
Declarative Tuning for Locality in Parallel Programs
Sanjay Chatterjee, Nick Vrvilo, Zoran Budimlić, Kathleen Knobe, Vivek Sarkar

Department of Computer Science
Rice University, Houston, TX 77025 USA

sanjay.chatterjee@gmail.com, {nick.vrvilo, zoran, kath.knobe, vsarkar}@rice.edu

Abstract—Optimized placement of data and computation for
locality is critical for improving performance and reducing
energy consumption on modern computing systems. However,
for most programming models, modifying data and computa-
tion placements typically requires rewriting large portions of
the application, thereby posing a huge performance portability
challenge in today’s rapidly evolving architecture landscape. In
this paper we present TunedCnC, a novel, declarative and flexible
CnC tuning framework for controlling the spatial and temporal
placement of data and computation by specifying hierarchical
affinity groups and distribution functions. TunedCnC emphasizes
a separation of concerns: the domain expert specifies a parallel
application by defining data and control dependences, while the
tuning expert specifies how the application should be executed on
a given architecture—defining when and where for data and com-
putation placement. The application remains unchanged when
tuned for a different platform or towards different performance
goals. We evaluate the utility of TunedCnC on several appli-
cations, and demonstrate that varying the tuning specification
can have a significant impact on an application’s performance.
Our evaluation is performed using an implementation of the
Concurrent Collections (CnC) declarative parallel programming
model, but our results should be applicable to tuning of other
data-flow task-parallel programming models as well.

Keywords—declarative, locality, tuning, scheduling, tasks

I. INTRODUCTION

With the recent explosion in the amount of homogeneous
and heterogeneous parallelism available in the hardware (e.g.,
vector, multicore, SMPs, GPGPUs, FPGAs, DSPs, clusters),
as well as increasing complexity in memory hierarchies (e.g.,
scalar/vector registers, scratchpad memories, on-chip caches,
off-chip caches, high-bandwidth memories), it is becoming
increasingly difficult, even for experts, to tune application
performance for different machines while also striving for per-
formance portability. In particular, tuning parallel applications
for improved locality is a very significant challenge because
of the inherent trade-offs between parallelism and locality,
which can be manifest in different ways on different hardware
platforms.

Recently, there has been an emergence of higher-level
programming systems that reduce the burden of parallel pro-
gramming. Asynchronous task-parallel programming models,
such as those available in Chapel [1], Cilk [2], Concurrent
Collections (CnC) [3], Habanero-C (HC) [4], Habanero Java
(HJ) [5], Legion [6], OpenMP 4.0 [7], and X10 [8] enable
programmers to decompose their algorithms into tasks, and
offer high-level synchronization mechanisms to coordinate
task execution with improved correctness and performance
guarantees compared to programming with threads and locks.

Domain	spec	
Xeon	Phi	
tuning:	

Goal:	Energy	

Xeon	Phi	
Tuning	
Goal:	

Performance	

	
…	

Domain	
expert	knows:	
physics,		
finance,		
data	analyAcs,	
…	

Tuning	
expert	
knows:		
parallelism,	
locality,	
energy,		
…	

Cluster	 Xeon	Phi	 Future	Arch.	

X86	Tuning:	
Goal:	Performance	

Shared	memory	

cnc_t	 cnc_t	 cnc_t	 cnc_t	 cnc_t	

Fig. 1: A separation of concerns between domain and tuning experts. Domain
expert creates a single domain spec for the application. Tuning expert creates
different tuning specs depending on the target platform and the tuning goals
(performance, energy, resilience, etc.). The system creates a tuned application
for a given platform and tuning goal.

Some of these models (e.g., Legion, OpenMP 4.0) allow inter-
task dependences to be specified implicitly using the task
superscalar model [9], whereas others (e.g., CnC, HC, HJ)
allow task dependences to be specified explicitly using the
data-driven task model [10].

