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Abstract—Effective combination of inter-node and intra-node
parallelism is recognized to be a major challenge for future
extreme-scale systems. Many researchers have demonstrated the
potential benefits of combining both levels of parallelism, in-
cluding increased communication-computation overlap, improved
memory utilization, and effective use of accelerators. However,
current “hybrid programming” approaches often require signif-
icant rewrites of application code and assume a high level of
programmer expertise.

Dynamic task parallelism has been widely regarded as a
programming model that combines the best of performance and
programmability for shared-memory programs. For distributed-
memory programs, most users rely on efficient implementations
of MPI. In this paper, we propose HCMPI (Habanero-C MPI),
an integration of the Habanero-C dynamic task-parallel pro-
gramming model with the widely used MPI message-passing
interface. All MPI calls are treated as asynchronous tasks
in this model, thereby enabling unified handling of messages
and tasking constructs. For programmers unfamiliar with MPI,
we introduce distributed data-driven futures (DDDFs), a new
data-flow programming model that seamlessly integrates intra-
node and inter-node data-flow parallelism without requiring any
knowledge of MPI.

Our novel runtime design for HCMPI and DDDFs uses
a combination of dedicated communication and computation
specific worker threads. We evaluate our approach on a set of
micro-benchmarks as well as larger applications and demon-
strate better scalability compared to the most efficient MPI
implementations, while offering a unified programming model to
integrate asynchronous task parallelism with distributed-memory
parallelism.

Keywords—MPI, asynchronous task parallelism, data flow,
data-driven tasks, phasers

I. INTRODUCTION

It is widely accepted that the road to exascale computing
will require preparations for systems with O(106) nodes and
O(103) cores per node [1], [2]. It is therefore critical to find
software solutions that can effectively exploit this scale of
combined inter-node and intra-node parallelism. One popular
direction is to integrate asynchronous task parallelism with
a Partitioned Global Address Space (PGAS) [3] model as
exemplified by the DARPA HPCS programming languages
(Chapel [4] and X10 [5]), and by recent multithreading exten-
sions to established PGAS languages (UPC [6] and CAF [7]).
PGAS programming models offer HPC programmers a single-
level partition of a global address space with control of data-
to-thread affinity/locality. While it has been shown that there

are certain classes of applications for which the PGAS models
are superior to MPI, MPI is still used extensively in large
numbers of applications on the largest supercomputers in the
world. Many obstacles still remain for the PGAS languages
to surpass MPI in supporting these applications due to the
overheads associated with maintaining a global address space,
as well as the software engineering challenges of migrating
MPI-based codes to PGAS.

On the other hand, harnessing O(103)-way parallelism at
the intra-node level will be a major challenge for MPI pro-
grammers, for multiple reasons. The parallelism will have to
exploit strong rather than weak scaling, since the memory per
node is not increasing at the same rate as the number of cores
per node. Programmers will also have to exploit heterogeneous
processors and accelerators such as GPUs and FPGAs within
a node. Finally, programs will have to be amenable to dynamic
adaptive scheduling techniques in order to deal with non-
uniform clock speeds and other load imbalances across cores
that arise due to power management, fault tolerance, and other
dynamic services.

We present a unified programming model for shared-
and distributed-memory systems, with integrated support for
asynchronous tasking and intra- and inter-node synchroniza-
tion and communication. This programming model is po-
sitioned between two-level programming models (such as
OpenMP+MPI), and single-level PGAS models. In this model,
point-to-point communication tasks can be offloaded from the
computation task’s critical path, and unified primitives enable
system-wide collective operations across tasks and MPI pro-
cesses. We integrate intra-node asynchronous task parallelism
with inter-node MPI communication to create a scalable non-
blocking runtime system that supports both asynchronous task
parallelism and data-flow parallelism. We have implemented
this approach by extending the Habanero-C (HC) research
language with MPI; the extended version is referred to as
HCMPI throughout this paper1.

For programmers unfamiliar with MPI, we introduce dis-
tributed data-driven futures (DDDFs), a new data-flow pro-
gramming model that seamlessly integrates intra-node and
inter-node data-flow parallelism without requiring any knowl-

1The HCMPI acronym was first introduced in a poster abstract [8]; however,
the HCMPI system described in this paper is a complete redesign and re-
implementation of the system outlined in [8].



edge of MPI. Since each DDDF has a globally unique id (guid)
in a global name space, we refer to the DDDF model as
an Asynchronous Partitioned Global Name Space (APGNS)
programming model. In this model, distributed tasks form
the basic building blocks for parallel computations. The tasks
communicate via single-assignment distributed data items
stored in the DDDFs. The APGNS model can be implemented
atop a wide range of communication runtimes that includes
MPI and GASNet; this paper includes results based on the
use of MPI as the communication runtime for DDDFs.

A key assumption in the HCMPI runtime design is that
it will be feasible to dedicate one or more cores per node
to serve as communication workers in future many-core ar-
chitectures. Thus, a program’s workload can be divided into
computation and communication tasks that run on computation
and communication workers respectively. Our experimental
results in Section IV show that even for today’s multicore ar-
chitectures, the benefits of a dedicated communication worker
can outweigh the loss of parallelism from the inability to use
it for computation. Further, the foundational synchronization
constructs in our programming model such as finish, phasers
and data driven tasks can be applied uniformly to computation
tasks and communication tasks.

The rest of the paper is organized as follows. Section II
summarizes the HCMPI programming model. We explain the
details of our runtime system in Section III and evaluate
HCMPI performance on two cluster parallel machines in
Section IV. For the UTS benchmark on the ORNL Jaguar
machine with 1024 nodes and 16 cores/node, HCMPI per-
formed 22.3× faster than MPI for input size T1XXL and
18.5× faster than MPI for input size T3XXL (using the best
chunking and polling parameters for both HCMPI and MPI).
Section V summarizes related work, and Section VI contains
our conclusions.

II. HCMPI PROGRAMMING MODEL

This section describes the HCMPI programming model
which unifies shared- and distributed-memory parallelism us-
ing Habanero-C task parallelism at intra-node level and MPI at
inter-node level. We provide an overview of HCMPI constructs
and refer to key APIs in brief. HCMPI APIs are discussed in
greater detail in [9].

A. Node-level Task Parallelism

HCMPI uses the Habanero-C async-finish task pro-
gramming model for exploiting intra-node parallelism. This
model is based on the Habanero-Java [10] and X10 [5]
task programming models, where tasks are created using
the async construct, and synchronized using the finish
construct. The statement async 〈stmt〉 causes the parent task
to create a new child task to execute 〈stmt〉 asynchronously (i.e.
before, after, or in parallel) with the remainder of the parent
task. The statement finish 〈stmt〉, performs a join operation
that causes the parent task to execute 〈stmt〉 and then wait until
all the tasks created within 〈stmt〉 have terminated (including
transitively spawned tasks). Figure 1 illustrates this concept

by showing a code schema in which the parent task, T0, uses
an async construct to create a child task T1. Thus, STMT1
in task T1 can potentially execute in parallel with STMT2 in
task T0.

While Cilk spawn and sync, or the OpenMP task and
taskwait constructs have similar syntax and effects, the
async/finish constructs supports more general dynamic
execution scenarios that are difficult to express in Cilk or
OpenMP [11].

//Task T0(Parent) 

finish {   //Begin finish 

  async  

    STMT1; //T1(Child) 

  //Continuation  

  STMT2;   //T0 

} //Continuation //End finish 

STMT3;     //T0 

STMT2 

async 

STMT1 

terminate 
wait 

T1 T0 

STMT3 

Fig. 1: An example code schema with async and finish

Any statement can be executed as a parallel task, including
for-loop iterations and method calls. Figure 2 shows a vector
addition example that uses async and finish constructs.
We use loop chunking to allow each async task to perform
the addition on a chunk of data. The IN keyword ensures that
the task will have its own copy of the i variable, initialized to
the value of i when the task is created. The semantics of IN
is similar to that of the OpenMP firstprivate keyword.

