
Dynamic Task Parallelism with a GPU
Work-Stealing Runtime System

Sanjay Chatterjee, Max Grossman, Alina Sb̂ırlea, and Vivek Sarkar

Department of Computer Science, Rice University, Houston, Texas, USA
{cs20,jmg3,alina,vsarkar}@rice.edu

Abstract. NVIDIA’s Compute Unified Device Architecture (CUDA)
enabled GPUs become accessible to mainstream programming. Abun-
dance of simple computational cores and high memory bandwidth make
GPUs ideal candidates for data parallel applications. However, its poten-
tial for executing applications that combine task and data parallelism has
not been explored in detail. CUDA does not provide a viable interface
for creating dynamic tasks and handling load balancing issues. Any sup-
port for such has to be orchestrated entirely by the CUDA programmer
today.
In this work, we introduce a finish-async style API to GPU device pro-
gramming as first step towards task parallelism. We present the de-
sign and implementation details of our new intra-device inter-SM work-
stealing runtime system. We compare performance results using our run-
time to direct execution on the device as well as past work on GPU run-
times. Finally, we show how this runtime can be targeted by extensions
to the high-level CnC-CUDA programming model.

Keywords: gpu, work-stealing, finish, async, task, runtime

1 Introduction

Graphics Processing Units (GPUs) contain hundreds of lightweight cores with
large bandwidth access to on-chip memory. The massive parallelism and memory
bandwidth of a GPU makes it very useful for computationally heavy applications
operating on large data sets. Add to this the relative energy efficiency and low
cost of its hundreds of simple cores compared to a CPU, with fewer cores, and we
begin to understand its growing applicability both on the supercomputer scale
[1] and in desktop computing for application areas that include life sciences,
medical imaging and finance [2].

NVIDIA provides a C/C++ based API for programming their GPUs called
the Compute Unified Device Architecture (CUDA) programming model. CUDA
includes explicit memory management functions and generally requires consid-
erable knowledge and understanding of the GPU hardware to achieve the sig-
nificant performance gains that GPUs are capable of delivering, representing
a steep learning curve to many programmers. The CUDA programming model
was developed to primarily benefit regular data parallel applications, that are

aligned to the needs of heavy graphics processing. In a nutshell, CUDA allows
the programmer to launch large batches of SIMD threads. These collections of
threads are decomposed into blocks of threads, containing anywhere from 32 to
1024 threads. The threads within a block are all mapped to the same streaming
multiprocessor on the device. Threads on the same streaming multiprocessor
(SM), and therefore in the same block, execute the same kernel in lock-step, but
threads in different SMs may run completely separate kernels with no perfor-
mance penalty.

Executing irregular applications that may involve dynamic task parallelism
is not trivial using the current CUDA API. With this work, we aim to help
improve the adoption of CUDA-like models for irregular applications by handling
many of the lower level runtime details for the programmer. We have designed
and implemented a runtime abstraction for dynamic task parallelism using the
finish-async style API [3] on top of the regular data parallel model of execution.
The programmer is freed from the responsibility of load balancing dynamically
created tasks with the aid of our CUDA work stealing scheduler that operates
across multiple SMs in the same device. The runtime helps reduce data transfer
overhead by overlapping it with kernel execution, manage multiple devices, and
distribute tasks on the device with the goal of balancing the workload across all
SMs on a GPU.

The rest of the paper is organized as follows. Section 2 introduces our new
GPU runtime for dynamic task parallelism. Section 3 provides implementation
details of the work-stealing runtime deployed using the CUDA programming
model. Section 4 shows how the runtime can be targeted by extensions to the
high-level CnC-CUDA programming model introduced in past work [4]. Section
5 presents the results of experiments on our runtime system. Finally, Section 6
discusses related work and Section 7 contains our conclusions.

