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Abstract
We introduce HabaneroJava-Hadoop (HJ-Hadoop), an
extension to the popular Hadoop MapReduce runtime
system that is optimized for multi-core machines. The
current Hadoop MapReduce implementation utilizes
multiple cores in a machine by exploiting parallelism
among map tasks and among reduce tasks. Each task
is executed in a separate Java Virtual Machine (JVM).
Unfortunately, in some applications, this design leads to
poor memory utilization because some data structures
used by the application are duplicated in their entirety
across multiple JVMs running on the same machine. To
address this problem, HJ-Hadoop implements an alter-
native way to utilize multi-core systems. Our approach
reduces the number of map tasks created by exploiting
multi-core parallelism within each map task. Adapting
Hadoop MapReduce applications to use HJ-Hadoop is
easy. Users just need to extend the HJMapper class in
the HJ-Hadoop package instead of the Mapper class in
the Hadoop package. The HJ-Hadoop runtime will auto-
matically divide each map task into fine-grained HJ asyn-
chronous tasks.

For some applications, HJ-Hadoop significantly re-
duces duplication of large static data structures. Specif-
ically, our results for the memory-intensive KNN Join
application show that the maximum input data sizes of
the Hadoop Multithreaded Mapper, standard Hadoop,
and HJ-Hadoop are approximately 50MB, 220MB
and 400MB respectively, thereby demonstrating HJ-
Hadoop’s ability to improve memory utilization. At
250MB, HJ-Hadoop shows a 3⇥ running time improve-
ment relative to standard Hadoop. For non-memory
intensive benchmarks taken from the Apache Mahout
package, the relative improvement is in the 8% – 16%
range.

1 Introduction
MapReduce [6] is a programming model that allows pro-
grammers to write data parallel programs that can run on
thousands of machines. Moreover, it supports automatic
concurrency management, locality-aware scheduling and
fault tolerance. The Apache Hadoop implementation of
MapReduce has been widely adopted due to its scala-
bility, reliability and support from the open source com-

munity [2]. Going forward, it will become even more
challenging for Hadoop MapReduce to utilize memory
and CPU resources efficiently, as the number of cores in
future processors continues to increase, and the available
memory per core starts to decrease.

The current Hadoop MapReduce implementation uses
multi-core systems by decomposing a MapReduce job
into multiple map/reduce tasks that can execute in paral-
lel. Each map/reduce task is executed in a separate JVM
instance. The number of JVMs created in a single node
(machine) can have a significant impact on performance
due to their aggregate effects on CPU and memory uti-
lization. There is a tendency to spawn a large number
of tasks, and thus JVMs, to improve CPU utilization in
multicore systems. For example, it is not uncommon to
create 24 map tasks on an 8-core machine. However, this
approach is only effective for non-memory-intensive ap-
plications.

For memory-intensive applications, a significant draw-
back of the current design is that some data structures
are duplicated across JVMs, including static data and in-
memory data structures used by map/reduce tasks. For
example, a typical hash-join application requires each
map task to store a copy of the lookup table in memory
[1]. To make sufficient memory available to each map
task, memory intensive applications are often forced to
restrict the number of JVMs created to be smaller than
the number of cores in a node at the expense of reducing
CPU utilization.

In this paper, we propose a solution to this mem-
ory bottleneck by exploiting multicore parallelism at the
intra-JVM level, while limiting the number of JVMs cre-
ated on each node. At the same time, we don’t want to
sacrifice the fault-tolerance and reliability of the system.
Thus, in addition to parallelizing multiple map tasks1, we
also parallelize the execution of a single map task to ex-
ploit intra-task parallelism. Our runtime system is called
HJ-Hadoop, since it leverages the Habanero-Java (HJ)
runtime model [5] for multicore parallelism.

Previous work in the Hadoop community to create
multiple threads within a mapper JVM led to the Mul-
tithreaded Mapper [12]. In the Multithreaded Mapper,
each thread runs as if it is a separate map task that reads

1The implementation described in this paper focuses on intra-JVM
parallelism within map tasks, but can also be extended to reduce tasks.
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from a common input split. However, the Multithreaded
Mapper is rarely used in practice because its implemen-
tation does not solve the memory utilization problem.
It replicates in-memory data structures across threads,
thereby leading to a larger memory footprint than the
default sequential Mapper. In addition, the paralleliza-
tion is not very efficient as it synchronizes on reading
(key,val) pairs from the common input split to ensure that
the same (key,val) pair is not processed by two threads in
parallel.

