Compiling and Optimizing Java 8 Programs for GPU Execution

Kazuaki Ishizaki
IBM Research - Tokyo
kiszk@acm.org

Akihiro Hayashi
Rice University
ahayashi@rice.edu

Abstract—GPUs can enable significant performance im-
provements for certain classes of data parallel applications
and are widely used in recent computer systems. However,
GPU execution currently requires explicit low-level operations
such as 1) managing memory allocations and transfers between
the host system and the GPU, 2) writing GPU kernels in a
low-level programming model such as CUDA or OpenCL, and
3) optimizing the kernels by utilizing appropriate memory
types on the GPU. Because of this complexity, in many
cases, only expert programmers can exploit the computational
capabilities of GPUs through the CUDA/OpenCL languages.
This is unfortunate since a large number of programmers use
high-level languages, such as Java, due to their advantages of
productivity, safety, and platform portability, but would still
like to exploit the performance benefits of GPUs. Thus, one
challenging problem is how to utilize GPUs while allowing
programmers to continue to benefit from the productivity
advantages of languages like Java.

This paper presents a just-in-time (JIT) compiler that can
generate and optimize GPU code from a pure Java program
written using lambda expressions with the new parallel streams
APIs in Java 8. These APIs allow Java programmers to express
data parallelism at a higher level than threads and tasks.
Our approach translates lambda expressions with parallel
streams APIs in Java 8 into GPU code and automatically
generates runtime calls that handle the low-level operations
mentioned above. Additionally, our optimization techniques
1) allocate and align the starting address of the Java array
body in the GPUs with the memory transaction boundary
to increase memory bandwidth, 2) utilize read-only cache for
array accesses to increase memory efficiency in GPUs, and
3) eliminate redundant data transfer between the host and
the GPU. The compiler also performs loop versioning for
eliminating redundant exception checks and for supporting
virtual method invocations within GPU kernels. These features
and optimizations are supported and automatically performed
by a JIT compiler that is built on top of a production version
of the IBM Java 8 runtime environment.

Our experimental results on an NVIDIA Tesla GPU show
significant performance improvements over sequential execu-
tion (127.9 x geometric mean) and parallel execution (3.3
x geometric mean) for eight Java 8 benchmark programs
running on a 160-thread POWERS machine. This paper also
includes an in-depth analysis of GPU execution to show the
impact of our optimization techniques by selectively disabling
each optimization. Our experimental results show a geometric-
mean speed-up of 1.15 x in the GPU kernel over state-of-the-
art approaches. Overall, our JIT compiler can improve the
performance of Java 8 programs by automatically leveraging
the computational capability of GPUs.

Keywords-JIT compiler, GPU, Java 8, Parallel streams

Gita Koblents
IBM Canada
koblents @ ca.ibm.com

Vivek Sarkar
Rice University
vsarkar@rice.edu

I. INTRODUCTION

The Java language has become increasingly popular over
the last two decades because of the productivity advan-
tages of managed runtime, which includes type safety,
polymorphism, garbage collection, platform portability, and
precise exception semantics. A just-in-time (JIT) compiler
plays an important role in achieving significant performance
improvements across multiple platforms while maintaining
these productivity advantages.

Graphics processing units (GPUs) are an increasingly
popular means of achieving high performance in recent
computer systems. However, current programming models,
such as CUDA [25] and OpenCL [19], are not easy for
non-expert programmers to use since they require one to
explicitly write and optimize low-level operations to manage
memory allocations on the GPU, transfer data between the
host system and the GPU, and use appropriate memory
types in the GPU kernel such as read-only cache and shared
memory. Another programming model, OpenACC [28], has
recently been used for GPU application development. In this
model, the programmer inserts directives or annotations that
direct the compiler to generate these low-level operations
automatically on the basis of its analysis of directives
specified by programmers. However, they are only accessible
from C/C++ and FORTRAN.

Our research is motivated by the fact that there have only
been a few studies on using pure Java to generate GPU code.
Since GPUs can perform the same instruction on different
data in parallel, we believe the newly introduced Java 8
parallel streams APIs [29] are suitable for expressing such
parallelism in a high level and machine independent manner.
With our approach, a JIT compiler translates parallel loops
written in Java 8 parallel streams APIs into GPU code, and
automatically generates low-level operations for GPU execu-
tion. In addition, we transparently perform optimizations to
exploit the computation capabilities of GPUs. In cases when
a GPU is not available on some platform, the parallel streams
code is executed on a fork/join thread pool as a conventional
implementation does. Therefore, portability across different
platforms is maintained.

This paper describes the first JIT compiler that compiles
and optimizes parallel streams APIs for GPU execution
while supporting Java language features such as precise

‘Work Target Java T How to Write GPU Memory Communication
Language ‘ Excp. ‘ Comp. ‘ GPU Kernel Optimization Optimization
JCUDA [36] Java X X CUDA Manual Manual
Lime [5] Lime X v Override map/reduce operators | OpenCL Memory Not described
JaBEE [37] Java X v Override run method X X
Aparapi [1] Java X v Override run method / Lambda X X
Hadoop-CL [9] Java X v Override map/reduce method X X
RootBeer[33] Java v v Override run method X Not Described
[22] Java Vv v Java for-loop X Not Described
HJ-OpenCL [11], [12] | Habanero-Java v X forall construct X v
Our work Java v v Parallel Stream API ROCache / Align v

Table 1
SUMMARY OF WORK ON USING JVM-COMPATIBLE LANGUAGES TO GENERATE GPU cobE

exception semantics and virtual method invocations. Our
compiler is implemented on top of the IBM Testarossa JIT
compiler [8] in IBM SDK Java Technology Edition, Version
8 [14]. This paper also introduces four new optimizations
for high performance that do not require the user to insert
directives or annotations. In particular, the JIT compiler
automatically performs memory optimizations to reduce
the number of memory transactions and to increase cache
utilization in GPUs [23]. It also eliminates redundant data
transfer between the host and GPU [16], [17]. To support
Java language features, it performs loop versioning [2] for
speculative exception checks [22] and for supporting virtual
method calls within GPU kernels [10].

We conducted experiments that ran eight benchmark pro-
grams on a NVIDIA Tesla GPU, in which our JIT compiler
showed significant performance improvements over sequen-
tial and parallel versions of a 160-thread POWERS machine.
Our compiler also outperformed Aparapi [1] and performed
comparably to hand-written CUDA programs.

To the best of our knowledge, no previous study has
compiled and optimized Java 8 parallel streams APIs. Some
studies [1], [11], [12], [22], [33] have devised optimizations
for loop versioning and communication elimination, and we
have used them for compiling programs written purely in
Java, along with devising new optimizations to achieve high
performance while maintaining the safety and portability of
these programs.

To summarize, this paper makes the following contribu-
tions.

« Supporting Java language features such as precise
exception checks and virtual method calls in GPU
execution (see Section IV).

« Implementing performance optimizations that are trans-
parently enabled without the user’s assistance (see
Section V), by

- Aligning the starting address of a Java array on
a GPU with a memory transaction boundary (see
Section V-A)

- Utilizing read-only cache for array accesses (see
Section V-B)

- Optimizing data transfers for a partial region of an

array (see Section V-C)

- Eliminating exception checks by loop versioning,
which is an extension of previous work (see Sec-
tion V-D)

« Offering detailed performance evaluations (see Section
Vi),

- Showing performance improvements of up to
2067.7 x (geometric mean of 127.9 Xx) relative
to sequential execution, and performance improve-
ments up to 32.8 X (geometric mean of 3.3 X) rela-
tive to parallel execution for eight Java benchmark
programs on a 160-thread POWERS machine (see
Section VI-A).

- Evaluating the effectiveness of improvements by
selectively disabling the individual optimizations
described in Section V (see Sections VI-B).