HC supports phasers [12], [13] for fine-grained synchro-
nization among dynamically created tasks. Phasers unify col-
lective and point-to-point synchronization between tasks in a
single interface, and are designed for ease of use and safety to
help to improve programmer productivity in task parallel pro-
gramming and debugging. The use of phasers guarantees two
safety properties: deadlock-freedom and phase-ordering. These
properties, along with the generality of its use for dynamic par-
allelism, distinguish phasers from other synchronization con-
structs such as barriers, counting semaphores and X10 clocks.
In Habanero-C, tasks can register on a phaser in one of three
modes: SIGNAL_WAIT_MODE, SIGNAL_ONLY_MODE, and
WAIT_ONLY_MODE. The mode signifies a task’s capabilities
when performing synchronization operations on a specific
phaser.

For data locality optimization, HC uses Hierarchical

int PART_SIZE=16;
/* vector addtion: A + B = C, size is modular of 16 */
void vectorAdd(float * A, float * B, float * C, int size) {
int i, parts = size/PART_SIZE;
finish for (i=0; i < parts; i++) {

async IN(i) {
int j, start = i*PART_SIZE;
int end = start + PART_SIZE;

for (j=start; j < end; j++)
C[j] = A[j] + B[j];

}
}

Fig. 2: Task parallel programming using async and finish



Place Trees (HPTs) [14]. The runtime provides APIs for
place identification, e.g hc_get_current_place() and
hc_get_parent_place() return the current and parent
places respectively. It allows the program to spawn tasks
at places, which for example could mean cores, groups of
cores with shared cache, nodes, groups of nodes, or other
devices such as GPUs or FPGAs. The work-stealing scheduler
executes tasks from the HPT with heuristics aimed to preserve
locality. The HPT specification, an XML document, is optional
for HC program execution. If an HPT is not specified, a single-
level HPT is assumed by default. (This default was used for
all results in this paper.)

HC supports creation of Data-Driven Tasks (DDTs) [15]. A
DDT is a task that synchronizes with other tasks through full-
empty containers named Data-Driven Futures (DDFs). A DDF
obeys the dynamic single assignment rule, thereby guarantee-
ing that all its data accesses are race-free and deterministic.
DDF_CREATE() is a function for creating a DDF object. The
producer and consumer tasks use a pointer to DDF to perform
DDF_PUT() and DDF_GET() operations. DDF_PUT() is
the function for writing the value of a DDF. Since DDFs obey
the single-assignment property, only one producer may set its
value and any successive attempt at setting the value results in
a program error. The await clause associates a DDT with a
set of input DDFs: async await (ddf a, ddf b, ...) 〈stmt〉.
The task cannot start executing until all the DDFs in its await
clause have been put. DDF_GET() is a non-blocking interface
for reading the value of a DDF. If the DDF has already been
provided a value via a DDF_PUT() function, a DDF_GET()
delivers that value. However, if the producer task has not yet
performed its DDF_PUT() at the time of the DDF_GET()
invocation, a program error occurs.

B. Point-to-Point Communication

HCMPI unifies the Habanero-C intra-node task parallelism
with MPI inter-node parallelism. A HCMPI program follows
the task parallel model within a node and MPI’s SPMD
model across nodes. Computation tasks have the ability to
create asynchronous communication tasks, and achieve MPI’s
blocking semantics via Habanero-C’s finish and await
constructs. The runtime guarantees non-blocking execution
of the computation workers. HCMPI will not introduce any
deadlocks when extending from deadlock-free MPI code. The
HCMPI APIs and types are very similar to MPI, making the
initial effort of porting existing MPI applications to HCMPI
extremely simple. Most MPI applications can be converted
into valid HCMPI programs simply by replacing APIs and
types that start with MPI by HCMPI 2. The only MPI
feature that HCMPI does not currently support is the remote
memory access (RMA), however that is straightforward to add
to HCMPI and is a subject of future work.

Computation tasks initiate asynchronous non-blocking
point-to-point communication via runtime calls to

2While this replacement can be easily automated by a preprocessor or by
API wrappers, we use the HCMPI prefix in this paper to avoid confusion
with standard MPI.

Point-to-Point API Description
HCMPI Send blocking send
HCMPI Isend non-blocking send
HCMPI Recv blocking recv
HCMPI Irecv non-blocking recv
HCMPI Test Test for completion
HCMPI Testall Test all for completion
HCMPI Testany Test any for completion
HCMPI Wait Wait for completion
HCMPI Waitall Wait for all to complete
HCMPI Waitany Wait for any to complete
HCMPI Cancel Cancel outstanding communication

Collectives API Description
HCMPI Barrier barrier synchronization
HCMPI Bcast broadcast
HCMPI Scan scan
HCMPI Reduce reduce
HCMPI Scatter scatter
HCMPI Gather gather
(HCMPI All* variants supported)

Phaser API Description
HCMPI PHASER CREATE hcmpi-phaser create
HCMPI ACCUM CREATE hcmpi-accum create
next phaser synchronization
accum next accumulator synchronization
accum get accumulated value

Runtime API Description
HCMPI REQUEST CREATE create request handle
HCMPI GET STATUS query status
HCMPI Get count get count of received data

TABLE I: HCMPI API

HCMPI_Isend and HCMPI_Irecv, as shown in Table I.
They return a request handle object called HCMPI_Request,
similar to MPI_Request. An important property of an
HCMPI_Request object is that it can also be provided
wherever an HC DDF is expected for data-driven execution.
A non-blocking send or receive call returns a status object
whose type is HCMPI_Status. This object is implicitly
allocated within all APIs that return a status.

HCMPI allows a computation task to wait for the comple-
tion of a communication task. In the structured task parallel
model, the finish scope provides a natural completion point
for all tasks that were started within the scope. Figure 3
shows an example usage of the finish scope in a structured
task parallel program. A computation task can create a point-
to-point communication task, and asynchronously continue
execution. It can create more communication tasks within the
finish scope and wait at the end of the scope for them
to complete. Thus, blocking point-to-point communication
is achieved by placing the nonblocking primitive inside a
finish scope. For example, the code on Fig. 3 implements
the blocking receive in HCMPI.

In the HCMPI data-flow model, synchronization with com-
munications can be achieved through the await clause. A
computation task can declare a communication dependency by
referring to a HCMPI_Request handle in its await clause.
Figure 4 shows an example usage.

Another way to wait for the completion of a commu-
nication task is through HCMPI_Wait and its variants
HCMPI_Waitall and HCMPI_Waitany. The computation
task logically blocks at the HCMPI_Wait for the asyn-



finish {
HCMPI_Irecv(recv_buf, · · ·);
· · · //do asynchronous work

} // Irecv must be complete after finish

Fig. 3: Using the finish construct in HCMPI. A finish
around HCMPI_Irecv, a non-blocking call, implements
HCMPI_Recv, a blocking call.

HCMPI_Request * r;
HCMPI_Irecv(recv_buf, · · ·, &r);
async AWAIT(r) IN(recv_buf) {
//read recv_buf

}
· · · //do asynchronous work

Fig. 4: HCMPI Await Model

chronous communication task to complete. The synchroniza-
tion event is provided by a HCMPI_Request handle and
returns a HCMPI_Status object. Figure 5 shows an example
of using HCMPI_Status to get a count of the number
of elements received in a buffer after the completion of a
HCMPI_Irecv operation.

HCMPI_Request * r;
HCMPI_Irecv(recv_buf, · · ·, &r);
· · · //do asynchronous work
HCMPI_Status * s;
HCMPI_Wait(r, &s);
int count;
HCMPI_Get_count(s, HCMPI_INT, &count);
if (count > 0) { //read recv_buf }

Fig. 5: HCMPI Wait and Status Model

C. Collective Operations

HCMPI supports collective operations at the intra-node and
inter-node levels We first discuss HCMPI synchronization at
only the inter-node level, and then discuss the combined inter-
and intra-node model.

