
1

Polyhedral Optimizations of Explicitly Parallel Programs

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar

Habanero Extreme Scale Software Research Group
Department of Computer Science

Rice University

The 24th International Conference on
Parallel Architectures and Compilation Techniques (PACT)

October 19, 2015

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

2

Introduction and Motivation

Introduction

Moving towards Extreme-Scale and Exa-Scale computing systems

Billions of billions operations per second

Enabling applications to fully exploit the systems is not easy !

How ??

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

3

Introduction and Motivation

Introduction

Two approaches from past work:

1) Manually parallelize using explicitly-parallel programming models (E.g., CAF, Cilk,
Habanero, MPI, OpenMP, UPC etc)

Optimizations performed by programmer not compiler !
Tedious ! But can deliver good performance, with sufficient effort

2) Automatically parallelize sequential programs

Done by compilers not humans !
Easy ! But, limitations exist.

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

4

Introduction and Motivation

Motivation and Our Approach

Motivation

Programmer expresses logical parallelism in the application and then let compiler
perform optimizations accordingly

Our approach

Automatically optimize explicitly-parallel programs

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

5

Introduction and Motivation

Glimpse of benefits

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

6

Background

1 Introduction and Motivation

2 Background

3 Our framework

4 Evaluation

5 Related Work

6 Conclusions and Future work

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

7

Background

Explicit Parallelism - Loop level parallelism

Major difference between Sequential and Parallel programs

Sequential programs - total execution order
Parallel programs - partial execution order

Loop-level parallelism (since OpenMP 1.0)

Loop is annotated with ’omp parallel for’
Iterations of the loop can be run in parallel

1#pragma omp p a r a l l e l f o r
2 f o r (i−loop) {
3 S1 ;
4 S2 ;
5 S3 ;
6 }

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

8

Background

Explicit Parallelism - Task level parallelism

Task-level parallelism (OpenMP 3.0 & 4.0)

Region of code is annotated with ’omp task’
Synchronization

B/w parent and children - ’omp taskwait’
B/w siblings - ’depend’ clause

1#pragma omp ta sk depend (out : A) //T1
2 {S1}
3#pragma omp ta sk depend (i n : A) //T2
4 {S2}
5#pragma omp ta sk // T3
6 {S3}
7#pragma omp t a s kwa i t // Tw

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

9

Background

Explicit Parallelism - Happens before relation

Happens-Before relation

Specification of partial order among
dynamic statement instances
HB(S1, S2) = true ↔ S1 must happen
before S2, where S1 and S2 are statement
instances.

HB(S1 (i), S2(i)) = true
HB(S1, S2) = true, HB(S2, S3) = false

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

10

Background

Explicit Parallelism - Serial elision property

Serial-Elision property

Removal of all parallel constructs results in a
sequential program that is a valid (albeit
inefficient) implementation of the parallel program
semantics.

1#pragma omp ta sk depend (out : A) //T1
2 {S1}
3#pragma omp ta sk depend (i n : A) //T2
4 {S2}
5#pragma omp ta sk // T3
6 {S3}
7#pragma omp t a s kwa i t // Tw

Satisfies serial-elision

Original task graph

Removing
parallel
constructs

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

11

Background

Polyhedral Compilation Techniques

Compiler techniques for analysis and transformation of codes with nested loops

Algebraic framework for affine program optimizations

Advantages over AST based frameworks

Reasoning at statement instance level
Unifies many complex loop transformations

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

12

Background

Polyhedral Representation (SCoP)

A statement (S) in the program is represented as follows in Static Control Part
(SCoP):

1) Iteration domain (DS)

Set of statement (S) instances

2) Schedule (ΘS)

Assigns logical time stamp to the statement instances (S)
Gives ordering information b/w statement instances
Captures sequential execution order of a program
Statement instances are executed in increasing order of schedules

3) Access function (AS)

Array subscripts in the statement (S)

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

13

Background

Polyhedral Compilation Techniques - Summary

Advantages

Precise data dependency computation
Unified formulation of complex set of loop transformations

Limitations
Affine array subscripts

But, conservative approaches exist !

Static affine control flow

Control dependences are modeled in same way as data dependences.