In this paper, we present TunedCnC, a novel, declarative and
flexible tuning framework focused on a separation of concerns.
The program’s dependence graph (domain spec), indicates the
computation ordering requirements and leaves tuning decisions
to an optional tuning spec, as shown in Fig. 1. Because of
this separation, the same domain spec (without modification)
can easily be paired with different tunings (labeled cnc_t in
Fig. 1). In our approach, the domain expert implements an
algorithm by decomposing it into computation steps and then
constructing a graph of data and control dependences. The
graph does not indicate anything about where or when the
computations occur. A step can execute whenever its input
data is available and control indicates that it should run.

The focus of this paper is on a new tuning approach
designed to improve locality, using hierarchical affinity groups
and distribution functions. Our model supports tuning for
spatial and temporal locality on both shared and distributed
memory systems. Section II summarizes the programming
and tuning models assumed in our work, and Section III
describes their implementation details. Section IV contains our
experimental results, followed by a discussion of related work
in Section V and our conclusions in Section VI.

II. PROGRAMMING MODEL

The programming model for our approach includes a do-
main spec that can be written by a domain expert, and a tuning
spec that can be written by a tuning expert. Consistent with our
goal of separation of concerns, the tuning process is isolated
from the development of the application, allowing for multiple
tuning specs to be written for the same domain spec.

Tuning	 Spec Domain	 Spec

Fully	 Implemented	
Step	 Code

Generated	 Tuning	
Support	 Code

Habanero	 C	
Compiler

CnC	 Graph	
Translator	 Tool

Generated	 Step	
Code	 Skeleton

Custom-‐tuned	
Executable

CnC	 Graph	
Translator	 Tool

Fig. 2: Typical workflow for implementing and tuning an application in
TunedCnC. Dashed arrows indicate artifacts provided by the domain or tuning
experts.

Fig. 2 shows a typical workflow of implementing and tuning
an application in our system. The domain spec describes the
flow of control and data throughout the application. This spec
is fed through the graph translator tool to produce skeleton
code for the application’s computation steps. The domain
expert also needs to implement the individual computation
steps. The tuning expert writes a tuning spec for a given
domain spec, hardware platform and tuning goal. The tuning
and domain specs are also processed by the graph translator
tool to generate the tuned support code for the application.
The tuned support code and the implemented step code are
then processed to generate a customized binary for executing
on the target platform (the Habanero-C compiler is used for
this purpose in our implementation.)

The Domain Specification: The domain specification indi-
cates exactly and only the division of the application into
tasks and the dependence constraints among those tasks. As an
example, Fig. 3 shows the domain specification for a Cholesky
factorization program.

($init:) → (cholesky:0...N)

(cholesky:iter) → (trisolve:k+1...N,iter)
(cholesky:iter) ← [array:iter,iter,iter]
(cholesky:iter) → [array:iter,iter,iter+1]

(trisolve:row,iter) → (update:iter+1...row+1,row,iter)
(trisolve:row,iter) ← [array:row,iter,iter]
(trisolve:row,iter) ← [array:iter,iter,iter+1]
(trisolve:row,iter) → [array:row,iter,iter+1]

(update:col,row,iter) ← [array:col,row,iter]
(update:col,row,iter) ← [array:col,iter,iter+1]
(update:col,row,iter) ← [array:row,iter,iter+1]
(update:col,row,iter) → [array:col,row,iter+1]

Fig. 3: Domain spec for Cholesky factorization. $init is a special kind of
computation step that gets executed at the beginning of the program.

The notation for our domain specs is drawn from CnC. A
domain spec contains nodes that correspond to computation
steps. In Cholesky, there are three distinct computation steps:
(cholesky), (trisolve) and (update). We use parentheses
to denote step collections. Each of these is called a step
collection in that it corresponds to a set of dynamic step
instances. Step instances are distinguished by the value of
their tags: (cholesky:iter), (trisolve:row,iter) and (up-
date:col,row,iter).

The domain spec also has nodes that correspond to item
collections, which is how data is represented in CnC. We use
square brackets to denote item collections, which also use tags
to distinguish item instances. In the case of Cholesky, there is
only one item collection: [array:col,row,iter].