Inter-node-only collective operations in HCMPI are similar
to MPI collectives. Table I includes a partial list of supported
HCMPI collectives. All HCMPI collective operations follow
the blocking semantics discussed in Section II-B. We will add
support for non-blocking collectives to HCMPI once they be-
come part of the MPI standard. Figure 6 shows how to perform
an inter-node-only barrier. In this example, asynchronous task
A() is created before the barrier and can logically run in
parallel with the barrier operation. However, function call B()
must be completed before the barrier, and function call C()
can only start after the barrier.

async A();
B();
HCMPI_Barrier();
C();

Fig. 6: HCMPI Barrier Model

One of the novel contributions of HCMPI is that it pro-
vides unified semantics for system wide collective opera-

tions. We combine inter-node MPI collectives with intra-
node phaser synchronization into a new construct called
hcmpi-phaser. An instance of hcmpi-phaser is created
using the HCMPI_PHASER_CREATE API shown in Table I.
The API accepts a registration mode argument, same as the
phaser registration modes mentioned in Section II-A. Tasks
registered on a hcmpi-phaser instance can synchronize
both within the node and across nodes using the synchroniza-
tion primitive next. Dynamic registration and deregistration
is allowed, as well as arbitrary mode patterns. The inter-
node SPMD model requires that every rank process creates
its own hcmpi-phaser before participating in the global
next operation. Figure 7 shows an example of using the
hcmpi-phaser as a barrier.

finish {
phaser *ph;
ph = HCMPI_PHASER_CREATE(SIGNAL_WAIT_MODE);
for (i = 0; i < n; ++i) {

async phased(ph) IN(i) {
· · ·; next;
· · · //do post-barrier work

} /*async*/ } /*for*/ } /*finish*/

Fig. 7: HCMPI Phaser Barrier Model

The HCMPI model integrates intra-node phaser ac-
cumulators [16] with inter-node MPI reducers using the
hcmpi-accum construct. An instance of hcmpi-accum is
created using the HCMPI_ACCUM_CREATE API. In this
model, computation tasks at the intra-node level regis-
ter on a hcmpi-accum instance and participate in the
specified global reduction operation via the runtime call
accum_next(value), which takes as an argument the
individual datum provided by the task for the reduction. By
default, all tasks are registered in the SIGNAL_WAIT_MODE.
Tasks arrive at the synchronization point with a value and
participate to all hcmpi-accum instances they are regis-
tered with. After synchronization completes, accum_get
will return the globally reduced value. At the inter-node
level, we currently only support the MPI_Allreduce model.
This means that a call to accum_get() will return the
globally reduced value. Figure 8 shows an example of the
hcmpi-accum model for the SUM operation.

finish {
phaser *ph;
ph = HCMPI_ACCUM_CREATE(HCMPI_SUM,HCMPI_INT);
for (i = 0; i < n; ++i) {
async phased IN(· · ·) {
int* my_val = get_my_val();
accum_next(my_val);
· · ·;} /*async*/ } /*for*/ } /*finish*/
int* result = (int*)accum_get(ph);

Fig. 8: HCMPI Phaser Accumulator Model

D. Distributed Data Flow Model

We introduce distributed data-driven futures (DDDF) for
inter-node parallelism, as a new extension to the intra-node



DDFs introduced in Section II-A. DDDFs enable uncon-
strained task parallelism at the inter-node level, without con-
cerning the user about details of inter-node communication
and synchronization. Thus, DDDFs can even be used by
programmers who are non-experts in standard MPI. A DDDF
includes a node affinity for every DDF object. The API
DDF_HANDLE(guid) creates a handle on a DDDF identified
by guid, a user managed globally unique id for the DDDF.
The user provides two callback functions for the HCMPI
runtime called DDF_HOME(guid) and DDF_SIZE(guid).
These functions should respectively provide a mapping from
a guid to a DDF’s home rank and the put data size, and
should be available on all nodes. DDDFs provide support for
the put, get and await operations using the API from the
intra-node HC model at the inter-node level.

Let us consider the Smith-Waterman local sequence align-
ment benchmark in Fig. 9 as a DDDF example; its parallelism
structure is discussed later in Fig. 23. The code in Fig. 9
implements a distributed-memory data-driven version of the
benchmark. The only change from a shared-memory version
is the use of DDF_HANDLE instead of DDF_CREATE, and
the creation of user-provided DDF_HOME and DDF_SIZE
function definitions. The DDF_HOME macro in this example
performs a cyclic distribution on the global id, which enforces
a row-major linearization of the distributed 2D matrix.

#define DDF_HOME(guid) (guid%NPROC)
#define DDF_SIZE(guid) (sizeof(Elem))
DDF_t** allocMatrix(int H, int W) {

DDF_t** matrix=hc_malloc(H*sizeof(DDF_t*));
for (i=0;i<H;++i) {
matrix[i]=hc_malloc(W*sizeof(DDF_t));
for (j=0;j<W;++j) {

matrix[i][j] = DDF_HANDLE(i*H+j);
}/*for*/}/*for*/

return matrix;
}
DDF_t** matrix2D=allocMatrix(height,width,0);
doInitialPuts(matrix2D);
finish {
for (i=0,i<height;++i) {
for (j=0,j<width;++j) {
DDF_t* curr = matrix2D[ i ][ j ];
DDF_t* above = matrix2D[i-1][ j ];
DDF_t* left = matrix2D[ i ][j-1];
DDF_t* uLeft = matrix2D[i-1][j-1];
if ( isHome(i,j) ) {
async AWAIT (above, left, uLeft) {
Elem* currElem = init(DDF_GET(above),

DDF_GET(left),DDF_GET(uLeft));
compute(currElem);
DDF_PUT(curr, currElem);

}/*async*/}/*if*/}}/*for,for*/}/*finish*/

Fig. 9: Simplified Smith-Waterman implementation

III. HCMPI IMPLEMENTATION

The HCMPI runtime is a novel design based on dedicated
computation and communication workers in a work-stealing
scheduler, shown in Fig. 10. The HCMPI runtime has to create
at least one communication worker per MPI-rank. The number
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Node* Node* Node*

MPI* MPI* MPI*
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Inter=Node*
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Fig. 10: The HCMPI Intra-node Runtime System

ALLOCATED PRESCRIBED ACTIVE COMPLETED AVAILABLE

Fig. 11: Lifecycle of a Communication Task

of computation workers can be set at runtime by the -nproc
command line option. Our experiments show that the benefits
of a dedicated communication worker can outweigh the loss
of parallelism from the inability to use it for computation.
We believe that this trade-off will be even more important in
future extreme scale systems, with large numbers of cores per
node, and an even greater emphasis on the need for asynchrony
between communication and computation.

The HCMPI runtime is an extension of the Habanero-C
work-stealing runtime. Computation workers are implemented
as pthreads (typically one per hardware core/thread). Each
worker maintains a double-ended queue (deque) of lightweight
computation tasks. A worker enqueues and dequeues tasks
from the tail end of its deque. Idle workers steal tasks from the
head end of the deques of other workers. A communication
optimization scheme, such as the one implemented in [17],
will be a natural extension to our implementation of HCMPI
workers.

The HCMPI communication worker is dedicated to execute
MPI calls, using a worklist of communication tasks imple-
mented as a lock-free queue. Figure 11 shows the lifecy-
cle of a communication task. When a computation worker
makes an HCMPI call, it creates a communication task in
the ALLOCATED state. The task is either recycled from
the set of AVAILABLE tasks, or it is newly allocated and
enqueued into the worklist. The task structure is initialized
with required information, such as buffer, type, etc. and then
set as PRESCRIBED. When the communication worker finds
a PRESCRIBED task, it either issues an asynchronous MPI
call for point-to-point communication or blocks for a collective
MPI call. For asynchronous calls, the worker sets the task state
as ACTIVE and moves on to the next task in the worklist. The
worker tests ACTIVE tasks for completion using MPI_Test.