- Showing a 1.15 X geometric mean performance
improvements relative to Aparapi [1] (see Section
VI-C). Aparapi is the current state-of-the-art ap-
proach for generating GPU code from Java, but
it does not support language features like precise
exception semantics and virtual method calls, as in
our approach.

- Showing that our approach comes within 83%
(geometric mean) of performance of hand-written
CUDA code while maintaining Java’s precise ex-
ception semantics (see Section VI-D).

II. MotIvaTION

Java 8 offers more opportunities for parallel programming
than previous editions have supported. Our work is moti-
vated by the fact that the Java 8 parallel streams API pro-
vides a good starting point for enabling portable execution of
parallel kernels across a wide range of platforms including
multi-core CPUs and many-core GPUs.

Table 1 compares ours and previous studies on using
Java-compatible languages to generate GPU code. All prior
approaches provide an external compiler / class libraries to
increase programmability so that programmers do not need
to write low-level operations for GPU execution. In contrast,
one of our goals is to compile pure Java programs for GPU

JIT compiler

Existing

1
Java 4'9| Bytecode |'R| || parallel streams
bytecode ! |translation optimizations

identification in IR

1
1
i IR for
1
\

Analysis and
parallel streams|_optimization

N : GPU
Target machine i Host i NVIDIA GPU
code generation 1~ native code | native code
NVVM E A
1
1

NVVM R | IR / : 7: (Runimehelpers -PTXZbinary
>4 X libnvvm
generation | PTX module

Figure 1.

execution without any extensions, and we believe that the
new Java 8 parallel streams API is promising way to achieve
it. In Java 8, data parallelism can be expressed as parallel
streams API with lambda expressions as follow:

IntStream.range(low, up).parallel().forEach(i -> <lambda>)

This API iterates a lambda expression containing a lambda
parameter (i) and lambda body ({(lambda)) in parallel within
the range of low < i < up, where i is a lambda parameter, up
is an upper exclusion limit and low is a lower inclusion limit.
It is worth noting that the OpenJDK Sumatra project [34],
which is not publicly available as of this writing, also tries
to utilize this API. Section VI-C will discuss the difference
between our approach and Aparapi with lambda expressions.
Aparapi also uses lambda expressions to generate GPU code.

Kernel and communication optimizations are very impor-
tant for GPU execution [16], [17], [23]. However, these
optimizations are limited in many of the cases shown in
Table I (see the GPU Memory Optimization and Commu-
nication Optimization columns). For example, many of the
prior approaches copy arrays back from GPUs even if they
were not updated on the GPUs. Our approach handles such
case, and makes use of additional data transfer optimizations
as far as possible. For kernel execution, we propose new
optimization techniques that align and allocate the starting
address of a Java array body in GPU memory with the mem-
ory transaction boundary to increase memory bandwidth in
GPUs and that utilize read-only cache for array accesses to
increase memory efficiency in GPUs (See Section V).

Preserving Java exceptions is also an important challenge
because programmers want and would expect to be able
to do standard Java programming even with GPUs. This
issue has been ignored in some of the previous studies;
by contrast, our approach handles Java’s precise exception
semantics with GPUs.

In summary, our work combines some of the previous
contributions but also devises several new optimization tech-
niques for GPUs. A detailed discussion on the differences
between ours and the previous implementations can be found
in Section VIL

JIT compiler overview

III. OveErVIEW
A. Structure of the JIT compiler

Our JIT compiler for GPUs is built on top of the produc-
tion version of the IBM Java 8 runtime environment [14]
that consists of the J9 virtual machine and Testarossa JIT
compiler [8]. The Java runtime environment determines the
method to be compiled on the basis of runtime profiling in-
formation. Figure 1 shows an overview of our JIT compiler.
First, the compiler transforms Java bytecode of the com-
pilation target method into an intermediate representation
(IR), and then applies numerous advanced optimizations. It
does so by using the existing optimization modules that were
originally designed for CPUs, such as dead code elimination,
copy propagation, and partial redundancy elimination.

Next, the JIT compiler looks for a call to the
java.util.Stream.IntStream. forEach() method with
parallel(). If it identifies the method call, the IR for a
lambda expression in forEach() is extracted together with
a pair of lower and upper bounds. After this identification,
it transforms this parallel forEach into a regular loop in
the IR. We will refer to this parallel forEach as a parallel
loop in the following. Then, the compiler analyzes the IR,
and applies optimizations to it. The optimized IR consists
of two parts. One is translated into an NVVM IR [26]
to be executed on the GPU. The other part is translated
into a host binary, which includes calls to CUDA driver
APIs to allocate memory to GPUs, transfer data between
the host and the GPU, call a GPU binary translator with
PTX instructions [27]. This allows Java programmers to
avoid explicitly writing low-level operations. At runtime,
the host binary calls a CUDA Driver API to compile PTX
instructions into a NVIDIA GPU’s binary, after which the
GPU binary will be executed.

We chose to generate PTX instructions through NVVM
IR, which is tightly coupled with the NVIDIA GPU, to
enable aggressive GPU-aware optimizations, although we
could have easily generated GPU code through OpenCL
SPIR [20] instead.

B. Supporting Java constructs

Our compiler can currently generate GPU code from the
following two styles of inner most parallel streams code to
express data parallelism. Supporting nested parallel streams
will be a subject of our future work.

Listing 1. An example program

1 class Par {
float bar(float f, int r) { return f * (1000 / (r - 7)); }
void foo(float[] a, float[] b, float[] c, int n, Par p) {
IntStream.range(0, n).parallel().forEach(i -> {
b[i] = p.bar(al[i], n);
c[il = b[i];

R I ST

IntStream.range(low, up).parallel().forEach(i -> <lambda>)
IntStream.rangeClosed(low, up).parallel().forEach(i -> <lambda>)

The function rangeClosed(low, up) generates a se-
quence within the range of low < i < up, where i is a
lambda parameter, up is an upper inclusion limit and low
is a lower inclusion limit. {lambda) refers to a valid Java
lambda body with a lambda parameter i whose input is the
above sequence of integer values. The following constructs
are supported in (lambda):

« types: all of the Java primitive types

« variables: local, parameters, and instance variables
and one-dimensional arrays of primitive types whose
references are loop invariant

. expressions: all of the Java expressions for primitive
types

« statements: all of the Java statements except the
throw and try-catch-finally, synchronized,
interface and JNI method calls, and other aggregate
operations of the streams such as reduce()

« exceptions: ArrayIndexOutOfBoundsException,
NullPointerException, and Arithmetic
Exception (only division by zero)

Even though our compiler only supports one-dimensional
arrays, programmers can still use multi-dimensional arrays
by calculating an index of each dimension themselves.
Although object creations such as new are not supported,
most computation-intensive applications can be executed
under this restriction. This is because they would avoid
allocating objects in parallel streams code in order to achieve
high performance.

An extended version of IBM Java 8 runtime supports
machine-learning-based performance heuristics for runtime
CPU/GPU selection for a given parallel streams code [13].
However, we disabled this feature in order to focus on our
study on compilation and optimization.

Listing 1 contains a running example program that we
will refer to throughout this paper.

IV. How TO SUPPORT EXCEPTION CHECKS, VIRTUAL METHOD
CALLS, AND ARRAY ALIASING

This section describes how we addressed the technical
challenges posed by Java language features in the context
of GPUs. The first challenge is how to support exception
checks on GPUs to ensure the safety of Java programs. The
second one is how to support virtual method calls that are
frequently used in Java programs. The last challenge is how

to handle array aliasing among lexically different variables
that hold the same array reference.

A. Exception checks

The Java specification [7] states that all Java exceptions
must be thrown precisely: all effects of the statements and
expressions executed prior to the exception must appear
to have taken place. For lambda expressions in parallel
streams API, exceptions thrown by all iterations concurrently
should be thrown out of the lambda expression. The order
of exceptions in each iteration must still be precise.

