Mapping a Data-Flow Programming Model onto Heterogeneous Platforms

Alina Sbîrleaa, Yi Zoub, Zoran Budimli\textsc{\v c}a,
Jason Congb, Vivek Sarkara

Rice Universitya \quad UCLAb
Objective

• High level data flow model
 – Domain experts
• Hybrid architectures
• Results:
 – Increased performance
 – Low energy consumption
 – High programmability
A 63-year old patient with solitary pulmonary metastasis from renal cell cancer. Manual unidimensional measurements documented a growth of 25%, consistent with stable disease (a,b). However, automated volumetry documented a volume growth of 53.8%, consistent with progressive disease.
Heterogeneous resources

Multicore CPU

Clusters and data centers

Specialized microprocessors

Embedded data parallel coprocessor

Graphical processing units (GPU)

Field-programmable gate arrays (FPGAs)

Figure Sources: Habanero team, cpu-world.com, NVIDIA, Xilinx
Programming models

Domain Experts need high level Programming Models

CS majors need simple and portable Parallel Programming Models

Most of today’s Parallel Programming Models are only accessible to concurrency experts

Slide credit: Habanero team
Proposed solution

- Concurrent Collection (CnC) programming model
 - Clear separation between application description and implementation
 - Fits domain expert needs

- CnC-HC: Software flow CnC => Habanero-C(HC)
- Cross-device work-stealing in Habanero-C
 - Task affinity with heterogeneous components
- Data driven runtime in CnC-HC
- Real application – medical imaging domain
Outline

• Concurrent Collections programming model
• Programming model and runtime extensions
• Target platform
• Experimental results
• Conclusions and future work
CnC Building Blocks

• Steps
 – Computational units
 – Functional with respects to their inputs

• Data Items
 – Means of communication between steps
 – Dynamic single assignment

• Control Items
 – Used to create (prescribe) instances of a computation step
CnC – Building a graph

D
R
S
CnC – Building a graph
CnC – Building a graph

Diagram:
- C
- D
- IN2
- IN3
- S
- OUT

Connections:
- C to D
- D to IN2
- IN2 to R
- R to IN3
- S to OUT
- IN to C (feedback connection)
CnC – Building a graph

![Diagram of CnC building a graph with nodes IN, D, IN2, R, IN3, S, env, and OUT connected by arrows.](image-url)
Textual graph representation:

- `<C> :: (D);`
- `<C> :: (R);`
- `<C> :: (S);`
- `[IN] → (D) → [IN2];`
- `[IN2] → (R) → [IN3];`
- `[IN3] → (S) → [OUT];`
- `env → [IN], <C>;`
- `[OUT] → env;`
CnC- extending the model (1/2)

Textual graph representation with tag functions and ranges:

- \(< C > :: (D);\)
- \(< C > :: (R);\)
- \(< C > :: (S);\)

- \([\text{IN} : k-1] \rightarrow (D : k) \rightarrow [\text{IN2} : k+1];\)
- \([\text{IN2} : 2*k] \rightarrow (R : k) \rightarrow [\text{IN3} : k/2];\)
- \([\text{IN3} : k] \rightarrow (S : k) \rightarrow [\text{OUT} : \text{IN3}[k]];\)

- \(\text{env} \rightarrow [\text{IN} : \{ 0 .. 9 \}], < C : \{ 0 .. 9 \} >;\)
- \([\text{OUT} : 1] \rightarrow \text{env};\)
Why tag functions?

• Tag function = a mapping from what uniquely identifies a step to its inputs/outputs
• Increase programmability
• Facilitate code generation
• Enable a more efficient data-driven runtime use for step scheduling
• Many other research opportunities
 – Dependency graph analyzable
 – Graph correctness
 – Memory management
Translating CnC specifications

Concurrent Collections Textual graph

hc: HC compiler

Auto-generated C, HC files, Makefile

gcc

HC source files: CPU Step code, Main

Other C sources e.g: libraries

User Code
- Runtime / Framework
- Auto-generated code
- Compiler
- Compiled code

Executable

Habanero C Library

DataDriven.o (CnC Runtime)
Textual graph representation with tag functions and affinity annotations:

