Since Gp can not be partitioned into q disjoint

sets, we have y + z + u + v + w > 0. Summing up the weights contributed by each

type of cluster, we have 3x+ 2y + z + v +w. Since x < q and y + z + u+ v +w > 0,

3x + 2y + z + v + w < 3q, which is a contradiction to our assumption. Hence, there

exists a partition OC = {C1, C2, · · ·Cn} with
∑

W (Ci) = 3q iff Gp can be partitioned

into q disjoint sets.

Remark: SDL(G, k) is PTIME computable for k=2. In this case, the problem

can be reduced to minimum edge weight cover set problem, which can be computed

in PTIME [63]).

Greedy Strategy

While the NP-hardness of SDL motivates us to ask if approximation to SDL is any

easier, the complexity analysis of approximation to SDL is beyond the scope of this

thesis and requires a further study. We instead propose an algorithm, SGML, based on

greedy-heuristic strategies. On a high level, the algorithm sorts the edges according

to their weights and has flavor of the union-find algorithm. The pseudo-code for the

algorithm is presented in Algorithm 4. SGML takes in two parameters as input: an

affinity graph G = (V,E) and an integer k, which bounds the maximum size of a

cluster. SGML assumes access to three subroutines: (1) CreateNewCluster takes as

input a pair of two nodes (u, v) and returns a new cluster that contains u and v, (2)

AddToCluster takes as inputs a cluster cu and a node v and adds node v to the cluster

cu, (3) MergeClusters takes as inputs two cluster cu and cv, and merges cluster cv into

cu. SGML chooses the edges in decreasing order of their weights. For every edge (u, v)

98

Algorithm 4 Determine clustering

Input: G = (V,E): Affinity graph , k: Maximum cluster size

Output: Clustering C

1: ES ← WeightSorted(E)

2: C = {}
3: for edge e = (u, v) in ES do

4: cu = FindCluster(u); cv = FindCluster(v)

5: if (cu == NULL && cv == NULL) then

6: c = CreateNewCluster(u, v); C = C ∪ c
7: else if (cv == NULL && |cu| ≤ k − 2) then

8: AddToCluster(cu, v))

9: else if (cu == NULL && |cv| ≤ k − 2) then

10: AddToCluster(cv, u)

11: else if (cu! = cv && |cu|+ |cv| < k) then

12: MergeClusters(cu, cv)

13: end if

14: end for

15: return C

chosen, there are five possibilities: (1) u and v do not belong to any of the clusters:

in this case, a new cluster with the vertices u and v is created, (2) u does not belong

to any cluster and the size of cluster for v(cv) is less than k-1: in this case, we add u

to cv, (3) v does not belong to any cluster and the size of the cluster for u(cu) is less

than k − 1: in this case, we add u to cv, (4) u and v belong to different clusters (cu

and cv respectively) such that |cu|+ |cv| < k, in this case we merge clusters cu and cv

and (5) for cases not covered above, we ignore the edge and proceed to the next edge.

4.3.3 ADHA Implementation

We discuss the implementation details of our automatic data layout framework in

the Heterogeneous Habanero-C (H2C) programming system. The overall automatic

99

Other HC Passes

SDL Analysis

H2C Program
(ROSE-IR)

C Program + OpenCL
 + Host Program

PIR Generation

Parallel Intermediate
Representation

PIR Analysis &
Transformation

PDL Analysis

Build Affinity Graph

Partition Affinity Graph

Transform Program

Combine Costs

Remap Costs
Compute Shortest Path

Figure 4.9 : Compiler framework for automatic data layout

data layout framework consists of a set of analysis passes followed by the data lay-

out transformation pass. We also describe the details of how affinity graphs are

constructed including how remapping of data layout(remap layout) and combining of

sections(combine section) costs are computed for a H2C program. Since data lay-

out impacts only data-parallel kernels that target various devices, we only consider

forasync and finish constructs of H2C in this work.

Figure 4.9 shows a diagrammatic description of our data layout transformation

framework. From ROSE IR, we generate the parallel intermediate representation

(PIR) [64]. Once the PIR is constructed, we perform data layout analysis for each

data-parallel section (SDL). During SDL analysis, we build an affinity graph for each

section and then employ the algorithm SGML described in Sec. 4.3.2 to partition the

100

affinity graph. Subsequently, we perform data layout (PDL) analysis for the entire

program. During this phase, we compute the remap layout and combine section costs

for kernels and then apply the shortest path algorithm described in Section 4.3.2 to

obtain the best data layout.

Finally, the program is transformed to use the data layout determined above.

The placement of the remap operations is done carefully using code motion tech-

niques described in [65]. We later discuss the construction of PIR, affinity graph, and

computation of remap layout/combine section costs in more detail.

Handling Loops in PDL

The PDL pass requires the program control flow to be a DAG. Cycles are introduced

if the sections in a program are involved in a loop. Loops complicate the layout

selection because the layout now depends on two sections, one from the forward edge

and the other from the backward edge. We handle this by peeling the first iteration

and last iteration of the loop. We now have a program structure where the forward

and backward edge come from the same code block. We can now ignore the backward

edge. The resultant graph is now acyclic. The loop is further unrolled L times, where

L is the number of sections in the loop to obtain the “steady state” optimal data

layout for the remaining loop iterations.

Figure 4.10 describes how structured loops involving sections are handled. The

left side shows a program control flow where sections S1, S2, S3 are in a loop. The

layout of S1 is now dependent on S0(forward edge) and S3(backward edge). We now

peel the first and last iteration of the loop. We also unroll the loop three times to

determine the “steady state” data layout for the remaining loop iterations.

101

S1

S2

S3

S4

S0

Loop
Transformation

S1
0

S2
0

S3
0

S0

S4

S1
N

S2
N

S3
N

S1
k S2

k S3
k

S2
k+1S1

k+1 S3
k+1

S2
k+2S1

k+2 S3
k+2

backward edge removed

Figure 4.10 : PIR control flow transformation

PIR

The PIR is a common intermediate language for explicitly-parallel programs such as

H2C. For every function in a program, the PIR for that method consists of three

key data structures: 1) a Region Structure Tree (RST); 2) a set of Region Control

Flow Graphs (RCFG); and 3) a set of Region Dictionaries (RD). The RST represents

the region nesting structure of the method being compiled, analogous to the Loop

102

Structure Tree (LST) introduced in [66]. Each region in the RST has an associated

control flow graph (RCFG) that encapsulates control flow for the immediate children

of the region. Additionally, each region stores summary information, such as upwards-

exposed uses and downwards-exposed defs, in an associated dictionary (RD).

For H2C, the single-entry regions considered in this work include FINISH,

FORASYNC, and loop regions. Two special empty regions START and END are added

to designate the start and end of a function. The other IR nodes considered in the

RCFG are array load ALOAD, array store ASTORE, object field load FLOAD, and

object field store FSTORE.

Affinity Graph Construction

The affinity graph construction is an important component of our framework that

captures how close a group of data items are accessed together in the program. We

build the affinity graph for each section. The affinity graph is a weighted undirected

graph where the nodes represent individual data items (a statement of the form

ALOAD, ASTORE, FLOAD, FSTORE) and edges represent the co-access pattern of two

data items. The weight on an edge reflects the frequency of accessing them together

and also the amount of memory accessed in between them. Following past approaches

for static cost estimation, the frequency of array access inside a loop-nest is estimated

as 10d, where d denotes loop depth.

To reduce the size of the resulting affinity graph, the body of a section is heavily

optimized before the construction of the affinity graph. In particular, scalar replace-

ment is performed aggressively to eliminate accesses to a[i−1] where a prior iteration

loads a[i] with no killing dependency in between them in a loop region. Similarly,

variable renaming is performed in such a way that loops iterating over the same it-

103

eration space (exactly same lower and upper bounds) are assigned the same index

variable name.

For sections consisting of accesses to both arrays and object fields, we build two

separate affinity graphs: one focusing on arrays and another focusing on object fields.

Note that the affinity graph for arrays must capture information about the amount

of memory needed by the object fields accessed in between and vice versa. This

information is conservatively computed. For the rest of the discussion, we will only

focus on building the affinity graph for array accesses.

We now describe a flow-insensitive algorithm to build affinity graph as shown

in Algorithm 5. We start by scanning a basic block from top to bottom. If we

visit an ALOAD a[i] or ASTORE a[i] instruction, we create a node for a[i], if it is

not there already in the affinity graph. We count the number of memory accesses,

mem usage(a[i], b[i]), from the previous ALOAD b[i] or ASTORE b[i] instruction (takes

into account object field accesses). We add an edge between a[i] to b[i] with the edge

weight w(e(a[i], b[i])) as:

w(e(a[i], b[i])) =

0 , if(mem(a[i], b[i]) > cache size)

freq(B) ∗ 1
log2(mem(a[i],b[i]))

, otherwise

(4.4)

where freq(B) denote the frequency of basic block B. If the memory usage,

mem(a[i], b[i]) is greater than the cache size, then we assign 0 as weight indicat-

ing there is no point combining them. Otherwise, the weight is computed as the

product of the basic block frequency and the inverse of the logarithm of the memory

usage. It is important to emphasize the freq(B) component since frequently executed

blocks will contribute significantly to the overall data layout. If the edge already

exists, we accumulate the edge weights to account for aggregated frequency counts.

104

Algorithm 5 Affinity graph construction from a parallel section

Input: PIR for the parallel section

Output: G(V,E):: graph with node set V and edge set E for the parallel section

1: V := {};E := {};
2: for each loop region L in PIR do

3: for each basic block B in the RCFG(L) do

4: mem := 0;

5: prevI := {};
6: for each instruction I in B do

7: if I is an FLOAD a.f or FSTORE a.f then

8: mem += sizeof(a.f);

9: end if

10: if I is an ALOAD a[i] or ASTORE a[i] then

11: Create a node for a[i], if not already in V ;

12: if prev I is of the form ALOAD b[i] or ASTORE b[i] then

13: Add an edge e between nodes for a[i] and b[i], if not present;

14: Assign/Update edge weight, w(e) using the Eq. 4.4;

15: end if

16: prev I := I;

17: mem := 0;

18: end if

19: end for

20: end for

21: end for

22: return

Remap Layout Cost Estimation

The remap layout cost estimation not only depends on the amount of data being

remapped but also depends on the type of remapping used. Different types of remap-

ping operations are:

• Local Data Remapping (LDR): remaps the data in blocks.

105

Figure 4.11 : Global data remapping (Top), Local data remapping (Bottom)

• Out-of-place Global Data Remapping (OGDR): remaps the entire data from one

data layout to another but uses an additional buffer.

• In-place Global Data Remapping (IGDR): remaps the entire data from one data

layout to another without any additional buffer.

Although IGDR saves space, it is computationally inefficient as it requires several

synchronization operations when performed in parallel. In contrast, OGDR does not

require any synchronization. We focus on OGDR and LDR remappings for the rest

of the discussion. OGDR transforms the entire data from AoS to SoA. LDR on the

other hand regroups the data to a local SoA data layout in blocks.

