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Abstract:
OpenMP is a directive-based shared memory parallel programming model

and has been widely used for many years. From OpenMP 4.0 onwards, GPU
platforms are supported by extending OpenMP’s high-level parallel abstractions
with accelerator programming. This extension allows programmers to write GPU
programs in standard C/C++ or Fortran languages, without exposing too many
details of GPU architectures.

However, such high-level programming models generally impose additional
program optimizations on compilers and runtime systems. Otherwise, OpenMP
programs could be slower than fully hand-tuned and even naive implementations
with low-level programming models like CUDA. To study potential performance
improvements by compiling and optimizing high-level programs for GPU
execution, in this paper, we 1) evaluate a set of OpenMP benchmarks on
two NVIDIA Tesla GPUs (K80 and P100) and 2) conduct a comparable
performance analysis among hand-written CUDA and automatically-generated
GPU programs by the IBM XL and clang/LLVM compilers.
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1 Introduction

Graphics processing units (GPUs) can achieve significant performance and energy
efficiency for certain classes of applications, assuming sufficient tuning efforts by expert
programmers. A key challenge in GPU computing is the improvement of programmability:
reducing the programmers’ burden in writing low-level GPU programming languages
such as CUDA (NVIDIA 2017a) and OpenCL (KHRONOS GROUP 2015) without
sacrificing performance. This burden is mainly because programmers have to not only
1) develop efficient compute kernels using the single instruction multiple thread (SIMT)
model but also 2) manage memory allocation/deallocation on GPUs and data transfers
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between CPUs and GPUs by orchestrating low-level API calls. Additionally, performance
tuning with such low-level programming models is often device-specific, thereby reducing
performance portability. To improve software productivity and portability, a more
efficient approach would be to provide high-level abstractions of GPUs that hide GPUs’
architectural details while retaining sufficient information for optimizations and code
generation.

The OpenMP API (OpenMP 2015) is a de facto standard parallel programming
model for shared memory CPUs, supported on a wide range of SMP systems for many
years. The OpenMP model offers directive-based parallel programming for C/C++ or
Fortran, which successfully integrated bulk-synchronous SPMD parallelism including
barriers/parallel loops and asynchronous dynamic task parallelism. The newly introduced
OpenMP accelerator model is an extension to the standard OpenMP parallel programming
model and aims at not exposing too many details of underlying accelerator architectures
by providing a set of high-level device constructs. As for GPUs, the OpenMP target
constructs create a GPU environment and the distribute parallel for and parallel
for constructs are used for expressing the block-level and thread-level parallelism on
GPUs respectively. Additionally, the map clause enables data transfers between CPUs and
GPUs. We believe that these high-level abstractions by the OpenMP accelerator model
enable improved programmability and performance portability in current and future GPU
programming. As of this writing, development/beta versions of IBM XL C/C++/Fortran
and clang+LLVM compilers support the accelerator model on GPUs. Note that clang+

LLVM also supports Intel Xeon Phi.
However, aside from the improved programmability and performance portability,

mapping the high-level OpenMP programs to GPUs imposes technical challenges on
compiler optimizations and runtime execution models: generating highly-tuned code in
consideration of the GPUs’ architectural details such as two distinct levels of parallelism
(blocks and threads) and deep/diverse memory hierarchy. As an initial step to address
these challenges, we 1) evaluate a set of OpenMP programs with the target construct on
GPUs and then 2) analyze the results and generated code for exploring further optimization
opportunities.

To study potential performance improvements by compiling and optimizing high-level
GPU programs, this paper makes the following contributions:

• Performance evaluation of OpenMP benchmarks on NVIDIA Tesla K80 and P100
GPU platforms.

• Detailed performance analysis among hand-written CUDA and automatically
generated GPU programs by development/beta versions of the IBM XL C and clang+

LLVM compilers to explore future performance improvement opportunities.
Our key findings from the study are summarized as follows:

– The OpenMP versions are in some cases faster, in some cases slower than
straightforward CUDA implementations written even without complicated hand-
tuning.

– Additionally, results show that more work must be done for OpenMP-enabled
compilers and runtime systems to match the performance of highly-tuned CUDA
code for some cases examined. The possible compiler optimization strategies for
OpenMP programs are:

1. minimizing OpenMP runtime overheads on GPUs when possible.
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2. constructing a good data placement policy for the read-only cache and the
shared memory on GPUs.

3. improving code generation for each thread in GPUs (e.g., math function and
memory coalescing.).

4. performing high-level loop transformation (e.g. using the polyhedral
model (Shirako et al. 2017)).

Because our results and analyses can apply to both OpenMP 4.0 and 4.5 programs,
we don’t distinguish them. In the following, we refer to OpenMP 4.0 and 4.5 as OpenMP
unless otherwise indicated.

The paper is organized as follows. Section 2 provides background information on GPUs
and the OpenMP accelerator model. Section 3 shows an overview of clang+LLVM and
XL C compilers that compile OpenMP programs to GPUs. Section 4 presents an extensive
performance evaluation and analysis on two single-node platforms with GPUs. Section 5,
Section 6, and Section 7 summarize related work, conclusions, and future work.

2 The OpenMP Accelerator Model

2.1 GPUs

NVIDIA GPU architecture consists of global memory and an array of streaming
multiprocessors (SMXs). Each SMX comprises many single- and double- precision cores,
special function units, and load/store units to execute hundreds of threads concurrently. L1
cache, read-only cache, and shared memory are shared among these cores/units to improve
data locality within a single SMX. Also, global memory data requested from each SMX
are cached by L2 cache.

CUDA (NVIDIA 2017a) is a standard parallel programming model for NVIDIA GPUs.
In CUDA, kernels are C functions that will be executed on GPUs. A block is a group of
threads executed on the same SMX and is organized in a collection of blocks called a
grid that corresponds to a single kernel invocation. All blocks within a grid are indexed
as a 1- or 2-D array. Similarly, all threads within each block are indexed as 1-, 2-, or 3-
D array. While barrier synchronizations among threads in the same block are allowed,
no support exists for inter-block (global) barrier synchronizations. Instead, global barriers
can be simulated by separating the phases into separate kernel invocations. For memory
optimizations, the programmer and compiler must utilize registers and shared memory
for improving data locality. Also, it is important to note that global memory accesses for
adjacent memory locations are coalesced into a single memory transaction if consecutive
global memory locations are accessed by a number of consecutive threads (normally 32
threads, called warp) and the starting address is aligned. This is called memory access
coalescing and code transformations for improved coalescing can be performed by both
programmers and compilers.