TaskA Wrapper

TaskB 
ddl_and = DDF_LIST_CREATE_AND();

DDF_LIST_ADD(DDFX, ddl_and);

DDF_LIST_ADD(DDFY, ddl_and);

async await (ddl_and){...}

TaskA 
ddl_or = DDF_LIST_CREATE_OR();

DDF_LIST_ADD(DDFX, ddl_or);

DDF_LIST_ADD(DDFY, ddl_or);

async await (ddl_or){...}

DDFYDDFX

0 /1

Fig. 12: HCMPI DDF Runtime

Once an MPI operation has completed, the task state is set
to COMPLETED. If the task is the last one to complete in the
enclosing finish scope, the communication worker pushes
the continuation of the finish onto its deque to be stolen
by computation workers.

HCMPI implements event-driven task execution us-
ing Habanero-C’s Data-Driven Tasks (DDTs) and Data-
Driven Futures (DDFs), introduced in Section II-A. A
HCMPI_Request handle is implemented as a DDF. Com-
putational tasks created using async await(req), where
req is the HCMPI_Request handle, will start executing
once the communication task represented by the handle
has been completed. Further, HCMPI_Wait is implemented
as finish async await(req);. HCMPI_Waitall
and HCMPI_Waitany are implemented as extensions to
HCMPI_Wait where a task waits on a list of DDFs. The key
difference is that the waitall list is an AND expression while
the waitany list is an OR expression. The handling of an AND
list is similar to the one described in [15]. In case of the OR
list, the runtime iterates over the list of DDFs found in the
await clause. If a DDF is found to have been satisfied by a
put, the task becomes ready for execution immediately. If no
satisfied DDF is found, the task gets registered onto all DDF’s
on the list. When a put finally arrives on any of the DDF’s
the task get released and is pushed into the current worker’s
deque. To prevent concurrent puts from releasing the same
task with an OR DDF list, each task contains a wrapper with
a token bit to indicate if the task has already been released
for execution, as shown in Fig. 12. This token is checked
and set atomically to ensure the task is released only once.
The HCMPI communication runtime is itself a client of the
DDF runtime. It uses DDFs to communicate MPI_Status
information to the computation tasks via a DDF_PUT of the
HCMPI_Status object on to the HCMPI_Request DDF.
HCMPI_GET_STATUS internally implements a DDF_GET.

A. Phaser Synchronization Model Implementation

HCMPI builds on Habanero-C’s tree-based implementation
of phasers to integrate inter- and intra-node synchroniza-
tion. Tree based phasers have been shown to scale much
better than flat phasers [13], [18]. HCMPI_PHASER_CREATE
creates a phaser barrier, while HCMPI_ACCUM_CREATE cre-
ates an accumulator object. Tasks can dynamically register
to and drop from a hcmpi-phaser. The next statement
and the accum_next APIs act as the global synchronization
points for barriers and accumulators. Figure 13 illustrates

Fig. 13: HCMPI Phaser Barrier

the synchronization process for HCMPI phaser barrier and
accumulator operations. In the case of a barrier, tasks, T0 to
T7, arrive at the next statement and signal the phaser. Then
they start the wait phase. These tasks traverse the internal
nodes of the phaser tree to see if they can become sub-
masters at any of the sub-phaser nodes S0 to S6. The first
task to arrive at a sub-phaser becomes the sub-master for that
node. The sub-master collects the signals from its sub-tree
and then signals its parent. This way, signals on the phaser
tree propagate up to the root node. The first task to arrive at
the root node becomes the phaser master. Others wait for the
phaser master to signal the start of the next phase. HCMPI
supports both relaxed (fuzzy) and strict barrier modes. In the
fuzzy barrier mode, the first task to arrive at the wait phase on
the leaf sub-phaser signals the phaser communication task to
start the MPI_Barrier operation. This ensures overlapped
inter-node and intra-node barrier operation. In the strict barrier
mode, the MPI_Barrier operation is started only after the
phaser master at the root sub-phaser receives all signals in the
phaser tree. The phaser master waits on a notification from
the communication task that the MPI_Barrier operation is
completed. Once the notification arrives, the phaser master
signals all the intra-node tasks to start their next phase. In case
of phaser accumulators, each task arrives at the accum_next
synchronization point with a value in addition to the signal.
The value gets reduced to a single element at the root of
the phaser tree and then the phaser master signals the hcmpi
phaser communication task to start the MPI_Allreduce
operation. The globablly reduced value is saved in the phaser
data structure and can be retrieved by the accum_get call
on that phaser object.

B. Distributed Data Flow Model Implementation

Distributed data-driven futures, introduced in Section II-D,
are created through the DDF_HANDLE interface. The user-
provided DDF_HOME function is used by the creation routine
to identify it as a local or remote object. The call always
returns a local handle. The DDF home has the responsibility
of transferring data to remote requesters await-ing on that
DDF. After the put completes, the home first completes the
data transfer to all requests that have already arrived. Then



the communication worker starts a listener task to respond
to future requests. The HCMPI runtime executes a global
termination algorithm to take down all the listener tasks at
the end of the program.

A data-driven task with an async await on a remote
DDF registers on the local copy of the DDF handle. After
the first DDT registers, the runtime sends the home location
a message to register its intent on receiving the put data.
The runtime also allocates a local buffer, and waits for the
data response from home. The remote node always keeps
a locally cached copy after the data arrives so that every
subsequent await can immediately succeed. The dynamic
single assignment property of DDFs ensures the validity of
this local copy, and that the data transfer from home to remote
happens at most once.

IV. EXPERIMENTAL RESULTS

In this section we present experimental results of HCMPI
performance on micro-benchmarks and strong scaling applica-
tions. For micro-benchmark performance we use standard test
suites for multi-threaded performance and collective synchro-
nization. We conduct our strong scaling experiments on UTS,
a tree-based search application, and SmithWaterman, a heavily
used sequence alignment algorithm in biomedical applications.
We compare our performance against existing reference codes.

Our experimental framework uses the Jaguar supercomputer
at Oak Ridge National Labs and the DAVinCI cluster at
Rice University. The Jaguar supercomputer is a Cray XK6
system with 18,688 nodes with Gemini interconnect. Each
node is equipped with a single 16-core AMD Opteron 6200
series processor and 32 GB of memory. For our experiments,
we scaled up to 1024 nodes (16,384 cores) and used the
default MPICH2 installation. The DAVinCI system is an IBM
iDataPlex consisting of 2304 processor cores in 192 Westmere
nodes (12 processor cores per node) at 2.83 GHz with 48 GB
of RAM per node. All of the nodes are connected via QDR
InfiniBand (40 Gb/s). On DAVinCI, we used up to 96 nodes
(1152 cores) and used MVAPICH2 1.8.1.

A. Micro-benchmark Experiments

Many current hybrid models use MPI with Pthreads or
OpenMP to expose a combination of threads and processes
to the user. Such a model would have to deal with concurrent
MPI calls from multiple threads implying that MPI has to
operate in one of its multi-threaded modes. For our first set of
micro-benchmark experiments, we used a test suite developed
at ANL for multi-threaded MPI [19]. The benchmark pro-
grams initialize MPI using MPI_THREAD_MULTIPLE and
intra-process multi-threading is achieved using pthreads.
A bandwidth test is performed by measuring delays caused
by sending large (8Mbyte) messages with low frequency.
A message rate test transmits empty messages with high
frequency. In the latency test, 1000 sends and 1000 receives
are performed for different message sizes ranging from 0
to 1024. The average time delay for each size is reported.
The HCMPI version creates as many computation workers as

there are pthreads in the MPI version. HCMPI can use
MPI_THREAD_SINGLE since all MPI calls are made by a
single communication worker per process. Parallel tasks on
multiple computation workers can communicate concurrently
through the communication worker. This avoids using multi-
threaded MPI, which typically performs worse than single-
threaded MPI due to added synchronization costs.

