
Compiler-Driven Data Layout Transformation
for Heterogeneous Platforms

Deepak Majeti1, Rajkishore Barik2, Jisheng Zhao1,
Max Grossman1, and Vivek Sarkar1

1 Rice University
2 Intel Corporation

Abstract. There is an increasing realization in the community that the
layout of data structures in memory can have a significant impact on
the performance of sequential and parallel programs. With the advent
of heterogeneous platforms (e.g., CPU and GPU integrated on the same
die), determining the best data layout can be challenging since the op-
timal layout for a computational kernel depends on whether the kernel
executes on a CPU core, a discrete GPU, or on an integrated GPU (along
with other factors). For instance, the GPU memory performance is im-
pacted by upon the number of coalesced memory accesses, whereas CPU
memory performance is impacted by factors such as false sharing and
data reuse. Since changes in data layout can impact CPU vs. GPU per-
formance, in general, the programmer has to write different versions of
CPU and GPU kernels for different architectures and has to select op-
timal memory layouts for each. This places a severe constraint on code
portability.
In this paper, we present a compiler-driven data layout transformation
framework for heterogeneous platforms. We introduce a meta-data frame-
work which enables the same source code to be compiled with differ-
ent data layouts without involving the programmer in the data layout
transformations. Our compiler and runtime infrastructure generates ef-
ficient code for different architectures based on the meta information.
Our experimental results show significant benefits from this approach,
and demonstrate that the best data layout for a program is different for
CPU vs. GPU execution. On an average, the data layout transformation
alone impacted the performance by 7.33× (up to 27.11×) on AMD 4-
core A10-5880K CPU, 2.84× (up to 5.57×) on AMD Radeon integrated
GPU, 8.32× (up to 29.5×) on NVIDIA Tesla M2050 GPU, 2.19× (up
to 5.32×) on Intel 12-core X5660 CPU and 1.9× (up to 3.89×) on Intel
integrated i7-3770 GPU for a set of 5 distinct benchmarks.

1 Introduction

Graphics Processing Units (GPUs) have found their way into mainstream com-
puting both in client and server domains. CUDA and OpenCL are the two pri-
mary languages targeting these systems for GPGPU programming. Both these
languages have been criticized by many researchers [6, 12] as too low-level and
device-specific. Writing low-level high-performance CUDA/OpenCL code man-
ually is still cumbersome and error-prone, and thus better suits expert program-
mers rather than mainstream programmers. This has led to the evolution of

2 Authors Suppressed Due to Excessive Length

many high-level programming models in the last few years that deal with het-
erogeneity [14, 21, 13, 22, 6, 12]. Although these languages offer significant pro-
grammer productivity, they still lag in performance compared to hand-written
OpenCL/CUDA programs. In particular, the performance of an application may
be sensitive to the organization of the data in the memory on the executing
device. We believe that compiler-driven data layout transformations can help
bridge this performance gap.

An important aspect of heterogeneous systems is that different devices have
different kinds of memory hierarchies. For example, NVIDIA GPUs have L1 and
L2 caches that are connected to the system memory via PCIe whereas the inte-
grated GPUs from Intel (e.g., Ivy Bridge and Haswell) have an L3 cache that is
connected to the system memory on the same die with a last-level cache (LLC)
that is shared between the CPU and GPU. On the host side, the CPU cores
have memory hierarchy consisting of L1, L2, L3, and LLC. The varying memory
hierarchy on different architectures makes it harder to efficiently map existing
data structures of an application on to these different devices since the same data
structure may need to be laid out differently on different devices for better per-
formance. The GPU memory performance depends upon the number of coalesced
accesses, where as the host CPU memory performance depends on factors such
as false sharing and data reuse. Recently, Wu et al [23] have proved that finding
the optimal data layout to maximize the number of coalesced accesses on a GPU
is NP-complete. Thus, manually writing high performance portable programs or
automatically generating efficient code via optimizing compilers without any do-
main knowledge is challenging given the proliferation of device technologies on
heterogeneous architectures and their differing memory hierarchies.