Figure 4.11 demonstrates how LDR and OGDR are constructed with the help of

four arrays, a[0 : 3], b[0 : 3], c[0 : 3], and d[0 : 3]. The data layout on the left-hand

side is in AoS. The top-right shows the GDR version of SoA whereas the bottom-right

shows the LDR version of SoA (uses a block size of 2): two elements of arrays a, b, c, d

are mapped to SoA layout followed by the remaining two elements in each array.

A remap layout operation can be parallelized to reduce its impact on execution

time. We empirically determine the remap layout cost for LDR and OGDR with the

help of micro-benchmarks on a given hardware platform (this operation is performed

106

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 64 256 1024 2048

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

e
c

)

Amount of data in MB

Remap Model on CPU

LDR Remap
GDR Remap

Figure 4.12 : Remapping costs on an Intel Xeon CPU

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 64 256 1024 2048

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

e
c

)

Amount of data in MB

Remap Model on GPU

LDR Remap
GDR Remap

Figure 4.13 : Remapping costs on an NVIDIA Tesla GPU

once per platform and stored in a table).

Figure 4.12 depicts the data remapping costs on a Tesla M1050 GPU and Fig-

ure 4.13 depicts the remapping costs on an Intel Xeon CPU. On the X-axis we use

the amount of data being remapped. The charts show that it is always beneficial to

107

perform remapping on the GPU as opposed to the CPU. Additionally, LDR is always

faster than OGDR on both the CPU and the GPU. This is because LDR benefits

from data locality on the CPU where as on the GPU, it performs remapping by tak-

ing advantage of scratchpad memory and local barrier. On the other hand, LDR is

feasible only when the same partition of data items are remapped across multiple

kernels. In our evaluation, by default we use LDR to remap the data except for the

case where two consecutive kernels remap data from different partitions (as computed

using SGML algorithm), at which point we switch to OGDR.

Algorithm 6 Compute remap cost

1: procedure RemapSections(S1: section, S2: section)

2: fieldsize ← 0

3: for f ε S1.Fields do //for each field or array

4: if f.getLayout(S2)==NULL then //if f is not accessed in another

5: continue;

6: end if

7: if f.getLayout(S1) neq f.getLayout(S2) then // the layouts are different

8: // combine the frequency of the basic block containing the field or array

9: fieldsize+ = f.size ∗ freq(basicblock(f));

10: end if

11: end for

12: return remap model(fieldsize) using the Figures 4.12, 4.13;

13: end procedure

Algorithm 6 presents the remap layout cost estimation. It takes two parallel

sections as input and outputs the estimated cost of remapping. The algorithm it-

108

erates over the fields (both object fields and array accesses) in both sections, checks

if a field appears in only one of the section’s data layout (and not in both) and ac-

cordingly updates the counter fieldsize, which counts the amount of data that needs

to be remapped. This value is passed to the remap model (as shown in Figures 4.12

for CPU, 4.13 for GPU) which then returns the cost of remap.

Combine Sections Cost Estimation

The combine section cost is estimated as the loss in performance by assigning the same

data layout for two sections instead of the previously assigned individual data layouts.

If the layouts of both the sections are the same, then the combine cost is 0. If the

layouts are different, then an intermediate layout DL12 is obtained by combining the

two sections, S1 and S2, and running the SGML algorithm on the combined affinity

graph S12.

The combine cost is the predicted performance loss and is the sum of difference be-

tween running the sections with the original layouts DL1, DL2 compared to running

them using the new layout DL12. The pseudo-code for the procedure CombineSec-

tions is presented in Algorithm 7.

In Algorithm 7, we build a Perf model function that takes a section S1 and a

combined data layout DL12. It then uses the combine model to return the estimated

cost. The combine model is determined using a set of micro-benchmarks mimicking

different kernel characteristics. We classify a kernel into either compute-bound or

memory-bound. A kernel is classified statically as compute-bound if the ratio of the

compute instruction to the total number of instructions is greater than a threshold

(0.6 used in our evaluation), otherwise it is memory-bound. The combine model

takes two layouts, the data size (computed similar to Algorithm 6), the memory-

109

Algorithm 7 Compute combine cost

1: procedure CombineSections(S1:a parallel section, S2:a parallel section)

2: // Merge affinity graphs for S1 and S2, and perform partitioning using SGML

algorithm

3: DL12 = SGML(merge(S1.affinity graph,S2.affinity graph))

4: // Find the cost of executing S1 using the combined layout DL12

5: cost1 = PERF MODEL(S1,DL12)

6: // Find the cost of executing S2 using the combined layout DL12

7: cost2 = PERF MODEL(S2,DL12)

8: // return the sum of the costs

9: return (cost1 + cost2);

10: end procedure

1: procedure Perf model(S1, DL12)

2: // classify S1 to memory bound or compute-bound

3: T = classify kernel(S1);

4: combine cost ← 0

5: for f ← S1.Fields do // for all field accesses and arrays

6: D1 = f.getLayout(S1);// find the current layout of f in S1

7: D2 = DL12.getLayout(f); // find the current layout of f in DL12

8: if D1 neq D2 then

9: combine cost+=combine model(S1.datasize,D1,D2,T);

10: end if

11: end for

12: return combine cost

13: end procedure

boundedness of the kernel and returns the performance loss. It is possible that the

two affinity graphs cannot be combined due a conflicting affinity value between two

fields. In such a case, we use the default layout specified by the programmer.

We wrote a memory-bound micro-benchmark that randomly updates memory

locations in a loop inside a kernel. We run this micro-benchmark for varying amount

110

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 64 256 1024 2048

E
x

e
c

u
ti

o
n

 T
im

e

Amount of data in MB

Combine Model on CPU

SOA

4-AOS

8-AOS

12-AOS

Figure 4.14 : Combine cost model on an Intel Xeon CPU for a memory-bound kernel

with varying partition size

 0

 2000

 4000

 6000

 8000

 10000

 12000

 64 256 1024 2048

E
x

e
c

u
ti

o
n

 T
im

e

Amount of data in MB

Combine Model on GPU

SOA

4-AOS

8-AOS

12-AOS

Figure 4.15 : Combine cost model on an NVIDIA Tesla GPU for a memory-bound

kernel with varying partition size

of data and different partition sizes. Figure 4.14 shows the effect of the data layout

on a CPU and Figure 4.15 shows the effect of the data layout on a GPU for a memory

111

bound kernel. The x-axis represents the total amount of data being accessed inside

the kernel, and the y-axis represents the execution time in milliseconds. Each curve

represents the execution time for different partition sizes varying from 1 to 12 in

this graph. The effect of data layout on a CPU or GPU becomes prominent when

the amount of data being accessed increases. We use this curve to determine the

combine cost in Algorithm 7.

Our implementation of ADHA automatically compiles forasync loops down to

OpenCL with the corresponding data layout output by the SDL + PDL pass. ADHA

can be employed to efficiently run a H2C program on modern CPU+GPU platforms

that support OpenCL.

4.4 Evaluation

The goal of the experimental evaluation is to prove our meta-data framework’s ability

to extract maximum performance from a given architecture. We compare the impact

of data layout on each benchmark on GPUs and multi-core CPUs.

4.4.1 Experimental Setup

Table 4.1 describes the benchmarks used in this evaluation. We chose a set of appli-

cations whose performance will be most impacted by data layout transformations.

The Medical Imaging benchmark includes phases from a medical imaging pipeline

used to analyze different types of medical images for defects or abnormalities [67].

This application consists of three main phases: denoising, registration, and segmen-

tation. For our evaluation, we focus on the most computationally significant phase of

the three, registration. The registration phase consists of seven kernels and six fields.

The Lattice Boltzmann Method (LBM) simulation benchmark was provided to

112

Name Description
Original Num of Num of

Input
Layout Kernels Fields

Medical Medical Image Registration SoA 7 6 256×256×256

LBM CFD Simulation SOA 2 19 300×300×300

NBody Molecular Dynamics SOA 2 10 10000

K-Means Clustering Algorithm SOA 2 16 8388608

Seismic Seismic Wave Simulation SOA 2 6 4096 × 4096

SRAD Speckle Reducing SOA 2 4 4096 × 4096

Anisotropic Diffusion

MRIQ Matrix Q for 3D Magnetic SOA 1 6 64 × 64 × 64

Resonance Imaging

GESUMMV Linear Algebra Kernel SOA 1 5 10000

GEMVER Linear Algebra Kernel SOA 1 9 10240

SYR2K Linear Algebra Kernel SOA 1 4 2048×2048

Table 4.1 : Compile-time statistics for the benchmarks used in the evaluation.

us by Halliburton Services. A related benchmark is also available in the Parboil

benchmark suite [51]. It is a computational fluid dynamics simulator. It applies a set

of collision and propagation operations on the lattice points. The benchmark uses

nineteen fields and has two kernels.

The NBody particle simulation benchmark was written from scratch for this work.

A sample program is available in the TBB benchmarks [21]. It has two kernels: force

update and velocity update. The NBody application uses a total of ten fields.

The K-Means benchmark is a clustering workload from the Rodinia benchmark

suite. The benchmarks consists of two kernels: the first kernel is a parallel loop, while

the second kernel purely performs a reduction over all the features. The second kernel

113

is executed sequentially in the original OpenMP version of the benchmark. Since our

current implementation does not support reduction, we port this loop as a sequential

loop by employing the seq clause in forasync construct. The number of fields is

equal to the number of features, which is sixteen in our case.

The Seismic benchmark suite was created based on the example included in the

Intel TBB benchmark suite [21]. Seismic simulates the propagation of waves during

seismic activity. The benchmark uses six fields and has two kernels.

The SRAD benchmark from the Rodinia benchmark suite [68] is also used. SRAD

is used to ”remove locally correlated noise” in ”ultrasonic and radar imaging applica-

tions based on partial differential equations”. SRAD has two kernels and uses a total

of four fields in the main data structure N, S, E, W.

The MRIQ benchmark from the Parboil benchmark suite [51] computes a Q

matrix. The Q matrix represents the scanner configuration used in a 3D magnetic

resonance image reconstruction algorithm in non-Cartesian space. The MRIQ code

has been converted to SOA layout by hand. The benchmark uses six fields and has a

single kernel.

GESUMMV, GEMVER, and SYR2K are linear algebra kernels from the Polybench

benchmark suite [69]. They have one kernel with five, nine and four fields respectively.

Table 4.2 lists the hardware architectures used in our evaluation. We use a variety

of CPU and GPU systems with differing memory hierarchies in order to demonstrate

the benefit of our data layout transformation. The compiler used for the sequential

versions of each application GCC 4.4.6 (with the flags -g -O2). All OpenCL kernels

were compiled with their default optimizations enabled. Intel GPU tests were run

using the 2013 Release of the Intel OpenCL SDK [70]. Intel CPU tests were per-

formed using 2011 Release of Intel OpenCL SDK, v1.5 [70]. NVIDIA GPU tests were

114

Vendor Type Model
Freq

Cores
Local L1$ L2$

(GHz) Mem(KB) (KB) (MB)

Intel CPU X5660 2.8 6 N.A 192 1.5

Intel IGPU i7-3770U 1.1 14 64 N.A N.A

NVIDIA DGPU Tesla M2050 0.6 8 8x48 16 0.8

AMD CPU A10-5800K 1.4 2 N.A. 16 32

AMD IGPU HD 7660 0.8 6 6x32 N.A 4

Table 4.2 : Hardware architectures. IGPU: Integrated GPU, DGPU: Discrete GPU

performed using NVIDIA SDK v5.0 [71]. AMD GPU and GPU tests were performed

using AMD APP SDK v2.8 [72].