HJ-Hadoop delivers significant benefits for memory-
intensive applications by reducing the number of JVM
instances created per node, while still utilizing all avail-
able cores. At the same time, we maintain the reliability
of Hadoop applications – the HJ-Hadoop runtime system
is unaffected if a threaded map task crashes, since each
task runs in a separate JVM [12].

Our performance results for the memory-intensive
KNN Join application (Figure 1) show that the perfor-
mance of the Hadoop Multithreaded Mapper, standard
Hadoop, and HJ-Hadoop peak at input sizes of approx-
imately 50MB, 220MB and 400MB respectively (and
degrade thereafter), thereby demonstrating HJ-Hadoop’s
ability to improve memory utilization. At 250MB, HJ-
Hadoop shows a 3⇥ performance improvement relative
to standard Hadoop. For non-memory intensive bench-
marks, the relative improvement is in the 8% – 16%
range, primarily due to HJ-Hadoop’s ability to achieve
better load balance across cores. In particular, standard
Hadoop often results in straggling tasks that take longer
to run and are left running after other tasks have com-
pleted. HJ-Hadoop enables straggling tasks to use multi-
ple cores to speed up their executions.

2 Motivating Examples
In this section, we describe the MapReduce implementa-
tions of K Nearest Neighbor Join and Fuzzy Kmeans [4]
to motivate the memory and load balance optimizations.

2.1 K Nearest Neighbor Join
K Nearest Neighbor (KNN) Join takes in two data sets R
and S. It compares every point in R against every point
in S, and outputs results based on all pairwise compar-
isons, which leads to a complexity of O(|R|⇥ |S|). KNN
Join is representative of many large scale data analyt-
ics applications that examine interactions among differ-
ent large data sets such as in-memory hash-joins, spatial
range joins, and similarity-based search in databases. For
example, the KNN Join is like the Fragment Replicated
Join in PIG [7] and Map Side Join in Hive [11].

Since the two data sets are too large to fit in one node,
the MapReduce KNN Join application has to divide up

the data sets to process them across machines in parallel.
It is often true that the size of one table S is much larger
than the other data set R. [1] The current MapReduce
implementation of KNN Join broadcasts the smaller R to
every map task and divides up the larger S to stream each
datum through the mappers.

In the map stage, the application loads the smaller data
set R into the memory of each map task. The Hadoop
MapReduce system then uses the larger data set S as in-
put to the MapReduce job. The Hadoop MapReduce run-
time splits up S into small pieces and uses them as input
to each map task. The map function calculates the dis-
tance between two data points in R and S. The memory
footprint of the mapper JVM is large because the data
structure containing R takes up a lot of memory [3]. R
can’t be garbage collected because every (key,val) pair
needs to compare against it. In the reduce stage, the ap-
plication goes through each data point in R and chooses
the closest K data points in S. The optimized algorithm
uses very little time during the reduce phase.

Because R has to be read into every mapper JVM,
it will be duplicated across tasks, incurring significant
memory inefficiency. Furthermore, the limited memory
in each JVM makes it hard to process large R data sets
efficiently.

In KNN Join, the Query Set, which contains the doc-
uments we are trying to classify, is R. The Training Set,
which contains documents that are already classified, is
S.

2.2 FuzzyKMeans

FuzzyKMeans is an extension to the popular iterative
clustering algorithm KMeans. While KMeans assigns
each point to a cluster, FuzzyKMeans records the proba-
bility that each point belongs to a certain cluster.

In each map phase, we calculate the probability that
the points belong to each cluster based on the distances
to the centroids. In the reduce phase, the new means of
the centroids are calculated. The algorithm terminates
when it reaches a maximum number of iterations or when
the centroids have stabilized. A typical implementation
chains together many MapReduce jobs to refine the co-
ordinates of the centroids.