In this paper, we present a meta-data framework that allows both program-
mers and tuning experts to specify architecture specific and domain specific
information for parallel-for (forasync) loops of a program. A meta-data file is
created for an application and is populated with entries on the data layout to
be used for a device on the heterogeneous system. The data layout we focus
on in this paper include structure-of-array (SOA) and array-of-structure (AOS).
Any high level language which has parallel-for loops can be extended to ac-
commodate the meta-data framework. In our work, we target the data-parallel
forasync construct in Habanero-C [2] and integrate our meta-data framework
with the Habanero-C compiler and runtime. The code generation for forasync
construct was extended to generate OpenCL code for targeting heterogenous
architectures. The meta-data information is very useful in guiding our compiler
optimization passes for the generation of efficient code for a device.

Our paper makes the following contributions:

– A meta-data framework that allows both the programmer and the tuning
expert to specify the underlying architecture and domain specific knowledges
for parallel-for loops;

– A compiler and runtime framework to automatically generate efficient code
based on the meta-data information. We currently focus on AOS-to-SOA
and SOA-to-AOS transformations in our compiler;

– An experimental evaluation of our system using a wide variety of hetero-
geneous architectures which shows the impact of data layout on 5 distinct
applications. On an average, the data layout transformation alone impacted

Compiler-Driven Data Layout Transformation for Heterogeneous Platforms 3

the performance by 7.33× (up to 27.11×) on AMD 4-core A10-5880K CPU,
2.84× (up to 5.57×) on AMD Radeon integrated GPU, 8.32× (up to 29.5×)
on NVIDIA Tesla M2050 GPU, 2.19× (up to 5.32×) on Intel 12-core X5660
CPU and 1.9× (up to 3.89×) on Intel integrated i7-3770 GPU.

The rest of this paper is organized as follows. Section 2 presents our meta-
data framework. Section 3 discusses the details of our compiler code generation
and runtime. Section 4 presents the experimental results on a wide variety of
processors. Related work is discussed in Section 5, and finally, Section 6 con-
cludes.

2 Programming Model

Our meta-data framework is built on top of Habanero-C (HC) compiler and
runtime infrastructure [9]. The details of the parallel constructs supported by HC
can be found at [2]. Our paper focuses on the data parallel forasync construct 3.
The syntax of the forasync construct is as follows.

forasync index(args) size(args) optional<scratchpad(args) seq(args)> {
// forasync body

}

The semantics of the forasync construct is similar to a program loop which
exhibits parallel for parallelism. The index clause is used to specify the loop
iterators. The number of variables in the index clause gives the dimentionality
of the loop. The size clause specifies the number of iterations of the loop in
each dimension. There are 2 optional clauses, scratchpad and seq clause. Our
language model takes advantage of the different memory regions available on
most GPU hardwares with the help of the scratchpad and seq.

For each host or the device on a heterogeneous system, it is possible to specify
the desired data layout for array-based or structure-based data structures of a
given forasync loop. The data layouts that we focus on are: (1) AOS: array-of-
structure; and (2) SOA: structure-of-array. Our compiler (described in Section 3)
with the help of the meta-data file is able to transform HC code written in SOA
to AOS and vice-versa.

The grammar for the meta-data and an example is shown in Figure 1. The
meta-data file consists of a set architecture specific optimization information.
The architectural details consist of the data layout information and scratchpad
memory allocation information for a given program. Each struct definition has
a label Struct, a name for the struct and a set of fields. Each field in turn has a
label Field, the type of the field and the name of the field. The type of fields can
be fp: a pointer to an array of float values, dp: a pointer to an array of double
values or ip: a pointer to an array of integer values. The scratchpad memory
allocation information consists of a set of buffer descriptions. It begins with a
label Scratchpad, the name of the special memory region, the field, the amount
of data which must be cached and the line number of the forasync.