Table 4.3 shows the different data layouts used for each benchmark. The fields

without any curly braces belong to the SoA layout. All the fields within a curly

brace belong to a AoS layout. For the meta-data layout framework, we specify meta-

data files corresponding to each layout. All OpenCL kernels, glue code, and different

layouts for each of these applications were generated from a H2C array-based imple-

mentation.

4.4.2 Meta-data Layout Evaluation

We compare relative execution time for array and struct data layouts on different

CPU and GPU platforms. For all the architectures, we compare the SoA layout with

AoS∗ layouts. The execution time also contains the data copy (communication) time

and is obtained from the OpenCL API. The communication time is negligible for Intel

GPU because of its integrated GPU and shared memory architecture. As a result,

there is no copying overhead.

115

Medical Imaging

SoA V1, V2, V3, U1, U2, U3, S, T, interpT

AoSU V1, V2, V3, {U1, U2, U3}, S, T, interpT

AoSV {V1, V2, V3}, U1, U2, U3, S, T, interpT

AoSUV {V1, V2, V3}, {U1, U2, U3}, S, T, interpT

LBM

SoA 19 Fields belong to SoA

AoS 1 AoS of size 16, 1 AoS of size 3

NBody

SoA px, py, pz, vx, vy, vz, ax, ay, az, mass

AoS {px, py, pz, ax, ay, az}, {vx, vy, vz}, mass

AoSP {px, py, pz}, {vx, vy, vz}, {ax, ay, az}, mass

Seismic KMeans

SoA D, L, V, M, S, T SoA 16 Fields belong to SoA

AoS D, L, V, M, { S, T} AoS 1 AoS of size 16

Seismic SRAD

SoA 16 Fields belong to SoA SoA N, S, E, W

AoS 1 AoS of size 16 AoS {N, S, E}, W

AoSE {N, S}, {E, W}

MRIQ GESUMMV

SoA kx , ky , kz, phiMag SoA a, b, x, y, tmp

AoS {kx , ky , kz}, phiMag AoS {a, b}, x, y, tmp

GEMMVER SYR2K

SoA u1, u2, v1, v2 SoA a, b, c

AoS {u1, u2}, {v1, v2} AoS {a, b}, c

Table 4.3 : Data layouts description

116

1.0	

1.2	

0.1	

0.3	 0.4	

1.0	 0.9	

0.2	

0.7	
0.8	

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

1.2	

1.4	

AMD	 CPU	 INTEL	 CPU	 AMD	 GPU	 INTEL	 GPU	 NVIDIA	 GPU	

Re
la
=v

e	
Sp
ee
du

p	
AOS	 AOSP	

Figure 4.16 : Performance of NBody with AoS and AoSP relative to SoA layout on

various devices

Figure 4.16 shows the performance of the N-Body benchmark for various layouts.

We see that the AoS and AoSP versions performs well on the CPU. The SoA layout

performs better on GPUs due to memory coalescing.

Figure 4.17 shows the performance of the Seismic benchmark. The SoA layout

shows better performance on AMD CPU, whereas the AoS layout is better on Intel

CPU. This can be attributed to the difference in cache associativity and sizes between

AMD and Intel. On the GPU side, the array layout performs well on all 3 GPU

hardware as expected.

Figure 4.18 shows the performance of the SRAD benchmark for different layouts.

SRAD shows improved performance for the AoS and AoSE layouts relative to the

SoA layout for all the architectures. Surprisingly even on the GPU the struct layout

performs better than the array layout. This is contrary to GPU best practices. The

memory access functions in the SRAD kernel are non-affine and irregular. It is dif-

117

1.8	 1.8	

0.5	

0.8	 0.7	

0.0	

0.4	

0.8	

1.2	

1.6	

2.0	

AMD	 CPU	 INTEL	 CPU	 AMD	 GPU	 INTEL	 GPU	 NVIDIA	 GPU	

Re
la
<v

e	
Sp
ee
du

p	
AOS	

Figure 4.17 : Performance of Seismic with AoS relative to SoA layout on various

devices

12.0	

6.2	 5.7	
3.4	 3.6	

27.1	

7.4	

4.3	 4.0	 4.2	

0.0	

5.0	

10.0	

15.0	

20.0	

25.0	

30.0	

AMD	 CPU	 INTEL	 CPU	 AMD	 GPU	 INTEL	 GPU	 NVIDIA	 GPU	

Re
la
<v

e	
Sp
ee
du

p	

AOS	 AOSE	

Figure 4.18 : Performance of SRAD with AoS and AoSE relative to SoA layout on

various devices

118

1.0	 1.0	 1.0	

1.0	

1.1	

0.9	

0.9	

1.0	

1.0	

1.1	

1.1	

1.2	

AMD	 CPU	 INTEL	 CPU	 AMD	 GPU	 INTEL	 GPU	 NVIDIA	 GPU	

Re
la
8v

e	
Sp
ee
du

p	
AOS	

Figure 4.19 : Performance of MRIQ with AoS relative to SoA layout on various devices

ficult for a compiler or programmer to analyze and determine the right layout. Our

framework enables rapid prototyping and testing of different layouts for performance

on multiple architectures.

Figure 4.19 shows the performance of MRIQ benchmark. the NVIDIA GPU per-

forms slightly better on the AoS layout. This is because a single device copy due

to the AoS layout is efficient compared to multiple copies resulting from SoA lay-

out. For the other architectures, MRIQ exhibits little or no variation across layouts.

Data layout does not play a role in MRIQ performance since it is compute bound. If

an application is compute bound, then the data layout does not make a significant

difference in performance because the memory latency is hidden by the computation.

Figure 4.20 shows the performance of medical image benchmark for different lay-

outs. The AoS and {AoSU} layouts are better on the CPU whereas the SoA layout is

better on the GPU. Medical image kernel is similar to a 3D Jacobi (stencil) computa-

119

4.7	

1.5	

0.3	
0.5	 0.7	

3.7	

1.4	

0.5	
0.8	 1.0	

0.0	

1.1	

2.2	

3.3	

4.4	

5.5	

AMD	 CPU	 INTEL	 CPU	 AMD	 GPU	 INTEL	 GPU	 NVIDIA	 GPU	

Re
la
<v

e	
Sp
ee
du

p	
AOS	 AOSU	

Figure 4.20 : Performance of Medical with AoS and AoSU relative to SoA layout on

various devices

tion. The stencil computation is performed separately on three input buffers, and the

results are written into corresponding output buffers. Keeping the input buffers in a

single struct is helpful for the CPU because when a point for one stencil is loaded, the

points for the other two stencils are implicitly loaded (multiple points fit in a cache

line) The array layout would have caused three loads for the same point, one in each

of the three stencils. On the GPU side, the SoA layout is better as expected due to

memory coalescing.

Best practices generally dictate the use of SoA data layouts on GPUs due to im-

proved coalescence of global memory accesses. However, our SRAD and MRIQ results

contradict this knowledge. Our meta-data framework enables rapid prototyping and

optimization of different data layouts, allowing tuning experts to rapidly discover op-

timal layouts for complex and irregular applications. For the CPU, the layout often

120

depends upon the kernel features and memory access patterns. Our programming

model can easily port such applications to different architectures.

4.4.3 ADHA Evaluation

SDL evaluation

We report SDL results for all the data-parallel kernels in our benchmarks. Figure 4.21

shows the speedups obtained for CPU-SDL, GPU-SDL for our benchmarks. The de-

fault layout specified by the programmer is used as the baseline (as shown in Table 4.1

and Table 4.3). 13 out of the total 16 kernels show speedup using our SGML greedy

heuristic (Algorithm 4) compared to the baseline layout. It is not surprising to see

that many data-parallel kernels show performance improvement from data layout op-

timization since it results in better cache utilization. We observe performance benefits

of up to 2.87× with a geometric mean improvement of 1.35× on the CPU. With the

GPU execution using the GPU-SDL, we found performance improvements of up to

2.21× with a geometric mean improvement of 1.31×. It is important to note that we

take advantage of the better load instructions available on most GPU hardware as

described in Section 4.3.1. These benefits can be attributed to the decreased instruc-

tion pressure and better memory bandwidth due to the generation of better loads by

the NVIDIA backend compiler.

We now discuss the results for each data-parallel kernel: The first seven kernels

(Medical-1 to Medical-7) in Figure 4.21 are from the Medical imaging registration

benchmark. Kernels numbered 1, 2, 3, and 7, access V 1, V 2, V 3 fields and are grouped

together by our SDL algorithm and is named as AoSV layout. Kernels numbered 4,

and 5 access fields U1, U2, U3 and V 1, V 2, V 3 as two groups, but have complementary

access patterns (Read, Write). These two groups are kept independently and is named

121

2.
36
	 (A

oS
V)
	

1.
12
	 (A

oS
V)
	

1.
12
	 (A

oS
V)
	

1.
53
	 (A

oS
U
V)
	

1.
24
	 (A

oS
U
V)
	

1.
23
	 (A

oS
U
)	

1.
13
	 (A

oS
V)
	

1.
24
	 (A

oS
)	

1.
0	
(S
oA

)	

1.
2	
(A
oS
)	

1.
0	
(A
oS
)	

2.
4	
(A
oS
)	 2.
87
	 (
So
A)
	

1.
38
	 (A

oS
)	

1	
(A
oS
)	

1.
2	
(A
oS
)	

1.
35
	

1.
31
	 (A

oS
V)
	

1.
75
	 (A

oS
V)
	

1.
63
	 (A

oS
V)
	

1.
25
	 (A

oS
U
V)
	

1.
1	
(A
oS
U
V)
	

1.
42
	 (A

oS
U
)	

1.
0	
(A
oS
V)
	

1.
73
	 (A

oS
)	

1.
0	
(S
oA

)	

1.
24
	 (A

oS
)	

1.
0	
(A
O
S)
	 	 1.
5	
(A
oS
)	

N
A	

2.
21
	 (A

oS
)	

1	
(A
oS
)	

1.
1	
(A
oS
)	

1.
31
	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

Medical-‐1	 Medical-‐2	 Medical-‐3	 Medical-‐4	 Medical-‐5	 Medical-‐6	 Medical-‐7	 LBM-‐1	 LBM-‐2	 NBody-‐1	 NBody-‐2	 KMeans-‐1	 KMeans-‐2	 Syr2k	 Gemver	 Gesummv	 GMEAN	

Re
la
Kv

e	
Sp
ee
du

p	

CPU-‐SDL	 GPU-‐SDL	

Figure 4.21 : Speedup for all data-parallel kernels on the CPU and GPU by using

our SDL algorithm compared to the programmer specified default layout

as AoSUV layout. Finally, Kernel 6 accesses the U1, U2, U3 fields together and are

grouped with the name AoSU layout. We obtain speedup ranging from 1× to 2.36×

for all the kernels by using CPU-SDL and GPU-SDL.

The bars for LBM-1 and LBM-2 in Figure 4.21 show the speedups obtained for

the two kernels in the LBM benchmark. This benchmark has 19 fields for each lattice

point in a 3-D space. The first kernel access all the 19 fields for each lattice point

while the second kernel access the lattice points for each field. We observe that both

the kernels require complementary data layouts. The SDL pass combines all the 19

fields in an AoS layout for the first kernel and gives SoA layout for the second kernel.