2.2 OpenMP directives

The OpenMP accelerator model, which consists of a set of device constructs for
heterogeneous computing, was originally introduced in the OpenMP 4.0 specification. We
give a brief summary of the OpenMP device constructs used in this paper.
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1 // Combined Construct Version
2 #pragma omp target teams distribute parallel for \
3 map(from: C) map(to: B, A) \
4 num_teams(N/1024) thread_limit(1024) \
5 dist_schedule(static, distChunk) \
6 schedule (static, 1)
7 for (int i = 0; i < N; i++) {
8 C[i] = A[i] + B[i];
9 }

10 // Non-Combined Construct Version
11 #pragma omp target map(from: C) map(to: B, A)
12 #pragma omp teams num_teams(N/1024) \
13 thread_limit(1024)
14 #pragma omp distribute parallel for \
15 dist_schedule(static, distChunk) \
16 schedule (static, 1)
17 for (int i = 0; i < N; i++) {
18 C[i] = A[i] + B[i];
19 }

Listing 1: Vector Addition Example.

The target construct specifies the program region to be offloaded to a target device,
e.g., GPU grid. The map clause attached to the target construct maps variables to/from
the device data environment. The teams construct, which must be perfectly nested in a
target construct, creates a league of thread teams. The number of teams and the number of
threads per team are respectively specified by the num_teams and thread_limit clauses.
A thread team corresponds to a thread block on a GPU, and there is a master thread in each
team. The distribute construct is a device construct to be associated with loops, whose
iteration space is distributed across master threads of a teams construct. On the other hand,
the loops associated with the parallel for worksharing construct are distributed across
threads within a team.

These constructs can be specified as individual constructs, or can be compounded
as a single combined construct when they are immediately nested. Listing 1 shows
a vector addition kernel with both the combined and non-combined constructs. The
whole loop kernel is specified with the target construct and offloaded to a GPU.
According to the map clauses, arrays A, B, C are mapped to/from the GPU device
memory and the compiler generates required data transfers. The teams construct with
num_teams(N/1024) and thread_limit(1024) clauses creates a league of N/1024
teams each of which contains 1024 threads. As with the schedule clause attached on
for construct, the dist_schedule clause for the distribute construct allows users to
specify chunk size when distributing iterations across teams. In this example, the whole
N iterations are divided into chunks of distChunk iterations, and the iterations per chunk
are distributed across threads per team according to the schedule clause.

3 Compiling OpenMP to GPUs

This section describes a brief overview of the OpenMP compilers and their optimizations
and code generation used for performance evaluation in this paper.

3.1 Compilers

Figure 1 illustrates the compilation flow of the clang+LLVM and IBM XL C compilers.
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Figure 1: Compilation flow of clang+LLVM and XL compilers for C/C++ and
C/C++/Fortran respectively.

3.1.1 clang+LLVM Compiler

LLVM (Lattner & Adve 2004) is a widely used compiler infrastructure and clang is a C
language family front-end for LLVM. Clang first transforms OpenMP programs to LLVM’s
intermediate representation (LLVM IR) and then the LLVM compiler applies language-
and target-independent optimization passes to LLVM IR (LLVM.org 2017a).

As of this writing, a development version of clang (Bertolli et al. 2014, 2015, Antao
et al. 2016) for the CORAL systems (Department of Energy 2014) supports NVIDIA’s
GPU code generation from OpenMP’s target construct. First, the clang compiler outlines
GPU kernels specified by OpenMP target directives as separate LLVM functions
and the LLVM functions are fed into standard LLVM passes followed by the NVPTX
backend (LLVM.org 2017b) for PTX assembly (NVIDIA 2017e) code generation. Also,
the LLVM compiler generates CPU code that invokes CUDA API calls to perform memory
allocations/deallocations on GPUs, data transfers between CPUs and GPUs, and kernel
launches.

3.1.2 IBM XL Compiler

Our beta XL compiler for OpenMP CPU/GPU execution is built on top of a production
version of the IBM XL C/C++ and XL Fortran compilers. First, the compiler
front-end transforms OpenMP programs to Wcode, which is an IR used by IBM
compiler components. Then, the Toronto portable optimizer (TPO) performs high-level
optimizations over the Wcode in a language- and target-independent manner.

In the case where OpenMP target directives are found, the GPU partitioner partitions
the Wcode into CPU Wcode and GPU Wcode analogous to how the clang+LLVM outlines
kernels as functions. Finally, the POWER Low-level optimizer optimizes CPU Wcode
and generates a PowerPC binary including CUDA API calls for controlling GPUs. For
GPU code generation, one fundamental difference between the XL and the clang+LLVM
compilers is that GPU Wcode is translated into an NVVM IR (NVIDIA 2017d) in the XL
compiler, whereas the clang+LLVM compiler generates PTX directly. The NVVM IR is
eventually fed into libNVVM library to generate PTX assembly code (NVIDIA 2017e).
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1 #pragma omp target teams { // GPU region
2 // sequential region 1 executed
3 // by the master thread of each team
4 if (...) {
5 // parallel region 1
6 #pragma omp parallel for
7 for () {}
8 } else {
9 ...

10 }
11 }

Listing 2: OpenMP code that requires multiple execution modes on GPUs.

3.2 Running OpenMP programs on GPUs

This section describes how OpenMP ’s target construct is compiled and optimized for GPU
execution. We mainly focus on significant optimizations affecting performance as shown
in the performance results in Section 4.