To preserve these exception semantics even on a GPU,
our compiler embeds exception checking code into the GPU
code. A program execution falls back to the original parallel
streams code that is executed on the CPU when exceptions
occurs during GPU execution. During execution of the
original parallel streams code, an exception will occur while
correctly maintaining all of the side effects such as updating
global variables. However, this approach may not always
be efficient, since executing exception checks on a GPU
may add some overhead. Beyond this approach, Section V
will describe how applying loop versioning helps to remove
redundant exception checks on GPUs [12].

B. Virtual method calls

It is important to support virtual method calls within a
lambda expression used in parallel streams APIs since virtual
calls are frequently used in Java programs.

A native implementation of a virtual method call requires
a receiver object to identify the target method. Performing
a dynamic dispatch on a GPU [37] requires transferring
a receiver object together with a virtual method table to
the GPU. This transfer is considerably more complex than
transferring a Java array of a primitive type. This is because
it requires an address translation of pointers in the receiver
object and a virtual table to be sent from the CPU to the
GPU.

To avoid this overhead, our compiler applies either direct
or guarded devirtualization. Direct devirtualization replaces
a virtual method call with a non-virtual method call if the
receiver of the call is loop invariant, and can be uniquely
identified at JIT-compile time. If a loop-invariant guard
is required, a target method is chosen based on runtime
profiling [4]. Then, our compiler moves the guard out of
the parallel loop by loop versioning [2]. We generate two
versions of code consisting of 1) the optimized parallel loop
with a non-virtual call that does not access the receiver
object and 2) the original parallel streams code with the
original virtual call. Since the guarded code is a conditional
branch, the branch taken goes to the optimized parallel loop
and the branch not taken goes to the original parallel streams
code.

Our JIT compiler applies method inlining to the devirtual-
ized method call in the optimized parallel loop. As a result,

Listing 2. Pseudo code for versioned loops to support a virtual method

[

2 float bar(float f, int r) { return f * (1000 / (r - 7)); }
3 void foo(float[] a, float[] b, float[] c, int n, Par p) {
4 // precheck before executing a parallel loop

5 if (isNonOverridden(p, Par.bar())) {

6 // an optimized parallel loop with inlined code for GPU
7 IntStream.range(0, n).parallel().forEach(i -> {

8 b[i] = a[i] * (1000 / (n - 7)); // inlined Par.bar()

9 c[il = b[i];

10 I3H

11 } else {

12 // the original parallel streams code for CPU

13 IntStream.range(0, n).parallel().forEach(i -> {

14 b[i] = p.bar(al[il, n); // with a virtual method call
15 c[i] = b[i];

16 b;

17}

an optimized parallel loop does not require transferring
a receiver object and a virtual table to the GPU, and is
executed on the GPU. Since previous work [15] revealed
that more than 70% of virtual calls are monomorphic and
inline code would be executed in many cases, this approach
is quite effective in practice..

Listing 2 shows the pseudocode obtained after applying
guarded devirtualization, method inlining, loop versioning
to the virtual method call p.bar() in Listing 1. The
guard isNonOverridden(obj, method) checks whether
the method in the obj is overridden in the class hierarchy.
If this check ensures that the method Par.bar is not over-
ridden, the inline code is executed on the GPU. Otherwise,
the original parallel streams code is executed on the CPU.

C. Array aliasing

Array aliasing may occur among lexically different vari-
ables that hold references to the same array. It is not easy
to detect this situation by using only static analysis. If a
runtime system cannot recognize array aliasing, an allocation
unit on the GPU memory that corresponds to the Java array
is allocated as many times as there are variables holding
a reference to that array. Therefore, it may happen that
the same Java array is represented by different allocation
units in different parts of the program which will either
cause incorrect results, or require runtime overhead to merge
the results (e.g., by using Array SSA form [21]). Our
implementation handles array aliasing by using a runtime
approach [30]. This approach ensures that one Java array
corresponds to a single GPU allocation unit. We check
whether any pair of Java arrays to be transferred to a GPU
alias each other at runtime. If an alias is detected, aliased
array shared the same GPU allocation unit. This is especially
convenient for Java arrays, since (unlike C arrays) it is not
possible to create an array alias in Java that starts in the
middle of another array.

V. JIT ComPILER OPTIMIZATIONS

This section describes several optimizations that we im-
plemented in our JIT compiler in support of GPU execution.
These optimizations are automatically applied without the

programmer having to make decisions such as when to insert
annotations or directives. The following are the optimiza-
tions performed by our compiler:

1) aligning the starting address of the Java array body in
GPU memory with the memory transaction boundary,
which avoids overfetching due to misaligned accesses.

2) utilizing read-only cache, which exploits data locality.

3) optimizing data transfers, which can reduce the
amount of data transferred between the host and the
GPU.

4) eliminating redundant exception checks on GPUs by
using loop versioning.

Items 1 and 2 represent new optimizations that are specific
to GPU execution. Item 3 combines a new GPU optimization
with existing CPU optimiations. Item 4 is an extension of
an existing CPU optimization.

A. Aligning the starting address of a Java array body in
GPU memory with a memory transaction boundary

Global memory access in GPUs is done at a granularity
of 32 consecutive threads called a warp. In a case where 32
consecutive global memory locations are accessed by a warp
and the starting address is aligned, these memory accesses
are coalesced into a single memory transaction. This in-
creases memory bandwidth utilization in GPUs and leads to
higher performance. In the Tesla K40m GPU, the granularity
of a memory access transaction to a global memory is 128
bytes, when a L2 cache miss happens. For example, 32
consecutive 4-byte accesses are coalesced and use 100% of
the bus if the starting address is aligned. Otherwise, multiple
memory transactions may overfetch redundant words due to
misaligned accesses.

Arrays in managed languages such as Java and Python
have small (typically 8-16 bytes) headers in front of the
actual data regions, e.g., objects or arrays. We devised a new
object alignment strategy that aligns the starting address of
an array body with a memory transaction boundary bacause
the array’s body is generally accessed more frequently than
its header. For each array in a parallel loop, our compiler 1)
calculates a range of read and write elements, 2) identifies
an element with the minimum array index, and 3) aligns the
address of the element with a memory transaction boundary.
In practice, the first element of the array would be aligned
with a memory transaction boundary. Since GPU memory
allocation routines such as cudaMalloc always return a 128-
byte aligned address, we use the address in GPU memory
access instructions with an address offset . The offset is
calculated as 128 —((hS ize + minldx) mod 128), where hS ize
is the size of the array header in bytes and minldx is the
size of the elements in bytes, which is identified by 2). This
is different from previous alignment strategies work [33],
[34] that allocate and transfer an array for Java to GPU
memory by aligning its header with the memory access

Address of a GPU memory

0 128 256 384 512
Previous L - |
alignment ‘ £[0]-£[31] | £[32]-£[63]} £[64]-£[95]
strategy A I I I

Object header

Our — | |
alignment £101-£[31] | £132]-£[63]} £[64]1-£[95]
strategy i T
Figure 2. Comparison of previous and our object alignment strategies.

The type of the array f[] is float

boundary. The previous strategies would have thus more
memory transactions compared with ours. Figure 2 compares
the memory layouts. While the existing strategy generates
two memory transactions for accessing f[0]-f[31] in a
warp, our approach generates only one memory transaction
for these accesses.

B. Utilizing read-only cache

A read-only cache is not coherent enough with other
memory accesses to shorten memory latency within a
streaming multiprocessors extreme (SMX). A runtime sys-
tem must ensure that nothing is written into an array that is
placed into read-only cache.