The first kernel gives a speedup of 1.24× on the CPU and 1.73× on the GPU. The

second kernel does not benefit from our layout transformation since it uses original

baseline SoA layout.

The bars for NBody-1 and NBody-2 in Figure 4.21 show the speedups obtained

for the NBody benchmark. The position and acceleration fields occur together in

122

the first kernel but with different access frequencies. The position, acceleration and

velocity fields occur together in the second kernel. The SDL pass groups them into

individual groups as AoS layout. This application spends 99% of its execution time

in the first kernel. We observe a speedup of 1.2× on the CPU and 1.24× on the GPU

for the first kernel.

The bars for KMeans-1 and KMeans-2 in Figure 4.21 show the speedups obtained

for the KMeans benchmark. The first kernel finds the cluster index for each of the

input. Hence the SDL pass groups all the clustering features in an AoS layout. We

limit the AoS size to 16 which is based on the cache line size. The second kernel is

a reduction kernel which is not supported by our current GPU implementation. The

first kernel results in a speedup of 2.4× on the CPU and 1.5× on the GPU. The

second kernel achieves a speedup of 2.87× on the CPU.

SYR2K kernel reads from the arrays a, b, and writes to array c. Some accesses

to the arrays a and b are strided. Hence AoS layout benefits from improved cache

utilization compared to SoA. We get a speedup of 1.38× on the CPU and 2.21× on

the GPU.

GEMVER kernel reads from the fields u1, u2, v1, and v2. However the sizes of

these fields are very small. Hence the AoS layout performs similar to SoA layout as

observed in our combine section cost model.

GESUMMV reads from the fields a, b, x, and writes to fields tmp, y. However the

sizes of x and y differ from that of a and b, and hence only a and b are combined by

SDL. We observe a speedup of 1.2× on the GPU and 1.1× on the CPU.

123

1.51	

1.00	

2.70	

1.20	
1.49	 1.41	

1.20	

2.49	

1.33	
1.54	

0	

0.5	

1	

1.5	

2	

2.5	

3	

Medical	 LBM	 K-‐Means	 NBody	 GEOMEAN	

Re
la
@v

e	
Sp
ee
du

p	 CPU-‐PDL	 GPU-‐PDL	

Figure 4.22 : Speedup for multi-kernel benchmarks on the CPU and GPU by using

our PDL algorithm compared to the programmer specified default layout

PDL evaluation

We now report results for our multi-kernel benchmarks: Medical Imaging, LBM, K-

Means, and NBody using the PDL. None of the benchmarks have any control flow

between the individual data-parallel kernels. We use the combine section costs and

remap layout costs as shown in Figures 4.12, 4.13 and Figures 4.14, 4.15. We can

observe from these graphs that the combine section cost is ∼ 1000 msec between 8-

AoS and SoA configurations for the CPU for 1024 MB of data. This means that if a

kernel has 8-AoS layout and is combined to an intermediate SoA layout, we estimate

the performance loss as ∼ 1000 msec. This combine cost is less than the remap cost

of ∼ 2000 msec (via LDR) on the CPU . On the other hand, the remap cost of ∼ 90

msec for LDR is less than the combine section cost of ∼ 800 msec for 8-AoS and SoA

on the GPU for 1024 MB. Figure 4.22 shows the PDL speedup of the benchmarks we

evaluated.

The first three kernels of the medical imaging benchmark have the same layout

124

AoSV as shown in Figure 4.21. Kernels 4 and 5 have a different layout AoSUV. Now

we either have to combine section or remap these two layouts. The combine section

cost between AoSU and AoSUV is 0 because they donot have any common fields.

Hence we combine section these sections. Similarly, AoSUV and AoSU donot have any

common fields and hence we combine section kernels 5 and kernel 6. Finally, AoSU

and AoSV layouts do not have any common fields and hence kernel 6 and kernel 7 are

combined. The overall layout from the PDL pass is AoSUV and a speedup of 1.51×

on the CPU and 1.41× on the GPU.

LBM is interesting for PDL because both of it’s kernels prefer complementary

layouts as explained in the SDL results. PDL has decide if it is beneficial to use

combine section or remap layout. This benchmark uses a total grid size of approxi-

mately 1024 MB. PDL computes the corresponding costs from the combine section

and remap layout models described in Sections 4.3.3 & 4.3.3. As explained earlier,

it is more beneficial to perform combine section on the CPU and also to perform

remap layout on the GPU. The combine section model for the CPU uses the program-

mer specified SoA layout because the two kernels cannot be combined. Hence the

speedup compared to the baseline layout is 1. On the GPU, the two kernels are

remapped using LDR and we observed a speedup of 1.2×.

Both kernels in K-Means have been written with a default layout of SoA to enable

coalescing on the GPU. That is, all the features of the input data are independent

arrays. Both the kernels can take advantage of AoS layout since each kernel is iterating

on all the features for every data item. The SDL pass assigned an AoS layout for

each of the kernels. As mentioned on the SDL results, the second kernel is executed

sequentially on the CPU. In the PDL pass, both the kernels will keep the layout as

AoS. We observed a speedup of 2.7× on the CPU and 2.49× on the GPU. The overall

125

speedups obtained are dominated by the speedup from the second kernel which gets

executed on the CPU with AoS layout (shown in Figure 4.21).

The combine section cost of the NBody kernels is 0. This is because their corre-

sponding layouts are independent. Hence the PDL output is the same AoS layout.

Since the first kernel dominates the majority execution time, the speedup is similar

to SDL, which is 1.2× on the CPU and 1.23× on the GPU.

Overall, we observe a geometric mean speedup of 1.49× on the CPU and 1.54×

on the GPU.

4.5 Extensions

We describe the data layout problem in section 4.3.2. The mapping problem described

below is similar to the layout problem and deals with finding the optimal mapping

of a given program on a given heterogeneous system. One can choose to map the

entire program on a single device, or choose to map different parts of the program to

different devices with data copying in between. The mapping problem is described

as follows.

Mapping Problem

We use Cf(Si, ei) to denote the cost of executing section Si on device ei and C(ei, ei−1)

to denote the cost of moving data from device ei−1 to device ei. Finally, the mapping

problem can be formulated as finding the device mapping E for program P such that

following is minimum.
N∑
i=1

(Cf(Si, ei) + C(ei, de−1))

The above formulation essentially finds the best mapping of various forasyncs in a

program such the total cost of execution and data movement is minimized.

126

We plan to extend our ADHA framework formulation and combine the mapping

problem with the data layout problem as follows.

Mapping + Data Layout Problem

We use Cf(Si, di, ei) to denote the cost of executing section Si with data layout di on

device ei where ei ε Ei and di ε Di. Let Cl(di, dj) denote the cost to obtain data layout

dj from di and Ct(ei, ej) be the cost of transferring data from device ei to device ej.

Finally, the data layout and mapping problem can be formulated as finding the

data layout D and device mapping E for program P such that

N∑
i=1

(Cf(di, Si, ei) + Cl(di, di−1) + Ct(ei, ei−1))

is minimum.

The PDL approach can still be used to find the best data layout and device

mapping for a program on a given heterogeneous platform. The complexity of the

overall algorithm will now change based on the number of devices, but the overall

complexity of PDL will remain polynomial.

4.6 Summary

In this thesis chapter, we provide two solutions to the data layout problem on hetero-

geneous architectures. We first present a compiler-driven data layout transformation

that is applicable to any data parallel programming model. The data layout trans-

formation uses a “meta-file” approach which enables the same source code to be

compiled with different layouts without involving the programmer worrying about it.

We then present ADHA, an automatic two-level hierarchical data layout framework

for heterogeneous architectures that can dramatically improve programmer produc-

127

tivity and portability for current heterogeneous architectures. We show that this

formulation helps separate kernels running on a CPU and GPU, and uses an optimal

PTIME algorithm to determine the overall data layout given the data layouts for each

kernels computed by greedy search. We provide a reference implementation of the

formulation in the Heterogenous Habanero-C compiler framework. The framework

uses a parallel intermediate representation to build the affinity graph and a model to

estimate the combine section and remap layout costs which are used in determining the

overall data layout of the program. Our experimental results show significant bene-

fits from these two approaches and demonstrate that the best data layout for a given

program can be different for CPU vs. GPU execution. We finally propose extensions

to ADHA by combining the mapping problem with the data layout problem.

128

Chapter 5

Related Work

In this section, we compare the Heterogeneous Habanero-C(H2C) programming

model, compiler, and runtime implementation with previous work. Section 5.1 com-

pares existing languages that target heterogeneous architectures. Section 5.2 discusses

techniques that handle the layout of data and compare them with the meta-data lay-

out framework of H2C. Section 5.3 describes software techniques for data coherence

on heterogeneous architectures. Section 5.4 discusses techniques to map kernels onto

heterogeneous processors. Section 5.5 discusses some advanced features implemented

on heterogeneous architectures similar to Concord.

5.1 Languages for Heterogenous Architectures

Languages for heterogeneous architectures can be classified as high-level and low-

level. Low-level languages that target heterogeneous architectures are OpenCL [26]

and CUDA [73]. OpenCL is an open standard to program modern heterogeneous

hardware. An OpenCL implementation provides low-level API to compile, execute

and also map a program on a heterogeneous architecture. The API also provides

constructs to specify asynchronous computations and communication along with syn-

chronization. OpenCL follows the offload model where the main program is exe-

cuted on a “host”, which launches tasks onto “devices”. Many vendors today in-

cluding Intel(cpu/gpu/xeon phi), AMD(cpu/cpu/apu), NVIDIA(gpu), Texas Instru-

129

ments(cpu/dsp), Xilinx(fpga) and Altera(fpga) provide implementations of OpenCL

to program their hardware. OpenCL is increasingly being adopted by various devel-

opers to write applications for current heterogeneous hardware.

CUDA is introduced by NVIDIA in 2006 as a general purpose compute platform

for their GPUs. It’s programming model is similar to OpenCL. The key abstractions

include a hierarchy of thread groups, shared memories, and barrier synchronization.

The hierarchy is divided into blocks of work-groups where each work-group is further

partitioned into a set of co-operative parallel threads. CUDA also provides a rich set

of mathematical libraries that are tuned to their GPU hardware. A major drawback

of CUDA is that it is limited to only NVIDIA GPUs and hence is not portable onto

GPU from other vendors. However, both OpenCL and CUDA are challenging for

average programmers to learn, thereby limiting the rate of their adoption on newer

architectures. They are also not portable in the sense that the same program will not

give the best performance on all the architectures.

To overcome these limitations, various existing languages have been extended,

and new high-level programming languages have been developed to program current

heterogeneous architectures. Grand Central Dispatch (GCD) [74] is another low-level

language approach that supports concurrent execution on multicore hardware running

iOS and Mac OSX.

Baskaran et al. automatically generate CUDA code from regular C programs [75].

They leverage the polyhedral model to enable efficient memory loads, find thread-

block level parallelism and also to take advantage of the on-chip memory. However,

the polyhedral model is limited to only affine programs and is constrained by depen-

dency analysis. The high-level constructs of H2C enable the programmer to specify

both affine and non-affine expressions.