- $< C > :: (D @\text{CPU}=20, \text{GPU}=10);$
- $< C > :: (R @\text{GPU}=5, \text{FPGA}=10);$
- $< C > :: (S @\text{GPU}=12);$

- $[\text{IN} : k-1] \rightarrow (D : k) \rightarrow [\text{IN2} : k+1];$
- $[\text{IN2} : 2*k] \rightarrow (R : k) \rightarrow [\text{IN3} : k/2];$
- $[\text{IN3} : k] \rightarrow (S : k) \rightarrow [\text{OUT} : \text{IN3}[k]];$

- env $\rightarrow [\text{IN} : \{ 0 .. 9 \}], < C : \{ 0 .. 9 \} >;$
- $[\text{OUT} : 1] \rightarrow \text{env};$
Habanero-C (HC) language

- Async and Finish constructs
 - Work-stealing
- Hierarchical place trees (HPTs)
 - Task Locality
 - XML

```
<HPT version="0.1">
  <place num="1" type="cpu" size="16G">
    <core num="2"/>
  </place>
  <place num="1" type="fpga" size="16G"/>
  <place num="1" type="nvgpu" size="4G"/>
</HPT>
```
HPTs in Habanero-C

- Devices (GPU or FPGA) are represented as memory module places and agent workers.
- Explicit data transfer between main memory and device memory.
- Device tasks are created by a CPU worker via async (gpl).

Legend:
- Physical memory
- Cache
- GPU memory
- Reconfigurable FPGA
- Implicit data movement
- Explicit data movement
- CPU compute worker
- Device agent worker

Slide credit: Habanero-C team
Habanero-C runtime

Textual graph representation with tag functions and affinity annotations:

- `< C > :: (D @CPU=20, GPU=10);`
- `< C > :: (R @GPU=5, FPGA=10);`
- `< C > :: (S @GPU=12);`

- `[IN : k-1] → (D : k) → [IN2 : k+1];`
- `[IN2 : 2*k] → (R : k) → [IN3 : k/2];`
- `[IN3 : k] → (S : k) → [OUT : IN3[k]];`

- `env → [IN : { 0 .. 9 }], < C : { 0 .. 9 } >;`
- `[OUT : 1] → env;`
Habanero-C runtime

Textual graph representation with tag functions and affinity annotations:

- \(< C > :: (D @CPU=20,GPU=10); \)
- \(< C > :: (R @GPU=5, FPGA=10); \)
- \(< C > :: (S @GPU=12); \)
- \([IN : k-1] \rightarrow (D : k) \rightarrow [IN2 : k+1]; \)
- \([IN2 : 2*k] \rightarrow (R : k) \rightarrow [IN3 : k/2]; \)
- \([IN3 : k] \rightarrow (S : k) \rightarrow [OUT : IN3[k]]; \)
- \(env \rightarrow [IN : \{ 0 .. 9 \}], < C : \{ 0 .. 9 \} >; \)
- \([OUT : 1] \rightarrow env; \)
• Motivation: Data dependencies (Gets) needs extra synchronization beyond HC constructs:
 – async and finish

• Data Driven Runtime
 – Steps do not start to execute until all data is available
 – Dependencies are “filled in” when step is prescribed
 – Once all dependencies are satisfied, step executes =>
 Gets are ensured to succeed.
 (Read operations, auto-generated, transparent to user)
Language and runtime contributions

- **Language extensions**
 - Tag functions and Ranges
 - \[\text{input : } \{f1(k) \ldots f2(k)\} \rightarrow (s1\text{Step} : k) \rightarrow \text{output : } g(k) \]\n - Enable automatic generation of high-level operations
 - Step affinity
 - \(< \text{tag1} \> :: (s1\text{Step} : @\text{CPU}= 33, \text{GPU}= 9, \text{FPGA}= 5)\)
 - Auto-generate code to launch step at a device place

- **Runtime contributions**
 - Extend HC scheduler with cross-device work-stealing
 - Data Driven Runtime in CnC-HC
Outline