2 The GPU Work-Stealing Runtime System

GPUs’ restriction to primarily data parallel applications means its potential
for executing irregular applications that combine dynamic task parallelism with
data parallelism has not yet been explored in detail. With CUDA currently
providing no viable interface for dynamically creating tasks or handling load
balancing issues, it may be some time before any official support is provided,
if ever. In applications that perform recursive decomposition (say), each step
produces tasks that may execute in parallel. This requirement for dynamic task
creation is not trivially solved using the current CUDA API. Another factor
that inhibits execution of irregular applications on the GPU is the need for task
synchronization. CUDA allows synchronization only among threads that belong
to the same block, which can run on only one SM. As a result, the only way
that parallel blocks of threads can synchronize with each other in CUDA is via
multiple kernel launches. This enforces a severe restriction on running irregular
applications, that may require combining results from parallel work in each step
before moving onto the next step.

Both of these disadvantages, dynamic task creation and parallel task syn-
chronization, can be addressed by the finish-async style of programming [3]. In
this model, an async creates or spawns a task that can potentially execute in
parallel with the continuation of the spawning task. The finish provides a scope
for all spawned tasks, both direct and nested, to complete before execution of
the continuation of a finish. The finish and async constructs provide a natural
way for programmers to express task parallelism using dynamic task creation
and synchronization.

In this work, we have developed a runtime system on the GPU that pro-
vides a task-based implementation for abstractions such as finish and async.
The goal of our finish-async model on the GPU is to be faster than the current
divergent execution model for irregular applications without sacrificing the per-
formance of intra-SM regular computations. We aim to provide the users with
a simpler programming model for task parallelism, while handling the problem
of load balancing which all systems supporting dynamic task creation must deal
with. At the moment, the finish-async functionality on the device has only been
thoroughly tested with a flat finish wrapping all device asyncs.

3 Implementation Details of GPU Runtime

The goal of this runtime is to balance work across the threads of a GPU better
and with less effort for the user than a hand written application, while supplying
a simpler and easier to use API. To achieve this goal we use a hybrid task
distribution model that uses both work stealing and work sharing queues to
provide load balancing between SMs on a CUDA device, and across different
devices.

Our runtime starts by launching N blocks of CUDA threads on each de-
vice, where N is the number of SMs on that device. Conceptually, our runtime
treats these blocks as worker blocks, analogous to worker threads in CPU-based
work-stealing runtimes. Each of these worker blocks executes the runtime kernel.
Shown in Figure 1, each worker block maintains its own work stealing deque. A
worker can also steal from other workers’ deques that reside on the same device.
A separate FIFO shared queue is maintained to place tasks from the host onto
the device. Only the host can push tasks onto this queue while the workers on the
device compete to pop these tasks. At the moment, tasks are distributed evenly
and naively among devices from the host, but more intelligent device selection
for task placement would be an interesting direction for future work.

3.1 Task Representation

As mentioned earlier, CUDA has two levels of parallelism: SIMD threads within
a block of threads on the same SM, and threads executing potentially different
kernels on different SMs. When we talk about tasks in this paper, these represent
tasks which are run by a block of threads, not individual threads, though tasks
can be created by any thread in a block. To dynamically create tasks at the fine

Host	
 GPU	
 	

Thread	

GPU	
 Kernels	

Launch	

Kernels	

SM1	
 SM2	
 SM3	
 SMN	

Work	
 Sharing	
 Queue	
 of	
 incoming	
 kernels	

Steals	

CPU	
 GPU	

Work	
 Stealing	
 	

deques	
 of	
 	

GPU	
 tasks	

maintained	

by	
 worker	
 	

on	
 each	
 SM	

…	

Kernel	
 grids	
 decomposed	
 	

into	
 blocks	
 (tasks)	

K1	
 K2	
 K3	
 …	
 KN	

T1	

TK	

…	

K1	

K2	

K3	

…	

KN	

Fig. 1. GPU runtime for dynamic task parallelism

grain level of individual threads would be prohibitively expensive for GPUs, in
most cases leading to major divergence and serialization of execution.