3.2.1 OpenMP Threading Model on GPUs

In OpenMP specifications, target regions may include sequences of sequential, parallel,
and potentially nested parallel regions. Consider an example of the target directive shown
in Listing 2. First, the master thread of each team needs to execute the if-statement in
Line 4. Then, if the branch is taken, the program execution switches to the parallel region
(parallel for loop in Line 6-7) executed by threads within a team. In general, OpenMP
programs can switch back and forth between sequential and parallel regions, and thus
code generation for such program is generally challenging. As of this writing, a state
machine execution scheme (Bertolli et al. 2014, 2015) and master/slave worker execution
scheme (Antao et al. 2016) were proposed in prior work. A brief summary of these code
generation schemes is as follows:
State Machine Execution defines logical execution states of GPU execution such as
parallel and sequential regions, and state transitions occur dynamically. Listing 3 shows
an example of the state machine execution scheme. In Listing 3, SEQUENTIAL_REGION1
is a “team master only” state, where only the master of each team needs to execute
it (if (threadIdx.x != MASTER) in Line 5). If the branch in Line 7 is taken, the
execution switches to PARALLEL_REGION1, where the original omp parallel for loop
is executed by all threads within a team. This can increase register pressure and incur
performance penalties due to control-flow instructions. The detailed information on GPU
code generation with state transitions can be found in (Bertolli et al. 2014, 2015, Hayashi
et al. 2016).
Master/Worker Execution employs a similar execution scheme to the original OpenMP’s
fork/join execution model. In this model, the runtime distinguishes two logical types of
warps within a block - i.e. master and worker warps. The master warp is dedicated for serial
execution and activating worker warps when it encounters a parallel region. Worker warps
wait for work from the master warp on a specific barrier number (e.g., bar.sync 0) and
use different barrier numbers when synchronizations among parallel warps are required.
Listing 4 shows an example of the execution scheme. Advantages of this code generation
scheme are 1) it simplifies the code generation, 2) its register pressure is not as bad as
the state machine execution, and 3) it can support orphaned parallel directives in extern
functions.
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1 bool finished = false;
2 while (!finished) {
3 switch (labelNext) {
4 case SEQUENTIAL_REGION1:
5 if (threadIdx.x != MASTER) break;
6 // code for sequential region 1
7 if (...) {
8 ...
9 labelNext = PARALLEL_REGION1;

10 }
11 break;
12 case PARALLEL_REGION1:
13 // code for parallel region 1
14 ...
15 if (threadIdx.x == MASTER) {
16 // update labelNext;
17 }
18 break;
19 // other cases
20 ...
21 case END:
22 labelNext = -1;
23 finished = true;
24 break;
25 }
26 __syncthreads();
27 }

Listing 3: An example of the state machine execution on GPUs.

1 if (masterWarp) {
2 // code for sequential region 1
3 if (...) {
4 // code for parallel region 1
5 [activate workers]
6 bar.sync 0 // synchronization
7 bar.sync 0 // synchronication
8 }
9 } else {

10 // Worker Warps
11 bar.sync 0 // synchronization
12 // get a chunk of parallel loop
13 and execute it in parallel
14 executeParallelLoop();
15 bar.sync 0 // synchronization
16 }
17 // outlined work for worker warps
18 executeParallelLoop();

Listing 4: An example of the master/worker execution on GPUs.
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For the purpose of optimizations, these execution schemes can be simplified by an
alternative code generation scheme when the body of the target region satisfies the
following conditions (Bertolli et al. 2015):

• There is no “team master only” region, where only master threads need to execute it
(e.g. Line 4-10 in Listing 3).

• There is no data sharing among threads in a team.

• There are no nested OpenMP pragmas through function calls.

• schedule(static, 1) is specified on the #pragma omp parallel for
construct.

To activate the alternative code generation scheme, the clang+LLVM compiler
additionally requires programmers to use a combined construct (OpenMP 2015), a shortcut
for specifying multiple constructs in a single line (see also Section 2.2), whereas the XL C
compiler can do so even with a non-combined construct.

3.2.2 Leveraging GPU’s Memory Hierarchy

GPU memory optimizations such as utilizing the shared memory and the read-only data
cache are essential for improving kernel performance. For OpenMP programs, it is the
compiler’s responsibility to perform such optimizations since OpenMP does not provide a
way to place data on a particular GPU memory. However, neither the clang nor the XL C
compiler performs such optimization as of this writing.

The NVPTX backend and the libNVVM library utilize the read-only cache for all
data that is guaranteed to be read-only when the target architecture is sm_35 or later.
However, placing all possible data on the read-only data cache can also generate a harmful
effect on performance; a more attractive approach would be to selectively optimize data
placement as a part of high-level loop transformations guided by proper cost models.
Further discussions can be found in Section 4.4, Section 6, and Section 7.

3.2.3 Maximizing ILP

Leveraging instruction-level parallelism (ILP) is also an important optimization strategy
to increase GPU utilization. While SMXs on GPUs can take advantage of ILP
interchangeably with thread-level parallelism (TLP), in some cases, it is easier to increase
ILP by performing loop unrolling and other transformations. The clang+LLVM compiler,
the NVPTX backend, and the libNVVM library unroll sequential loops to increase ILP.
Further discussions on it can be found in Section 4.2.4 and Section 4.4.
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Benchmark Description Data Size Target Directives
VecAdd Vector Addition (C=A+B) 67,108,864 1-level
Saxpy Single-Precision scalar multiplication and vector addition (Z=A×X+Y) 67,108,864 1-level
MM Matrix Multiplication (C=A×B) 2,048 × 2,048 1-level

BlackScholes Theoretical estimation of the European style options 4,194,304 1-level
OMRIQ 3-D MRI reconstruction from SPEC ACCEL™ (SPEC 2015) 32,768 1-level

SP-xsolve3 Scalar Penta-diagonal solver from SPEC ACCEL™ (SPEC 2015) 5 × 255 × 256 × 256 2-level

Table 2 Benchmarks from PolyBench and SPEC ACCEL used in our evaluation

4 Performance Evaluation

This section presents the results of an experimental evaluation of OpenMP’s target
construct on two single-node platforms with GPUs.

