@

Mapping a Data-Flow Programming
Model onto Heterogeneous Platforms

Alina Sbirlea?, Yi ZouP, Zoran Budimli¢?,
Jason CongpP, Vivek Sarkar®

Rice University® UCLAS

Objective

» High level data flow model
— Domain experts

* Hybrid architectures
* Results:

ncreased performance
_ow energy consumption

High programmability

N\ Motivation: Medical imaging applications g%

RECIST = A
WHO =AxB

Suzuki C, et al.
Source: NSF CDSC project, Application thrust

A 63-year old patient with solitary pulmonary metastasis from renal cell cancer.
Manual unidimensional measurements documented a growth of 25%, consistent with
stable disease (a,b). However, automated volumetry documented a volume growth of
53.8%, consistent with progressive disease.

Marten K et al. Eur Radiol (2006) 16:781-90. Source: NSF CDSC project, Application thrust 3

BV
Heterogeneous resources

Frmnd o Py Wi s Sy e

Power Distribution Unit (PDU) o Compuin Cabnes

‘Memory interface

Figure Sources: Habanero team, cpu-world.com, NVIDIA, Xilinx

<D

Programming models SC

Domain Experts

Computer
Science
Majors

) 4

Concurrency
Experts

Slide credit: Habanero team

\

Domain Experts need
high level Programming
> Models

)\

CS majors need simple
and portable Parallel
- Programming Models

e Most of today’s Parallel
Programming Models are
only accessible to
concurrency experts
5

%\‘ Proposed solution SC

» Concurrent Collection (CnC) programming model

— Clear separation between application description and
Implementation

— Fits domain expert needs

CnC-HC: Software flow CnC => Habanero-C(HC)

Cross-device work-stealing in Habanero-C
— Task affinity with heterogeneous components

Data driven runtime in CnC-HC
Real application — medical imaging domain

Outline

» Concurrent Collections programming
model

* Programming model and runtime
extensions

« Target platform
* Experimental results
» Conclusions and future work

<D

CnC Building Blocks SC

o Steps
— Computational units
— Functional with respects to their inputs

 Data Items
— Means of communication between steps
— Dynamic single assignment

 Control Items

— Used to create (prescribe) instances of a
computation step

CnC - Building a graph g%

CnC - Building a graph g%

10

CnC - Building a graph g%

IN3

ouT

11

CnC - Building a graph g%

IN3

ouT

12

CnC - Building a graph g%

IN2

IN3

ouT

Textual graph representation:

)
)
)

v Vv

<C>: (D)
<C>:(R);
<C>:(S)

[IN2] - (R)—T[IN3 |;
[IN3] - (S)—-[OUT];

l
l

env - [IN], <C >;
[OUT] — env;

13

CnC- extending the model (1/2) g%

Textual graph representation

with tag functions and ranges:
<C>: (D)
» <C>=:(R);
<C>:(9S);

v

IN2

v

» [IN :k-1]—>(D:k)—[IN2 :k+1];
NG » [IN2:2°k]— (R:k)—[IN3 : k2]
» [IN3:k]—(S:k)—[OUT: IN3[K] I;

v

env—[IN:{0..9}],<C:{0..9}>;
QLI [OUT : 1] — env;

v

14

Why tag functions?

* Tag function = a mapping from what uniquely
identifies a step to its inputs/outputs

* |Increase programmability
 Facilitate code generation

* Enable a more efficient data-driven runtime use
for step scheduling

* Many other research opportunities
— Dependency graph analyzable

— Graph correctness
— Memory management

15

AR _ e 4 <D
Translating CnC specifications S§C

Concurrent HC
Collections source files: 2&‘:;;
Textual CPU Step librari
graph code, Main e.g: libraries
Auto-
generated
C, HC files,

Makefile

Object files User Code

(*.0)

Auto-generated code

Compiled code

Executable 6

@ . D
CnC- extending the model (2/2) §€

N Textual graph representation with

tag functions and affinity annotations:
Cjé » <C>: (D @CPU=20,GPU=10);
» <C>: (R@GPU=5, FPGA=10);
» <C>: (S @GPU=12);