130

SnuCL [76] extends OpenCL to a cluster of heterogeneous CPU-GPU processors.

On the CPU, they emulate work-group coalescing by converting to a sequential loop.

The OpenCL extensions include collectives for data.

OpenACC [77] and OpenMP-4.0 [78] provide a directive based approach to target

heterogeneous architectures. The programmer annotates code regions using pragmas

that are compiled and executed on a particular device. The annotations include con-

structs for both communication and computation. Both OpenMP and OpenACC are

based on the “host+accelerator” model. OpenACC is targeted towards accelerators

while OpenMP targets both shared memory CPUs and accelerators. The compiler

directives are just hints from the programmer, and different compilers may choose

to implement a certain directive differently leading to performance variations across

compiler implementations. Mint [79] targets a domain specific problem: stencil com-

putations. Mint is a pragma-based model that automatically generates CUDA from

C code for heterogeneous computing. Mint identifies patterns of the stencil and gen-

erates code to take advantage of the local memory available on GPUs. Mint is specific

to only stencil computations. The optimizer pass in H2C also identifies re-use pat-

terns like stencil computations and is capable of code generation similar to Mint. A

major limitation of pragma based approaches is that the operations are only limited

to the pragma begin/end regions. This is a severe limitation because, the program-

mer cannot start a pragma in one module(file) and end the same pragma in another

module. This forces the entire region constrained to a single module and could result

in cluttering to a single file (usually main()). On the other hand, language constructs

like in H2C are not restricted to any regions. A programmer or the compiler can

explicitly manage the lifetime of the data across multiple modules.

Grewe et al. [80] developed a compiler to automatically generate optimized

131

OpenCL code from data-parallel OpenMP programs. It automatically determines

whether to run OpenCL code on the GPU or to run OpenMP code on the multi-core

host. C++ Accelerated Massive Parallelism (C++ AMP) [81] is a C++ specification

to take advantage of heterogeneous processors such as a GPU. C++ AMP provides

some nice abstractions like array views, which are helpful for productivity. It also pro-

vides the tile and barrier constructs to take advantage of the thread group structure

on the GPUs. C++ AMP does not currently support hybrid CPU-GPU computing.

Dubach et al. introduce Lime [82] programming language for heterogeneous CPU

+ GPU architectures. Lime is an extension of the Java language. They introduce

two operators namely task and connect. Task is mapped to an OpenCL kernel while

connect represents the flow of data. Lime uses the finish construct to ensure comple-

tion of the tasks. It also uses a simple pattern matching scheme to take advantage

of the various memory hierarchies on the GPU. Lime is a streaming programming

model suitable for streaming applications. CnC-CUDA [83] uses CUDA to support

heterogenous platforms. CnC is a graph-based programming language, which consists

of three main constructs namely step collections, data item collections, and control

tag collections. One drawback of CnC-CUDA is that the user has to manually write

CUDA code. Cunningham et al. [84] at IBM extend X10 to generate CUDA. X10

follows the APGAS programming model. APGAS model is based on the principles

of locality, asynchrony, conditional atomicity and order. X10 and H2C have a sim-

ilar programming model. X10 is a new language based on Java-like object-oriented

design.

H2C automatically generates OpenCL code from high-level extension to the Ha-

banero programming model. H2C supports some important features like SVM, meta-

data layout framework and task distributions which none of the above high-level lan-

132

guages support. The asynchronous task parallelism enabled by high-level constructs,

compiler, and runtime make H2C a portable, productive and performant program-

ming language for heterogeneous computing. The other advantage of H2C is that

H2C is an extension of the C programming language, and both existing and new

applications can take advantage of the heterogeneous processors.

5.2 Data Layout

The data layout problem has been well studied for more than a decade in various

contexts. The goal of data layout optimization techniques is to reduce memory la-

tency, by taking advantage of prefetch streams and exploiting the memory hierarchy.

Data layout problem was studied in High Performance Fortran(HPF) to automati-

cally determine the alignment and distribution of global arrays. Ulrich and Kennedy

extensively worked on automatic data alignment and distribution framework for HPF

[16, 61, 85, 86] at Rice University. The data layout considers the alignment of each

dimension of the multidimensional arrays so as to reduce the cost of communicating

data across a cluster of distributed processors. The optimal alignment depends upon

the access patterns of the array dimensions. Ulrich et al. also show that finding

the optimal data is an NP-Complete [85] problem in the absence of control flow.

Anderson et al. [87] proved that the problem of dynamic remapping in the presence

of control flow is NP-hard. Their work divides a program into phases. Each phase

consists of a loop nest that covers all the induction variables occurring inside the loop

body. Ulrich [85] proves that finding an optimal data alignment is an NP-Complete

problem in the absence of control flow. Lam et al. [87] proved that the problem of

dynamic remapping in the presence of control flow in NP-hard. Wu et al. [20] have

proved that finding the optimal data layout to maximize the number of coalesced

133

accesses on a GPU is NP-complete.

The number of layouts possible is exponential, and Ulrich presents heuristics to

prune these layouts. He also proposes an optimal integer programming solution when

the number of kernels is less. Chen Ding later worked on another version of the data

layout problem i.e., array regrouping and structure splitting. The problem statement

is to find the optimal grouping of array fields in a program to efficiently take advantage

of cache-reuse on CPUs. Chen et al. [17,88] extended the proof from Ulrich and claims

that the problem of array regrouping is also NP-complete but does not provide any

proof. We provide a complete proof of NP-completeness for the array regrouping

problem. Chen and Ulrich partition the programs into phases (parts of a program

which access data more than a cache line) and find the grouping where it is profitable

to do so. Their profitability heuristic is to find the sets of arrays that: 1) Always occur

together in the entire program, 2) The set is the largest possible set. They further

propose extensions(no implementation) to the formulation to allow for useless data

and dynamic remapping of layouts. The array regrouping heuristics have been further

extended to handle irregular programs. Zhong et. al. [18, 19] use profile information

to build reference graphs and use clustering heuristics to determine the best layout.

Luz et al. [89] showed the benefits of array regrouping on embedded systems.

Sung et al. [56] use data layout transformation to enable memory level parallelism

on structured grid applications. They look into AoS and SoA for GPU memory

coalescing. Their framework increases the memory level parallelism by distributing

the data access by a thread to different banks. The meta-data framework in H2C

considers other important factors like prefetching, TLB miss rate, and cache miss

effects to figure the optimal layout.

DL [90]. Uses in-place transposition to remap data via cyclic copying. The user

134

has to write a different version of the code for array layout and ASTA(AOSOA). ASTA

will help in avoiding camping of the memory channels on GPU due to large slides

compared to arrays. Dymaxion [55] provides an API, which is a set of remapping

functions from one layout to another. maprow2col, mapdiagonal, mapindirect are

some of the mapping functions provided by the API. The remapping of the data

is done along with the PCI-E transfer of data. The runtime chunks the data and

launches a transformation kernel for each chunk. This allows overlap of remapping

and transfer of data. The authors evaluate the performance of hybrid CPU-GPU

execution of the k-means application. They use one layout for the CPU and another

layout for the GPU with the help of their API. Dymaxion uses a runtime approach

which the authors show could be prohibitive. Our H2C compiler uses compile-time

techniques to change the data layout and leverages its asynchronous features to reduce

the overhead of data remapping.

TALC [91] uses a meta-file and an input program to generate code with the cor-

responding layout. Our meta-data layout framework has been inspired from TALC.

TALC, however, is limited only to CPUs. We extend TALC by generalizing it for

heterogeneous processors.

5.3 Data Management among Heterogeneous devices

There are two schemes to manage data coherence in a heterogeneous environment.

The first scheme uses static analysis to determine the coherence points, and the

second scheme proposes runtime framework to dynamically handle the coherence on

a need basis. Static analysis techniques are limited because the compiler is forced to

make conservative assumption resulting in redundant communication. However, static

analysis can benefit from the dependency information to overlap the communication

135

and computation. On the other hand, dynamic techniques are more precise because

much of the dependency information is resolved at runtime and there by minimizing

the communication. However, dynamic approached suffer from overheads due to

runtime management of coherence information.

Jablin et al. [92] developed a runtime framework DyManD, to dynamically manage

data for CPU-GPU architectures. Their previous work CGCM [93], uses a static

analysis to show that acyclic communication between CPU and GPU if present can

lead to good performance. DyManD relies on the modified memory allocators. It

allocates numerically identical addresses on CPU and GPU by allocating data on the

GPU first and then using mmap to get the corresponding CPU address. Any address

on the GPU is just a masked version of the CPU address. Use interrupts to change

the state of memory to one of GPUEx. CPUEx and shared. It also introduces glue

kernels. The idea is to convert a short CPU kernel between two GPU kernels into a

single threaded GPU kernel to avoid cyclic communication. Pai et al. [14] improve

over DyManD for X10 language. By checking if data is stale on the GPU, their

framework avoids transfer of data. They use compiler analysis to insert coherence

checks at the optimal point. Amini et al. [94] in their work design a static analysis

to optimize the communication between a host-accelerator system. Their automatic

approach focuses on transferring the data to the device from the host as early as

possible to delay the transfer from the host to the device as late as possible. Use

LRU policy to evict the data on GPU.

5.4 Hybrid CPU-GPU Execution

Chau-Wen [95] in his thesis work designed the Fortran D compiler to automate and

optimize the communication, data layout and partitioning the work for Fortran pro-

136

grams. Qilin [96] provides wrappers for heterogeneous computing and uses adaptive

mapping to schedule the work between CPU and GPU. Boyle et al. [97] use ma-

chine learning techniques to statically partition the work between CPU and GPU.

They execute a suite of benchmarks to build a code feature vector. This feature

vector is built using raw kernel features like the number of compute operations,

accesses to global memory, accesses to local memory, coalesced memory accesses, av-

erage number of data transfers and work-items per kernel. The future derive some

combined code features like communication to computation ratio, % coalesced mem-

ory accesses, the ratio of local to global memory accesses × avg. # work-items per

kernel, computation-memory ratio. Lee et al. [98] address the issue of partitioning

data-parallel kernels with irregular memory access patterns over multiple devices.

Merging discontinuous data is done by copying the device memory to host buffer.

Then they launch a CPU kernel without the compute part just to copy the data to

the corresponding locations. The partitioning decision becomes more complicated

when systems are equipped with several types of devices. The performance of a GPU

is often not constant to the amount of data that it operates upon, and this variation

will affect the partitioning decision. To handle this problem, they introduce a perfor-

mance variation-aware partitioning scheme that builds a profile for each device with

copy costs and then decides the profitability of offloading using a recursive tree-based

approach. Petabricks extension [99] to support GPUs via OpenCL includes high-level

algorithmic choices. The compiler divides these choices according to the ease of map-

ping them efficiently onto a CPU and GPU. Alina et al. [100] in the Habanero team

map a data-flow programming model onto heterogeneous processors. They build a

work-stealing runtime to schedule the work on different processors.