Tasks designated for execution on the device are represented by a task struc-
ture. This task structure uses a param structure to represent inputs and outputs
of the device task. The work sharing and stealing deques contain pointers to
these task structures, shown below.

typedef struct {
void *ptr; // address of the data

size t size; // number of bytes in this parameter

volatile int *done flag; // Indicates readiness of data

unsigned char type; // Indicates input and/or output from device

} param;

typedef struct task {
int type; // what code to run for this task

param *p; // list of parameters to this task

int *ready flag; // indicates if this task has completed

int num params; // number of parameters

...

} task;

The task structure represents a task on the device with certain global inputs
and outputs. The type field of a task structure uses an integer id to identify
the code to be executed by this task, while the param pointer points to a list
of parameters containing information on the inputs and outputs to the device.
Tagging a parameter as being input or output only has significance in context

of the device, and does not describe its relation to a task. The ready flag field is
used to test when a continuation task is ready to be executed in our async-finish
model for on-device dynamic task creation, which we will discuss in more depth
later in this section.

3.2 Task Creation

A task is launched by building a task structure with the appropriate parameters
and type on the host or on the device and then placing it on the work sharing
queue (if launching from the host) or on the worker block’s work stealing queue
(if launching from the device). If launched from the host, this process includes
asynchronously allocating and copying the input and output data.

Once this task is placed in the appropriate queue it will then be fetched by a
worker block. The worker block will then call the appropriate function based on
the type field of the task. All queues on the device use locks to protect against
concurrent conflicting accesses using CUDA’s atomic CAS instruction.

A large obstacle to launching tasks from the device lies in CUDA’s lack of
dynamic memory allocation. Without dynamic memory allocation and with a
potentially dynamic number of tasks it is impossible to estimate the amount
of device memory that will be necessary to preallocate for each application. At
the moment, this problem is being solved by a mock memory manager for the
device, implemented as a linked list of preallocated task structures for each type
of task on each device. Each of these empty tasks is allocated with memory for its
parameters. When a device on the task launches a nested task it simply allocates
a task from one of these linked lists, which can then be pushed onto the work
stealing queues in the same manner as any task. When a task has completed on
the device, it can be freed for future use by placing it back onto these linked
lists.

Once all tasks have been placed on the device, the worker blocks are told
that there is no remaining work by placing a special value into the work sharing
queue. Upon finding this value, each worker block can be sure that there are no
incoming tasks from the host to be run and instead begins waiting for a global
counter of tasks to reach zero, while continuing to attempt to pop from its own
work queue and steal from others’ work queues.

3.3 Communication Between Device and Host

One of the largest burdens placed on a CUDA programmer trying to achieve
optimal execution on the device is device memory management. While the most
basic memory management functions are easy to work with (cudaMalloc and cu-
daMemcpy being analogous to malloc and memcpy on the host), they also gener-
ally result in inefficient executions with lots of blocking function calls. Therefore,
managing device memory for the user is a problem that any CUDA runtime sys-
tem must solve. Ours hides all device allocation and communication from the
user, instead using the contents of each task structure to know what the memory
requirements of a task are.

One of the keys to good performance in any multicore system is overlapping
communication with computation in order to hide the added overhead that isn’t
a concern in sequential code. In this runtime system, we leverage CUDA streams
in an attempt to manage this overlapping for the user. Each time a new task is
placed onto the device from the host, the associated input is copied with it. Using
asynchronous memory copies in a CUDA stream allows this communication to
occur in parallel with the runtime kernel and any programmer-written code
executing on the device. In the future, a more advanced task pushing mechanism
on the host could also allow copying through multiple streams at once to ensure
maximum utilization of the bandwidth to each device.

In this implementation, a list of address mappings conceptually sits between
the host and device memory. These mappings allow the runtime on the host
to keep track of what host memory locations have already been copied to the
device, what device location they were copied to, and how many bytes were
transferred. This information allows us to be certain of where to copy to/from
and how much to copy.