IN2

» [IN (k-1]—-(D:k)—=[IN2 :k+1];
IN3 » [IN2:2°k] - (R:k)—[IN3 :k/i2];
» [IN3:k]—-(S:k)—[OUT:IN3K]I;

v

env—-[IN:{0..9}],<C:{0..9}>;
[OUT : 1] — env;

ouT

v

17

Habanero-C (HC) language SC

* Async and Finish constructs
— Work-stealing

» Hierarchical place trees (HPTs)
— Task Locality

— XML <HPT version="0.1">
<p|ace num=||1|| type="Cpu" Size="16G">
<core num="2"/>

</place>
<place num="1" type="fpga" size="16G">
</place>
<place num="1" type="nvgpu" size="4G">
</place>

</HPT> s

PL1

PL3

W0

Devices (GPU or FPGA) are represented as
memory module places and agent workers

Explicit data transfer between main memory and

PL4

PLO

W1

device memory

Device tasks are created by a CPU worker via

async (gpl)

PL2

PL5

W2

PL7

W4

PL6

W3

Physical memory
Cache

GPU memory

Bl Reconfigurable FPGA

. —— Implicit data movement

. = Explicit data movement

in

CPU compute worker

Device agent worker

Slide credit: Habanero-C team

. D
Habanero-C runtime SC

Hﬁi Steps of type R launched
at a FPGA place

Textual graph representation with

s U e S ancheditag functions and affinity annotations:
@_[» <C>: (D @CPU=20,GPU=10),
(0. S l I C>: (R@GPU=5 FPGA=10);
,‘_ » <C>:(S@GPU=12);
S S2
% st| [re| » [IN :k-1]— (D:k)—[IN2 :k+1];
CPU only tasks D1 R1 3
Dedicated device queues F/ > | IN2 : 27k] — (R:k) — [IN3 : k/2],
An instance of step R =S ' 7’ > IN3 : k] — (S:k) — [OUT : |N3[k]]’
stolen by GPU y '

CPU1 || CPU2 Y GPU | FPGA

Instances of steps D > env — [IN : { O " 9 }]’ < C : { O - 9 } >;
stolen by CPU > [OUT : 1] s env:

20

. D
Habanero-C runtime SC

Hﬁi Steps of type R launched
L0 e Textual graph representation with

on P P e s taunched | tag functions and affinity annotations:

@—[Steps D launched > < C = (D @CPU:ZO’GPU:1O)’
(0, S ata\?u place l v < C>: (R@GPU=5 FPGA=10);
@ |||l » <C>: (S @GPU=12),

m > 2| [Re) » [IN :k-1]->(D:k)—[IN2 :k+1];

" .&b [IN2:2°k] > (R :k)—>[IN3 :k/i2];

v

Dedicated device queues
IN3:k]— (S:k)—[OUT:IN3[K I;

An instance of step R
stolen by GPU

\
CPU1 || CPU2 GPU | FPGA

Instances of steps D > env — [IN : { O . 9 }]’ < C : { O - 9 } >;
stolen by CPU or GPU) [OUT . 1] S env:

21

CnC-HC runtime

* Motivation: Data dependencies (Gets) needs extra
synchronization beyond HC constructs:
— async and finish

« Data Driven Runtime
— Steps do not start to execute until all data is available
— Dependencies are “filled in” when step is prescribed
— Once all dependencies are satisfied, step executes =>
Gets are ensured to succeed.
(Read operations, auto-generated, transparent to user)

22

%}‘ Language and runtime contributions g%

* Language extensions
— Tag functions and Ranges
e [input : {f1(k) .. f2(k)}] — (s1Step : k) — [output : g(k)]
« Enable automatic generation of high-level operations
— Step affinity
e <tag1>: (s1Step: @CPU= 33,GPU=9, FPGA=5);
» Auto-generate code to launch step at a device place

 Runtime contributions

— Extend HC scheduler with cross-device work-
stealing

— Data Driven Runtime in CnC-HC 23

Outline

» Target platform
* Experimental results
« Conclusions and future work

24

Experimental setup

 Convey HC-1ex
— 4 Xilinx Virtex6 LX760 - 80GB/s off-chip bandwidth
— Xeon Quad Core LV5408
— Tesla C1060 - 100GB/s off-chip bandwidth
— 16GB capacity for coprocessor side memory

— Shared memory model between CPU and FPGA
(but not GPU)