The micro-benchmark programs use two communicating
processes. In our experiments, they are placed on two different
nodes. The results in Fig. 14 are for MVAPICH2 with Infini-
band on DAVinCI, and the results in Fig. 15 are for MPICH2
with Gemini on Jaguar. The bandwidth experiments in both
cases show MPI and HCMPI performing close to each other.
Since this test performs small number of communications with
high data volume, the number of threads have a minimal
impact. The message rate tests on the other hand sends a large
number of low data volume messages. In this case, HCMPI
starts performing better than multi-threaded MPI when we
scale up the number of threads inside the process. We conclude
it reflects higher synchronization overheads for communication
inside multi-threaded MPI processes. The latency tests confirm
our conclusions for message rate by showing that HCMPI
latencies scale more gracefully than those for MPI when
increasing the number of threads. The Jaguar message rate
test shows a dip in performance when using 2 threads. This
phenomenon was consistently repeatable over multiple runs of
the benchmark. This fact is also reflected on the latency chart
where we see that latency in MPI with 2 threads is an order
magnitude higher than MPI with 8 threads.

For our next set of benchmarks, we measure the perfor-
mance of HCMPI phaser barriers and accumulators. We
compare against MPI-only and hybrid MPI+OpenMP perfor-
mance. We used a modified version of the EPCC Syncbench
[20] for barrier and reduction (accumulator) tests. The bench-
marks run a loop containing a barrier or reduction operation
for a large number of times. The cost of synchronization is
estimated by subtracting the loop overhead from the iterations.
We measure synchronization performance on 2 to 64 nodes
while using 2 to 8 cores per node. In our experiment, the MPI-
only version uses MPI_THREAD_SINGLE, while the hybrid
MPI+OpenMP version uses MPI_THREAD_MULTIPLE. Both
the HCMPI and hybrid versions use one process per node
and use threads for the number of cores used inside a node.
The MPI-only version uses one process for every core used
in the experiment to perform distributed collective operations.
The HCMPI test creates the number of tasks and computation
workers equal to the number of cores used per node in the
experiment. Together they perform the integrated synchroniza-
tion at the intra-node and inter-node level for both barriers and
accumulators. We measure HCMPI phaser barrier performance
for both strict and fuzzy modes, introduced in Section III-A.
The MPI+OpenMP hybrid version creates a parallel region
of number of threads equal to the number of cores. In the
strict barrier mode, threads first synchronize using a OpenMP
barrier, then the MPI_Barrier is called by a single thread
while the others wait at subsequent OpenMP barrier. The
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Fig. 14: Thread Micro-benchmarks for MVAPICH2 on Rice DAVinCI cluster with Infiniband interconnect
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Fig. 15: Thread Micro-benchmarks for MPICH2 on Jaguar Cray XK6 with Gemini interconnect

fuzzy barrier mode does not use the first OpenMP barrier.
The hybrid reduction test completes a global reduction by first
performing an OpenMP for loop reduction over the number of
threads followed by MPI_Allreduce by a single thread.
Remaining threads wait at a OpenMP barrier.

The results in Table II clearly demonstrate that MPI and
hybrid times increase at a faster rate compared to HCMPI
with increasing number of cores per node, for both barri-
ers and accumulators. We also see that fuzzy barriers are
much faster than strict barriers because of overlapped intra-
and inter-process synchronization. HCMPI depends on MPI
performance for inter-node synchronization. When scaling up
the number of cores within a node, HCMPI is able to use
intra-node phaser synchronization, while MPI depends on
MPI_Barrier and MPI_Allreduce over all cores. Over-
all, hybrid MPI+OpenMP outperforms MPI while HCMPI
outperforms both. These experiments were performed using
MVAPICH2 on the DAVinCI cluster. We have not included
the results for Jaguar because we discovered inconsistent
MPI_Barrier performance with MPICH2.

B. Case Study: UTS

For our scaling experiment we chose the Unbalanced Tree
Search (UTS) application [21], [22] from a publicly available
source [23]. The UTS tree search algorithm is parallelized by
computing the search frontier nodes in parallel. The search
typically leads to unbalanced amount of work on parallel
resources, which can then benefit from load balancing tech-
niques. The reference MPI implementation of the benchmark,
used as the baseline for creating the HCMPI version, per-
formed parallel search using multiple MPI processes, and load

Collective Synchronization Times in micro-seconds
Nodes 2 4
Cores 2 4 8 2 4 8
MPI Barrier 3.0 4.1 5.1 5.8 6.7 7.6
MPI+OMP Barrier (S) 2.5 2.8 3.9 5.0 5.8 6.7
HCMPI Phaser (S) 2.1 2.2 2.7 4.8 4.8 5.4
MPI+OMP Barrier (F) 2.6 2.9 3.7 4.9 5.2 6.1
HCMPI Phaser (F) 2.1 2.2 2.1 5.1 5.1 5.0
MPI Reduction 3.8 4.6 5.2 6.3 7.2 7.9
MPI+OMP Reduction 3.1 3.6 4.9 5.4 5.9 7.2
HCMPI Accumulator 2.6 2.8 3.5 4.9 5.0 5.8
Nodes 8 16
Cores 2 4 8 2 4 8
MPI Barrier 9.1 9.8 11.1 12.6 13.4 14.7
MPI+OMP Barrier (S) 8.2 9.1 10.0 11.6 12.6 14.2
HCMPI Phaser (S) 7.7 7.7 8.6 11.3 11.2 12.1
MPI+OMP Barrier (F) 7.3 8.1 8.8 10.1 11.1 12.4
HCMPI Phaser (F) 7.5 7.5 7.6 10.9 10.7 10.8
MPI Reduction 9.5 10.7 12.1 12.8 14.3 15.3
MPI+OMP Reduction 8.2 9.1 10.5 11.1 12.4 14.1
HCMPI Accumulator 7.7 7.8 9.4 10.7 10.5 12.3
Nodes 32 64
Cores 2 4 8 2 4 8
MPI Barrier 20.0 19.9 21.6 25.3 25.7 26.2
MPI+OMP Barrier (S) 17.2 19.0 20.8 21.8 24.7 26.2
HCMPI Phaser (S) 17.2 17.8 18.0 22.0 21.7 23.6
MPI+OMP Barrier (F) 13.5 14.5 16.6 19.4 20.8 24.0
HCMPI Phaser (F) 14.7 14.3 14.8 19.3 18.7 18.7
MPI Reduction 17.7 18.7 19.8 25.0 25.7 26.7
MPI+OMP Reduction 15.1 16.9 18.9 20.8 23.4 25.8
HCMPI Accumulator 14.7 15.4 16.9 20.8 20.6 23.5

TABLE II: EPCC Syncbench with MVAPICH2 on Infiniband.
Abbrv. (S): Strict barrier (F): Fuzzy barrier

balancing using inter-process work-sharing or work-stealing
algorithms. In our experiments we have focused on the work-
stealing version due to better scalability [22]. We scale our



experiment up to 16,384 cores on the Jaguar supercomputer.
The HCMPI implementation of UTS adds intra-process

parallelization to the reference MPI implementation. It does
not modify the inter-process peer-to-peer work-stealing load
balancing algorithm. HCMPI’s goal is to benefit from shared-
memory task parallelism on a node and uses only one process
per node. In this context, inter-node and inter-process can be
used interchangeably. In the HCMPI implementation a task
has access to a small stack of unexplored nodes local to the
worker thread it is executing on. When the stack fills up, nodes
are offloaded to a deque for intra-node work-stealing. This
strategy generates work for intra-node peers before it sends
work to global peers. The use of non-synchronized thread-
local stacks is for superior performance over deques. Global
communication is handled by the communication worker. The
HCMPI runtime uses a listener task for external steal requests
while the computation workers are busy. When another process
requests a steal, the listener task looks for internal work,
trying to steal from the local work-stealing deques. If the local
steal was successful, it responds with that work item, if not,
with an empty message. Inside a node, when a computation
worker runs out of work and is unable to steal work from
local workers, it requests the communication worker to start
a global steal. A global steal uses the reference MPI inter-
process steal algorithm. During a global steal, if an active local
computation worker has been able to create internal work, then
some idle computation workers may get back to work. Once
the communication worker receives a globally stolen work
item, it pushes that item onto its own deque to be stolen by
idle computation workers. Finally, the communication worker
participates in a token passing based termination algorithm,
also used in the reference MPI code.