Assumes input is sequential program

Unaware of happens-before relation in input parallel program

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

14

Background

Automatic parallelization of sequential programs

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

15

Our framework

1 Introduction and Motivation

2 Background

3 Our framework

4 Evaluation

5 Related Work

6 Conclusions and Future work

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

16

Our framework

Polyhedral optimizations of Parallel Programs (PoPP)

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

17

Our framework

PoPP - Program Analysis

Step1: Compute dependences based on the sequential order (use serial elision and
ignore parallel constructs)

1 #pragma omp p a r a l l e l
2 #pragma omp s i n g l e
3 {
4 f o r (i n t it = itold + 1 ; it <= itnew ; it++) {
5 f o r (i n t i = 0 ; i < nx ; i++) {
6 #pragma omp ta s k depend (out : u [i]) \
7 depend (in : unew [i]) // T1
8 f o r (i n t j = 0 ; j < ny ; j++)
9 S1 : u [i] [j] = unew [i] [j] ;

10 }
11 f o r (i n t i = 0 ; i < nx ; i++) {
12 #pragma omp ta s k depend (out : unew [i]) \
13 depend (in : f [i] , u [i −1] , u [i] , u [i+1]) // T2
14 f o r (i n t j = 0 ; j < ny ; j++)
15 S2 : cpd (i , j , unew , u , f) ;
16 }
17 }
18 #pragma omp taskwait // Tw
19 }

Conservative analysis, but may still capture
vectorization possibility

i

it

nx

itnew b b b b b

b b b b b

b b b b b

b b b b b

rs

0 1 2 3

1

2

(S2 → S1)
dependences
across it & i loops

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

18

Our framework

PoPP - Program Analysis

Step1: Compute dependences based on the sequential order (use serial elision and
ignore parallel constructs)

Step2: Compute happens-before relation (transitive closure)

1 #pragma omp p a r a l l e l
2 #pragma omp s i n g l e
3 {
4 f o r (i n t it = itold + 1 ; it <= itnew ; it++) {
5 f o r (i n t i = 0 ; i < nx ; i++) {
6 #pragma omp ta s k depend (out : u [i]) \
7 depend (in : unew [i]) // T1
8 f o r (i n t j = 0 ; j < ny ; j++)
9 S1 : u [i] [j] = unew [i] [j] ;

10 }
11 f o r (i n t i = 0 ; i < nx ; i++) {
12 #pragma omp ta s k depend (out : unew [i]) \
13 depend (in : f [i] , u [i −1] , u [i] , u [i+1]) // T2
14 f o r (i n t j = 0 ; j < ny ; j++)
15 S2 : cpd (i , j , unew , u , f) ;
16 }
17 }
18 #pragma omp taskwait // Tw
19 }

i

it

nx

itnew b b b b b

b b b b b

b b b b b

b b b b b

rs

0 1 2 3

1

2

(S2→S1) HB edges
across it & i loops

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

19

Our framework

PoPP - Program Analysis

Step1: Compute dependences

Step2: Compute Happens-before relation (transitive closure)

Step3: Intersect 1 & 2 (Gives best of both worlds)

i

it

nx

itnew b b b b b

b b b b b

b b b b b

b b b b b

rs

0 1 2 3

1

2

Conservative
dependences PS2→S1

1

∩
i

it

nx

itnew b b b b b

b b b b b

b b b b b

b b b b b

rs

0 1 2 3

1

2

HB relation
HB

S2→S1
1

=

i

it

nx

itnew b b b b b

b b b b b

b b b b b

b b b b b

rs

0 1 2 3

1

2

Refined dependences
P′S2→S1
1

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

20

Our framework

PoPP - Program Analysis

Step1: Compute dependences

Step2: Compute Happens-before relation (transitive closure)

Step3: Intersect 1 & 2 (Gives best of both worlds)

j

i

ny

nx b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

Conservative
dependences PS1→S1

1
(j-loop is parallel for S1)

∩
j

i

ny

nx b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

HB relation
HB

S1→S1
1 (i-loop is

parallel for S1)

=

j

i

ny

nx b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

Refined dependences
P′S1→S1
1 (No

dependences for S1)
Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

21

Our framework

PoPP - Program Transformations

Step4: Use refined dependences in existing optimizations

i

it

nx

itnew b b b b

b b b b

b b b b

b b b b

0 1 2

1

2

Refined dependences, P′S2→S1
1

→

Skewing and tiling the iteration space

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

22

Our framework

PoPP - Code generation

Step5: Generate optimized code using fine grained synchronization

→

2 #pragma omp p a r a l l e l f o r \
3 private (c3 , c5) ordered (2)
4 f o r (c1 = itold + 1 ; c1 <= itnew ; c1++) {
5 f o r (c3 = 2 ∗ c1 ; c3 <= 2 ∗ c1 + nx ; c3++) {
6 #pragma omp ordered \
7 depend (sink : c1−1 , c3) depend (sink : c1 , c3−1)
8 i f (c3 <= 2 ∗ c1 + nx + −1) {
9 f o r (c5 = 0 ; c5 < ny ; c5++)

10 S1 : u [−2∗c1+c3] [c5] = unew [−2∗c1+c3] [c5] ;
11 }

13 i f (c3 >= 2 ∗ c1 + 1) {
14 f o r (c5 = 0 ; c5 < ny ; c5++)
15 S2 : cpd (−2∗c1+c3−1 , c5 , unew , u , f) ;
16 }
17 #pragma omp ordered depend (source)
18 }}

Doacross loop synchronization - OpenMP 4.1

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

23

Our framework

PoPP - Workflow (in ROSE Compiler)

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

24

Our framework

PoPP - Transformations & Code Generation

Transformations - PolyAST framework [Shirako et.al SC’2014]

To perform loop optimizations
Hybrid approach of polyhedral and AST-based transformations
Detects reduction, doacross and doall parallelism from dependences

Code Generation

Doall parallelism - omp parallel for
Doacross parallelism - omp ordered depend

Allows fine grained synchronization in multidimensional loop nests

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

25

Our framework

Extensions to Polyhedral frameworks

Correctness of Intersection approach

Serial-elision property makes it correct !