3 Our framework is also applicable to other data-parallel programming languages with
a parallel-for like construct

4 Authors Suppressed Due to Excessive Length

arch name −> Arch name meta data
meta data −> (struct def)∗ (scratchpad def)∗
struct def −> Struct name (field def)∗
scratchpad def −> Scratchpad name

(field def tile size line num)∗
field def −> Field type name length
type = fp | dp | ip
length −> (digit)∗
tile size −> (digit)∗
line num −> (digit)∗
name = (letter)(letter|digit)∗
letter −> |A|B|C| . . . |Z|a|b|c| . . . |z|
digit −> 1|2|3|4|5|6|7|8|9|0

Arch Intel GPU
Struct bodypos

Field fp posx Field fp posy Field fp posz
Struct bodyacc

Field fp accx Field fp accy Field fp accz
Scratchpad local Field fp posx 256 63
Scratchpad local Field fp posy 256 63
Scratchpad local Field fp posz 256 63

Arch AMD GPU
Struct bodypos

Field fp posx Field fp posy Field fp posz
Field fp accx Field fp accy Field fp accz
Scratchpad local Field fp accx 1024 63

Fig. 1. Meta-data Grammar (left) and meta-data file Example (right)

Restrictions of our meta-data framework
The user cannot alias the fields specified in the meta-data file. We plan to be

resolve this issue with the help of an alias analysis. Another limitation in the
programming model is that a variable name cannot be repeated in the whole
program in different scopes. This limitation can be avoided by a clever variable
renaming mechanism. Also, all fields in a struct must be of the same type. We
currently do not support more complex data layouts such as AOSOA (Array-of-
structure-of-arrays). We leave this for future work.

3 Implementation

HC Compiler passes
Layout + HC-

OpenCL(ROSE)

Habanero C Source
(.hc files)

Meta file

C Program (.c files)
+ CopenCL (.cl files)

Host Program (.c files)

C Compiler (GCC)

Excutable Binary files

Runtime: OpenCL SDK
 + Memory Manager

GPU CPU

Fig. 2. Compilation Flow

Our overall meta-data framework is shown in Figure 2. The application user
writes a program in Habanero-C (HC) using the forasync construct. Followed
by which, either the developer or the tuning expert specifies the meta-data in-
formation for the application. We extend the HC compiler infrastructure to (1)
perform data layout transformation based on the meta information; (2) gener-
ate OpenCL host and device code. Both these compiler passes are implemented
in the ROSE source-to-source compiler framework [17]. The original HC pro-
gram and the generated OpenCL code are linked together to provide a single
executable which runs on the target architecture.

3.1 Data Layout transformation

The compiler pass first parses the specified meta-data file and it creates a meta-
data map for each architecture. The mapping is between the fields and the struct
name they belong to. The mapping is done for each such struct meta information.
If it finds any scratchpad meta information, it records them in the IR.

Compiler-Driven Data Layout Transformation for Heterogeneous Platforms 5

The data layout transformation (DLT) compiler pass generates the code
based on the specified data layout in the meta-data file. It generates code which
includes new struct definitions and the code that operates on it. Figure 3 shows
the algorithm for transforming the program with a given data layout. DLT takes
the input program and a meta-data file. createStructDefinitions(M) adds
the struct definitions as specified in the meta-data file to the AST. These structs
are defined only once in the global scope. The DLT pass then iterates over all
the functions and performs the steps described in lines 4-7 of Figure 3.

function DLT()1
Input : Meta file M and input program P
Output: Transformed program P’
createStructDefinitions(M);2
for each function F in P do3

for each formal f in function parameter list do4
tryAddStructInstances(f);5

for each instruction I in function body do6
updateInst(I);7

Fig. 3. Data Layout Transformation

tryAddStructInstances(f) analyzes the function parameters. If any of the
parameter names appear in the meta file, an instance of the corresponding struct
is declared in the function call. If we abstract the struct as a group of fields names,
then one struct instance is declared per group. In next step, updateInst(I)
checks all pointer or array references in the function body. If any of those refer-
ence are via any of the fields in the meta file, then the access is replaced with
the corresponding struct instance.

An important factor here is that the type of the function in the original
program remains the same. Keeping the function types intact will avoid rewriting
the direct and indirect calls to the function.