In our experiments, we use two UTS tree configurations,
T1XXL and T3XXL. T1XXL uses a geometric distribution
and has a tree size of about 4 billion nodes. T3XXL uses a
binomial distribution and has a tree size of 3 billion nodes.
We varied the number of nodes from 4 to 1024 and cores
per node from 1 to 16 in our experiments. To identify the
best performing UTS configurations on Jaguar, we explored
various chunk sizes, −c, and polling intervals, −i, on 64 nodes
with 16 cores on both MPI and HCMPI for T1XXL as well
as T3XXL. The best configuration of MPI for T1XXL was
−c = 4,−i = 16, while for T3XXL was −c = 15,−i = 8.
These configurations performed better on Jaguar than the pub-
lished configurations in [22]. The best HCMPI configuration
for T1XXL was −c = 8,−i = 4, while for T3XXL was again
−c = 8,−i = 4. Finding the best UTS chunk size and polling
intervals for each node and cores per node combination is
outside the scope of this work. In our experiments, we allocate
the same number of resources for both MPI and HCMPI.
This means HCMPI runs one fewer computation worker than
MPI because it dedicates one thread as communication worker.
E.g. When using 4 nodes with 16 cores per node, MPI runs
4 × 16 = 64 processes, whereas HCMPI runs 4 × 15 = 60
computation workers and 4 communication workers, one per
node. The MPI implementation uses MPI_THREAD_SINGLE.

Figures 16 and 18 respectively show the running time of
MPI and HCMPI for the T1XXL workload. Similarly, Fig. 17
and 19 show the running time of MPI and HCMPI for the
T3XXL workload. Individual lines show the performance for
different number of cores per node. For MPI, each extra
core amounts to an extra MPI process per node, whereas
for HCMPI it amounts to an extra thread in the process on
that node. For T1XXL, MPI stops scaling after approximately
4096 cores, and starts degrading rapidly. On the other hand,
HCMPI keeps scaling perfectly to about 8192 cores and hardly
degrades from then onwards. Results for T3XXL also show
similar trends.

Figures 20 and 21 compare performance of HCMPI with
MPI on T1XXL and T3XXL respectively. The peak perfor-
mance improvement is about 22.3× for 1024 nodes with 16
cores per node. A distinct crossover point in performance can
be noticed in favor of HCMPI when the number of cores per
node scales up. At 2 or 4 cores per node, HCMPI suffers from
lack of parallel workers compared to MPI. But, as we scale
up to 8 and 16 cores per node, HCMPI outperforms MPI.

To analyze this result further, we profiled both MPI and
HCMPI codes using the built-in performance counters in the
UTS application. First, the overall execution time is split
into the following components: work, overhead, search and
idle. Work represents the actual time spent on computation,
that is, exploring nodes in the search tree. Overhead rep-
resents the time spent on making progress for others with
global communication. MPI computation workers interrupt
work every polling interval for this. Search represents the time
spent trying to globally locate work. MPI workers enter this
mode once they completely run out of work. HCMPI workers
on the other hand, overlap this with computation as soon
as the first worker cannot find local work. Idle time is the
time spent in startup and termination. This is irrelevant for
our comparison as we use the same startup and termination
algorithms in both MPI and HCMPI. All times are reported as
the average over all computing resources in the program. Next,
we also profiled the total number of failed steal requests during
program execution. This number represents the total amount
of redundant communication in the system.

Table III provides statistical data for 3 node configurations:
64, 256 and 1024. We chose these 3 nodes as being repre-
sentative of three regions of MPI’s scaling results: strongly
scaling, partly scaling, reverse scaling. We show these results
for only T1XXL for brevity. We have verified that results on
T3XXL have similar characteristics. As before, we provide
exactly the same number of resources for MPI and HCMPI
for fair comparison.

It is evident that for both MPI and HCMPI, work overshad-
ows the overhead time, although HCMPI consistently shows
5× smaller overhead. This is because the computation worker
only ever interrupts itself to inject more work into the work-
stealing deque. It never has to deal with responding to commu-
nication, something which is handled by the communication
worker. For lower number of cores per node (e.g., 2 cores per
node), the work component is higher for HCMPI compared
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Fig. 16: Scaling of UTS for T1XXL on MPI.
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Fig. 17: Scaling of UTS for T3XXL on MPI.
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Fig. 18: Scaling of UTS for T1XXL on HCMPI.
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Fig. 19: Scaling of UTS for T3XXL on HCMPI.

4	   8	   16	   32	   64	   128	   256	   512	   1024	  

2	  	  cores/node	   0.67	   0.67	   0.67	   0.67	   0.67	   0.68	   0.68	   0.69	   0.73	  
4	  cores/node	   1.00	   1.00	   1.00	   1.00	   1.00	   1.01	   1.03	   1.10	   1.33	  
8	  cores/node	   1.17	   1.17	   1.17	   1.17	   1.17	   1.20	   1.29	   1.66	   4.50	  
16	  cores/node	   1.26	   1.26	   1.26	   1.26	   1.33	   1.51	   1.98	   5.76	   22.31	  
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Fig. 20: HCMPI speedup wrt MPI on UTS T1XXL

4	   8	   16	   32	   64	   128	   256	   512	   1024	  

2	  	  cores/node	   0.67	   0.67	   0.67	   0.67	   0.67	   0.68	   0.72	   0.88	   1.28	  
4	  cores/node	   0.99	   0.99	   0.99	   1.00	   1.02	   1.09	   1.33	   1.92	   2.75	  
8	  cores/node	   1.17	   1.17	   1.17	   1.19	   1.27	   1.51	   2.33	   3.59	   5.67	  
16	  cores/node	   1.26	   1.27	   1.29	   1.41	   1.87	   3.23	   5.59	   8.96	   18.47	  
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Fig. 21: HCMPI speedup wrt MPI on UTS T3XXL

to MPI which directly influences the overall running time,
since HCMPI has few workers compared to MPI. For low core
counts, this leads to up to 50% more work per computation
worker thread. Most importantly, it is evident that for higher
cores per node, the search component becomes the biggest
bottleneck for MPI performance. For example, on 1024 nodes,
when going from 8 cores to 16 cores, MPI spends 5.4× more
time in the search. In comparison, HCMPI’s search component
remains fairly stable. Consequently, HCMPI’s improvement
over MPI when scaling from 8 cores to 16 cores in that
configuration is 22.3/4.5 ≈ 5×. Similarly, when going from
4 to 8 cores, MPI spends 3.9× more time in search, which
is reflected in HCMPI’s 4.5/1.33 ≈ 3.4× speedup during the
same scaling when compared to MPI.