Computing conservative dependences

Non-affine subscripts, Unknown function calls, Non-affine conditionals etc
Extended access functions to support

Extracting and Encoding task-related constructs in polyhedral representation
(SCoP)

Constructed task SCoP to compute HB relation

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

26

Evaluation

1 Introduction and Motivation

2 Background

3 Our framework

4 Evaluation

5 Related Work

6 Conclusions and Future work

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

27

Evaluation

Evaluation: Benchmarks and Platforms

Intel Xeon 5660
(Westmere)

IBM Power 8E
(Power 8)

Microarch Westmere Power PC
Clock speed 2.80GHz 3.02GHz
Cores/socket 6 12
Total cores 12 24
Compiler gcc -4.9.2 gcc -4.9.2
Compiler flags -O3 -fast(icc) -O3

KASTORS -Task parallel (3)

Jacobi, Jacobi-blocked, Sparse
LU

RODINIA -Loop parallel (8)

Back propagation, CFD
solver, Hotspot, Kmeans,
LUD, Needle-Wunch, Particle
filter, Path finder

Unanalyzable data access
patterns - 7 benchmarks

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

28

Evaluation

Variants

Variants in the experiments

Original OpenMP program (Blue bars)

Written by programmer

Automatic parallelization and optimization of serial elision version of
OpenMP program (Green bars)

Automatic optimizers

Optimized OpenMP program with intersection approach (Yellow bars)

Our framework (PoPP)

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

29

Evaluation

KASTORS suite + Intel Westmere (12 cores)

Geometric mean improvement - 2.02x

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

30

Evaluation

KASTORS suite + IBM Power8 (24 cores)

Geometric mean improvement - 7.32x

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

31

Evaluation

RODINIA suite + Intel Westmere (12 cores)

Geometric mean improvement - 1.48x

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

32

Evaluation

RODINIA suite + IBM Power8 (24 cores)

Geometric mean improvement - 1.89x

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

33

Related Work

1 Introduction and Motivation

2 Background

3 Our framework

4 Evaluation

5 Related Work

6 Conclusions and Future work

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

34

Related Work

Related work

Dataflow analysis of explicitly parallel programs

Extensions to data-parallel/ task-parallel languages [J.F.Collard et.al Europar’96]
Extensions to X10 programs with async-finish languages [T. Yuki et.al PPoPP’13]
Above work is limited to analysis but we also focus on transformations.

PENCIL - Platform Neutral Compute Intermediate Language [Baghdadi et.al.
PACT’15]

Prunes data-dependence relation on parallel loops
No support for task parallel constructs as yet
Enforces certain coding restrictions related to aliasing, recursion etc.

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

35

Related Work

Related work (contd)

Polyhedral optimization framework for DFGL [Sbirlea et.al LCPC’15]

Dataflow programming model - Implicitly parallel
Optimizations via polyhedral & AST-based framework

Preliminary approach to optimize parallel programs [Pop and Cohen CPC’10]

Extract parallel semantics into compiler IR and perform polyhedral optimizations
Envisaged on considering OpenMP streaming extensions

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

36

Conclusions and Future work

1 Introduction and Motivation

2 Background

3 Our framework

4 Evaluation

5 Related Work

6 Conclusions and Future work

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

37

Conclusions and Future work

PoPP - Conclusions and Future work

Conclusions: Our approach

Reduced spurious dependences from conservative analysis by intersecting with HB
relation
Broadened the range of legal transformations for parallel programs
Integrated HB relation from task-parallel constructs into Polyhedral frameworks
Geometric mean performance improvement of 1.62X on Intel Westmere and 2.75X
on IBM Power8 - Larger improvements !!

Future work:

Parallel constructs that don’t satisfy serial-elision property
Extend to distributed-memory programming models (Eg: MPI)
Happens-Before relation for debugging
Beyond polyhedral

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

38

Conclusions and Future work

Finally,

Optimizing explicitly parallel programs is a new direction for Parallel Architectures
and Compilation Techniques (PACT)!

Acknowledgments

Support in part by DOE Office of Science Advanced Scientific Computing Research
program through collaborative agreement DE-SC0008882
Rice Habanero Extreme Scale Software Research Group
PACT 2015 program committee

Thank you!

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Polyhedral Optimizations of Explicitly Parallel Programs