Our approach combines static analysis and dynamic analy-
sis to ensure that there is no data that may be written. Static
analysis is used for detecting possibly read-only arrays in
parallel streams. This can be done by inspecting ILs and
searching arrays not having write access. Our JIT compiler
then generates a guard conditions that checks if possibly
read-only arrays are definitely read-only by including run-
time alias checking code. Thus, it generates two versions
of code that consist of a parallel loop with and without
read-only cache (See Listing 3). The current implementation
executes the latter code on the CPU to reduce the size
of GPU code. Algorithm 1 presents a pseudocode of the
isUseROC function that performs the dynamic analysis.
allocInfo contains information about an object regarding
the pointer such as the access types of the object. If lines
6 or 7 in Algorithm 1 detect an alias between a read-only
array and an array to be written to, the code that does not
use the read-only cache will be executed to ensure correct
results. If no alias is detected between a read-only array and
an array to be written, the code that uses the read-only cache
will be executed in order to reduce the number of memory
transactions to the global memory. This process is similar
to that of preserving alias relations in GPU memory [17].
In addition, our algorithm takes in account access type
associated with each pointer. It checks whether there is an
alias between pointers with different access types.

C. Optimizing data transfers

Data transfers between the host system and GPUs incurs
significant communication overheads due to the limited data

Algorithm 1: isUseROC(ptr, isReadOnly, isWrite)

input : prr: An address that holds a pointer to a Java array
input : isReadOnly: Is the array ptr read-only?
input : isWrite: Has the array ptr been updated?
output: whether the code that uses ROC can be executed
info « getAllocInfo(allocInfo, ptr),
setAllocInfo(allocInfo, ptr,isReadOnly,isWrite);
if info == NULL then

| return true
end
bl « (info.isReadOnly N isWrite);
b2 « (info.isWrite A isReadOnly);
return —(b1 Vv b2);

-0 T N7 T O OISR

Listing 3. Pseudo code for versioned loops to utilize read-only cache

1 void foo(float[] a, float[] b, float[] c, int n, Par p) {
2 if (isNonOverridden(p.bar)) {

3 if (isUselLoc(a, T, F) & isUseLoc(b, F, T) &&

4 isUseloc(c, F, T)) {

5 // ensure: (a !=b) and (b != ¢c) and (c != a)

6 // optimized parallel loop w/ read-only cache for GPU
7 IntStream.range(0, n).parallel().forEach(i -> {

8 // _al] means to load thru read-only cache

9 b[i] = _a[i] * (1000 / (n - 7));
10 c[i] = b[i];

11 I3H

12 } else {

13 // the loop without read-only cache

16 } else { ... } // the original parallel streams code
17 // with a virtual method call

transfer rate through PCI-Express Gen 3. To alleviate this
overhead, our JIT compiler performs two types of optimiza-
tions for reducing unnecessary data transfers.

One optimization is to try and transfer part of an array
rather than the entire array. Specifically, a read set of an
array reference on the right hand side or a write set of
an array reference on the left hand side can be transferred.
The current CUDA runtime supports transfers of contiguous
regions, and our compiler enables this optimization when
the read set or the write set is a contiguous region. The
exemple array access targeted by our optimization has the
form, x[i+b], where i is a loop induction variable and
b is loop invariant. This optimization can reduce the data
transfer overhead compared with the previous work [30] that
transfers the whole array.

The other is to eliminate data transfers from the GPU
to the CPU if an array is read-only on the GPU. If our
JIT compiler detects a lexical read-only array in lambda
expressions with parallel streams, the JIT compiler lets a
runtime helper know a data transfer for this array may be
eliminated. At runtime, if the runtime helper recognizes
that the lexical read-only array does not alias with any
of the other arrays to be written, it eliminates the data
transfer regarding the read-only array from the GPU to
CPU. Otherwise, the transfer is performed. Note that this
elimination of data transfers for read-only arrays is supported
in previous implementations [17], [30] for C, C++, and X10.

Listing 4. Pseudo code for versioned loops to eliminate exception checks

1 void foo(float[] a, float[] b, float[] c, int n, Par p) {
2 if (isNonOverridden(t.bar)) {

3 if (isUseRoc(a,true,false) && isUseRoc(b,false,true) &&
4 isUseRoc(c, false,true)) {

5 // pre-exception checks

6 if (a!=null & b!=null && c!=null && // nullpointer

7 0 <= a.length &% a.length < n && // array bound

8 0 <= b.length & b.length < n &&

9 0 <= c.length & c.length < n &&

10 (n-7) !'= 0} // division by zero

11 // optimized GPU parallel loop w/o exception checks
12 IntStream.range(0, n).parallel().forEach(i -> {

13 // _a[] means to load thru read-only cache

14 b[i] = _a[i] * (1000 / (n-7));// no exception check
15 c[i] = b[i]; // no exception check

16 s

17 } else {

18 // original parallel streams code executed on CPU
19 ... // with exception check

20 }

21 } else { ... } // loop without read-only cache

22 }else { ... } // original parallel streams code on CPU
23 }

D. Eliminating exception checks in a parallel loop

Our JIT compiler currently supports three exceptions dur-
ing GPU execution, i.e., NullPointerException, Arith
meticException (division by zero), and ArrayIndex
OutOfBoundsException, in lambda expressions with paral-
lel streams. These possible exceptions pose two performance
issues. One is increasing the path length of instruction in a
parallel loop by inserting exception checks. The other is the
introduction of control dependences between every pair of
exceptions. To alleviate these issues, it is important to reduce
the number of exception checks in lambda expressions with
parallel streams. Our JIT compiler creates an optimized
safe region that cannot throw any exception by using loop
versioning [2].

To eliminate checks for NullPointerException or
ArithmeticException in a parallel loop, the compiler
generates checks with a loop invariant variable to ensure
an array reference is non-null or a divisor is not zero. For
an optimized parallel loop, these checks are speculatively
executed on the CPU. Moreover, to eliminate checks for
ArrayIndexOutOfBoundsException in a parallel loop, the
compiler generates checks with a loop induction variable to
ensure that the array index expression is within the array
length. Similarly, these checks are speculatively executed on
the CPU. Our JIT compiler supports array accesses of the
form x[a*i+b], where i is a loop induction variable, and
a and b are loop invariant. This loop versioning can also be
applied to a for loop in a lambda expression. In this case,
checks are speculatively executed before executing the for
loop on the GPU.

Listing 4 shows the pseudocode after applying
loop versioning to the running example in Listing 1.
Pre-exception checks code are used to check the
conditions of three kinds of exceptions before executing
the optimized parallel loop. One is to check whether an
array reference is non-null in line 6. The other is to
check whether an index is within a range of an array length

Listing 5. NVVM IR corresponds to lines 14 and 15 in Listing 4

1 define void @foo(i8* %p®, i8* %pl, i8* %p2, ...) {
// eliminated any exception checks in this method
// by the optimization in Section V-D

%p0®.hdrptr = getelementptr inbounds i8* %p®, i32 112
store i8* %p®.hdrptr i8** %p@®.addr, align 8
%pl.addr = alloca i8%, align 8
9 %pl.hdrptr = getelementptr inbounds i8* %pl, i32 112
10 store i8* %p2.hdrptr, i8** %pl.addr, align %78
11 %p2.addr = alloca i8%, align 8
12 %p2.hdrptr = getelementptr inbounds i8* %p2, i32 112
13 store i8% %p2.hdrptr, i8** %p2.addr, align 8

2
3
4
5 %p0®.addr = alloca i8%, align 8
6
7
8

15 %7 = load i8** %pl.addr, align 8
16 %8 = load i32* %aS5.addr, align 4 // i = ...
17 %9 = sext 132 %8 to i64

18 %10 = mul i64 %9, 4
19 %11 = add i64 %10, 16
20 %12 = getelementptr inbounds i8* %7, i64 %11// &b[i]

22 %13 = load i32* %p3.addr, align 4 // n = ...