« Medical imaging pipeline — C and CUDA steps

25

.+ x86-64 Lip

l,i‘_CQmmothy_’iJnteJ Server__________ Convey_ EPGAhased coprocessor __________
B Application Appllcatlon Engines |
;?etﬁlf)@ o Engine Hub (AEs)
: (AEH) B\ B\ B,
' | Processor Intel® : > b = (2 (. (2
i Memory| 4 XC6vix760 FPGAs A
i Controll 80GB/s off-chlp bandwidth
Xeon Quad J
Core LV5408 i
40W TDP {
Intel® IIO
Subsystem

o ———————— -

.........

f
(Standard Intel® x86-64 Server

Convey coprocessor
* FPGA-based

» Shared cache-coherent memory

Tesla C1 060

200W TDP

100GB/s off-chip bandwidth

26

[x

' Medical |mag|ng appllcatlon SC

New reconstruction methods
— decrease radiation exposure (CT)
— number of samples (MR)

3D/4D image analysis pipeline

reconstruction:

— Denoising 3§
— Registration g
— Segmentation

* Analysis

— Real-time quantitative cancer
assessment applications

Potential:

— order-of-magnitude performance
improvement

— power efficiency improvements

— real-time clinical applications and
simulations using patient imaging
data

cC
.
-~
s
—-——
o
)
)
—

segmentation

Slide credit: Habanero team and NSF Expeditions CDSC project

. 0
Experimental results SC

» Performance for medical imaging kernels

Denoise Registration Segmentation
Num iterations 3 100 50
CPU (1 core) 3.3s 457.8s 36.76s
GPU 0.085s (38.3 x) | 20.26s (22.6 x) | 1.263s (29.1 x)
FPGA 0.190s (17.2 x) | 17.525(26.1x) | 4.173s (8.8 x)

28

Experimental results

D
SC

« Execution times and active energy with
dynamic work stealing

Time(s)
300

250
200
150
100

50

0

Execution of the medical imaging pipeline

2286

with CnC and work-stealing runtime

276
251 W Execution time
69.8 Estimated active energy
193
54.8
49.4
129
36.1
23

CPU only (4 cores)

GPU only

CPU+GPU CPU+GPU+FPGA CPU+GPU+FPGA
(3 cores; dynamic) (2 cores; dynamic) (2 cores; static)

Energy(KJ)

100
90
80
70
60
50
40
30
20
10
0

29

D

Static vs Dynamic binding &

| |Denoise

 Static binding BRegistration

[|ISegmentation

CPU loo D1 |p2 |D3 | D4 | D5 |6 |D7 |DB | DS
F PG A RO] | R2 | R3 | R4 | RS | RE | R7 I RS | R9 |

GPU
50s 100s 150s Time (s)

* Dynamic Binding

CPU1[=[=[=]
CPU2[=[=]~]
FPGA [= [= [= [= [= [=]
GPU[=[PR[o B[e R e R e R
50s 100s 150s Time (s)
30

%\‘ Conclusions

» Obtaining a hybrid execution model
— Language extensions within the CnC model
— Cross-device work-stealing using Habanero-C
— High performance (17.72X speedup)

— Low energy consumption (0.52X of the power
used by a CPU)

— Real-world medical image-processing pipeline

— Unique prototype heterogeneous platform
(CPU, GPU, FPGA)

31

Ongoing and future work SC

« Use tag functions for further graph analysis
(correctness, memory optimizations)

* Determining the affinity metric at runtime
(application fine tuning)

* Evaluate on more benchmarks
* Determine useful primitives for domain
experts

— Easy-to-program modeling software
— Customizable hardware platform

32

D

Acknowledgements SC

 NSF Expeditions Center for Domain-Specific
Computing (CDSC) --- UCLA, Rice, OSU, UCSB

http://cdsc.ucla.edu

« Habanero-C (HC) team:

https://wiki.rice.edu/confluence/display/HABANERO/
Habanero-C+Programming+Lanqgquage

« Habanero Multicore Software Research Project

http://habanero.rice.edu

33

A Thank you!

* Questions on CnC-HC ?

— Language extensions within the CnC model
— Cross-device work-stealing using Habanero-C
— High performance (17.72X speedup)

— Low energy consumption (0.52X of the power
used by a CPU)

— Real-world medical image-processing pipeline

— Unique prototype heterogeneous platform
(CPU, GPU, FPGA)

34