Steps can have producer relationships (→) with other
step/item instances, and consumer relationships (←) with item
instances. These dependence constraints among the dynamic
instances form a computation DAG. These relationships in the
domain spec give exactly the constraints necessary to ensure
correct execution of the program. See [3] for more details on
the domain specification.

GROUP_CTU(iters)

GROUP_CTU(0)

GROUP_TU(N,0)

CHOLESKY
STEP

GROUP_TU(1,0)

TRISOLVE
STEP

UPDATE
STEP

Fig. 4: Cholesky Affinity Groups

The Tuning Specification: We continue to use the Cholesky
factorization example to illustrate our tuning language. The
tuning language supports two types of declarations: affinity
groupings and distribution functions. First we show how the
computation can be organized into affinity groups, and then
we show how to declare a custom distribution for data and
computation.

A tuning spec, which contains a specific tuning of the
application written using the tuning language, refers to objects
from the domain spec. It is similar to the domain spec in style.
Inconsistencies and conflicts between the domain and tuning
specs are detected and flagged by the graph translator tool.

There are many possible affinity groupings for the Cholesky
domain spec in Fig. 3. One such grouping is depicted in
Fig. 4. Here we will assign a tight affinity between (tri-
solve:row,iter) and (update:col,row,iter), by creating an
affinity group, let’s call it TU, that contains both of these steps:

(TU) → (trisolve), (update);

Notice that we don’t want (trisolve:4,12) to have an
affinity with (update:3,28,52). We want an affinity among
instances that have the same value of row and iter. This
means that there will be multiple dynamic instances of this
group, one for each row/iter pair in a given run. This is
achieved by creating groups in the tuning spec, with dynamic

instances identified by tags. In this case the instances of group
TU are exactly identified by a tag composed of row and iter.
Now we have:

(TU:row,iter) → (trisolve:row,iter),
(update:0...iter,row,iter);

This means that for each row/iter pair in (TU:row,iter)
we will have a dynamic instance of an affinity group enabling
locality among the step instances within it. Above this in the
affinity group hierarchy we will have a group called CTU that
will have an instance per iteration as follows:

(CTU:iter) → (cholesky:iter),
(TU:0...iter,iter);

Notice that this creates a higher-level affinity group that
contains a single step instance together with a set of lower
level affinity groups. Some groupings might be difficult to
express in terms of an existing step’s tag components. For
that case, we support declaring an alias for an existing step
collection, where the alias step’s tag components are mapped
onto the actual steps tag. Fig. 10 in Section IV demonstrates
this functionality.

To achieve maximal parallelism, affinity groups, steps, and
items must be distributed across the available compute re-
sources. The special variable $RANKS represents the number of
compute resources to target from the current level in the affin-
ity group hierarchy. Section III describes the tuning execution
model and implementation details. Items are always distributed
at the highest level of the hierarchy, but affinity groups and
steps are distributed at the hierarchy level corresponding to
their nesting depth in the affinity groupings. The following
declaration is equivalent to the default distribution function
for array (cyclic in the iter dimension):

[array:col,row,iter]: { iter % $RANKS };

Fig. 7 in Section IV shows the full spec for an alternative
tuning of the Cholesky factorization example.

III. RUNTIME IMPLEMENTATION

GROUP_CTU1

GROUP_TUN/2GROUP_TU1

Root : froot

. . .N1 : fN1

S1 : fs1 . . .

P1 . . . Pi

Sj : fsj

P1 . . . Pi

Nk : fNk

S1 : fs1 . . .

P1 . . . Pi

Sj : fsj

P1 . . . Pi

TUNING TREE

INTERCONNECT

. . .

L3

L2

DRAM

L1

L2

L1
. . .

P P

L3

L2

L1

L2

L1
. . .

P P

. . .

NODE0

L3

L2

DRAM

L1

L2

L1
. . .

P P

L3

L2

L1

L2

L1
. . .

P P

. . .