23 %14 = add i32 %13, -7

24 %15 = sdiv 132 1000, %14

25 %16 = sitofp 132 %15 to float // (1000 / (n-7))

27 %17 = load i8** %p®.addr, align 8

28 %18 = getelementptr inbounds i8* %17, i64 %11 // &a[i]
29 %19 = bitcast i8* %18 to float addrspace(l)*

30 // ... = a[i] thru read-only cache

31 %20 = tail call float @llvm.nvvm.ldg.global.f.f32.p1£32
32 (float addrspace(l)* %19),

34 %21 = fmul float %16, %20

35 %22 = bitcast i8* %12 to float *

36 store float %21, float * %22, align 4 // b[i] = ...
37 %23 = load i8** %p2.addr, align 8

38 %24 = getelementptr inbounds i8* %23, i64 %11 // &c[i]
39 %25 = bitcast i8* %24 to float *

4 store float %21, float * %25, align 4 // c[i] = ...

// for alignment optimization in Section V-A
// for read-only cache optimization in Section V-B

in lines 7-9. The last one is to check whether a divisor
is non-zero in line 10. If any of these conditions is not
satisfied, the original parallel streams code is executed on
the CPU. Since there may be several unoptimized loops
after applying the optimizations, these loops can be grouped
into one or a few loops to reduce the size of the generated
code. For example, an unoptimized loop executed on a
CPU can handle all of the unoptimized loops in the else
clauses.

The same approach is used to eliminate checks for
NullPointerException and ArrayIndexOutOfBounds
Exception in a loop [22]. This paper also applies loop
versioning to ArithmeticException. Unlike the previous
work [22], our approach, which combines native exception
checks described in Section IV-A and optimistic loop ver-
sioning, can ensure precise exception semantics even if loop
versioning cannot be applied. Our experiments in Section
VI also reveal that eliminating exception checks encourages
optimizations, such as loop unrolling, in a low-level compiler
for GPUs.

Listings 5 shows the NVVM IR corresponding to a GPU
kernel on lines 14 and 15 in Listings 4. In the NVVM IR,
there is no conditional branch since loop versioning moves
all of the exception checks out of the parallel loop and they
are executed on the CPU. Instructions to add an offset to a

register in lines 6, 9, 12, and 19 adjust the starting address
of the Java array and are generated by the optimization in
Section V-A. The load instruction in lines 31-32 obtains a
float element from the read-only cache, which is generated
by the optimization in Section V-B.

VI. PERFORMANCE EVALUATION

This section presents the results of an experimental evalu-
ation of our JIT compiler on an IBM POWERS and NVIDIA
Tesla GPU platform with the Ubuntu 14.10 operating sys-
tem and CUDA 5.5. The platform has two 10-core IBM
POWERS CPUs (3.69GHz with 256GB of RAM). Each core
is capable of running eight SMT threads, resulting in 160
threads per platform. The NVIDIA K40m GPU with 2880
CUDA cores operating at 876MHz with 12GB of global
memory is connected to the POWERS by using PCI-Express
Gen 3. The error-correcting code (ECC) feature was turned
off in the experiment. The L1 cache of the GPU was only
used for local working sets such as register spill areas.

The eight benchmarks shown in Table II were used in
the experiments. Each benchmark was tested in a parallel
Java version and a sequential Java version. The parallel Java
version employed parallel streams with lambda expressions
to mark parallel loops which could be run either on the CPU
using the Java fork/join framework or on GPU devices. The
appendix shows the code style that illustrates array access
patterns, based on the lambda parameter, for each of the
benchmark programs. In the sequential Java version, the
parallel streams were replaced by sequential Java for-loops.

The parallel Java version was executed on two different
configurations:

o 160 worker threads : Executed in the Java fork/join
framework on the Java Virtual Machine (JVM) running
on the CPUs; the number of threads was not specified
explicitly, which means that the maximum available
worker threads were used by default (160 threads on
this platform).

« GPU : Executed on GPUs using the proposed code
generation and runtime (1024 CUDA threads per block
were assigned).

Performance was measured in terms of elapsed nanosec-
onds from the start of one or two parallel streams to
the completion of all iterations of those loops in each
benchmark program. (see the Appendix for details.) The Java
system call System.nanoTime() was used. This measurement
included the overhead of fork/join for parallel Java. For
GPU execution, it included any overhead from CUDA Driver
API calls such as GPU memory allocation and data transfer
between the host and the GPU. For each configuration,
each benchmark was executed 30 times in a single JVM
invocation, and the average execution time of the last ten
executions was reported as a steady-state execution time.

optimizations instructions per | execution time
iteration of inner | of the GPU
most loop kernel

ALL without LV 31 36.6ms

ALL without unrolling || 18 23.8ms

ALL 17 20.1ms
Table III

INSTRUCTIONS AND EXECUTION TIME OF MM

A. Performance improvements over sequential Java

Figure 3 shows a maximum speedup numbers with 95%
confidence interval error bars relative to the sequential Java
version. The results show a speedup of up to 81.4 X for
the 160 worker threads (fork/join) case for SpMM, and
a maximum speedup of 2067.7 on the GPU for Series.
However, SpMM and Gesummyv both demonstrated higher
speedups on the CPU than the GPU due to large data transfer
overheads. These overheads are expected to be lower on
future hardware platforms due to enhancements such as
NVlink and unified memory. Overall, the results show a
geometric mean performance improvement of 127.9 for GPU
execution relative to the sequential Java version, and of 3.3
(geometric mean) relative to the parallel CPU version on
160 hardware threads (fork/join).

B. Breakdown for GPU Optimizations

This section analyzes the GPU execution to show the
impact of the four optimizations described in Section V.
In the following, loop versioning is referred to as LV, data
transfer optimization is referred to as DT, buffer alignment
optimization is referred to as ALIGN, and read-only cache
array utilization is referred to as ROC. BASE is a baseline
and ALL denotes BASE plus all optimizations (=BASE + LV
+ DT + ALIGN + ROC). Figure 4 illustrates the impact of
each optimization. Each bar consists of the host-to-device
data transfer time (H2D), kernel execution time (Kernel),
and device-to-host time (D2H). These bars are normalized
to the sum of the H2D, Kernel, and D2H times ! with
ALL optimizations, which is the right-most bar for each
benchmark.

For BlackScholes, ALL shows a 153.7% performance
improvement compared with BASE. This benchmark par-
ticularly benefits from DT since one array is not updated
(D2H optimization) and two arrays are written but not read
on the GPU (H2D optimization), resulting in a 55.3% DT
performance improvement. For Crypt, ALL shows a 147.0%
performance improvement compared with BASE. DT shortens
D2H data transfers by 97.2%. ALIGN degrades kernel perfor-
mance by 6.3% due to non-coalesced array accesses but ROC
eventually shows a 50.3% kernel performance improvements

'We don’t include other overheads such as device initialization because
these overheads are relatively much smaller than the H2D, Kernel, and D2H
times.

[Benchmark | Summary [Data Size | Data Type |
Blackscholes | Financial application which calculates the price of European put and call options 4,194,304 virtual options double
Crypt Cryptographic application from the Java Grande Benchmarks [18] Size C with N= 50,000,000 byte
SpMM Sparse matrix multiplication from the Java Grande Benchmarks [18] Size C with N = 500,000 double
Series Series from the Java Grande Benchmarks [18] Size C with N = 1,000,000 double
MRIQ Three-dimensional medical benchmark from Parboil [31], ported to Java large size(64x64x64) float
MM A standard dense matrix multiplication: C = A.B 1,024x1,024 double
Gemm Matrix multiplication: C = @.A.B + 8.C from PolyBench [32], ported to Java 1,024x1,024 int
Gesummv Scalar, Vector and Matrix Multiplication from PolyBench [32], ported to Java 4,096x4,096 int
Table II
DETAILS ON THE BENCHMARKS USED TO EVALUATE THE PROPOSED JIT COMPILER
10000.0 _ —
g 160 worker threads (fork/join) @ GPU @ Higher is better
E 2067.7 1623.5
< —_—
£ 1000.0
@ 268.3 LAY
g3 127.9
281000 .. .589 oy ost657 631l 578/l sos]||f 562]
' 32,6 40.8 45. i : i 38.2
£=
2
s 100)
] N
@ 1.4
Q.
v
1-0 T — T - T T T T ' [m]
BlackScholes Crypt SpMM Series MRIQ MM Gemm Gesummv Geometric
Mean
Figure 3. Performance improvements over sequential Java on IBM POWERS8 + NVIDIA Tesla GPU
235
<3 H2D R D2H @Kernel]
° 3
hid ¥ Lower is better
°25 B
N
® 2.0
£ = N
515 B § \
g1.0 SISIN % §
E NEA BN NN
05 N AR il v
S 2 7 7 7 7
5 0.0 A A WA A) W A 44 : i : . A 2 P A = A A A
5 0.
o u>PZGW>FZGW>PZGN>PZGN>FZGN>FZO Ce >z
g 2178937789027V 2087780381T78028773¢ eZT¥73
+<(|| +<|| +<t|| +<|| +<t|| +<|| 1] +<t
1 + + i + 1+ n + n + 1 +]
+ = = + = + = + = + = + = +
- - - - - - -
<< << << << << << <<
BlackScholes Crypt SpMM Series MRIQ MM Gemm Gesummv