Hierarchical Place Trees (HPT) [54] is a programming abstraction for task place-

137

ment and data movement. The memory hierarchy of a machine is modeled as a

hierarchical tree and each memory location is denoted as a place. The programmer

can now schedule tasks, which use similar data on a particular place thereby exploiting

locality. HPTs support GPUs memories by adding an acc clause to the program in-

dicating that the data is not implicitly accessed outside its place. HITMAP [101,102]

is a library-based approach that provides an API for user-defined distributions. It

adopts and SPMD model and provides certain high reusable communication patterns

such as point-to-point communications, paired exchanges for neighbors, shifts along

a virtual axis.

Automatic mapping approaches are limited to only certain applications or a single

architecture. For example, automatic approaches to mapping of tasks assume that

all the processors resources are available for a given task. However, in practice the

resources could be shared or limited. For instance, the memory of a GPU is limited to

at most 12GB in state-of-art devices, and the automatic mapper must now be aware

of these constraints and make decisions at runtime that could result in performance

degradation. H2C provides the high-level at and partition constructs to the program-

mer to specify the mapping. The user chooses the mapping of tasks based on the

resources available and the compiler automatically determines the data distribution.

5.5 Advanced GPU Support

Both CUDA and the next major release of OpenCL, OpenCL 2.0 [26], support pointer

sharing (SVM) between the CPU and GPU. However, CUDA’s SVM support requires

hardware support (it is limited to NVIDIA’s Fermi-class and later GPUs), while

OpenCL 2.0’s SVM typically requires special hardware or operating system support.

AMD APU A10-7650K (code name Kaveri) is the first integrated GPU with full

138

hardware support for SVM.

GMAC [15] provides shared memory support between CPU and GPU. It uses a

coherence protocol to maintain the coherence between CPU+GPU. It handles the

non-virtual addressing by requesting the same virtual address space on the CPU side

(using mmap) that is generated on the GPU side. However, GMAC is limited only to

a single device since multiple devices can generate overlapping virtual address ranges.

Concord on the other side uses a compiler approach to handle the mapping and can

support any number of devices.

There has been past work on implementing shared virtual memory in software [103]

on distributed-memory processors via distributed shared memory (DSM) schemes.

DSMs are implemented in a couple of ways including memory management software,

Operating System extensions and language runtime systems. However, implement-

ing such a system is complex and also not feasible in many heterogeneous systems

today due to restrictions imposed either by the vendor or the particular hardware.

Some of these restrictions include lack of OS support and closed nature of the hard-

ware. In the modern heterogeneous setting, virtual memory sharing in software is

only achieved (in some cases) by vendor-provided drivers. For example, CUDA Uni-

fied Virtual Addressing is restricted only to NVIDIA discrete GPUs. Other efforts

that simplify programming heterogeneous systems include using custom hardware

approaches like Merge [104] and Exochi [105], but these approaches are limited to a

particular hardware. The techniques applied in Concord can be implemented on top

any heterogeneous hardware with a coherent memory subsystem.

139

Chapter 6

Conclusions and Future Work

Heterogeneous architectures are pervasive today and will be in the future. However,

programming these architectures is non-trivial, and this poses constraints on porta-

bility, productivity, and performance. The diverse architectural features of these

heterogeneous architectures make it challenging to achieve the optimal performance

and energy efficiency. It is necessary to be able to program these architectures in a

machine independent manner. In this dissertation, we have implemented two pro-

gramming models, Concord and Heterogeneous Habanero-C (H2C) that address the

above portability and productivity challenges for heterogeneous architectures.

Concord is a C++ programming framework for processors with integrated GPUs.

With support for SVM and most C++ constructs, Concord is designed to allow object-

oriented C++ data-parallel programs to seamlessly take advantage of GPU execution

in addition to multi-core execution. Additionally, its compiler optimizations reduce

the cost of software-based SVM implementation. Using seventeen realistic regular

and irregular C++ applications, we demonstrate that C++ applications that use

recursive data structures, and object-oriented features can be automatically mapped

to the GPU. Furthermore, we demonstrate that GPU execution can bring significant

energy benefits to irregular C++ applications even without sophisticated algorithm

or data restructuring changes. This is in contrast to the large literature on GPU

execution that show benefit for regular applications.

140

H2C programming model targets multiple heterogeneous devices and provides

features that make programming these devices very simple. The highlights of H2C

include high-level constructs to overlap communication and computation, partition

tasks, distribute data, and a unified event framework. The H2C compiler takes advan-

tage of both AST and polyhedral optimizations to generate code tuned to a particular

heterogeneous hardware. Evaluation of four benchmarks shows H2C to be portable,

productive and also achieve performance similar to hand-coded low-level OpenCL

implementations on a system with CPU and more than one GPU.

Memory latency is a major source of performance degradation in today’s applica-

tions. With memory hierarchies becoming deeper, data layout plays an important role

in reducing these latencies. The current trend of programming systems is to leave the

data layout to the programmer. We introduce two data layout frameworks in H2C:

First, A meta-data layout framework enables a programmer to specify a high-level

specification of the layout. The compiler automatically generates a code executable

with the specified layout; Second, Automatic Data layout for Heterogeneous Archi-

tectures (ADHA), automatically determines the best layout for a given application.

The best layout for a given program is dependent on the kernel mapping, data trans-

pose and communication costs. ADHA formulates the layout + mapping problem

into two phases and determines the best layout for the entire program. Experimental

results show data layout is crucial in application performance. Our two data layout

frameworks extend the H2C programming system in achieving higher performance

portability.

We believe these programming systems will be of tremendous value in the upcom-

ing years where heterogeneous systems will be a lot more ubiquitous and pervasive.

141

Future Work

As part of our future work, we plan to implement and evaluate our proposed ex-

tensions to H2C and ADHA data layout framework described in section 3.6 and

section 4.5 respectively. We also plan to extend ADHA to compute the optimal layout

and mapping in terms of energy efficiency.

142

Bibliography

[1] G. Moore, “Cramming More Components Onto Integrated Circuits,” Proceed-

ings of the IEEE, vol. 86, pp. 82–85, Jan 1998.

[2] R. Dennard, V. Rideout, E. Bassous, and A. LeBlanc, “Design of ion-implanted

MOSFET’s with very small physical dimensions,” Solid-State Circuits, IEEE

Journal of, vol. 9, pp. 256–268, Oct 1974.

[3] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger,

“Dark silicon and the end of multicore scaling,” IEEE Micro, no. 3, pp. 122–

134, 2012.

[4] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and

D. Shippy, “Introduction to the cell multiprocessor,” IBM J. Res. Dev., vol. 49,

pp. 589–604, July 2005.

[5] Intel, “Ivy Bridge,” 2012. http://ark.intel.com/products/codename/29902/

Ivy-Bridge.

[6] AMD, “Heterogeneous System Architecture (HSA),” 2014. http://www.amd.

com/en-us/innovations/software-technologies/processors-for-business/hsa.

[7] NVIDIA, “High Performance Computing (HPC),” 2015. http://www.nvidia.

com/page/products.html.

http://ark.intel.com/products/codename/29902/Ivy-Bridge
http://ark.intel.com/products/codename/29902/Ivy-Bridge
http://www.amd.com/en-us/innovations/software-technologies/processors-for-business/hsa
http://www.amd.com/en-us/innovations/software-technologies/processors-for-business/hsa
http://www.nvidia.com/page/products.html
http://www.nvidia.com/page/products.html

143

[8] Texas Instruments, “66AK2L06 Multicore DSP+ARM KeyStone II System-on-

Chip (SoC),” 2015.

[9] Altera, “ FPGA,” 2015. https://www.altera.com/products/fpga/overview.

html.

[10] Cadence, “Tensilica Customizable Processor IP,” 2015. http://ip.cadence.com/

ipportfolio/tensilica-ip.

[11] Top 500, “TOP 10 Sites for November 2014,” 2014. http://www.top500.org/

lists/2014/11/.

[12] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Toward dark silicon

in servers,” Micro, IEEE, vol. 31, pp. 6–15, July 2011.

[13] A. Wood, “The internet of things is revolutionising our lives, but standards are

a must,” The Guardian, March 2015.

[14] S. Pai, R. Govindarajan, and M. J. Thazhuthaveetil, “Fast and efficient auto-

matic memory management for GPUs using compiler-assisted runtime coher-

ence scheme,” in Proceedings of the 21st international conference on Parallel

architectures and compilation techniques, PACT ’12, (New York, NY, USA),

pp. 33–42, ACM, 2012.

[15] I. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro, and W.-m. W. Hwu,

“An Asymmetric Distributed Shared Memory Model for Heterogeneous Parallel

Systems,” SIGPLAN Not., vol. 45, pp. 347–358, Mar. 2010.

[16] K. Kennedy and U. Kremer, “Initial Framework for Automatic Data Layout

in Fortran D: A Short Update on a Case Study,” Tech. Rep. CRPC-TR93324-

https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
http://ip.cadence.com/ipportfolio/tensilica-ip
http://ip.cadence.com/ipportfolio/tensilica-ip
 http://www.top500.org/lists/2014/11/
 http://www.top500.org/lists/2014/11/

144

S, Rice University, Houston, Texas, USA, 1993. http://softlib.rice.edu/pub/

CRPC-TRs/reports/CRPC-TR93324-S.pdf.

[17] C. Ding and K. Kennedy, “Inter-array data regrouping,” in Languages and

Compilers for Parallel Computing (L. Carter and J. Ferrante, eds.), vol. 1863 of

Lecture Notes in Computer Science, pp. 149–163, Springer Berlin Heidelberg,

2000.

[18] Y. Zhong, M. Orlovich, X. Shen, and C. Ding, “Array Regrouping and Struc-

ture Splitting Using Whole-program Reference Affinity,” in Proceedings of the

ACM SIGPLAN 2004 Conference on Programming Language Design and Im-

plementation, PLDI ’04, (New York, NY, USA), pp. 255–266, ACM, 2004.

[19] X. Shen, Y. Gao, C. Ding, and R. Archambault, “Lightweight Reference Affin-

ity Analysis,” in Proceedings of the 19th Annual International Conference on

Supercomputing, ICS ’05, (New York, NY, USA), pp. 131–140, ACM, 2005.

[20] B. Wu, Z. Zhao, E. Z. Zhang, Y. Jiang, and X. Shen, “Complexity analysis

and algorithm design for reorganizing data to minimize non-coalesced memory

accesses on GPU,” in Proceedings of the 18th ACM SIGPLAN symposium on

Principles and practice of parallel programming, PPoPP ’13, (New York, NY,

USA), pp. 57–68, ACM, 2013.

[21] Intel Corporation, “The Intel Threading Building Blocks,” 2006. https://www.

threadingbuildingblocks.org//.

[22] Standard C++ Foundation, “Serialization and Unserialization,” 2015. https:

//isocpp.org/wiki/faq/serialization.

http://softlib.rice.edu/pub/CRPC-TRs/reports/CRPC-TR93324-S.pdf
http://softlib.rice.edu/pub/CRPC-TRs/reports/CRPC-TR93324-S.pdf
https://www.threadingbuildingblocks.org//
https://www.threadingbuildingblocks.org//
https://isocpp.org/wiki/faq/serialization
https://isocpp.org/wiki/faq/serialization

145

[23] K. Kennedy, C. Koelbel, and H. Zima, “The Rise and Fall of High Performance

Fortran: An Historical Object Lesson,” in Proceedings of the Third ACM SIG-

PLAN Conference on History of Programming Languages, HOPL III, (New

York, NY, USA), pp. 7–1–7–22, ACM, 2007.