NODEk

ABSTRACT MACHINE MODEL

Fig. 5: Tuning tree abstraction for machine model

In our tuning framework, we use the concept of the tuning
tree to abstract the underlying machine architecture, as shown
in Fig. 5. The tree represents a structured hierarchical grouping
of compute resources derived from the memory level hierarchy

in the system. While leaf nodes represent the individual
compute resources, the internal nodes are symbolic of a
grouping of the compute resources in that sub-tree. The tuning
framework exposes a special variable, $RANKS, to represent the
number of compute resources under each node in the hierarchy.
For example, on a distributed system, the root of the tuning tree
may represent a logical grouping of all the coherent address
space domains in the system—such as node-level MPI ranks—
whereas lower levels might represent the number of sockets
on a board, or the number of cores in a socket. The tuning
tree configuration is provided by the tuning expert as an input
file to the runtime during execution.

The ability to treat a cluster as another level in the plat-
form hierarchy gives the tuning expert a tool to approach
tuning programs for shared-memory and distributed-memory
machines in the same manner. The domain expert’s code
remains unchanged regardless of whether the program is being
executed on a shared-memory or distributed-memory machine,
and regardless of what kind of tuning is applied to it.

The structure of the tuning tree and the hierarchical affinity
groupings are important tools for the tuning expert to reason
about the spatial and temporal locality of domain tasks. The
affinity groupings and their distribution functions in the tuning
spec manifest as specialized tuning tasks in the TunedCnC
runtime. The CnC translator (shown in Fig. 2) generates the
appropriate tuning tasks, which are used to assert the tuning
spec semantics during runtime execution through the addition
of extra dependences in the program. Using these specialized
tuning tasks, the tuning runtime can now dynamically guide
the placement (spatial) and staging (temporal) of the execution
of domain tasks.

The spatial placement of tasks is handled by applying a
distribution function to the task’s affinity group at runtime.
This may unpack the affinity group and distribute its elements,
according to the distribution function, among the children of
the current tuning tree node. By default, the runtime distributes
cyclically based on the final component value of an instance’s
tag. Domain tasks that result from the unpacking of affinity
groups get released to the domain runtime for execution.

Dependences on tuning tasks specified through the tuning
spec enable the staging of distribution of affinity groups. This,
along with the hierarchical affinity grouping, allows the tuning
expert to affect the temporal locality along with the spatial
placement through distribution functions. Logically, each node
in the tuning tree holds a queue of affinity groups. When the
tuning process starts, the highest-level affinity groups are on
the queue at the top-most tuning tree node. In general, the
process moves affinity groups down the tree by removing the
group at the bottom of the queue at some tuning tree node,
breaking the group up into its lower-level components and
distributing these components to the children of this node,
putting components at the top of each child’s queue. This is
illustrated in Fig. 5, which shows the distribution of the CTU
affinity groups to create the TU groups on the child nodes.

For the results reported in this paper, we developed a
new CnC graph translator tool to automatically convert the

declarative domain and tuning specifications into Habanero-C
source code for creating domain tasks, along with extensions
for creating tuning tasks. The translator accepts as input a
domain specification file and an optional tuning specification
file. The translator generates skeleton code for the CnC step
functions and support code to translate CnC operations into
Habanero-C operations. After the domain expert fleshes out the
generated skeleton code, the application can be compiled by
the Habanero-C compiler. If a tuning specification is provided,
then a tuning actions file is also generated to control the
creation and management of tuning tasks. The tuning code
adds constraints to the generated application on where and
when the tasks are executed and where the data is located
with respect to the tuning groups declared in the tuning
specification.

The distributed-memory runtime system used in this work
builds on the communication runtime introduced in the
HCMPI [4] project, with new extensions for enabling a Hi-
erarchical Place Tree (HPT) abstraction across a distributed-
memory cluster and for supporting both tuning and domain
actions in the same runtime system (thereby creating a new
set of mechanisms for controlling the placement of data and
computation within a distributed memory system). In contrast,
past work on Hierarchical Place Trees (HPTs) [11] in the
Habanero project only supported intra-node parallelism, and
did not have any support for tuning actions.