FuzzyKMeans is representative of many popular ma-
chine learning algorithms. The application doesn’t have
a large memory footprint. We use it to show the perfor-
mance benefit from the load balance optimizations. We
have also included results for KMeans and Dirchlet clus-
tering [8].
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3 Programming Model
We aim to make it easy for users to adapt their Hadoop
MapReduce applications to run on HJ-Hadoop. To
achieve this goal, we created an HJMapper class that
can be extended by the user, just like a regular Mapper
class. HJMapper uses HJ parallel constructs to create
and manage HJ async tasks. However, the user doesn’t
have to write any Habanero Java code to take advantage
of the HJ async task parallelism. Users simply need to
extend the HJMapper class instead of the Hadoop Map-
per class. It does require user-provided map functions to
be thread-safe so that multiple input (key,val) pairs can
be processed in parallel.

public class MyMapper extends
HJMapper<LongWritable,Text,
Text, LongWritable> {

public void map(LongWritable key,
Text value,
Contextcontext) {

...
}

}

HJ-Hadoop also allows users to use HJ parallel con-
structs in map and reduce codes. This could be useful in
more compute intensive Map or Reduce functions and is
the focus of future work.

4 HJ-Hadoop Implementation
The computation in Hadoop MapReduce jobs is per-
formed by the mapper and reducer implementations pro-
vided by the user. The user defines how to process the
input (key,val) pairs in the map and reduce functions. We
focused on improving the efficiency of the Map phase. It
is often more compute intensive and takes significantly
longer than the Reduce phase in data analytics applica-
tions such as KMeans and KNearestNeighbor.

Once the user submits a Hadoop MapReduce job, the
runtime splits the input of the job based on the user spec-
ified split size. Each mapper then reads in its own input
split. By default, mappers sequentially generate (key,val)
pairs from their input split. Every time a (key,val) pair
is generated, the Mapper JVM immediately processes it
using the user defined map function to produce zero or
more intermediate (key, value) pairs. The intermediate
pairs are later processed in the Reduce phase. This de-
sign is inherently sequential as the mapper JVM has to
finish processing a (key,val) pair before moving on to
process the next one.

The key idea behind the HJMapper implementation is
simple and straightforward. Instead of reading in and
processing one (key,val) pair at a time, we read in a

certain number of (key, val) pairs to create chunks of
(key,val) pairs and process these different chunks in par-
allel.

Automatic parallelization of map tasks must rely on
an efficient parallel runtime to execute them. We chose
Habanero-Java [5], a parallel programming language de-
veloped at Rice University, to create our parallel run-
time with lightweight async parallel tasks. We used the
Habanero Java work sharing runtime for managing the
creation, scheduling, execution and termination of tasks.
The runtime uses a single task queue and has worker
threads pick work from the queue to achieve load bal-
ance across cores.

Our experiments show that it takes a non-negligible
amount of time to read in the (key, val) pairs. For ex-
ample, the KMeans application takes up to 8 seconds
to load 128 MB of input within one JVM, whereas the
overall execution takes 20 seconds. To improve the per-
formance, HJ-Hadoop overlaps I/O with computation by
dedicating one worker thread to prefetch (key,val) pairs
into a buffer while other worker threads are executing
map tasks. To do this, the runtime allocates a new buffer
for each async task. Once the buffer is full, the I/O thread
starts an async task to process it.

Another advantage of our design that uses a separate
buffer for each HJ async task is that it allows the JVM to
free up buffers in completed tasks. This further reduces
the memory footprint of the Mapper.

Our experiments also show that chunk sizes have a
non-trivial impact on the running time of the program.
Since the execution time for each call to a map function
for each pair is different from application to application,
there isn’t a fixed chunk size that is optimal for all ap-
plications. The challenge becomes how to dynamically
select a chunk size that will achieve good performance.
To tackle this issue, we implemented a chunking of the
(key, val) pairs that adapts to the execution time of the
map function. The main thread reads in a small number
of input (key, val) pairs as a sample chunk. It records the
time it took to process the sample chunk. Based on an
empirically chosen desired running time for each chunk,
the runtime calculates the optimal chunk size knowing
the running time of the sample chunk. In the results sec-
tion, we show that dynamic chunking works better than
fixed chunk sizes.

5 Experimental Results
This section presents our experimental evaluation of the
HJ-Hadoop runtime. We used KNN Join to demon-
strate the benefits of HJ-Hadoop’s improved memory ef-
ficiency. To demonstrate the effects of HJ-Hadoop’s im-
proved load balancing, we benchmarked some widely
used clustering algorithms from Apache Mahout. In each
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case, we compared the performance of HJ-Hadoop to
Hadoop with the standard sequential Mapper and with
the multithreaded Mapper.