[24] S. Chatterjee, S. Tasrlar, Z. Budimlic, V. Cave, M. Chabbi, M. Grossman,

V. Sarkar, and Y. Yan, “Integrating asynchronous task parallelism with mpi,”

in Parallel Distributed Processing (IPDPS), 2013 IEEE 27th International Sym-

posium on, pp. 712–725, May 2013.

[25] U. Consortium, “UPC Language Specifications, v1.2,” Tech. Rep. LBNL-59208,

Lawrence Berkeley National Lab Tech Report, Berkeley, California, USA, 2005.

http://www.gwu.edu/∼upc/publications/LBNL-59208.pdf.

[26] Khronos, “OpenCL: The open standard for parallel programming of heteroge-

neous systems,” 2010. http://www.khronos.org/opencl/.

[27] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Roun-

tev, and P. Sadayappan, “A compiler framework for optimization of affine loop

nests for gpgpus,” in Proceedings of the 22nd annual international conference

on Supercomputing, ICS ’08, (New York, NY, USA), pp. 225–234, ACM, 2008.

[28] A. Sidelnik, S. Maleki, B. Chamberlain, M. Garzaran, and D. Padua, “Perfor-

mance portability with the chapel language,” in Parallel Distributed Processing

Symposium (IPDPS), 2012 IEEE 26th International, pp. 582–594, May 2012.

[29] M. G. Burke, K. Knobe, R. Newton, and V. Sarkar, “The Concurrent Collec-

tions Programming Model,” Tech. Rep. TR 10-12, Rice University, Houston,

Texas, USA, 2010.

http://www.gwu.edu/~upc/publications/LBNL-59208.pdf
http://www.khronos.org/opencl/

146

[30] Microsoft, “Task Parallel Library (TPL),” 2011. http://msdn.microsoft.com/

en-us/library/dd460717.aspx.

[31] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of the

cilk-5 multithreaded language,” in Proceedings of the ACM SIGPLAN 1998

Conference on Programming Language Design and Implementation, PLDI ’98,

(New York, NY, USA), pp. 212–223, ACM, 1998.

[32] Intel Labs, “iHRC,” 2011. https://github.com/IntelLabs/iHRC.

[33] R. Kaleem, R. Barik, T. Shpeisman, B. T. Lewis, C. Hu, and K. Pingali, “Adap-

tive Heterogeneous Scheduling for Integrated GPUs,” in Proceedings of the 23rd

International Conference on Parallel Architectures and Compilation, PACT ’14,

(New York, NY, USA), pp. 151–162, ACM, 2014.

[34] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong Pro-

gram Analysis & Transformation,” in Proceedings of the International Sympo-

sium on Code Generation and Optimization: Feedback-directed and Runtime

Optimization, CGO ’04, (Washington, DC, USA), pp. 75–, IEEE Computer

Society, 2004.

[35] J. Knoop, O. Rüthing, and B. Steffen, “Optimal code motion: theory and

practice,” TOPLAS, vol. 16, pp. 1117–1155, July 1994.

[36] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan, R. Kaleem,

T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo, D. Prountzos, and

X. Sui, “The Tao of Parallelism in Algorithms,” in Proceedings of the 32Nd ACM

SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’11, (New York, NY, USA), pp. 12–25, ACM, 2011.

http://msdn.microsoft.com/en-us/library/dd460717.aspx
http://msdn.microsoft.com/en-us/library/dd460717.aspx
https://github.com/IntelLabs/iHRC

147

[37] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and K. Skadron,

“Rodinia: A benchmark suite for heterogeneous computing,” in Workload Char-

acterization, 2009. IISWC 2009. IEEE International Symposium on, pp. 44–54,

Oct 2009.

[38] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark Suite:

Characterization and Architectural Implications,” in Proceedings of the 17th

International Conference on Parallel Architectures and Compilation Techniques,

PACT ’08, (New York, NY, USA), pp. 72–81, ACM, 2008.

[39] B. Werth, “Pet Me,” 2011. http://software.intel.com/en-us/articles/

multi-core-simulation-of-soft-body-characters-using-cloth/.

[40] G. Bradski, “OpenCV,” Dr. Dobb’s Journal of Software Tools, 2000.

[41] Q. Wayne, “Mandelbrot,” 2008. https://sites.google.com/site/quickwayne/

home.

[42] R. Reed, “n-bodies: exploring a parallel TBB solution, intro and

peek ahead,” 2009. http://software.intel.com/en-us/blogs/2009/08/19/

n-bodies-exploring-a-parallel-tbb-solution-intro-and-peek-ahead/.

[43] D. Cherkassov, “First-Rays,” 2012. https://github.com/4DA/

codermind-raytracer.

[44] D. Quinlan, “ROSE: Compiler Support For Object-Oriented Frameworks,” Par-

allel Processing Letters, vol. 10, no. 02n03, pp. 215–226, 2000.

[45] “PolyOpt: A complete source-to-source Polyhedral Compiler.” http://www.cs.

ucla.edu/∼pouchet/software/polyopt/.

http://software.intel.com/en-us/articles/multi-core-simulation-of-soft-body-characters-using-cloth/
http://software.intel.com/en-us/articles/multi-core-simulation-of-soft-body-characters-using-cloth/
https://sites.google.com/site/quickwayne/home
https://sites.google.com/site/quickwayne/home
http://software.intel.com/en-us/blogs/2009/08/19/n-bodies-exploring-a-parallel-tbb-solution-intro-and-peek-ahead/
http://software.intel.com/en-us/blogs/2009/08/19/n-bodies-exploring-a-parallel-tbb-solution-intro-and-peek-ahead/
https://github.com/4DA/codermind-raytracer
https://github.com/4DA/codermind-raytracer
http://www.cs.ucla.edu/~pouchet/software/polyopt/
http://www.cs.ucla.edu/~pouchet/software/polyopt/

148

[46] “OpenScop:A Specification and a Library for Data Exchange in Polyhe-

dral Compilation Tools.” http://icps.u-strasbg.fr/people/bastoul/public html/

development/openscop/index.html.

[47] D. Majeti, R. Barik, J. Zhao, V. Sarkar, and M. Grossman, “Compiler Driven

Data Layout Transformation for Heterogeneous Platforms,” in The Interna-

tional Workshop on Algorithms, Models and Tools for Parallel Computing on

Heterogeneous Platforms, HeteroPar ’13, (Aachen, Germany), LNCS, 2013.

[48] P. Feautrier, “Parametric integer programming,” RAIRO Recherche

Opérationnelle, vol. 22, no. 3, pp. 243–268, 1988.

[49] D. Chavarŕıa-Miranda and J. Mellor-Crummey, “Effective communication coa-

lescing for data-parallel applications,” in Proceedings of the Tenth ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming, PPoPP

’05, (New York, NY, USA), pp. 14–25, ACM, 2005.

[50] “Halliburton Services.” http://www.halliburton.com/en-US/.

[51] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari,

G. D. Liu, and W.-M. W. Hwu, “Parboil: A revised benchmark suite for sci-

entific and commercial throughput computing,” Center for Reliable and High-

Performance Computing, 2012.

[52] T. McCabe, “A Complexity Measure,” Software Engineering, IEEE Transac-

tions on, vol. SE-2, pp. 308–320, Dec 1976.

[53] M. H. Halstead, Elements of Software Science (Operating and Programming

Systems Series). New York, NY, USA: Elsevier Science Inc., 1977.

http://icps.u-strasbg.fr/people/bastoul/public_html/development/openscop/index.html
http://icps.u-strasbg.fr/people/bastoul/public_html/development/openscop/index.html
http://www.halliburton.com/en-US/

149

[54] Y. Yan, J. Zhao, Y. Guo, and V. Sarkar, “Hierarchical Place Trees: A Portable

Abstraction for Task Parallelism and Data Movement,” in Proceedings of the

22Nd International Conference on Languages and Compilers for Parallel Com-

puting, LCPC’09, (Berlin, Heidelberg), pp. 172–187, Springer-Verlag, 2010.

[55] S. Che, J. W. Sheaffer, and K. Skadron, “Dymaxion: optimizing memory access

patterns for heterogeneous systems,” in Proceedings of 11th International Con-

ference for High Performance Computing, Networking, Storage and Analysis,

SC ’11, 2011.

[56] I.-J. Sung, J. A. Stratton, and W.-M. W. Hwu, “Data layout transformation

exploiting memory-level parallelism in structured grid many-core applications,”

in Proceedings of the 19th international conference on Parallel architectures and

compilation techniques, PACT ’10, (New York, NY, USA), pp. 513–522, ACM,

2010.

[57] E. Raman, R. Hundt, and S. Mannarswamy, “Structure Layout Optimization

for Multithreaded Programs,” in Proc. of CGO, pp. 271–282, 2007.

[58] NVIDIA, “CUDA Toolkit Documentation v6.5,” in NVIDIA Corportation,

2014.

[59] G. Mei and H. Tian, “Performance Impact of Data Layout on the GPU-

accelerated IDW Interpolation,” CoRR, vol. abs/1402.4986, 2014.

[60] W. mei W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A.

Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm,

and D. M. Lavery, “The Superblock: An effective technique for VLIW and

150

superscalar compilation,” The Jounral of SuperComputing, vol. 7, pp. 229–248,

1993.

[61] K. Kennedy and U. Kremer, “Automatic data layout for high performance

Fortran,” in Proc. of SC, 1995.

[62] M. R. Garey and D. S. Johnson, Computers and intractability, vol. 174. freeman

San Francisco, 1979.

[63] K. G. Murty and C. Perin, “A 1-matching blossom-type algorithm for edge

covering problems,” Networks, vol. 12, no. 4, pp. 379–391, 1982.

[64] J. Zhao and V. Sarkar, “Intermediate Language Extensions for Parallelism,” in

Proc. of SPLASH Workshops, pp. 329–340, 2011.

[65] J. Knoop, O. Rüthing, and B. Steffen, “Lazy Code Motion,” in Programming

language design and implementation, vol. 27, pp. 224–234, ACM, 1992.

[66] V. Sarkar, “Automatic Selection of High-order Transformations in the IBM XL

FORTRAN Compilers,” IBM J. Res. Dev., vol. 41, pp. 233–264, May 1997.

[67] Center for Domain Specific Computing, “CDSC Research Applications,” 2009.

http://www.cdsc.ucla.edu/research/.

[68] Che et al., “Rodinia: A Benchmark Suite for Heterogeneous Computing,” in In

Proceedings of the IEEE International Symposium on Workload Characteriza-

tion, ISWC’09, pp. 44–54, 2009.

[69] “PolyBench/GPU.” http://www.cse.ohio-state.edu/∼pouchet/software/

polybench/GPU/.

http://www.cdsc.ucla.edu/research/
 http://www.cse.ohio-state.edu/~pouchet/software/polybench/GPU/
 http://www.cse.ohio-state.edu/~pouchet/software/polybench/GPU/

151

[70] “Intel OpenCL SDK.” http://software.intel.com/en-us/vcsource/tools/

opencl-sdk.

[71] “NVIDIA SDK.” https://developer.nvidia.com.