3.2 Memory Management

In the HC programming model, the programmer allocates heap memory to
the fields via standard malloc and calloc calls. We replace these calls with
our specialized memory allocators. We name the allocators, hc meta malloc or
hc meta calloc. The syntax of the allocators is shown in Figure 4.

void ∗hc meta malloc(char ∗fld name,size t num bytes);
void ∗hc meta calloc(char ∗fld name,size t num elem,size t size elem);

Fig. 4. Memory Allocators

hc meta malloc or hc meta calloc are wrappers around the standard malloc
and calloc calls. The allocators also pass in the name of the field to the memory
allocator. The field name is required by the memory manager and is explained
as follows.

The memory manager handles the different layouts and also creates device
buffers. The memory manager has two important components, the memory allo-
cator and the layout handler. During the program initialization phase, the layout

6 Authors Suppressed Due to Excessive Length

Name Description Original Num of Input
Layout Fields

NBody N-Body Simulation SOA 7 32K nodes
Medical Medical Image Registration SOA 6 256×256×256
SRAD Speckle Reducing Anisotropic Diffusion SOA 4 5020 × 4580
Seismic Seismic Wave Simulation SOA 6 4096 × 4096
MRIQ Matrix Q Computation for 3D Magnetic Resonance SOA 6 64 × 64 × 64

Image Reconstruction in Non-Cartesian Space.

Table 1. Benchmarks

handler reads the meta file and creates a map of the data layout. The memory
manager with the help of the field name looks into the layout map and allocates
the memory based on the following simple rules.

1. If the field does not belong to any struct layout in the meta file, it means
that the programmer wishes it to retain the original layout.

2. If the field belongs to a struct layout group the the allocation happens as
follows. Memory is allocated only once per struct group. If memory to the
group has already been allocated, then a pointer to the chunk, offset by the
field position is returned. If the memory is not allocated to the group, then
memory for the whole struct group is allocated. The amount of memory
chunk is equal to the number of fields times the number of bytes requested
during the memory allocation. Then a pointer to the chunk, offset by the
field position is returned.

4 Evaluation

The goal of the experimental evaluation is to prove our metadata framework’s
ability to extract maximum performance from a given architecture. We compare
the impact of data layout on each benchmark on GPUs and multi-core CPUs.

4.1 Experimental Setup

Table 1 describes the benchmarks used in this evaluation. We chose a set of
applications whose performance will be most impacted by data layout transfor-
mations.

The N-Body particle simulation benchmark was written from scratch for
this work. We focus on the compute intensive kernel which calculates the forces
between the bodies.

The Medical Imaging benchmark includes kernels from a medical imaging
pipeline used to analyze different types of medical images for defects or abnor-
malities [15]. This application consists of three main phases: denoising, registra-
tion, and segmentation. For our evaluation, we focus on the most computationally
significant kernel of the three, registration.

The SRAD benchmark from the Rodinia benchmark suite [11] is also used.
SRAD is used to ”remove locally correlated noise” in ”ultrasonic and radar
imaging applications based on partial differential equations” [18].

The Seismic benchmark suite was created based on the example included in
the Intel TBB benchmark suite [4]. Seismic simulates the propagation of waves
during seismic activity.

Compiler-Driven Data Layout Transformation for Heterogeneous Platforms 7

Application AOS AOS1

NBody Struct body Field fp posx Field fp posy Field fp posz
Field fp accx Field fp accy Field fp accz

Struct pos Field fp posx Field fp posy Field fp posz
Struct acc Field fp accx Field fp accy Field fp accz

Seismic Struct params Field fp S Field fp T Field fp V
Field fp D Field fp L Field fp M N.A

SRAD Struct direction Field fp N Field fp S Field fp E
Field fp W

Struct direction1 Field fp N Field fp S
Struct direction2 Field fp E Field fp W

Medical Struct disp Field fp U1 Field fp U2 Field fp U3
Struct velocity Field fp V1 Field fp V2 Field fp V3 Struct disp Field fp U1 Field fp U2 Field fp U3

MRIQ Struct body Field fp kx Field fp ky Field fp kz
Field fp phiMag N.A

Table 2. Application meta-data files

Vendor Type Model Freq Cores Local Mem L1$ L2$
Intel CPU X5660 2.8GHz 12 (HT) N.A 192KB 1.5MB
Intel Integrated GPU i7-3770U 350MHz-1.15GHz 14 64KB (per half-slice) N.A N.A
NVIDIA Discrete GPU Tesla M2050 575 MHz 8 8x48KB 16KB 768KB
AMD CPU A10-5800K 1.4 GHz 4 (HT) N.A. 16KB 32MB
AMD Integrated GPU Radeon HD 7660 800 MHz 6 6x32KB N.A 4MB