In order to understand why MPI spends more time in the
search phase, we profiled the number of failed steal requests

(see Fails column in Table III). We observed that MPI has
10.7× and 5.1× more failed steal requests for 1024 nodes
with 16 and 8 cores per node cases respectively, which can be
accounted for the bulk of extra search time presented before.
MPI steal requests are two-sided. The thief has to send a
steal request to the victim and wait for a response. Failed
two-sided steals imply redundant communication, an inherent
drawback of the MPI work-stealing model. On the other hand,
majority of HCMPI steals are intra-node shared-memory steals
where a worker thread can directly steal from another worker’s
deque without disturbing the victim. From these results, we
conclude that HCMPI’s faster stealing policy coupled with a
highly responsive communication worker per node results in
better computation and communication overlap and scalable
performance.



1024 Nodes MPI HCMPI
Cores Time(s) Work(s) Overhead(s) Search(s) Fails Time(s) Work(s) Overhead(s) Search(s) Fails

2 1.696 1.416 0.047 0.225 2703979 2.663 2.377 0.014 0.260 9861326
4 1.245 0.702 0.026 0.440 7869775 0.963 0.786 0.005 0.162 6279535
8 2.376 0.392 0.019 1.715 47102587 0.728 0.368 0.003 0.331 9212784

16 10.770 0.195 0.011 9.295 94754150 0.443 0.171 0.002 0.261 8835986
256 Nodes MPI HCMPI

Cores Time(s) Work(s) Overhead(s) Search(s) Fails Time(s) Work(s) Overhead(s) Search(s) Fails
2 5.941 5.698 0.169 0.073 601384 9.641 9.511 0.053 0.076 584293
4 3.052 2.818 0.090 0.142 1603756 3.240 3.148 0.021 0.071 640242
8 1.829 1.532 0.054 0.233 2027647 1.561 1.479 0.011 0.069 562496

16 1.457 0.775 0.034 0.510 2353054 0.793 0.691 0.005 0.095 824427
64 Nodes MPI HCMPI

Cores Time(s) Work(s) Overhead(s) Search(s) Fails Time(s) Work(s) Overhead(s) Search(s) Fails
2 23.231 22.534 0.643 0.054 33814 38.216 37.947 0.215 0.054 54509
4 11.708 11.323 0.339 0.046 127823 12.736 12.608 0.078 0.049 74264
8 6.518 6.237 0.207 0.073 456853 6.017 5.919 0.041 0.057 104471

16 3.431 3.075 0.127 0.189 203836 2.842 2.765 0.019 0.057 80501

TABLE III: UTS overhead analysis for T1XXL runs on Jaguar

4	   8	   16	   32	   64	   128	   256	   512	   1024	  

2	  	  cores/node	   0.60	   0.63	   0.79	   0.71	   0.62	   0.79	   0.91	   0.81	   0.73	  
4	  cores/node	   0.79	   0.79	   1.33	   1.12	   1.12	   1.39	   1.30	   1.76	   1.30	  
8	  cores/node	   1.18	   0.93	   1.77	   1.36	   1.41	   2.04	   3.34	   2.53	   4.94	  
16	  cores/node	   1.00	   1.00	   1.53	   1.52	   3.15	   4.29	   2.43	   5.49	   21.15	  
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Fig. 22: HCMPI Speedup wrt MPI+OpenMP on UTS T1XXL

Comparison with MPI + OpenMP: Although there is no
publicly available reference implementation of UTS using
MPI and OpenMP in a hybrid model, we have created one
ourselves by integrating the reference MPI and OpenMP
codes. In the initial implementation plan, the MPI process
first ensures locally available work before starting an OpenMP
parallel region to execute that work. After the threads complete
execution locally, the parallel region ends and the program
goes back to MPI mode to search for more global work.
This naive staged approach however suffered terribly from
thread idleness problems resulting in worse performance than
MPI. As an improvement we increased the computation and
communication overlap. In the OpenMP parallel region when
threads run out of work and cannot find anything to steal, they
wait at a cancelable barrier. In case more local work becomes
available, the barrier gets cancelled and all threads re-enter the
execution region. In our hybrid implementation, when a thread
gets to the cancelable barrier, it requests for global work. So, a
global steal request goes out even when some threads are busy
computing. If global work arrives when the parallel region is
active, the work gets folded into local work by the thread that
receives it. This approach drastically improved performance
over the naive implementation. We compare its performance

against HCMPI on T1XXL in Fig. 22. In this experiment the
hybrid code used one MPI process on every node. The number
of OpenMP threads were the same as the total number of
worker threads used by HCMPI, for a fair comparison.

C. Case Study: Smith-Waterman

executed
running

DDF
DDDF

Fig. 23: Smith-Waterman dependency graph, its hierarchical
tiling and execution wavefronts

We introduced a simple Smith-Waterman benchmark in
section II-D and here we show a hierarchically tiled imple-
mentation of the benchmark. This implementation performs
hierarchical tiling as in Figure 23. This allows us to tune
granularity to minimize communication for the outer-most
tiling and to minimize intra-node task creation overhead for
the inner most tiling, while retaining sufficient parallelism at
both levels.

An outer tile consists of a matrix of inner tiles, and
three distributed DDFs. On Figure 23, we show an enlarged
outer tile consisting of a matrix of inner tiles. To minimize
communication, the distributed DDFs for the outer tile are
the right-most column, the bottom-most row and the bottom-
right element, since these are the edges of a tile visible
to neighboring tiles. Similarly, an inner tile encapsulates a
matrix of elements and three shared-memory DDFs to rep-
resent the intra-node visible edges of an inner tile. Given
this representation of the dynamic programming matrix, we
have exposed both the inter-node and intra-node wavefront
parallelism through registering neighboring tiles’ distributed-
and shared-memory DDFs respectively.



SmithWaterman Nodes
using DDDF 8 16 32 64 96

Cores

2 1955.1 942.7 479.4 258.1 192.8
4 668.9 336.3 184.1 109.5 86.6
8 294.9 155.2 87.6 50.0 37.0

12 192.3 102.2 57.2 32.8 24.4

TABLE IV: Scaling results for Smith-Waterman
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Fig. 24: Scaling results for Smith-Waterman for 8 to 96 nodes
with 2 to 12 cores

In Figure 24 and Table IV, we present a scaling study
of the implementation mentioned above. Our sequences are
of length 1.856M and 1.92M, giving us the dimensions for
our matrix. We chose tile sizes 9280 by 9600 for outer tile
sizes for a matrix of 200×200 tiles. We chose this tile size to
ensure the number of wavefronts provides sufficient slackness
with respect to the number of nodes. Since the number of
parallel tasks at any given time is the size of an unstructured
diagonal (as in figure 23), to provide enough parallelism, we
need to have at least a factor of the number of nodes on most
diagonals. The same logic applies to the inner tiles too, and
we have chosen 290 by 300 tile sizes to have 32×32 tiles.

Using a distribution function, DDF_HOME, for distributed
DDFs, we implemented a tiling strategy as follows. Every
proper diagonal is measured in size and every contiguous
chunk of that diagonal is assigned to nodes iteratively. This
provides a mapping to nodes which for each node creates
bands perpendicular to the wavefront and leads to less com-
munication. This can also be interpreted as a block distribution
of diagonals.

Given a fixed number of cores we observe speedups in the
range 1.7 − 2 when doubling the number of nodes until 64
nodes. This trend is hampered on the 64 node to 96 node jump
because the first and last 96 diagonals do not have enough
parallelism for 96 nodes, where the total number of diagonals
is 399.

Given a fixed number of nodes, we observe speedups in the
range 2.2-2.9 for 2 to 4 core case, since one of the workers is
designated as a communication worker. The range is between
5.2-6.6 for 2 to 8 cores (for 1 to 7 computation workers), and
7.9-10.2 for 2 to 12 cores (for 1 to 11 computation workers).