5.1 Experimental Setup
Each worker node had two quad core 2.4 GHz Intel Xeon
CPUs with an 8 MB last-level cache. There was 32 GB of
memory per node shared by all cores. We used Habanero
Java 1.3.1, Java 1.6.0 and Hadoop 1.0.3. 8 mappers were
used on Hadoop with the standard sequential mapper to
fully utilize the 8 cores in each node. The heap size limit
was set to 1.5 GB for each JVM to simulate about 12 GB
available RAM in a machine. We used 4 mappers for HJ-
Hadoop and Hadoop with the multithreaded mapper, and
we set the maximum heap size of each JVM to 2.5 GB.
Our experiments showed that it is hard to achieve a good
I/O utilization rate with fewer than 4 JVMs. Using 4
mappers achieves a good balance between I/O utilization
and memory efficiency for HJ-Hadoop. For the multi-
threaded mapper, we used 8 threads for each mapper to
ensure full utilization of the available cores. We always
used the same block size for all test runs for the same
application to rule out the impact of block size.

5.2 KNN Join
For KNN Join, we benchmarked the performance on
a single worker node, since we found that the perfor-
mance is most strongly impacted by the number of times
garbage collection is performed within each JVM. In-
creasing the number of worker nodes will have no impact
on the execution time of individual map or reduce tasks.

The results are shown in Figure 1. The x axis rep-
resents the size of the Query Set for KNN Join. The
Query Set is loaded into every map task. The input to
the MapReduce job is 64 MB of Training Set. The block
size is 128 MB and the split size is 8 MB.

As we can see in Figure 1, as the Query Set size in-
creases, the multithreaded mapper could only process up
to 50 MB of Query Set data efficiently. This behavior is
similar to that of the “breakdown regions” in the model
presented in [10]. The performance of standard Hadoop
peaks at approximately 220 MB of Query Set data. We
have logged a 3-fold increase in the number of garbage
collection calls within each JVM between the two runs
of Hadoop with 220 MB and 230 MB of Query Set data.
The Hadoop JVMs with sequential mappers cannot pro-
cess Query Sets larger than 250 MB. In contrast, HJ-
Hadoop’s running time increases linearly all the way to
400 MB due to the larger heap size available in a sin-
gle HJ-Hadoop JVM. This allows each HJ-Hadoop KNN
job to process almost twice as much Query Set data as a
Hadoop KNN job.
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Figure 1: Running time of HJ-Hadoop, Hadoop and Hadoop
with multithreaded mapper using KNN Join benchmark on a
single node with fixed 64MB Training Set and varying Query
Set size.

To avoid significant performance degradation due to
insufficient memory, one could create a chain of MapRe-
duce jobs and process smaller parts of the Query Set in
each job [8]. However, a large overhead is incurred on
loading the Query Set and Training Set data and starting
a large number of map/reduce tasks for each job. The
ability to process as much Query Set data as possible in a
MapReduce job is critical to the performance of memory
intensive data analytics applications.

5.3 Clustering Algorithms
For the FuzzyKMeans, KMeans and Dirichlet cluster-
ing algorithms, we used 8 nodes with 12 GB input data
each. All three algorithms were taken from the widely
used Apache Mahout package, a collection of optimized
Hadoop map reduce machine learning algorithms [4].
We made slight modifications to make data structures
thread safe in the package. We chose to use Apache Ma-
hout as our benchmarks because the way applications are
implemented can have a non-trivial impact on the per-
formance. We want to ensure that the implementations
of clustering algorithms used in our evaluation are repre-
sentative of real applications used in industry. To demon-
strate the advantage of improved load balancing across
cores, we chose applications that are not memory inten-
sive, unlike KNN. The results are presented in Table 1.

From row 2 in Table 1, we can see that Hadoop with
the multithreaded mapper using 4 JVMs per worker node
actually results in a slowdown compared to Hadoop with
the sequential mapper using 8 JVMs per worker node.
The slowdown could be the result of inefficiencies in its
implementation as we described in the introduction. On
the other hand, HJ-Hadoop achieved 8% – 16% speedup
with 4 JVMs.

In our experiments, we noticed that the size of each HJ
asynchronous task has an impact on the overall perfor-
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Applications FuzzyKMeans KMeans Dirichlet
Hadoop 560s 625s 466s
Multithreaded
Mapper

614s(0.91) 625s(1.00) 511s(0.91)

HJ-Hadoop 483s(1.16) 559(1.11) 431s(1.08)

Table 1: Comparing the results of HJ-Hadoop, Hadoop and
Hadoop with the multithreaded mapper to demonstrate the
speedup from improved load balance across cores. The tests
were conducted on 8 worker nodes with a 12 GB input. For
Hadoop, we uses 8 mapper JVMs per node. For HJ-Hadoop
and Hadoop with the multithreaded mapper, we used 4 map-
pers. Execution times are reported in seconds. Speedup relative
to standard Hadoop is reported in parenthesis.