Table 3. Hardware architectures

The MRIQ benchmark from the Parboil benchmark suite [7] computes a
Q matrix. The Q matrix represents the scanner configuration used in a 3D
magnetic resonance image reconstruction algorithm in non-Cartesian space. The
MRIQ code has been converted to SOA layout by hand.

Table 2 shows the different meta-data files used for each benchmark. Since
the default layout is SOA, there is no need of a meta file. All OpenCL kernels,
glue code, and different layouts for each of these applications were generated
from a HC array-based implementation.

Table 3 lists the hardware architectures used in our evaluation. We use a
variety of CPU and GPU systems with differing memory hierarchies in order to
demonstrate the benefit of our data layout transformation. The compiler used for
the sequential versions of each application GCC 4.4.6 (with the flags -g -O2). All
OpenCL kernels were compiled with their default optimizations enabled. Intel
GPU tests were run using the 2013 Release of the Intel OpenCL SDK [3]. Intel
CPU tests were performed using 2011 Release of Intel OpenCL SDK, v1.5 [3].
NVIDIA GPU tests were performed using NVIDIA SDK v5.0 [5]. AMD GPU
and GPU tests were performed using AMD APP SDK v2.8 [1].

4.2 CPU and GPU Performance

Figure 5 contains results for all the benchmarks. We compare relative execution
time for array and struct data layouts on different CPU and GPU platforms.
For a given architecture, we normalize every layout with respect to the fastest
executing layout. In this case, smaller bars imply better performance. Ev-
ery column is stacked in 2 levels. The bottom level represents the fraction of
total execution time spent on the kernel. This information is retrieved from the
OpenCL API. The top stack represents the fraction of total execution time for
the remaining execution. This includes communication and OpenCL initializa-
tion overheads. The top stack is negligible for Intel GPU because of its integrated
GPU and shared memory architecture. As a result, there is no copying overhead.
NVIDIA GPU and AMD architectures show copying overheads. For many of the
graphs, the AMD GPU exhibits a large amount of overhead. On further inspec-
tion, we discovered that the time between OpenCL kernels being submitted to

8 Authors Suppressed Due to Excessive Length

the AMD GPU and being executed by the AMD GPU was significant and ac-
counted for most of this overhead. This could be an implementation error in
AMD’s OpenCL implementation.

For the N-Body benchmark, we see that the SOA and AOS versions perform
similarly on the CPU. Since the number of fields are less, all the loads in an
iteration fit into the cache and consecutive iterations do not incur any penalty.
The array layout performs better on GPUs because array layout helps in memory
coalescing.

For the Seismic kernel, the SOA layout shows better performance on AMD
CPU, whereas the AOS layout is better on Intel CPU. This can be attributed to
the difference in cache associativity and sizes between AMD and Intel. On the
GPU side, array performs well on all 3 GPU hardwares as expected.

The SRAD kernel shows improved performance for the AOS layout relative
to the SOA layout for all the architectures. Surprisingly even on the GPU the
struct layout performs better than the array layout. This is contrary to GPU
best practices. The memory access functions in the SRAD kernel are non-affine
and irregular. It is difficult for a compiler or programmer to analyze and deter-
mine the right layout. Our framework enables rapid prototyping and testing of
different layouts for performance on multiple architectures.

For the MRIQ benchmark, the NVIDIA GPU performs slightly better on the
struct layout. For the other architectures, MRIQ exhibits little or no variation
across layouts. This is because MRIQ has only 5 fields. For the CPU, if the
number of fields loaded are small, then the layout does not make much difference.
On the GPU side, the total size of the data was too small to make any real
difference.