4.1 Experimental protocol

Purpose: Our goal is to study potential compiler optimizations for OpenMP programs
in terms of kernel performance. We do not focus on data transfers between the host and
GPU devices in this paper because 1) data transfer optimizations with OpenMP are more
transparent thanks to the map clause than kernel optimizations, and 2) there are some
prior approaches (Ishizaki et al. 2015, Kim et al. 2016) from which we can leverage some
of the insights. For that purpose, we focus on the performance difference among CUDA
and OpenMP variants of benchmarks. In Section 4.2, we first compare naive CUDA and
OpenMP variants, each of which employs straightforward GPU parallelization strategies
without complicated hand-tuning. Then, we discuss the performance difference between
highly-tuned CUDA and OpenMP code in Section 4.3.
Machine: We present the results on two single-node platforms with GPUs. The first
platform (S824) consists of a multicore IBM POWER8 CPU and an NVIDIA Tesla K80
with the ECC enabled. The platform has two 12-core IBM POWER8 CPUs (8286-42A),
operating at up to 3.52GHz with a total 1TB of main memory. Each core is capable of
running eight SMT threads, resulting in 192 CPU threads per platform. The NVIDIA K80
GPU has 13 SMXs, each with 192 CUDA cores, operating at up to 875MHz with 12GB
of global memory, and is connected to the POWER8 by using PCI-Express. The second
platform (S822LC) consists of a multicore IBM POWER8 CPU and an NVIDIA Tesla
P100 with the ECC disabled. The platform has two 8-core IBM POWER8 CPUs (8335-
GTB), operating at up to 4.02GHz with a total 128GB of main memory and capable of
running 128 CPU threads per platform. The NVIDIA P100 GPU has 56 SMs, each with 64
CUDA cores, operating at up to 1.36GHz with 4GB of global memory, and is connected to
the POWER8 by using PCI-Express.
Benchmarks: Table 2 lists six benchmarks that were used in the experiments. We chose
typical numerical computing, medical, and financial applications for the purpose of the
compiler optimization exploration. For all the benchmarks, we used the variants with
the float data type. Also, we used three different datasets: small (roughly 1K- elements),
medium (roughly 64K- elements), and large (roughly 4M- elements). However, since the
three datasets show the same trends except for what we discuss in Section 4.2.2, we only
report the results with one data set. For “Data Size”, Table 2 only shows the largest array
size evaluated. For “Target Directives”, “1-level” shows we only parallelized the outermost
loop, where the OpenMP compilers accept both “combined” and “non-combined” versions.
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“2-level” means that we parallelized nested loops at different levels - i.e. block- and thread-
level and there are only “non-combined” versions.
Experimental variants: Each benchmark was evaluated by comparing the following
versions relative to a parallel GPU execution of a baseline CUDA version:

• CUDA: Reference CUDA implementations

– CUDA (baseline): A CUDA version with the read-only data cache disabled
because the read-only cache does not always contribute to performance
improvements (see 4.2.5).

– CUDA-ROC (K80 Only): all read-only arrays within a kernel are accessed
through the read-only data cache. Read-only arrays are specified with const*
__restrict__. Also, the XL C compiler utilizes the read-only data cache
through ld.global.nc instruction. Note that the read-only data cache is no
longer available in the P100 GPUs.

• OpenMP: Combined and non-combined constructs versions compiled by the
following compilers. These compilers employ the master/worker code generation
scheme except for the alternative code generation scheme for simplifying the OpenMP
threading model on GPUs. For more details, see Section 2.2 and Section 3.

– clang+LLVM compiler

– XL C compiler

For fair and clear comparisons, we carefully 1) prepared the syntactically same CUDA
and OpenMP source code and 2) we used the same block and grid size among these
variants. For the VecAdd, Saxpy, MM, BlackScholes, OMRIQ cases, we used a grid size
of N/1024 and a block size of 1024, where N is the length of an input array. Also, a grid
size of 254 and a block size of 254 were used for SP. Block and grid sizes used in this
experiment can be found in Table 10 in Section A.

For the CUDA variants, we used the CUDA compiler driver (nvcc) 8.0.44 with
-O3 and -arch=sm_37 for the Tesla K80 GPU or -arch=sm_60 for the Tesla P100
GPU. For OpenMP variants, a development version of clang 4.0 with -fopenmp
-fopenmp-targets=nvptx64-nvidia-cuda and IBM XL C/C++ compiler version
13.1.5 (technology preview) with -O3 -qhot -qoffload -qsmp=omp were used. Note
that these options internally specify appropriate compute capability (either 3.7 or 6.0)
through the NVPTX backend or the libNVVM library. For single-precision floating
point operations, -ftz=false �prec-div=true �prec-sqrt=true was used for all
variants. Additionally, there is no limitation on the number of registers per thread for
OpenMP variants.

Performance was measured in terms of elapsed milliseconds from the start of the
first loop(s) to the completion of all loops. Since our primary focus is on kernel
performance, our measurements only include kernel execution time on the GPU (for
all the variants), and exclude host-device data transfer times. Performance numbers were
obtained with NVIDIA CUDA profiler, or nvprof (NVIDIA 2017f), whose Summary
Mode is capable of measuring/printing the average, minimum, and maximum time of the
kernel execution(s) and data transfer(s) with low overheads. We ran each variant at least
three times and reported the fastest run. The performance numbers are quite stable with
small variations.
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Figure 2: Relative performance over CUDA-baseline on the IBM POWER8 + NVIDIA
Tesla K80 platform.
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Figure 3: Relative performance over CUDA-baseline on the IBM POWER8 + NVIDIA
Tesla P100 platform. Some of the clang-control variants are missing due to a runtime error.

In the following, we first compare naive CUDA and OpenMP variants, each of which
employs straightforward GPU parallelization strategies without complicated hand-tuning
in Section 4.2. Then, we discuss the performance difference between highly-tuned CUDA
and OpenMP code in Section 4.3.

4.2 Performance Comparison with Naive Code

4.2.1 Summary of Results

This section outlines the results shown in Figure 2 and Figure 3, which show speedup
factors relative to the baseline CUDA implementation (CUDA) on the NVIDIA Tesla
K80 and P100 GPUs. Also, absolute performance numbers for each variant are shown in
Table 10 in Section A. Note that some of the clang-control variants on the P100 platform
are missing due to a runtime error, in which the kernel invocation was failed.