4 Extensions to CnC-CUDA

The GPU work-stealing runtime is a standalone tool which can be integrated
with a programming model in order to provide a friendly user-interface. We
made the integration with a new C-based implementation of the Concurrent
Collections (CnC) programming model, being motivated by the results in pre-
vious work on CnC-CUDA [4]. The details of CnC-C are beyond the scope of
this paper. Current work is being done on the integration with the Habanero C
language [?] which uses the async-finish model, making integration more straight
forward. On the other hand the CnC model is more general than the async-finish
model; that is to say more graphs/programs can be expressed using CnC than
with finish-async. In our work we will be using a subset of CnC’s synchroniza-
tion pattern. We reserve for future work extending the current implementation
to support data dependences between CPU and GPU tasks.

CnC offers a easy way for the programmer to specify the dependences within
his program with the aid of an intuitive graph language. The main components
of any graph are data collections, control collections and steps. Data collections
can be viewed as a tagged data storage (analogous to key-value pairs). A tag’s
role once it is put into a control collection is that of starting (prescribing) the
steps assigned to it. Steps represent units of computation and are prescribed
by a tag. They also read (get) items from data collections and can put items
and/or tags into their data and control collections. A step may request an item
with a certain tag from a data collection without having the knowledge whether
the item exists or not. The CnC runtime will ensure the steps that have been
prescribed will execute when the data they need is available.

Let us take one of the benchmarks - Crypt - and show the transformation of
a CnC graph to its analogous CUDA code, assuming we already have a kernel
written in CUDA for Crypt. First, we will write a simple CnC graph. The no-

tation ’::’ in a CnC graph indicates the prescription of a computation step with
a tag. The notation ’− >’ in a CnC graph indicates a computation step which
either consumes or produces an item. For example, in the CnC graph below
representing the crypt application, decrypt tag is a tag collection which pre-
scribes (launches) the computation step gpu decrypt. The data collections used
are ”original”the original text, ”z”the encryption key, ”crypt”the encrypted text,
”dk”the decryption key and ”original decrypted”the original text after decryp-
tion.The gpu encrypt computation step consumes items from data collections
original and z, and produces items into crypt and decrypt tag output collection,
where decrypt tag is a control collection.

<decrypt tag>::gpu decrypt;

<encrypt tag>::gpu encrypt;

[original], [z] -> { gpu encrypt } -> [crypt], < decrypt tag >;

[crypt], [dk] -> { gpu decrypt } -> [original decrypted];

Using features offered by CnC much of the code needed to link the user’s
inputs with the kernel will be auto-generated.

A CnC program would then be written to work with the code generated by
this graph file. The C code will look as follows:

CnCGraph graph;

graph.original.Put(tag, orig);

graph.z.Put(tag, z);

graph.encrypt tag.Put(tag);

The CnC-C runtime will then manage the data dependencies, control de-
pendences, and computation step invocation using the Habanero-C parallel pro-
gramming language. Integrating the GPU work-stealing runtime with the CnC-
C programming model would allow computation analogous to the below CUDA
code to be generated for the user from the CnC graph specified above:

cudaMalloc(&d original); cudaMalloc(&d crypt);

cudaMalloc(&d original decrypted);

cudaMalloc(&d z); cudaMalloc(&d dk);

cudaMemcpy(d original, original);

cudaMemcpy(d z, z); cudaMemcpy(d dk, dk);

encrypt kernel<<<blocks per grid,threads per block,0,stream>>>(d original,

d z, d crypt);

decrypt kernel<<<blocks per grid,threads per block,0,stream>>>(d crypt,

d dk, d original decrypted);

cudaMemcpy(original decrypted, d original decrypted);

The eventual goal is to auto-generate all code related to the CUDA runtime
for the CnC user, only requiring a) an initialization call in the CnC Main func-
tion, b) a terminating call to signal the runtime kernel on the device to exit,
and c) CUDA kernels to be used as computation steps. Reaching complete auto-
generation is still a work in progress, but a manual proof of concept has already
successfully demonstrated the integration of the GPU runtime and CnC.