On Figure 25, we contrast HCMPI DDDF with an
MPI+OpenMP implementation of Smith-Waterman. The input
size of strings used for this exercise are 371200 and 384000.
For HCMPI DDDF, the distribution function, that produced
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Fig. 25: HCMPI Speedup wrt MPI+OpenMP for Smith-
Waterman for 1 to 16 nodes with 2 to 12 cores

the best results, is the block distribution of diagonals, as
used above. MPI+OpenMP implementation produced the best
results on a column distribution, which implies a cyclic
distribution on the diagonals. The outer tile size 9280 by 9600
and the inner tile size 145 by 150 is favored by HCMPI DDDF,
where MPI+OpenMP implementation favored outer tile size
to be 5800 by 6000 and the inner tile size to be 116 by
120. Since HCMPI dedicates a worker for communication,
we observe a 2× slowdown compared to MPI+OpenMP
implementation when using 2 cores/node. HCMPI DDDF
outperforms MPI+OpenMP beyond 6 cores per node, even
though it uses one fewer computation worker. One reason
for this phenomenon is the fork/join nature of MPI+OpenMP
requires implicit barriers between diagonals. Every element
on a diagonal can be computed in parallel and once all
elements are computed, the next diagonal is started. However,
HCMPI allows point-to-point synchronization through DDDFs
and therefore there are no implicit barriers between diagonals.
The computation wavefront may progress on an unstructured
diagonal as depicted in Figure 23. Additionally, HCMPI with
DDDFs allows communication/computation overlap where as
the communication for the MPI+OpenMP happens after the
OpenMP threads are done with the computation.

V. RELATED WORK

While most MPI implementations, or high-performance
communication systems such as Nemesis [24] and Portal [25],
can identify and optimize intra-node message passing using
shared-memory, the node-level core and memory architectures
are mostly ignored. This limits the “MPI everywhere” model
from efficiently using shared resources on a node, such as
shared caches.

Studies on the PGAS model [26] have shown that threads,
processes and combinations of both are needed for maximum
performance as proposed by HCMPI. However, some unavoid-
able overheads in the PGAS model, such as locking in the
thread version and network contention in the process version
are overcome with HCMPI’s runtime design.

In most hybrid MPI+OpenMP programming practices [27]–
[31], computation is performed in OpenMP parallel regions,



and MPI operations are performed in the sequential path of
the execution. OpenMP parallel threads do not participate in
inter-node operations. This pattern limits the flexibility of
using asynchronous MPI operations for latency hiding and
computation/communication overlap. It is also difficult to fully
utilize the bandwidth of multiple network interfaces that are
commonly available in high-end large-scale systems.

The MPI/SMPSs [32] system closely follows the HCMPI
design. MPI message passing operations are wrapped as tasks
and blocking communication operations are handled by a
dedicated communication thread. Yet, the HCMPI model is
able to express richer functionality with “message-driven”
tasks and a truly distributed data flow programming model
with DDDF’s.

Jégou [33] relies on a task migration model to execute
program regions with non-local data. A task can spawn in-
dependent subtasks but cannot communicate or synchronize
with them, in contrast to the HCMPI approach.

Cera et al. [34] evaluate MPI-2s dynamic processes as a
way of supporting dynamic task parallelism in MPI. MPI-
2s dynamic processes allow the dynamic creation of new
MPI processes in the MPI runtime using MPI_Comm_spawn.
While this maintains a familiar API (as HCMPI does), it also
suffers from the “MPI-everywhere” limitations.

Ramaswamy et al. [35] introduce an annotated form of High
Performance Fortran for extracting task and data parallelism
from an application. It constructs a computation graph with a
cost model for scheduling data-parallel tasks and data transfers
between them in a distributed-memory machine, attempting to
do automatic scheduling for the programmer. Our work pro-
vides a lower-level, but more flexible, simplified and unified
programming model.

Hamidouche et al. [36] present a framework to model,
evaluate, and generate hybrid MPI+OpenMP code given an
input MPI code. It employs a combination of static analysis of
code and dynamic analysis of the cost to estimate computation
and communication costs. The best configuration (number of
MPI processes and OpenMP threads) for various phases of
a program are found by direct search of the shortest path
on a weighted DAG where each node represents a different
configuration and edges represents cost of changing from one
configuration to the other. On a set of benchmarks, althought
the model predicted cost vs. the actual cost are within 17%
accuracy on low-end systems the numbers remain unproven
on large scale systems like the Jaguar supercomputer.

Ravichandran et al. [37] present a distributed load balancing
system on multi-core clusters which combines a local, work-
stealing algorithm using global-local partitioned queues at
the intra-node level with a dedicated thread to handle load
balancing between nodes. A distributed termination detection
algorithm for this system is also presented, though is not rele-
vant to HCMPI as termination is controlled by the application
in our system. This work is complementary to HCMPI, as
adding the load-balancing algorithm to HCMPI would increase
the flexibility of our system and allow remote execution of
asynchronous tasks. However, results in this work are limited

to clusters with O(10) nodes where as HCMPI is shown to
scale up to O(1000) nodes.

Saraswat et al. [38] also present complementary work to
ours. Their work on distributed load balancing in the X10
programming model based on “lifelines” could be used to
increase the flexibility of UTS implementation with HCMPI,
which depends on the application’s distributed load balancing
algorithm. Lifelines are links between nodes which specify
which nodes can wake up other nodes with new work, after
a node has put itself to sleep due to a number of failed steal
attempts. By constructing lifelines using cyclic hypercubes,
this work balances long paths between nodes with high degrees
of edges to efficiently spread work along lifelines. HCMPI
has shown very good scalability based on better computation-
communication overlap and utilization of network bandwidth.
Adding inter-node load balance could potentially augment the
scalability and performance of HCMPI further.

Wu et al. [39] compare the performance of Hybrid
MPI+OpenMP for SP and BT NAS parallel benchmarks
with their corresponding MPI implementations. With the hy-
brid implementation they observe 21% performance gain
for SP and 9% for BT. The performance is compared
on Jaguar (Cray XT5) and Intrepid (BlueGene/P) systems.
HCMPI distinguishes itself by offloading all communications
to a dedicated communication thread so that the HCMPI
computation threads can make progress, whereas in hybrid
MPI+OpenMP the OpenMP threads involved in communica-
tion block. Hybrid MPI+OpenMP as presented in the paper is
evaluated for only 1-25 nodes and the performance generally
degrades with increasing number of cores. On the other hand,
HCMPI demonstrates scalable performance improvement for
16K cores. Hybrid MPI+OpenMP also demonstrates added
overhead from OpenMP on loops with computationally light
loop bodies. HCMPI’s work stealing runtime does not suffer
from this limitation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the HCMPI programming model
and runtime, which unifies asynchronous task parallelism at
intra-node level with MPI’s message passing model at the
inter-node level. With HCMPI’s task parallel model, users
can benefit from MPI integration with structured task paral-
lelism and data-flow programming. Constructs such as async,
finish, and await have been seamlessly integrated with
the message model. They can create new communication tasks,
wait for their completion and start execution based on message
events. We have also enhanced the phaser construct for point-
to-point and barrier synchronization within and across nodes.

HCMPI programs execute on a novel scalable runtime
system consisting of a communication worker and a number of
computation workers. For the UTS benchmark on the ORNL
Jaguar machine with 1024 nodes and 16 cores/node, HCMPI
performed 22.3× faster than MPI for input size T1XXL and
18.5× faster than MPI for input size T3XXL (using the best
chunking and polling parameters for both HCMPI and MPI).
Users can also use HCMPI to take advantage of a distributed



dataflow programming model (DDDFs) as a simple extension
to the shared-memory DDF model. Scalability results for
the Smith-Waterman benchmark show the practicality of this
approach, which offers high programmability.

The ongoing and future work include the support for more
MPI-like APIs in the HCMPI programming model, including
one-sided communication operations. We are also integrating
support for heterogeneous computing in HC into HCMPI, as
well as exploring the integration of HC with other communi-
cation systems beyond MPI (such as GASNet and Portals).
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