Overall, for both clang and XL C compilers, the OpenMP variants are in some cases
faster, in some cases slower than the baseline CUDA. One of the reasons for the slowdown
is that overheads of running OpenMP’s threading model on GPUs are not negligible. More
detailed discussions can be found in Section 4.2.2. For BlackScholes, the CUDA variants
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are better than the OpenMP variants due to more efficient math function code generation
(see Section 4.2.3). For MM, the OpenMP variants show performance improvements in
some cases, but the CUDA variants are faster than the OpenMP variants in SP. This is
mainly due to selecting proper unrolling factors (see Section 4.2.4 as well).

Also, the results in Figure 2 show that utilizing the read-only data cache does not always
improve GPU kernel performance (see Section 4.2.5).

4.2.2 Overheads of OpenMP’s execution model on GPUs

As we discussed in Section 3.2.1, a potential performance issue with OpenMP programs is
that the OpenMP variant generally requires either the state machine or the master/worker
execution to support OpenMP’s thread execution model on GPUs.

Non-Combined vs. Combined Directive: An important compiler optimization is to
simplify OpenMP’s thread execution scheme using the alternative code generation scheme
for specific programs. The XL C compiler supports such an optimization, and thereby
there is no performance degradation even with non-combined constructs as shown in
Figure 2 and Figure 3. The impact of the removal is obvious by comparing the combined
and non-combined versions by the clang compiler shown in Figure 2 and Figure 3. The
non-combined version is 3.7× slower than the combined version in geometric mean on
the K80 platform. The primary cause of this is the increased number of instructions by
the OpenMP execution flow. For example, our analysis with the CUDA profiler indicates
that the number of integer, control flow, and load store instructions for the non-combined
version of VecAdd on the Kepler platform is 1.9×, 2.2×, and 5.2× larger than that
for the combined version respectively. Additionally, as discussed in (Hayashi et al.
2016), if the runtime employs the state machine execution, the non-combined version
requires additional registers for state transitions. This can incur an additional performance
degradation on CUDA devices due to less achieved_occupancy.

Overheads of OpenMP Runtime Library: Removing redundant OpenMP
runtime library calls is another important compiler optimization even if the
combined-directive is used. For example, OpenMP programs on GPUs invoke
several OpenMP’s offloading runtime library functions of libomptarget (Clang-
ykt 2017) such as __kmpc_spmd_kernel_init(), __kmpc_for_static_init(), and
__kmpc_for_static_fini() to initialize the SPMD program execution, to compute
loop ranges for chunked parallel loops, and to finialize the parallel loop execution. In
theory, these library calls can be eliminated if the combined directive is used. However,
in practice, clang XL C failed to do so even at -O3 level in some cases and this can add
an additional runtime overhead. Table 3 summarizes overheads of the OpenMP runtime
on GPUs. We measured these numbers by executing the following synthetic combined-
construct program:

1 // a[] and b[] are float arrays
2 #pragma omp target teams distribute parallel for \
3 schedule(static, 1) \
4 num_teams(N/1024) thread_limit(1024)
5 for (int i = 0; i < N; i++) {
6 ; // do nothing
7 }

Listing 5: A synthetic benchmark for OpenMP’s runtime overhead measurements.

Note that the synthetic benchmark is compiled with the same options shown
in Section 4.1. We carefully analyzed the generated PTX files and confirmed
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Grid Size (N/1024) 1 64 1024 4096 16384 65536

K80 clang 5.5 us 20.3 us 281.3 us 1.1 ms 4.4 ms 17.6 ms
XL C 3.6 us 9.2 us 117.9 us 464.6 us 1.8 ms 7.3 ms

P100 clang 1.1 us 1.4 us 7.3 us 26.5 us 103.5 us 411.2 us
XL C 3.3 us 6.2 us 43.7 us 163.5 us 643.5 us 2.5 ms

Table 3 OpenMP runtime overheads measured with the synthetic combined-construct program
(Listing 5) invoked with a block size of 1024.

that 1) clang on the P100 platform completely eliminated OpenMP runtime calls,
meaning that it only invokes an empty kernel, 2) clang on the K80 platform
failed to eliminate __kmpc_spmd_kernel_init(), __kmpc_for_static_init(), and
__kmpc_for_static_fini(), and 3) XL C on the both platforms failed to eliminate
__kmpc_spmd_kernel_init(). Table 3 shows that the overheads increase as “Grid Size”
increases depending on how these compilers eliminate OpenMP runtime calls. That’s one
of the reasons why the OpenMP variants are slower than the CUDA variants in VecAdd,
Saxpy, BlackScholes cases on the both platforms. For example, with VecAdd on the K80
platform, the overhead accounts for 85.0% (= 17.6/20.7) of the execution time of the
clang-combined variant and 75.3% (= 7.3/9.7) of that of the xlc-combined and control
variants.

These results emphasize the importance of minimizing OpenMP runtime overheads on
GPUs.

4.2.3 Math function code generation

Let us consider the BlackScholes case where many math operations are heavily performed.
If we subtract the corresponding OpenMP runtime overhead in Table 3 from the kernel
execution time to get pure computation time only, the CUDA version is the fastest, the XL
C version is the second fastest, and the clang version is the slowest on the both platforms.

This is due to the dynamic number of double- and single-precision instructions. For
example, BlackScholes shows the dynamic numbers of double- and single-precision
instructions executed by CUDA, clang, and XL C are 0.91 × 109, 1.18 × 109, and 1.17 ×
109 respectively. To understand this, consider the following OpenMP program and suppose
we have an equivalent CUDA program:

1 // a[] and b[] are float arrays
2 #pragma omp target teams distribute parallel for ...
3 for (int i = 0; i < N; i++) {
4 float T = exp(a[i]); // double exp(double)
5 b[i] = (float)log(a[i])/T; // double log(double)
6 }

Listing 6: A synthetic Math benchmark.