The medical image benchmark shows some interesting properties for different
layouts. The AOS layout is better on the CPU whereas the SOA layout is better
on the GPU. Medical image kernel is similar to a 3D Jacobi (stencil) compu-
tation. The stencil computation is performed separately on three input buffers
and the results are written into corresponding output buffers. Keeping the input
buffers in a single struct is helpful for the CPU. This is because when you load
a point for one of the stencil, you automatically load the points for the other 2
stencils (multiple points fit in a cache line). The array layout would have caused
3 loads for the same point, one in each of the three stencils. On the GPU side,
the array layout is better as expected.

Best practices generally dictate the use of array data layouts on GPUs due
to improved coalescence of global memory accesses. However, our SRAD and
MRIQ results contradict this knowledge. Our metadata framework enables rapid
prototyping and optimization of different data layouts, allowing tuning experts
to rapidly discover optimal layouts for complex and irregular applications. For
the CPU the layout often depends upon the kernel features and memory access
patterns. Our programming model can easily port such applications to different
architectures.

5 Related Work

Recently, data layouts have been studied in the context of GPUs. DL [20] uses
a mapping function and runtime library support to enable architecture spe-
cific data layouts. DL does in-place data marshaling on the GPU. Like DL,

Compiler-Driven Data Layout Transformation for Heterogeneous Platforms 9

0"

1"

2"

3"

4"

5"

6"

7"

8"

AMD"CPU" INTEL"CPU" AMD"GPU" INTEL"GPU" NVIDIA"GPU"

No
rm

al
ize

d+
Ex
ec
u0

on
+T
im

e+

Data+Layouts,+grouped+by+Processor+

Overhead" AOS1" AOS" SOA"

(a) NBody

27.1%

0"

1"

2"

3"

4"

5"

6"

AMD"CPU" INTEL"CPU" AMD"GPU" INTEL"GPU" NVIDIA"GPU"

No
rm

al
ize

d%
Ex
ec
u4

on
%T
im

e%

Data%Layouts,%grouped%by%Processor%

Overhead" AOS1" AOS" SOA"

0"

0.5"

1"

1.5"

2"

2.5"

AMD"CPU" INTEL"CPU" AMD"GPU" INTEL"GPU" NVIDIA"GPU"

No
rm

al
ize

d+
Ex
ec
u0

on
+Ti
m
e+

Data+Layouts,+grouped+by+Processor+

Overhead" AOS" SOA"

(b) Seismic

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

AMD"CPU" INTEL"CPU" AMD"GPU" INTEL"GPU" NVIDIA"GPU"

No
rm

ali
ze
d+
Ex
ec
u0

on
+Ti
m
e+

Data+Layouts,+grouped+by+Processor+

Overhead" AOS" SOA"

(c) MRIQ

(d) SRAD

0"

1"

2"

3"

4"

5"

6"

AMD"CPU" INTEL"CPU" AMD"GPU" INTEL"GPU" NVIDIA"GPU"

No
rm

al
ize

d+
Ex
ec
u0

on
+Ti
m
e+

Data+Layouts,+grouped+by+Processor+

Overhead" AOS1" AOS" SOA"

(e) Medical Image

Fig. 5. GPU, CPU performance relative to the best layout (Lower the better). The
darker bars show results for kernel execution time. The light bar shows results for
communication and OpenCL initialization overhead.

Dymaxion [10] proposes a set of index mapping functions which are used to op-
timize memory mappings, with data marshaling done on the CPU side. Sung et.
al. [19] used techniques similar to DL to perform data layout transformations
for structured grid applications. Their compiler automatically changes the order
of n-dimensional array references to maximize memory access coalescing. With
the help of micro-benchmarks, low latency strides and an optimal index map
are discovered. This technique requires manual host code changes. The main
disadvantage of the techniques listed in this paragraph is that the overhead of
runtime data marshaling can eliminate or reduce the performance benefits of
optimal data layouts. Our compiler based approach does not incur this added
overhead. The above runtime-based techniques are also either restricted to a
class of applications (such as grid applications) or require manual changes by
the programmer. Our compiler-based approach does not require any manual
coding.