5 Experiments

To test the performance of our GPU work stealing runtime, we tried to find ex-
amples of applications that are challenging to implement efficiently on graphics
hardware and data parallel applications that are already well suited for CUDA.
We use n-queens from BOTS [5] for our first benchmark. The BOTS imple-
mentation of nqueens on a CUDA device is difficult because it can result in
unbalanced computation trees and requires a lot of dynamic task creation and
load balancing. For our second benchmark, we will use an implementation of
the quicksort sorting algorithm based on [6]. Our third benchmark, the crypt
benchmark from the Java Grande Forum Benchmark Suite [7], is regular and
recognized to be a good candidate for GPU execution. Our fourth benchmark
will be a shortest path computation based on the implementation of Dijkstra’s
algorithm in [8]. This benchmark starts with a single task and must then spread
the load across all SMs as evenly as possible. The fifth benchmark is an imple-
mentation of an unbalanced tree search based on code from OSU, which again
tests the load balancing capabilities of the runtime. Our final benchmark will be
the Series benchmark from the Java Grande Forum Benchmark Suite, another
data parallel benchmark which demonstrates the low overhead of our runtime
system.

In our tests, we compare runs with different numbers of devices as well as
different data sizes to see how this impacts execution time. Additionally, we
use diagnostic data from our runtime to measure how effectively we are load
balancing the application’s work.

Benchmark tests were performed with 1, 2, or 3 NVIDIA Tesla C2050 GPUs.
The Tesla GPUs were tested with direct calls to runtime functions from C or
CUDA code. Each Tesla C2050 has 14 multiprocessors, 2.8 GB of global memory,
1.15 GHz clock cycle and are using CUDA Driver and Runtime version 3.20. The
host machine of the Tesla GPUs has 4 Quad Core AMD CPUs (2.5 GHz).

5.1 N-Queens

For the n-queens benchmark we ported the BOTS implementation of n-queens
to the device using our runtime. The BOTS benchmark suite is intentionally
designed to test the effect that irregular parallelism has on a multicore system.
Irregular and recursive based parallelism results in less predictable numbers and
distributions of tasks that are more difficult to allocate between worker threads.
Because of this, n-queens is a challenge to port to the CUDA programming model
without a loss in performance. Our runtime facilitates this irregular parallelism
on graphics hardware. In Figure 2 we can see that our implementation of the
n-queens benchmark scales well across multiple devices. From experience in de-
veloping it, we can also say that building an n-queens benchmark for the CUDA
was much simpler with our runtime than it would have been without.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

8 9 10 11 12 13

S
p

e
e
d

u
p

Board Size

NQueens Speedup

Serial
Host (12 Threads)

Runtime (1 Devices)
Runtime (2 Devices)

Fig. 2. Speedup normalized to single-threaded execution of the n-queens bench-
mark using our work stealing GPU runtime on 1 or 2 devices, or using 12 threads
on the host.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

SM0 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 SM10 SM11 SM12 SM13

#
 o

f
Ta

sk
s

NQueens Load Balancing

Fig. 3. Tasks executed by each SM on a single device running the n-queens
benchmark.

5.2 Crypt

The crypt benchmark from the Java Grande Forum Benchmark Suite (JGF)
performs the IDEA cryptographic algorithm on a block of bytes, encrypting and
then decrypting and validating the results. This algorithm is already well suited
for execution in a data parallel programming model like CUDA. The encryption
and decryption of every 8 bytes can be run independent of the rest of the data
set with no conflicting accesses to shared variables. We include crypt in these
experiments to demonstrate that using this runtime to run an application which

is already well suited for CUDA will not result in significant degradation of
performance.

The hand coded CUDA version of crypt which we tested against does not
try to take advantage of any overlapping of communication and computation.
The reason for this is that in our initial implementation we did not predict any
advantages in splitting the copying of the original data to the device. Later tests
showed that better performance was achievable with hand coded CUDA code,
but required considerable more experience and effort on the part of the CUDA
programmer.