Each cell in Table 4 shows absolute performance for each variant where N =

4, 194, 304 on the GPU, which shows similar trends to BlackScholes.
One key issue on the programs is the use of double-precision versions of the exp

and the log functions even though their argument and the resulting value is single-
precision. Our analysis shows that the clang compiler keeps the original double-precision
math functions, which is why the clang version is the slowest. However, the nvcc and
XL C compilers 1) generate the single-precision version instead when possible, which
significantly eliminates redundant double-precision operations, and 2) also inline these
functions in the PTX assembly code to increase opportunities for additional compiler
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CUDA clang XL C

K80 Original 472.5 us 734.0 us 725.4 us
Hand Conversion 472.5 us ptxas error 494.2 us

P100 Original 139.8 us 229.7 us 171.8 us
Hand Conversion 139.8 us ptxas error 153.3 us

Table 4 GPU kernel time for the synthetic Math benchmark.

optimizations. For the XL C version, the compiler only generates the expf and keeps the
log function. That is why the XL C version is a slightly faster than the clang version.

However, there is a still performance gap between the CUDA and OpenMP versions
even if we manually replace exp with expf and log with logf (see the second row of
Table 4). This can stem from the difference between the CUDA Math API (NVIDIA 2017c)
used by the nvcc compiler and the libdevice (NVIDIA 2017b) used by the clang and
XL C compilers.

For the clang version with the hand conversion, the PTX assembler, or ptxas, was
aborted due to type mismatch errors, in which the clang compiler mistakenly generates
a PTX instruction invoking exp with float arguments while expf was used in the hand-
converted program.

4.2.4 Loop Unrolling Factors

Loop unrolling can increase ILP and reduce control-flow instruction overheads. However,
selecting a proper unrolling factor is still an open question. To study this, consider the
following source code from MM:

1 #pragma unroll _UNROLLING_FACTOR_
2 for (int k = 0; k < N; k++) {
3 // one offset access and one stride access
4 sum += A[i*N+k] * B[k*N+j];
5 }

Listing 7: The inner most loop of MM

Table 5 shows the relationship between unrolling factors and MM’s kernel performance
numbers for the CUDA and OMP clang variants. The bold characters represent
performance numbers obtained with a default unrolling factor by compilers.

Unrolling Factor 1 2 4 8 16 32

K80 CUDA 229.5 ms 225.02 ms 228.8 ms 232.1 ms 232.5 ms 230.6 ms
clang 259.3 ms 227.1 ms 231.8 ms 232.5 ms 231.2 ms 230.3 ms

P100 CUDA 44.3 ms 64.0 ms 71.4 ms 74.7 ms 73.1 ms 73.9 ms
clang 44.1 ms 65.9 ms 71.0 ms 73.1 ms 73.6 ms 74.6 ms

Table 5 Relationship between unrolling factors and the kernel performance.

In this case, unrolling factors of 2 and 1 achieve the best performance on the K80 and
P100 platform respectively. On closer examination with nvprof on the P100 platform,
the achieved_occupancy of the CUDA variants with an unrolling factor of 8 (74.7
ms) and 1 (44.3 ms) are 84.5% and 96.6% respectively. On the K80 platform, the
achieved_occupancy of the CUDA variants with an unrolling factor of 8 (232.1 ms) and
1 (225.0 ms) are 98.9% and 98.4% respectively. This implies that a smaller unrolling
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factor can improve the performance of memory-intensive applications. Also, SP has
two sequential loops and we observed that the unrolling factors affect the overall kernel
performance as well. These observations emphasize the importance of selecting proper
unrolling factors.

4.2.5 The read-only data cache (For K80 Only)

The read-only data cache is introduced in the Kepler architecture, but is no longer
available in the Pascal architecture. In the Kepler architecture, it is programmer’s and
compiler’s responsibility to control it using const* __restrict__ keyword and/or
__ldg() intrinsic. While the read-only data cache can improve memory access efficiency,
it does not always contribute performance improvements since the benefit fully depends
on memory access patterns during the GPU execution. Based on results of the CUDA
versions shown in Figure 2, OMRIQ and SP benefit from the read-only data cache, whereas
such is not the case with VecAdd, Saxpy, and BlackScholes, which has poor temporal
locality. However, despite its potential spatial and temporal locality, the read-only data
cache version of MM in CUDA show the same performance as the version without it. These
observations emphasize the importance of data placement optimization.

4.2.6 FMA contraction

The Fused-Multiply-Add (FMA) instruction computes multiply and add operations in a
single step. Saxpy is one of the benchmarks that benefit from FMA and the impact of using
it can be seen when comparing the combined versions of clang and XL C because the
clang compiler does not generate FMA by default. Our analysis with nvprof shows the
dynamic number of floating point instructions made by the clang version is approximately
2x larger than by the other variants. Note that the clang shows the same number of dynamic
instructions as the XL C combined version when -mllvm -nvptx-fma-level=1 or 2
is enabled, which gives 4.3% and 0.5% performance improvements on the K80 and P100
platforms respectively excluding the OpenMP runtime overheads shown in Table 3.

4.2.7 schedule(static, 1) for memory access coalescing

Table 6 shows the relationship between chunk sizes in the schedule construct and
VecAdd’s kernel performance. In terms of global memory access coalescing, it is usually
better to specify a chunk size of 1 so that consecutive global memory locations can
be accessed by a number of consecutive threads. This is also suitable for using the
alternative code generation scheme as we discussed in Section 3.2.1. In our experiments,
we observed that both the clang and XL compilers used schedule(static, 1) by
default unless specified to prevent performance degradation shown in Table 6. However,
it is worth mentioning that the initial values of schedule and chunk_size are
“Implementation defined” unless specified by programmers according to the OpenMP
specification (OpenMP 2015, pp.36-44 and p.64) and they can be different for different
target and/or the host devices.

4.3 Performance Comparison with Highly-tuned Code

This section compares highly-tuned CUDA and OpenMP code using MM, OMRIQ, and
SP to study the gap between CUDA and OpenMP variants.
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Chunk Size 1 2 4 8 16 32

K80 clang 20.8 ms 37.4 ms 40.1 ms 52.1 ms 89.8 ms 228.6 ms
XL C 9.6 ms 13.4 ms 15.3 ms 22.8 ms 42.8 ms 106.2 ms

P100 clang 2.2 ms 2.3 ms 2.5 ms 5.0 ms 16.4 ms 26.1 ms
XL C 4.7 ms 4.8 ms 5.0 ms 5.7 ms 6.1 ms 10.2 ms

Table 6 Relationship between chunk sizes and the kernel performance.