Ren et. al. [8] introduce an interpreter-based SIMDization mechanism that
can parallelize the sequential programs that traverse on irregular data structures
(e.g., binary decision tree and regular expression matching). To reduce mem-
ory latency, they chose different compacting policies based on layout including
depth-first, breadth-first, and level-by-level. These policies improve memory ac-
cess latencies for the irregular data structures. Compared to their work, our
meta-data framework is not tied to any specific applications and that it can be
easily extended to support the above data-layouts.

Liu et al [16] describe an automatic layout transformation that first divides
arrays into blocks and then maps them to processing units with minimal overlap.
Their approach does not perform any AOS to SOA transformation.

6 Conclusions

We present a compiler-driven data layout transformation that is applicable to
any data parallel parallel for programming model. The data layout transforma-

10 Authors Suppressed Due to Excessive Length

tion uses a “meta-file” approach which enables the same source code to be com-
piled with different layouts without involving the programmer worrying about
it. Our experimental results show significant benefits from this approach and
demonstrates that the best data layout for a given program can be different for
CPU vs. GPU execution. With the growing users of GPUs in mainstream com-
puting, it is important to have a tool like ours to understand the performance
debugging. In future, we would like to develop a general heuristic to automati-
cally perform data layout transformation that works across all platforms.

References

1. Amd app sdk v2.8. http://developer.amd.com/tools/
heterogeneous-computing/amd-accelerated-parallel-processing-app-sdk.

2. Habanero-c. https://wiki.rice.edu/confluence/display/HABANERO/
Habanero-C.

3. Intel opencl sdk. http://software.intel.com/en-us/vcsource/tools/
opencl-sdk.

4. Intel thread building blocks. http://threadingbuildingblocks.org/.
5. Nvidia sdk. https://developer.nvidia.com.
6. Openacc. http://www.openacc-standard.org.
7. Parboil benchmark suite. http://impact.crhc.illinois.edu/parboil.aspx.
8. SIMD Parallelization of Applications that Traverse Irregular Data Structures. IEEE

Computer Society, 2013.
9. Chatterjee et al. Integrating asynchronous task parallelism with mpi. IPDPS’13.

10. Che et al. Dymaxion: optimizing memory access patterns for heterogeneous sys-
tems. SC ’11, pages 13:1–13:11, New York, NY, USA, 2011. ACM.

11. Che et al. Rodinia: A benchmark suite for heterogeneous computing. ISWC’09,
pages 44–54, Oct 2009.

12. Microsoft Corporation. C++ accelerated massive parallelism specification. http:
//msdn.microsoft.com/en-us/library/vstudio/hh265136.aspx.

13. Dave Cunningham, Rajesh Bordawekar, and Vijay Saraswat. Gpu programming in
a high level language: compiling x10 to cuda. X10 ’11, pages 8:1–8:10, New York,
NY, USA, 2011. ACM.

14. Dubach et al. Compiling a high-level language for gpus: (via language support for
architectures and compilers). PLDI ’12, pages 1–12, NY, USA, 2012. ACM.

15. Center for Domain Specific Computing. Cdsc research applications.
16. Liu et al. Data layout optimization for gpgpu architectures. PPoPP ’13, pages

283–284, NY, USA, 2013. ACM.
17. LLNL. Rose compiler infrastructure. http://rosecompiler.org/.
18. Rodinia Benchmark Suite. Srad wiki page.
19. Sung et al. Data layout transformation exploiting memory-level parallelism in

structured grid many-core applications. PACT ’10, pages 513–522, New York, NY,
USA, 2010. ACM.

20. I-Jui Sung, G.D. Liu, and W.-M.W. Hwu. Dl: A data layout transformation system
for heterogeneous computing. InPar’12, pages 1–11, May.

21. Didem Unat, Xing Cai, and Scott B. Baden. Mint: realizing cuda performance
in 3d stencil methods with annotated c. ICS ’11, pages 214–224, New York, NY,
USA, 2011. ACM.

22. Cave Vincent, Zhao Jisheng, Shirako Jun, and Sarkar Vivek. Habanero-java: the
new adventures of old x10. PPPJ’11, 2011.

23. Wu et al. Complexity analysis and algorithm design for reorganizing data to
minimize non-coalesced memory accesses on gpu. PPoPP ’13, pages 57–68, New
York, NY, USA, 2013. ACM.