Though not shown in Figure 4 an unexpected benefit of our runtime auto-
matically providing device management for more than one device was the ability
to handle larger data sets when using our runtime.

 0

 0.5

 1

 1.5

 2

 2.5

3MB 50MB 100MB

S
p

e
e
d
u
p

Problem Size

Crypt Speedup

Hand coded
Runtime (1 Devices)
Runtime (2 Devices)

Fig. 4. Speedup of Crypt benchmark using our work stealing GPU runtime on
1 or 2 devices and using hand coded CUDA on a single device. Speedup is
normalized to single device execution.

5.3 Dijkstra’s Shortest Path Algorithm

We implemented Dijkstra’s shortest path algorithm using our runtime based on
the algorithm used in “Dynamic Work Scheduling for GPU Systems” [8] for the
same reason as they did: it is an application which effectively tests the load
balancing abilities of a runtime. Figure 5 shows how many tasks each worker
executes while finding the distance from each node to a destination node in a
10,000 node bidirectional weighted graph. Initially a single task is placed on a
single worker. From there, our runtime is able to distribute tasks to all SMs on
the device, indicated by the level top surface of Figure 5.

 0

 500

 1000

 1500

 2000

 2500

SM0 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 SM10 SM11 SM12 SM13

#
 o

f
Ta

sk
s

Dijkstra Load Balancing

Fig. 5. Tasks executed by each SM on a single device running the Dijkstra
benchmark.

5.4 Unbalanced Tree Search

Unbalanced Tree Search (UTS) makes a pass over a tree with a randomized
number of children at each node. Because of the imbalance in the tree, static
work assignment is very detrimental to performance. We implemented UTS using
our GPU runtime, based on a multi-threaded implementation from OSU. Figure
7 shows that, in general, our implementation was able to maintain performance
parity with a 12 threaded host system.

 0

 2

 4

 6

 8

 10

 12

 14

2,100.0 3,100.0 4,100.0 5,50.0

S
p
e
e
d

u
p

Problem Type

UTS Speedup

Serial
Host (12 Threads)

Runtime (1 Devices)
Runtime (2 Devices)

Fig. 6. Speedup of the UTS benchmark using our work stealing GPU runtime on
1, 2, or 3 devices, using 12 threads on a 12 core host system, and running in single
threaded mode. Speedup is normalized to the single threaded implementation.

5.5 Series

The Series benchmark from the Java Grande Forum Benchmark Suite is ex-
tremely data parallel, and well optimized to run on the GPU. An interesting
result of this test is that our runtime with one device severely underperforms
compared to the hand coded implementation. The cause of this is the small input
data sizes to series. Because there is very little input to the series benchmark,
the small copies necessary to launch tasks on the device add enough overhead to
degrade performance. This introduces a small subset of applications which our
runtime may not perform as well on. However, with 2 devices we outstrip single
device hand-coded without any additional effort on behalf of the programmer.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

100K 1M 10M

S
p
e
e
d

u
p

Problem Size

Series Speedup

Hand coded
Runtime (1 Devices)
Runtime (2 Devices)

Fig. 7. Speedup of the Series benchmark using our work stealing GPU runtime
on 1 or 2 devices, compared against hand-coded CUDA on 1 device. Speedup is
normalized to the single device implementation.

5.6 Multi-GPU Performance

For many of the above benchmarks, we see less than expected acceleration from
using multiple devices, a counterintuitive result which requires some explanation.
The primary cause of this is redundant memory copies. Take the crypt bench-
mark for example. In crypt, there are encryption and decryption keys being used
which must be accessible from each device. This means that by increasing the
number of devices, you are actually increasing the amount of necessary commu-
nication that is necessary. Other factors may be causing this discrepancy as well,
but further investigation would be necessary to understand what they may be.
Two potential solutions to this problem could be: 1) more intelligent task place-
ment of tasks which share data on the same device, or 2) use CUDA 4.0’s unified

virtual device address space to access a single copy from any device. The useful-
ness of more intelligent task placement when benchmarking would be minimal
as it would mean even when 3 devices are initialized not all would be necessarily
used. Additionally, while early experience with the unified virtual address space
shows that it is more useful in the easing porting, its use can actually result in
performance degradation.