1 #pragma omp target teams distribute ...
2 for (int k = 1; k <= nz2; k++) {
3 #pragma omp parallel for ...
4 for (int j = 1; j <= ny2; j++) {
5 // loop1
6 for (int i = 0; i <= gp01; i++) {
7 rhonX[k*RHONX1 + j*RHONX2 + i] = ...;
8 }
9 // loop2

10 for (int i = 1; i <= nx2; i++) {
11 lhsX[0*LHSX1 + k*LHSX2 + i*LHSX3 + j] = 0.0;
12 ...
13 }
14 }
15 }

Listing 8: xsolve3 kernel in SP

4.3.1 SP

Let us take the original implementation of xsolve3 kernel in SP as an example of high-level
loop transformation (Listing 8).

Since lhsX in the loop2 (Line 10-13) is accessed contiguously by consecutive threads,
memory accesses for lhsX are coalesced. However, such is not the case with rhonX. Our
measurements indicate that the original version written in CUDA achieved an average
number of memory transactions per request of 31.8 for loads and 7.0 stores. Note that 32
is the worst possible value and this is caused by uncoalesed memory accesses made in the
loop1.

For better memory coalescing accesses and additional memory optimizations, we
performed loop distribution to break the original loop into two parts: the first part only
contains loop1 and the second part only contains loop2, each of which is individually
enclosed by the k-loop and j-loop. Then, only for the first part, permute i-loop and
j-loop for improving memory coalescing efficiency. This can be applied to both CUDA
and OpenMP versions. Additionally, we performed loop tiling to allocate tiles on the shared
memory for additional memory optimizations. This can be applied to the CUDA version
only because OpenMP does not provide a way to allocate variables on the shared memory.
We used 32×32 tile size, but the tile size exploration is another important research problem
to be addressed in future work.

The impact of the optimizations is summarized in Table 7:
The results show that the “Transformed” version is much faster than the “Original”

version. The CUDA profiler shows that the “Transformed” version achieved an average
number of memory transactions per request of 1.9 for loads and 1.0 for stores on the K80
platform. This is almost ideal indicating that almost all memory accesses were coalesced
(1 is the best possible value). Also, the “Transformed+SharedMemory” version achieves
additional performance improvements by exploiting the shared memory.
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Variants CUDA clang XL C

K80
Original 102.4 ms 104.5 ms 174.3 ms

Transformed 27.1 ms 30.5 ms 39.3 ms
Transformed+SharedMemory 9.1 ms - -

P100
Original 40.9 ms 40.9 ms 65.3 ms

Transformed 12.6 ms Error 11.3 ms
Transformed+SharedMemory 3.5 ms - -

Table 7 The impact of hand-optimizations (SP).

4.3.2 OMRIQ

For the highly-tuned CUDA program, we evaluated an optimized CUDA code from
our prior work (Shirako et al. 2017), which is comparable to the highly-tuned CUDA
implemention (Stone et al. 2008). As with SP, the tuned CUDA code was optimized by
performing loop tiling and shared memory allocation. For the OpenMP variants, we also
performed loop tiling to see the impact of increasing the temporal locality. Table 8 shows
absolute performance numbers for these variants on the Tesla K80 and P100 platforms.

Variants CUDA clang XL C

K80
Original 14.1 ms 15.7 ms 11.1 ms

Transformed (Tiled) 12.7 ms 14.2 ms 12.8 ms
Transformed+SharedMemory 8.8 ms - -

P100
Original 2.8 ms 3.9 ms 2.9 ms

Transformed (Tiled) 2.7 ms 3.9 ms 2.8 ms
Transformed+SharedMemory 2.3 ms - -

Table 8 The impact of hand-optimizations (OMRIQ).

Table 8 shows that utilizing shared memory significantly improves the performance,
while loop tiling slightly improves the performance of the OpenMP variants in some cases.

4.3.3 MM

This section discusses the performance differences between 1) a hand-optimized CUDA
program and 2) the CUDA and OpenMP variants. For the hand-optimized CUDA program,
we evaluated a hand-tuned 2048×2048 matrix multiply CUDA code available from the
CUDA SDK (Volkov & Demmel 2008). Table 9 shows absolute performance numbers for
these variants on the Tesla K80 and P100 platforms.

Based on results shown in Table 9, the hand-tuned matrix multiply CUDA code is the
fastest. As with SP and OMRIQ, the primary cause of the performance gap is that the
hand-tuned version performs loop tiling by utilizing the shared memory.

4.4 Lessons Learned

Results show that the OpenMP versions are in some cases faster, in some cases slower
than straightforward CUDA implementations written without complicated hand-tuning.
Additionally, we conclude further advancements are necessary for OpenMP-enabled
compilers to match the performance of highly-tuned CUDA code for some cases examined.
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Variants CUDA clang XL C

K80
Original 231.7 ms 223.1 ms 234.8 ms

Transformed (Tiling) 192.3 ms 224.9 ms 157.9 ms
Transformed+SharedMemory 70.6 ms - -

P100
Original 74.7 ms 65.9 ms 65.4 ms

Transformed (Tiling) 49.6 ms 74.6 ms 62.4 ms
Transformed+SharedMemory 8.6 ms - -

Table 9 The impact of hand-optimizations (MM).

Based on our analysis, our suggestions to improve OpenMP programs’ performance on
GPUs are as follows:
For OpenMP programmers:

1. Using the combined construct (e.g., Listing 1) when possible (Section 3.2.1 and
Section 4.2.2).

2. Using schedule(static, 1) for better global memory accesses (Section 4.2.7)
and for simplifying OpenMP’s thread execution scheme on GPUs (Section 3.2.1 and
Section 4.2.2).

3. Using Math library functions very carefully (Section 4.2.3).

4. Performing high-level loop transformations and optimizing global memory accesses
(e.g., memory access coalescing) like standard CUDA optimizations (Section 4.2.4
and Section 4.3).

For OpenMP compiler designers:

1. Minimizing OpenMP runtime overheads on GPUs when possible (Section 3.2.1 and
Section 4.2.2).

2. Constructing a good data placement policy for the read-only cache and the shared
memory on GPUs (Section 4.2.5).

3. Improving code generation for GPUs. For example, math functions, memory
coalescing, and FMA generation (Section 4.2.3, Section 4.2.7, and Section 4.2.6).