• Concurrent Collections programming model
• Programming model and runtime extensions
 • Target platform
 • Experimental results
• Conclusions and future work
Experimental setup

• Convey HC-1ex
 – 4 Xilinx Virtex6 LX760 - 80GB/s off-chip bandwidth
 – Xeon Quad Core LV5408
 – Tesla C1060 - 100GB/s off-chip bandwidth
 – 16GB capacity for coprocessor side memory
 – Shared memory model between CPU and FPGA (but not GPU)

• Medical imaging pipeline – C and CUDA steps
HC-1ex architecture

“Commodity” Intel Server

Intel® Xeon® Processor

Intel® Memory Controller Hub (MCH)

Intel® I/O Subsystem

Standard Intel® x86-64 Server
• x86-64 Linux

Xeon Quad Core LV5408
40W TDP

Convey FPGA-based coprocessor

Application Engine Hub (AEH)

Application Engines (AEs)

4 XC6vlx760 FPGAs
80GB/s off-chip bandwidth
94W Design Power

Memory

Convey coprocessor
• FPGA-based
• Shared cache-coherent memory

Memory

Direct Data Port

Tesla C1060
100GB/s off-chip bandwidth
200W TDP
• New reconstruction methods
 – decrease radiation exposure (CT)
 – number of samples (MR)

• 3D/4D image analysis pipeline
 – Denoising
 – Registration
 – Segmentation

• Analysis
 – Real-time quantitative cancer assessment applications

• Potential:
 – order-of-magnitude performance improvement
 – power efficiency improvements
 – real-time clinical applications and simulations using patient imaging data

Slide credit: Habanero team and NSF Expeditions CDSC project
Experimental results

- Performance for medical imaging kernels

<table>
<thead>
<tr>
<th></th>
<th>Denoise</th>
<th>Registration</th>
<th>Segmentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num iterations</td>
<td>3</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>CPU (1 core)</td>
<td>3.3s</td>
<td>457.8s</td>
<td>36.76s</td>
</tr>
<tr>
<td>GPU</td>
<td>0.085s (38.3 ×)</td>
<td>20.26s (22.6 ×)</td>
<td>1.263s (29.1 ×)</td>
</tr>
<tr>
<td>FPGA</td>
<td>0.190s (17.2 ×)</td>
<td>17.52s (26.1 ×)</td>
<td>4.173s (8.8 ×)</td>
</tr>
</tbody>
</table>
Experimental results

- Execution times and active energy with dynamic work stealing
Static vs Dynamic binding

- **Static binding**
 - CPU
 - FPGA
 - GPU

- **Dynamic Binding**
 - CPU1
 - CPU2
 - FPGA
 - GPU

Diagram showing the comparison of CPU, FPGA, and GPU processing times for static and dynamic binding.
Conclusions

• Obtaining a hybrid execution model
 – Language extensions within the CnC model
 – Cross-device work-stealing using Habanero-C
 – High performance (17.72X speedup)
 – Low energy consumption (0.52X of the power used by a CPU)
 – Real-world medical image-processing pipeline
 – Unique prototype heterogeneous platform (CPU, GPU, FPGA)
Ongoing and future work

- Use tag functions for further graph analysis (correctness, memory optimizations)
- Determining the affinity metric at runtime (application fine tuning)
- Evaluate on more benchmarks
- Determine useful primitives for domain experts
 - Easy-to-program modeling software
 - Customizable hardware platform
Acknowledgements

• NSF Expeditions Center for Domain-Specific Computing (CDSC) --- UCLA, Rice, OSU, UCSB
 http://cdsc.ucla.edu

• Habanero-C (HC) team:
 https://wiki.rice.edu/confluence/display/HABANERO/Habanero-C+Programming+Language

• Habanero Multicore Software Research Project
 http://habanero.rice.edu
• Questions on CnC-HC?
 – Language extensions within the CnC model
 – Cross-device work-stealing using Habanero-C
 – High performance (17.72X speedup)
 – Low energy consumption (0.52X of the power used by a CPU)
 – Real-world medical image-processing pipeline
 – Unique prototype heterogeneous platform (CPU, GPU, FPGA)

Thank you!