6 Related Work

There have been some recent experiments at either including GPU execution
into current programming models and languages, or implementing a task-parallel
runtime on the GPU. Lastras-Montano et al. [8] implemented a work stealing
runtime on the device. In their paper, a worker is a single warp of threads (32
threads). Each of these warps is assigned a q-structure, which is a collection
of queues in shared and global memory to place tasks in and steal tasks from.
Since multiple warps in a block always reside on the same SM, this runtime can
attempt to steal from those other warps via faster on-chip shared memory before
looking to steal from global memory (i.e. from workers in other SMs). Their use of
queues in shared memory would yield considerably less latency than our global
memory queues, and could be included in future work. However, designating
each individual warp as a worker would lead to increased contention for steals.
While our runtime is designed for continuous use throughout an application,
their runtime starts with a kernel launch and ends when a certain number of
steals have failed. This termination condition could be harmful to performance
critical applications.

The X10 programming language recently began supporting the execution of
tasks on CUDA devices [9]. They do not provide an actual on-GPU work stealing
runtime, but instead integrate GPU tasks into their host work stealing runtime.
They provide the user with a simpler API for allocating device memory and
copying asynchronously from host memory to device memory than the CUDA
API does and expose the block and thread CUDA memory model to the pro-
grammer in what might be a more intuitive way: as nested loops iterating over
X10 points. However, this is not a device runtime and even though the appear-
ance of the code may be more familiar to non-CUDA programmers and they
hide some of the memory management from the programmer, the programmer
must still be very aware of the CUDA programming model and its challenges
and nuances.

The work in [10] presented a variety of potential GPU load balancing schemes
ranging in complexity from a static array of tasks to a work-stealing task dis-
tribution technique similar to the one used in our runtime system. In order to
compare the relative performance of the different systems proposed in their pa-
per they used an octree creation application. They demonstrated that the task
distribution system most similar to our own methods for distributing tasks be-
tween SMs on the same device achieved the best performance of those tested.

StarPU [11] [12] is another runtime system for hybrid CPU and GPU execu-
tion. Similar to X10, this system’s role is to dispatch tasks to different processing
unit for which it makes complex scheduling decisions based on different hard-
ware. StarSs and its GPU extension GPUSs [13] is building on the OpenMP
model and offers simplicity by using pragmas to define tasks that can be exe-
cuted on the GPU. However each task annotated for GPU execution will run
as an independent kernel without any control on how the computation is dis-
tributed on the device. Both StarPU and StarSs will use the CPU, GPU as well
as other resources like the Cell to achieve system-wide load balancing, but nei-
ther of them addresses the problem of load balancing inside the GPU, but base
their assumption on the fact that work inside the GPU kernel will be uniform.

This work has the potential of being supported on OpenCL [14]. In such a
scenario, slight modifications of the runtime API will needed to be done for con-
formance to OpenCL standards, and possibly a reimplementation of the runtime
kernel.

7 Conclusions and Future Work

In this paper, we have presented a GPU work stealing runtime that support
dynamic task parallelism at thread block granularity. We demonstrated the ef-
fectiveness of our combination of work stealing and work sharing queues in dis-
tributing tasks across the device using the nqueens and Dijkstra benchmarks.
Each of these benchmarks starts with a single task on a single SM, requiring low
overhead task distribution to achieve good performance. We demonstrated that
even applications for which CUDA is well suited using this runtime incurs little
overhead and may even result in better performance, a result of automatically
managing multiple devices for the user as well as overlapping data transfer with
kernel execution. We gave a brief overview of other simplified interfaces to the
device that are currently available or in development and compared them to our
own approach. While support for CUDA calls in X10 provide simpler access to
the device and the previous work by Angels et al provided fine grain load balanc-
ing at the level of a warp of CUDA threads, our runtime demonstrates parts of
both of these features with a persistent state on the device that supports more of
a streaming and data driven programming model than the launch-wait-relaunch
model normally used with CUDA.