4. Performing high-level loop transformation. For example, the use of the polyhedral
model (Shirako et al. 2017) can improve OpenMP programs’ performance on GPUs
(Section 4.2.4 and Section 4.3).

We believe that those insights are helpful for OpenMP compiler designers to
improve the OpenMP compilers so that non-expert programmers can easily get significant
performance improvements on GPUs without complicated hand-tuning in future.

5 Related Work

5.1 OpenMP Accelerator Model

There have been several studies on the efficient support of the OpenMP accelerator model
on GPUs.
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Bercea et al. (Bercea et al. 2015) presented detailed performance analysis of OpenMP
4.0 implementations of LULESH, a proxy application provided by DOE as part of the
CORAL benchmark suite, using clang on an NVIDIA K40 GPU. Mitra et al. (Mitra et al.
2014) explored challenges encountered while migrating the general matrix multiplication
kernel using an early prototype of the OpenMP 4.0 accelerator model on the TI Keystone
II Architecture. In (Martineau et al. 2016), the authors presented detailed performance
analysis of OpenMP 4.5 versions of mini-apps using clang on an NVIDIA K40 GPU.

5.2 Compiling High-level/Directive-based Languages to GPUs

Many previous studies aim to facilitate GPU programming by providing high-level
abstractions of GPU programming. They often introduce directives and/or language
constructs expressing parallelism for semi-/fully- automated code generation and
optimizations for GPUs.

OpenACC (OpenACC forum 2015) is a widely-recognized directive-based
programming model for heterogeneous systems. In OpenACC, “the user specifies the
regions of a host program to be targeted for offloading to an accelerator device.” (OpenACC
forum 2015, p.7), whereas in OpenMP “the programmer explicitly specifies the actions
to be taken by the compiler and runtime system in order to execute the program in
parallel.” (OpenMP 2015, p.1). This implies that OpenMP is a more prescriptive parallel
programming model, but we believe that compiler optimizations are still important to
improve programmability and performance portability of high-level GPU programs.

OpenMPC(Lee & Eigenmann 2010) transforms extended OpenMP programs into
CUDA applications.

For JVM-based languages, many approaches (Leung et al. 2009, Dubach et al.
2012, Hayashi et al. 2013, Ishizaki et al. 2015) provide high-level abstractions of GPU
programming. Velociraptor (Garg & Hendren 2014) compiles MATLAB and Python to
GPUs.

In terms of high-level loop transformation for GPUs. The polyhedral model is often
used as a basis for GPU optimizations, including parallelization, loop transformations,
and shared memory optimizations. As we discussed in Section 4.4, high-level loop
transformation is one of the most important compiler optimzations. We plan to leverage
some of the insights from prior work (Baskaran et al. 2010, Leung et al. 2010, Vasilache et
al. 2012, Shirako et al. 2017).

6 Conclusion

To study potential performance improvements by compiler optimizations for high-level
GPU programs, this paper evaluates and analyzes OpenMP benchmarks on IBM POWER8
+ NVIDIA Tesla K80 and Tesla P100 platforms. For that purpose, we performed in-depth
analysis of hand-written CUDA codes and automatically generated GPU codes by IBM
XL and clang/LLVM compilers from the high-level OpenMP programs.

While some of the OpenMP variants show comparable performance to the original
CUDA implementation, there are still several missing parts for OpenMP compilers for
GPUs. As we discussed in Section 4.3, one open question is how to exploit GPU’s memory
hierarchy more efficiently by performing high-level loop transformations. Specifically,
OpenMP compilers are required to carefully determine several factors including 1)
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unrolling factors, 2) distribute chunk sizes, and 3) tile sizes for the read-only cache and
the shared memory, 4) leveraging faster Math functions and FMA instructions. Note that
1)-3) are still open questions in the high-performance computing community. One possible
solution would be to construct a high-level loop transformation framework with a certain
cost model for proper optimization selection.

Further investigation will be required for better compiler optimizations for OpenMP
programs.

7 Future Work

For future work, we plan to implement all optimizations we mentioned in this paper.
However, there are several unsolved challenges to do so (e.g., tile size selection, unrolling
factor exploration and so on). To tackle these challenges, our initial focus is to build a high-
level loop transformation framework with a certain cost model for proper optimization
selection based on our prior work (Shirako et al. 2017).

Also, selection of the preferred computing resource between CPUs and GPUs for
individual kernels remains one of the most important challenges since GPU execution is
not always faster than CPUs. Ideally, a preferrable device could be choosen at compile-time
and/or runtime using analytical/empirical model. We first plan to add such a capability to
the OpenMP runtime by extending prior approaches such as (Hayashi et al. 2015).

A Appendix

Table 10 shows absolute performance numbers for each variant on the K80 and P100
platforms. It is worth mentioning that absolute performace numbers on the P100 are always
faster than those on the K80 GPU.

grid, block CUDA CUDA-ROC clang-combined clang-control xlc-combined xlc-control

K80

VecAdd 65536, 1024 6.1 6.5 20.7 203.4 9.7 9.7
Saxpy 65536, 1024 6.1 6.5 20.9 210.0 9.9 9.9

MM 4096, 1024 231.7 230.7 227.1 291.2 234.8 234.8
BS 4096, 1024 1.3 1.3 2.9 15.9 2.4 2.4

OMRIQ 32, 1024 14.1 12.9 15.2 14.5 11.1 11.1
SP 254, 254 102.3 92.2 N/A 104.5 N/A 174.3

P100

VecAdd 65536, 1024 2.2 N/A 2.2 Runtime Error 4.7 4.7
Saxpy 65536, 1024 2.2 N/A 2.2 Runtime Error 4.7 4.7

MM 4096, 1024 74.7 N/A 65.9 Runtime Error 65.2 65.4
BS 4096, 1024 0.4 N/A 0.6 3.9 0.7 0.7

OMRIQ 32, 1024 2.8 N/A 3.9 Runtime Error 2.9 2.9
SP 254, 254 40.9 N/A N/A Runtime Error N/A 65.3

Table 10 Absolute performance numbers for each variant in ms.
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