[72] “AMD APP SDK v2.8.” http://developer.amd.com/tools/

heterogeneous-computing/amd-accelerated-parallel-processing-app-sdk.

[73] NVIDIA Corporation, “The CUDA Specification,” 2015. www.nvidia.com.

[74] A. Corporation, “Grand Central Dispatch,” 2009. https://developer.apple.

com/library/mac/documentation/Performance/Reference/GCD libdispatch

Ref/index.html.

[75] M. M. Baskaran, J. Ramanujam, and P. Sadayappan, “Automatic C-to-CUDA

Code Generation for Affine Programs,” in Proceedings of the 19th Joint Euro-

pean Conference on Theory and Practice of Software, International Conference

on Compiler Construction, CC’10/ETAPS’10, (Berlin, Heidelberg), pp. 244–

263, Springer-Verlag, 2010.

[76] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee, “SnuCL: An OpenCL Frame-

work for Heterogeneous CPU/GPU Clusters,” in Proceedings of the 26th ACM

International Conference on Supercomputing, ICS ’12, (New York, NY, USA),

pp. 341–352, ACM, 2012.

[77] Khronos, “The OpenACC: Application Programming Interface,” 2011. www.

openacc-standard.org/.

[78] “OpenMP.” www.openmp.org.

http://software.intel.com/en-us/vcsource/tools/opencl-sdk
http://software.intel.com/en-us/vcsource/tools/opencl-sdk
https://developer.nvidia.com
http://developer.amd.com/tools/heterogeneous-computing/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools/heterogeneous-computing/amd-accelerated-parallel-processing-app-sdk
www.nvidia.com
https://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html
https://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html
https://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html
www.openacc-standard.org/
www.openacc-standard.org/
www.openmp.org

152

[79] D. Unat, X. Cai, and S. B. Baden, “Mint: realizing CUDA performance in 3D

stencil methods with annotated C,” in Proceedings of the international confer-

ence on Supercomputing, ICS ’11, (New York, NY, USA), pp. 214–224, ACM,

2011.

[80] D. Grewe and M. F. P. O’Boyle, “A static task partitioning approach for het-

erogeneous systems using OpenCL,” in Proceedings of the 20th international

conference on Compiler construction: part of the joint European conferences

on theory and practice of software, CC’11/ETAPS’11, (Berlin, Heidelberg),

pp. 286–305, Springer-Verlag, 2011.

[81] “ C++ Accelerated Massive Parallelism.” http://msdn.microsoft.com/en-us/

library/vstudio/hh265137.aspx.

[82] C. Dubach, P. Cheng, R. Rabbah, D. F. Bacon, and S. J. Fink, “Compiling a

High-level Language for GPUs: (via Language Support for Architectures and

Compilers),” in Proceedings of the 33rd ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI ’12, (New York, NY,

USA), pp. 1–12, ACM, 2012.

[83] M. Grossman, A. Simion Sb̂ırlea, Z. Budimlíıc, and V. Sarkar, “CnC-CUDA:

Declarative Programming for GPUs,” in Languages and Compilers for Paral-

lel Computing, vol. 6548 of Lecture Notes in Computer Science, pp. 230–245,

Springer Berlin Heidelberg, 2011.

[84] D. Cunningham, R. Bordawekar, and V. Saraswat, “GPU Programming in a

High Level Language: Compiling X10 to CUDA,” in Proceedings of the 2011

ACM SIGPLAN X10 Workshop, X10 ’11, (New York, NY, USA), pp. 8:1–8:10,

http://msdn.microsoft.com/en-us/library/vstudio/hh265137.aspx
http://msdn.microsoft.com/en-us/library/vstudio/hh265137.aspx

153

ACM, 2011.

[85] U. Kremer, “NP-completeness of Dynamic Remapping,” Tech. Rep. CRPC-

TR93330-S, Rice University, Houston, Texas, USA, 1993.

[86] R. Bixby, K. Kennedy, and U. Kremer, “Automatic Data Layout Using 0-1 In-

teger Programming,” in In Proceedings of the International Conference on Par-

allel Architectures and Compilation Techniques (PACT94, pp. 111–122, 1994.

[87] J. M. Anderson and M. S. Lam, “Global Optimizations for Parallelism and

Locality on Scalable Parallel Machines,” in In Proceedings Of The SIGPLAN ’93

Conference on Programming Language Design And Implementation, pp. 112–

125, 1993.

[88] C. Ding and K. Kennedy, “Improving effective bandwidth through compiler en-

hancement of global cache reuse,” in Parallel and Distributed Processing Sym-

posium., Proceedings 15th International, p. 10, Apr 2001.

[89] V. De La Luz and M. Kandemir, “Array regrouping and its use in compil-

ing data-intensive, embedded applications,” Computers, IEEE Transactions on,

vol. 53, pp. 1–19, Jan 2004.

[90] I.-J. Sung, G. Liu, and W.-M. Hwu, “DL: A data layout transformation system

for heterogeneous computing,” in In Proceedings of Innovative Parallel Com-

puting, InPar’12, pp. 1–11, May.

[91] K. Jeff, J. Terry, and Q. Dan, “TALC: A Simple C Language Extension For

Improved Performance and Code Maintainability,” in Proceedings of the the

9th LCI International Conference on High-Performance Clustered Computing,

2008.

154

[92] T. B. Jablin, J. A. Jablin, P. Prabhu, F. Liu, and D. I. August, “Dynamically

managed data for CPU-GPU architectures,” in Proceedings of the Tenth Inter-

national Symposium on Code Generation and Optimization, CGO’12, 2012.

[93] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R. Beard, and D. I. Au-

gust, “Automatic CPU-GPU communication management and optimization,”

in Proceedings of the 32nd ACM SIGPLAN conference on Programming lan-

guage design and implementation, PLDI’11, 2011.

[94] M. Amini, F. Coelho, F. Irigoin, and R. Keryell, “Static Compilation Analysis

for Host-Accelerator Communication Optimization,” in Languages and Compil-

ers for Parallel Computing (S. Rajopadhye and M. Mills Strout, eds.), vol. 7146

of Lecture Notes in Computer Science, pp. 237–251, Springer Berlin Heidelberg,

2013.

[95] C.-W. Tseng, “An Optimizing FORTRAN D Compiler for MIMD Distributed-

Memory Machines (Ph.D. thesis),” Tech. Rep. CRPC-TR93291-S, Rice Univer-

sity, Houston, Texas, USA, 1993.

[96] C.-K. Luk, S. Hong, and H. Kim, “Qilin: exploiting parallelism on hetero-

geneous multiprocessors with adaptive mapping,” in Proceedings of the 42nd

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO

42, 2009.

[97] M. F. P. O’Boyle, Z. Wang, and D. Grewe, “Portable mapping of data parallel

programs to OpenCL for heterogeneous systems,” in Proceedings of the 2013

IEEE/ACM International Symposium on Code Generation and Optimization

(CGO), CGO ’13, (Washington, DC, USA), pp. 1–10, IEEE Computer Society,

155

2013.

[98] J. Lee, M. Samadi, Y. Park, and S. Mahlke, “Transparent cpu-gpu collaboration

for data-parallel kernels on heterogeneous systems,” in Proceedings of the 22nd

international conference on Parallel architectures and compilation techniques,

PACT ’13, (Piscataway, NJ, USA), pp. 245–256, IEEE Press, 2013.

[99] P. M. Phothilimthana, J. Ansel, J. Ragan-Kelley, and S. Amarasinghe,

“Portable performance on heterogeneous architectures,” in Proceedings of the

eighteenth international conference on Architectural support for programming

languages and operating systems, ASPLOS ’13, (New York, NY, USA), pp. 431–

444, ACM, 2013.

[100] A. Sb̂ırlea, Y. Zou, Z. Budimĺıc, J. Cong, and V. Sarkar, “Mapping a Data-flow

Programming Model Onto Heterogeneous Platforms,” in Proceedings of the 13th

ACM SIGPLAN/SIGBED International Conference on Languages, Compilers,

Tools and Theory for Embedded Systems, LCTES ’12, (New York, NY, USA),

pp. 61–70, ACM, 2012.

[101] A. Moreton-Fernandez, A. Gonzalez-Escribano, and D. Llanos, “Exploiting dis-

tributed and shared memory hierarchies with Hitmap,” in High Performance

Computing Simulation (HPCS), 2014 International Conference on, pp. 278–

286, July 2014.

[102] A. Gonzalez-Escribano, Y. Torres, J. Fresno, and D. Llanos, “An Extensible

System for Multilevel Automatic Data Partition and Mapping,” Parallel and

Distributed Systems, IEEE Transactions on, vol. 25, pp. 1145–1154, May 2014.

[103] J. Kim, S. Seo, and J. Lee, “An Efficient Software Shared Virtual Memory for

156

the Single-chip Cloud Computer,” in Proceedings of the Second Asia-Pacific

Workshop on Systems, APSys ’11, (New York, NY, USA), pp. 4:1–4:5, ACM,

2011.

[104] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng, “Merge: a program-

ming model for heterogeneous multi-core systems,” in Proceedings of the 13th

international conference on Architectural support for programming languages

and operating systems, ASPLOS XIII, (New York, NY, USA), pp. 287–296,

ACM, 2008.

[105] P. H. Wang, J. D. Collins, G. N. Chinya, H. Jiang, X. Tian, M. Girkar, N. Y.

Yang, G.-Y. Lueh, and H. Wang, “Exochi: architecture and programming envi-

ronment for a heterogeneous multi-core multithreaded system,” in Proceedings

of the 2007 ACM SIGPLAN conference on Programming language design and

implementation, PLDI ’07, (New York, NY, USA), pp. 156–166, ACM, 2007.

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Challenges Programming Heterogeneous Architectures
	Thesis Statement
	Thesis Contributions
	Thesis Organization

	Concord Programming Model
	Introduction
	Background
	OpenCL
	LLVM/Clang

	Programming Model
	Programming Constructs
	Shared Virtual Memory(SVM) Support
	Support for C++

	Implementation
	CPU-GPU Shared Pointers (SVM)
	Virtual Functions
	Reduction
	Code Generation
	Reducing SVM Implementation Overhead

	Experimental Evaluation
	Experimental Setup
	Performance and Energy Efficiency

	Summary

	Heterogeneous Habanero-C (H2C)
	Introduction
	Background
	ROSE Compiler Framework
	PolyOpt (Polyhedral Framework)

	Programming Model
	Implementation
	Asynchronous Computation and Communication
	Iteration Partitioning
	Memory Management
	Compiling for Scratchpad Buffers
	Unified Event Framework

	Experimental Evaluation
	Extensions
	Summary

	Data Layout for Heterogeneous Architectures
	Introduction
	Meta-data Layout Framework
	Data Layout Transformation
	Memory Management

	ADHA: Automatic Data layout framework for Heterogeneous Architectures
	Motivating Example
	Problem Formulation
	ADHA Implementation

	Evaluation
	Experimental Setup
	Meta-data Layout Evaluation
	ADHA Evaluation

	Extensions
	Summary

	Related Work
	Languages for Heterogenous Architectures
	Data Layout
	Data Management among Heterogeneous devices
	Hybrid CPU-GPU Execution
	Advanced GPU Support

	Conclusions and Future Work
	Bibliography