Figure 4. Performance breakdown for GPU execution. Each bar is normalized to the right-most bar (ALL) for each benchmark.

| Blacksholes | Crypt | SpMM [Series | MRIQ | MM [Gemm | Gesummv | Geometric Mean |

[Expansion ratio of GPU binary size |

0.93

[088 |

1.00

[096 |

130 [147 |

130 |

110 |

1.10

Table

v

EFFECT OF APPLYING LOOP VERSIONING (LLOOP VERSIONING INCREASES CODE SIZE IF RATIO IS MORE THAN 1.00)

NN

=ROC)

ALL(+

\ [Blacksholes | Crypt [SpMM [Series | MRIQ | MM | Gemm [Gesummv | Geometric Mean |
Our Kernel time 2.0 msec 13.4 msec | 4.6 msec | 415.2 msec | 44.6 msec | 19.0 msec | 17.6 msec | 6.4 msec -
Aparapi Kernel time 2.3 msec 19.9 msec | 2.0 msec Fails 53.6 msec | 28.3 msec | 20.2 msec | 11.3 msec -
CUDA Kernel time 1.7 msec 20.2 msec | 3.4 msec | 380.6 msec | 5.1 msec 8.5 msec | 20.9 msec | 22.2 msec
[speedup over Aparapi | 1.15x [149 [043x | - [120x [148 [Ll4x [L77x | 1.15x \
| speedup over CUDA | 0.85x | 151x | 074x [092x | OdIx | 045x | L19x [347x | 0.81x \
Table V

PERFORMANCE IMPROVEMENTS OVER APARAPI AND CUDA cODE

over +=ALIGN. For SpMM, ALL shows a 152.8% perfor-
mance improvement compared with BASE. A 581% D2H
data transfer speed up is achieved by DT. Like Crypt, ALIGN
degrades kernel performance by 20.0% due to indirect array
accesses but this degradation is canceled by ROC. For Series,
GPU performance is bounded by the kernel computation
but the kernel does not benefit from the optimizations due
to there being fewer operations on arrays. Performance for
MRIQ is also bounded by the kernel computation. LV,
ALIGN, and ROC improve kernel performance by 27.6%,
2.5%, and 6.6%, respectively, and thus ALL shows a 164.8%
performance improvement over BASE. Similarly, for MM,
LV, ALIGN, and ROC improve kernel performance by 98.7%,
20.3%, and 26.7%, respectively; This is in addition to
the 161.1% H2D performance improvement by DT (i.e.,
a 280% performance improvement in total). Gemm also
benefits from the optimizations. Performance improvements
numbers include 192.2% for LV, 5.1% for ALIGN, 15.9%
for ROC, and the overall performance improvement had by
ALL is 326.4%. For Gesummyv, DT eliminates a significant
number of redundant D2H data transfers (i.e., a 4500%
D2H performance improvement), and ROC shows a 349%
kernel performance improvement, resulting in a 301.4%
performance improvement for ALL compared with BASE.

We also investigated how LV contributes to performance
improvements. Here, we will focus on MM. Table III shows
the instructions per iteration and kernel execution time of
the three optimizations. Since ALL without LV includes
exception checks in the loop, its execution is slow. ALL is the
fastest, since it has no exception checks. The PTX2binary
module applied loop unrolling to the generated instructions
once in the inner most loop. This loop unrolling yielded a
15.5% performance improvement, compared with the ver-
sion disabling loop rolling. In general, loop versioning can
be applied when the original loop body is small. Thus, LV is
effective at exploiting additional optimization opportunities
by reducing the number of instructions in a loop.

We also examined the effect of applying loop versioning in
terms of the expansion ratio of the binary size of program on
the GPU. Table IV compares the GPU binary sizes with and
without applying loop versioning. While the binary sizes of
some programs are increased by loop versioning, the binary
size of other programs are reduced by it.

For those applications that have no inner loop such as
Blackscholes, Crypt, and Series (see Listing. 6 in the
appendix for more details), most of the exception checking
code are moved out of the parallel loop in their CPU binaries
and their GPU binaries do not contain the original parallel
loop as shown in Listing. 4. That is why the ratio of
code expansion is less than 1.00. In contrast, the ratio may
exceed 1.00 when an application has an inner loop (e.g.
MRIQ, MM, Gemm, and Gesummv) since loop versioning
generates a dual version of code consisting of the original
code and the optimized code for each inner loop in their

GPU binary. Note that loop versioning is not applied to
SpMM.

C. Comparison with the state-of-the-art approach

Aparapi is a state-of-the-art approach which uses Java
8 lambda expressions to generate GPU code by compil-
ing Java bytecode to OpenCL code (see Section II). The
experiment hence assessed the performance of the lambda
branch of Aparapi? and our JIT compiler. It used exactly the
same lambda expression, but for Aparapi, a parallel region
was specified by Device.firstGPU(length, i ->{...}D;
instead of the standard Java 8 IntStream.range(start,
end) .parallel().forEach(i ->{..}D;.

Unfortunately, OpenCL is not supported in the POWERS
platform. Thus, the Aparapi version was executed on an Intel
Core i7-4820K CPU at 3.70GHz and K40c GPU. The K40c
GPU is exactly the same as K40m but has a cooling system.
We used the Oracle Java SE Development Kit 8 (1.8.0 40)
on the Ubuntu 14.04 operating system. For fair comparison,
we used simply the elapsed time for the kernel execution
because the data transfer time depends on the host OS and
CPUs.

Table V shows the execution times and performance
improvement of the JIT compiler relative to Aparapi on 7
benchmarks.> Each benchmark was executed 30 times in
a single JVM invocation and we took the average kernel
execution time of the last ten executions as the steady-
state kernel execution time. Kernel execution times were
measured as follows:

« For the JIT compiler, the kernel time was computed
by using the C gettimeofday function to measure
the elapsed time for the CUDA cuLaunchKernel and
cudaDeviceSynchronize APIs.

o For Aparapi, the kernel time was measured by using
the OpenCL clGetEventProfilingInfo function to
get information on when clEnqueueNDRangeKernel
commands actually began execution and when they
completed execution.

Table V show that the JIT compiler generally faster
than Aparapi. For SpMM, the performance difference is
caused by a loop unrolling factor for an important loop
than ran until PTX was generated. Aparapi itself does not
aggresively optimize kernel and the optimization is delegated
to the OpenCL compiler, which narrows the compiler’s
scope of optimizations due to the lack of information for
the whole program. On the other hand, our JIT compiler
could perform several optimizations on IRs from the Java
bytecode and applied several of the NVIDIA GPU-aware
optimizations discussed in Section V. In addition, Aparapi
does not optimize data transfers as it would incur large data
transfer overheads.

2To the best of our knowledge, Aparapi-1.0.0 in github has no Java 8
lambda support.
3 Aparapi failed to compile JGF-Series.