Benchmark 10 100 500 5000 adaptive
KMeans 575s 560s 556s 561s 559s

FuzzyKMeans 489s 495s 505s 520s 483s
Dirichlet 450s 445s 425s 448s 431s

Table 2: HJ-Hadoop execution times for 12 GB input on 8
worker nodes with different chunk sizes for input (key,val) pairs

mance of the applications. Table 2 presents the running
time of the three applications using the HJ-Hadoop run-
time with different chunk sizes. For the more compute
intensive FuzzyKMeans application, the optimal chunk
size is around 10 - 100 (key, val) pairs. For the KMeans
and Dirichlet Clustering applications, the optimal chunk
size is around 500 (key, val) pairs. We can see that the
adaptive chunking can achieve close or better running
time results for each application without resorting to a
fixed chunk size.

To demonstrate improved CPU utilization in HJ-
Hadoop, we recorded the CPU utilization over time of
the FuzzyKMeans application for both the Hadoop and
HJ-Hadoop systems. In our job configuration, FuzzyK-
Means chains together 3 MapReduce jobs to perform the
iterative improvement algorithm. We present the first 180
seconds out of 560 seconds of the CPU utilization data in
figure 2. Both HJ-Hadoop and Hadoop achieved full uti-
lization from 0 to 130 seconds (800 percent for 8 cores).
From 130 seconds to 180 seconds, HJ-Hadoop achieved
better utilization of the cores because there were strag-
gling map tasks towards the end of the map phase. A
similar trend was seen in the later MapReduce jobs.

6 Related Work
Phoenix is a shared memory MapReduce framework op-
timized for multi-core systems [9]. It focuses on the
performance of a single multi-core machine whereas HJ-
Hadoop can easily scale to hundreds of machines by tak-
ing advantage of the scalability of Hadoop. Phoenix uses
a new thread instead of a new JVM to execute each map

!200$

0$

200$

400$

600$

800$

1000$

1200$

0$ 20$ 40$ 60$ 80$ 100$ 120$ 140$ 160$ 180$ 200$

CP
U
$U
%l
iz
a%

on
$

Running$Time$(Seconds)$

CPU$over$Time$for$FuzzyKMeans$$

HJ!Hadoop$

Hadoop$

Figure 2: CPU over time for HJ-Hadoop and Hadoop in
FuzzyKMeans benchmark

or reduce task. The design was not concerned with du-
plicating static data structures across map tasks. No opti-
mization for static data structures used in map tasks was
mentioned. The paper discussed the optimization of a
dynamic framework that discovers the best unit size for
each program as future work but never implemented one.
We have explored an approach to dynamically setting HJ
async task sizes based on sampling the execution time
for chunks.

Spark is a MapReduce system that is built using Re-
silient Distributed Datasets (RDDs) [13]. Spark keeps
data structures in memory for successive MapReduce
jobs to avoid redundant disk I/O operations. Our work,
however, tries to improve memory efficiency by mini-
mizing duplication of in-memory data structures within
a single MapReduce job.

7 Conclusion
We identified some key performance bottlenecks in the
execution of the Hadoop MapReduce framework on
multi-core systems. We implemented an alternative ap-
proach to utilize multi-core systems in HJ-Hadoop to ad-
dress the poor memory utilization issue. The HJ-Hadoop
runtime subdivides Hadoop map tasks into light-weight
HJ async tasks for intra-JVM parallelism. HJ-Hadoop
uses dynamically set chunk sizes for HJ async tasks to
overlap computation and I/O. The programming inter-
face to HJ-Hadoop is compatible with Hadoop MapRe-
duce, making it easy to adapt Hadoop MapReduce ap-
plications to HJ-Hadoop. Experimental results show
that HJ-Hadoop outperforms standard Hadoop on mem-
ory intensive applications by as much as 3⇥ for the
KNN application with large duplicated data and can pro-
cess twice as much data in each job. For non-memory-
intensive applications, HJ-Hadoop achieved an 8% –
16% speedup relative to standard Hadoop due to im-
proved load balance across cores.
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