Some topics for future work are as follows. At the moment, our runtime
handles device memory allocation and transfer for the programmer, but freeing
of device memory cannot occur while a kernel is running on the device, and
therefore cannot happen while our runtime is being used. Therefore, in order
to limit waste of device memory and of page locked host memory our runtime
system should include some more advanced memory reuse mechanisms. This may
include the implementation of a concurrent memory manager on the device.Some
optimization may be possible on our device work stealing code, with a focus on
minimizing the use of atomic instructions and memory fences. While these are
necessary to ensure each worker has a consistent view of other workers’ deques

we may be over-using these instructions. We would also like to consider the
results of decreasing the number of threads in each worker on the device. Angels
et al. used warps as task execution units. Investigating the effect that a change
in worker granularity would have on our system could be very beneficial (or
damaging) to overall performance. Finally, we also aim to integrate this work
into the larger Habanero-C parallel programming language project [15] at Rice
University. The plan is to create an unified runtime for integrated CPU and GPU
scheduling of tasks. This work will enable a system to automatically decide at
runtime when it is more beneficial to run a task on the GPU instead of the CPU
and vice versa.

References

1. N. S. C. in Tianjin, “Tianhe-1A,” http://www.top500.org/system/details/10587,
November 2010.

2. Nvidia, “CUDA,” http://developer.nvidia.com/cuda-action-research-apps, 2011.
3. P. Charles et al., “X10: an object-oriented approach to non-uniform cluster com-

puting,” in OOPSLA, NY, USA, 2005, pp. 519–538.
4. M. Grossman, A. S. Sb̂ırlea, Z. Budimlić, and V. Sarkar, “Cnc-cuda: declarative

programming for gpus,” in Proceedings of the 23rd international conference on
Languages and compilers for parallel computing, ser. LCPC’10. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 230–245.

5. A. Duran et al., “Barcelona openmp tasks suite: A set of benchmarks targeting
the exploitation of task parallelism in openmp,” in ICPP’09, 2009, pp. 124–131.

6. D. Cederman and P. Tsigas, “Gpu-quicksort: A practical quicksort algorithm for
graphics processors,” J. Exp. Algorithmics, vol. 14, January 2010.

7. “The Java Grande Forum benchmark suite,”
http://www.epcc.ed.ac.uk/javagrande/javag.html.

8. M. A. Lastras-Montano et al., “Dynamic work scheduling for gpu systems,” in In-
ternational Workshop of GPUs and Scientific Applications (GPUScA 2010), 2010.

9. X10 2.1 CUDA, “http://x10.codehaus.org/x10+2.1+cuda.”
10. D. Cederman and P. Tsigas, “On sorting and load balancing on gpus,” SIGARCH

Comput. Archit. News, vol. 36, June 2009.
11. C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “Starpu: A unified

platform for task scheduling on heterogeneous multicore architectures,” in Pro-
ceedings of the 15th International Euro-Par Conference on Parallel Processing,
ser. Euro-Par ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 863–874.

12. C. Augonnet, S. Thibault, R. Namyst, and P. A. Wacrenier, “Starpu: a unified
platform for task scheduling on heterogeneous multicore architectures,” Concurr.
Comput. : Pract. Exper., vol. 23, pp. 187–198, February 2011.

13. E. Ayguadé, R. M. Badia, F. D. Igual, J. Labarta, R. Mayo, and E. S. Quintana-
Ort́ı, “An extension of the starss programming model for platforms with multiple
gpus,” in Proceedings of the 15th International Euro-Par Conference on Parallel
Processing, ser. Euro-Par ’09. Springer-Verlag, 2009, pp. 851–862.

14. “Opencl 1.1,” http://www.khronos.org/opencl/.
15. Habanero-C, “https://wiki.rice.edu/confluence/display/habanero/habanero-c.”