D. Comparison with hand-written code

This section compares the hand-written CUDA programs
and GPU code generated by our JIT compiler. We executed
the versions of BlackScholes and MM that are in the
CUDA SDK samples [24], Gemm and Gesummv from
PolyBench [32], MRIQ from Parboil [31], and Crypt,
SpMM, and Series implemented in [36].

We used the default optimization option level (-03) of
nvcc to compile these CUDA programs. Table V shows
the execution times and the relative performance of the
JIT compiler in relation to the hand-written code. Each
benchmark is executed 30 times and we computed the
average kernel execution time of the last ten executions.

In the case of SpMM, the JIT compiler was slower than
the hand-written CUDA code since it could not eliminate
exception checks and the CUDA code does not perform
exception checks. The CUDA version of BlackScholes
chooses 128 CUDA threads per block while the JIT compiler
always uses 1024 CUDA threads per block. On Crypt,
Gemm, and Gesummv, the JIT compiler outperformed
CUDA code, since the optimization of utilizing the read-
only cache array contributed to a performance improvement.
However, this was not the case with MRIQ and MM, due
to the lack of GPU-aware optimizations including —use-fast-
math for float values and the lack of the use of shared
memory in our JIT compiler. The code generated by the
JIT compiler performed additional operations for preserving
Java’s exception semantics while the hand-written CUDA
code did not perform any exception checking operations on
the GPUs.

VII. RELATED WORK
A. GPU code generation from JVM-compatible languages

GPU code generation is supported by several JVM-
compatible language compilation systems.

Automatic parallelization of Java programs for GPUs
would be an ideal goal. However, it has been widely
recognized that auto-parallelization faces obstacles such as
aliasing. A previous study [22] addressed these issues but
some restrictions still remain. For automatic parallelization,
an appropriate device selection (e.g. CPU or GPU) is also an
important issue even if we recognize that the given loop can
be parallelized. There are a few studies [13], [22] including
our work that address this issue.

Many previous studies support explicit parallel program-
ming by programmers. JCUDA [36] allows programmers to
write Java codes that call user-written CUDA kernels with
a special interface. The JCUDA compiler generates the JNI
glue code between the JVM and CUDA runtime by using
this interface. Some studies provide Java-based explicit GPU
parallel programming models with GPU-specific class li-
braries. JaBEE [37], RootBeer [33], and Aparapi [1] compile
Java bytecode to either CUDA or OpenCL code by including

a code region within a method declared inside a specific class
/ interface (e.g. run() method of the Kernel class / interface).
While these approaches provide impressive support for ex-
ecuting Java programs on GPUs, the programming model
lacks portability and significantly decreases programmability
relative to the Java 8§ parallel steam APIs.

To increase programmability, other studies provide higher-
level abstraction of GPU programming. Hadoop-CL [9]
is built on top of Aparapi and adds OpenCL generation
into the Hadoop system. Lime [5] is a JVM compatible
language with Java extensions that express map/reduce op-
erations. HJ-OpenCL [11], [12] generates OpenCL from
Habanero-Java language, which provides high-level lan-
guage constructs such as parallel loop (forall), barrier
synchronization (next), and high-level multi-dimensional
array (ArrayView). One study [6] provides a high level
array programming model built on top of the Java 8 parallel
streams APIL.

Overall, these approaches rely on external compilers or
class libraries and some of them have no support for Java
exception semantics. Our approach, however, supports the
Java 8 language.

B. Kernel / Communication Optimizations

Lime [5] tries to use several types of OpenCL memory. It
does so by utilizing Lime’s strongly typed system without
sophisticated data dependence analysis or alias analysis.
However, their approach does not support pure Java pro-
grams.

Pluto [3] and PPCG [35] are polyhedral compilation
frameworks that particularly improve locality through loop
tiling for imperfectly nested loops in C programs with GPU’s
shared memory utilization. These approaches generally as-
sume that there is no aliasing in a region enclosed by a
specific directive.

Some studies try to minimize data transfer overheads
with dynamic analysis. X10CUDA+AMM [30] maintains
coherence between the host memory and GPU memory
at the granularity of a whole array and tries to elimi-
nate redundant data transfers between CPUs and GPUs.
CGCM [17] and DyManD [16] inspect user-written CUDA
kernels and C/C++ host code and insert run-time library
calls which track data usage throughout program execution
at the granularity of an allocation unit (e.g. a memory region
allocated by malloc). Unlike these approaches, ours supports
partial array copying with static analysis.

C. Precise Exception Semantics

To the best of knowledge, only a few approaches maintain
Java’s exception semantics on GPUs.

One previous study [22] checks for NullPointer
Exception and ArrayIndexOutOfBoundsException be-
fore executing GPU loop to ensure no exception occurs
during GPU execution [2]. However, it cannot handle

ArithmeticException; nor can it deal with a case where
an array subscript is non-affine or not loop invariant (e.g.
indirect access in SpMM).

RootBeer [33] runs checking for NullPointer
Exception and ArrayIndexOutOfBoundsException
during GPU execution. This approach, however, may add
non-trivial overheads in a case where exception checking
code can be moved out of the GPU loop as we discussed
in Section VL

HJ-OpenCL [11], [12] offers two exclusive modes to
maintain Java’s exception semantics on GPUs. One is that
programmers can specify conditions which ensure no ex-
ception will be thrown during GPU execution with the safe
language construct; thereby, the construct is used for manual
loop versioning and exception checking is done by CPUs
before GPU execution, like in [22]. Another way is specula-
tive exception checking. HJ-OpenCL’s runtime speculatively
executes OpenCL kernels without exception checking on
GPUs in parallel while executing automatically generated
special code intended for exception checking on CPUs.
Unlike HJ-OpenCL, our approach uses both static [11],
[22] and dynamic [12], [33] approaches in order to move
exception checking code out of GPU loop to avoid dynamic
overheads.

VIII. CoNcLusION

This paper described the first JIT compiler that compiles
and optimizes parallel streams APIs for GPUs implemented
on top of a production Java 8 runtime system. The JIT com-
piler approach facilitates ease of programming, safety, and
platform portability on a GPU. It supports precise exception
and virtual method calls in lambda expressions with parallel
streams. It also automatically optimizes lambda expressions
by aligning the body of the Java array on the GPU with
the memory transaction boundary, by utilizing the read-only
cache for array accesses, and by eliminating unnecessary
data transfers between the host and the GPU. In addition,
it also performs loop versioning to reduce the number of
exception checks in GPU code. Most of these optimizations
are already integrated into the IBM SDK Java Technology
Edition, Version 8. Our JIT compiler outperforms sequential
and parallel executions of the original Java 8 programs by
127.9 x and 3.3 X geometric mean speedups, showed a
1.15 x geometric mean speed up over the state-of-the-art
approach (Aparapi), and performed comparably to hand-
written CUDA programs.

APPENDIX

Listing 6 shows the code style that illustrates array access
patterns, based on the lambda parameter, for each of the
benchmark programs.

Listing 6. Code style of benchmark programs

//BlackScholes
IntStream.range(0, N).parallel().forEach(i -> {

c[1] o
plil = ...;
13N

//Crypt
IntStream.range(®, N / 8).parallel().forEach(idx -> {
i=idx * 8;
.= t1[i]; = t1[i+7];

2041 = .ei eae; t2[E47] = ..o;

//SpMM
IntStream.range(®, N).parallel().forEach(id -> {
int rbegin = row[id], rend = row[id+1];
for (int i = 0; i < rend - rbegin; i++) {
for (int j = 0; j < inter; j++) {
S += ...

}

}
y[id] = s;
13N

//Series
IntStream.range(1l, 2*N).parallel().forEach(i -> {

testArray[i]= ...;

//MRIQ
IntStream.range(®, K).parallel().forEach(i -> {
. = phiR[i] ... phiI[i];
phiMag[i] = ...
I>H
IntStream.range(0, X).parallel().forEach(i -> {
for (int j = 0; j < K; j++) {
cooo= (kx[3] * x[i] + ky[j] * y[i] + kz[j] * z[i]);
_ = phiMag[j];

Qr[i] e
Qifil = ...
I>H

//MM
IntStream.range(0,N*N) .parallel().forEach(idx - >{
int i = idx / N, j = idx % N;
for (int k = 0; k < ROWS; k++) {
s += b[i*N+k] * c[k*N+j];

af[idx] = s;

I>H

//Gemm
IntStream.range(0, N*N).parallel().forEach(idx -> {
int i = idx / N, j = idx % ROWS;
C[idx] *= beta;
for (int k = 0; k < ROWS; k++) {
Clidx] += A[i*N+k] * B[k*N+j] ...;

}
13N

//Gesummv

IntStream.range(0, N).parallel().forEach(i -> {
t[i] = 0; y[i]l = 0;
for (int j = 0; j < ROWS; j++) {

t[i] = A[i*N+j] * ... + t[i];
}Y[i] = BLi*N+j] * ... + y[il;
y[il = t[i] ... + y[i]l ...;

ACKNOWLEDGMENTS

Part of this research is supported by the IBM Centre
for Advanced Studies. We thank Marcel Mitran for his
encouragement and support in pursuing the parallel streams
API and lambda approach, and thank Jimmy Kwa for his
extensive contribution to the implementation. We also thank
Max Grossman for providing us the CUDA programs used
as part of the evaluation. Finally, we would like to thank
the anonymous reviewers for their helpful comments and
suggestions.

(1]

(2]

(3]

(4]

(3]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

Aparapi. API for Data Parallel Java. http://code.google.com/
p/aparapi/.

P. V. Artigas, M. Gupta, S. P. Midkiff, and J. E. Moreira.
Automatic Loop Transformations and Parallelization for Java.
ICS 00, pages 1-10, 2000.

M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ra-
manujam, A. Rountev, and P. Sadayappan. A Compiler
Framework for Optimization of Affine Loop Nests for GPG-
PUs. ICS 08, pages 225-234, 2008.

B. Calder and D. Grunwald. Reducing Indirect Function Call
Overhead in C++ Programs. POPL 94, pages 397—408, 1994.

C. Dubach, P. Cheng, R. Rabbah, D. F. Bacon, and S. J. Fink.
Compiling a high-level language for GPUs: (via language
support for architectures and compilers). PLDI ’12, pages
1-12, 2012.

J. J. Fumero, M. Steuwer, and C. Dubach. A Composable
Array Function Interface for Heterogeneous Computing in
Java. ARRAY ’14, pages 44:44-44:49, 2014.

J. Gosling, B. Joy, G. L. Steele, G. Bracha, and A. Buck-
ley. The Java Language Specification, Java SE 8 Edition.
Addison-Wesley Professional, 2014.

N. Greevski, A. Kielstra, K. Stoodley, M. Stoodley, and
V. Sundaresan. Java Just-in-time Compiler and Virtual Ma-
chine Improvements for Server and Middleware Applications.
VM ’04, pages 151-162, 2004.

M. Grossman, M. Breternitz, and V. Sarkar. HadoopCL:
MapReduce on Distributed Heterogeneous Platforms Through
Seamless Integration of Hadoop and OpenCL. IPDPSW ’13,
pages 1918-1927, 2013.

M. Grossman, S. Imam, and S. Vivek. Hjlib-cl: Reducing the
gap between the jvm and accelerators. PPPJ *15. 2015.

A. Hayashi, M. Grossman, J. Zhao, J. Shirako, and V. Sarkar.
Accelerating Habanero-Java Programs with OpenCL Genera-
tion. PPPJ 13, pages 124-134, 2013.

A. Hayashi, M. Grossman, J. Zhao, J. Shirako, and V. Sarkar.
Speculative execution of parallel programs with precise ex-
ception semantics on gpus. LCPC ’13, pages 342-356. 2014.
A. Hayashi, K. Ishizaki, G. Koblents, and S. Vivek. Machine-
learning-based performance heuristics for runtime cpu/gpu
selection. PPPJ *15. 2015.

IBM Corporation. IBM SDK, Java Technology Edition,
Version 8. http://www.ibm.com/developerworks/java/jdk/.

K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and
T. Nakatani. A Study of Devirtualization Techniques for a
Java Just-In-Time Compiler. OOPSLA 00, pages 294-310,
2000.

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

(371

T. B. Jablin, J. A. Jablin, P. Prabhu, F. Liu, and D. I. August.
Dynamically managed data for CPU-GPU architectures. CGO
’12, 2012.

T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R.
Beard, and D. I. August. Automatic CPU-GPU Communica-
tion Management and Optimization. PLDI ’11, pages 142—
151, 2011.

JGF. The Java Grande Forum benchmark suite. http://www.
epcc.ed.ac.uk/javagrande/javag.html.

KHRONOS GROUP. OpenCL 2.1 Provisional API Specifica-
tion, Version 2.1, 2013. https://www.khronos.org/registry/cl/.
Khronos Group. SPIR SPECIFICATION 1.2, 2014. https:
//www.khronos.org/registry/spir/specs/spir _spec-1.2.pdf.

K. Knobe and V. Sarkar. Array SSA form and its use in
Parallelization. POPL 98, 1998.

A. Leung, O. Lhotdk, and G. Lashari. Automatic paralleliza-
tion for graphics processing units. PPPJ ’09, pages 91-100,
2009.

P. Micikevicius. Performance optimization.
http://on-demand.gputechconf.com/gtc/2013/presentations/
S3466-Programming-Guidelines-GPU- Architecture.pdf.
NVIDIA Corporation. CUDA Samples, 2013. http://docs.
nvidia.com/cuda/cuda-samples;/.

NVIDIA Corporation. CUDA C PROGRAMMING GUIDE
7.0, 2014. http://docs.nvidia.com/cuda/pdf/CUDA C _
Programming Guide.pdf.

NVIDIA Corporation. NVVM IR SPECIFICATION
1.1, 2014. http://docs.nvidia.com/cuda/pdf/NVVM IR
Specification.pdf.

NVIDIA Corporation. PARALLEL THREAD EXECUTION
ISA v4.1, 2014. http://docs.nvidia.com/cuda/pdf/ptx isa 4.
1.pdf.

OpenACC forum. The OpenACC Application Programming
Interface, Version 2.0, 2013. http://www.openacc.org/sites/
default/files/OpenACC.2.0a_ 1.pdf.

Oracle Corporation. The java tutorial. https://docs.oracle.
com/javase/tutorial/collections/streams/parallelism.html.

S. Pai, R. Govindarajan, and M. J. Thazhuthaveetil. Fast and
Efficient Automatic Memory Management for GPUs Using
Compiler-assisted Runtime Coherence Scheme. PACT ’12,
pages 33-42, 2012.

Parboil. Parboil benchmarks. http://impact.crhc.illinois.edu/
parboil.aspx.

PolyBench. The polyhedral benchmark suite. http://www.cse.
ohio-state.edu/~pouchet/software/polybench.

P. Pratt-Szeliga, J. Fawcett, and R. Welch. Rootbeer: Seam-
lessly Using GPUs from Java. HPCC-ICESS ’12, pages 375—
380, 2012.

Sumatra. Project Sumatra. http://openjdk.java.net/projects/
sumatra/.
S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gémez,

C. Tenllado, and F. Catthoor. Polyhedral Parallel Code
Generation for CUDA. ACM Trans. Archit. Code Optim.,
9(4):54:1-54:23, 2013.

Y. Yan, M. Grossman, and V. Sarkar. JCUDA: A Programmer-
Friendly Interface for Accelerating Java Programs with
CUDA. Euro-Par 09, pages 887-899, 2009.

W. Zaremba, Y. Lin, and V. Grover. JaBEE: Framework for
Object-oriented Java Bytecode Compilation and Execution on
Graphics Processor Units. GPGPU-5, pages 74-83, 2012.