IV. EXPERIMENTAL RESULTS

In this section, we present the results of our experiments
using the CnC tuning framework. We compare some tuning
approaches for the tiled Cholesky factorization code, which
has been our running example in this paper. We also show
some tuning opportunities with the SmithWaterman and Ri-
cianDenoising examples. Benchmark and toolchain source
code is available on GitHub.1

Our experiments were conducted on a cluster consisting of
16-core Intel Xeon CPU nodes. We report results for up to
16 nodes (256 cores). Each node consists of two sockets with
each socket containing 8 cores and a shared L3 cache of size
20MB. Every core has private L1 and L2 caches of sizes 32K
and 256K respectively. The cluster is networked through a 56
Gb/sec (4X FDR) Infiniband layer. On this system, our runtime
communication layer was configured to use Intel’s MPI library
version 5.0.

Tuning Cholesky Factorization: Cholesky decomposition is
a dense linear algebra application. This implementation of
the benchmark runs a tiled version [10]. Each tile on every
iteration is executed by a unique task. The computations within
an iteration comprise of the Cholesky step on the diagonal
pivot, followed by trisolve steps on the pivot column panel
and update steps on the remaining tiles of the lower triangle.
Within an iteration, the only data reuse is that of trisolve tiles
by the update tiles. So, our strategy for exploiting data reuse
is across iterations, since the update tiles are reused in the
subsequent iteration.

1https://github.com/habanero-rice/cnc-ocr/tree/icpp2016-tuned-cnc

2.09

1.40 1.34 1.33

3.67

3.30

2.84

0.97

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

2 4 8 16

Ti
m

e
(s

)

Nodes (16 ppn)

Tiled Cholesky Factorization (6000 x 6000)

Tuned Iteration Distributed Tuned Row Distributed

Fig. 6: Execution times for tuned distributed variations of a 6000×6000
Cholesky factorization. (Shared-mem single-node time was 2.74s.)

// item collection distributions
[array:j,i,k] : { k % $RANKS }; // same as default
[results:i] : { 0 };

// affinity group distributions
(CTU:k): { k % $RANKS }; // same as default

// affinity groups
($init:) → (CTU:0...#numTiles);
(CTU:k) → (cholesky:k), (TU:k+1...#numTiles,k);
(TU:j,k) → (trisolve:j,k), (update:k+1...j+1,j,k);

Fig. 7: Cholesky iteration-wise tuning. The #var syntax denotes a global
parameter of the CnC graph.

In Fig. 6, we show the results of two kinds of tuning on the
distributed system, iteration-distributed and row-distributed,
for a 6000×6000 Cholesky factorization. The baseline CnC
version runs on a single node with 16 processors as a shared
memory application with an execution time of 2.74 secs. The
single-node OpenMP version of Cholesky for the same data
size executed in 3.73 seconds on 16 cores.

The iteration-distributed tuning approach in Fig. 7 partitions
the computation space into the different iterations of the
Cholesky factorization. Each iteration is mapped to a specific
node on the cluster. With this approach, all the steps in
one iteration can benefit from node locality, while we allow
parallelism by enabling tasks in successive iterations to start
executing as soon as their dependences are met by the previous
iteration. The row-distributed tuning approach partitions the
rows and map them to specific nodes. So, all tasks in a
row that gets executed for multiple iterations get mapped
to the same node. This enables inter-iteration reuse. It is
interesting to note that while tuning with row distribution
initially performs worse than tuning with iteration distribution,
it eventually scales better. This result reaffirms the need for
flexible tuning mechanisms to take advantage of variability in
platform configurations, and to allow for different tunings at
different scales of parallelism.

Tuning Smith-Waterman: In this section we describe our
experiences with tuning Smith-Waterman kernel, a frequently
used sequence alignment algorithm in biomedical applications.

In our experiment, we used a tiled version of the Smith-
Waterman algorithm [4] over sequences of length 185.6k and
192k. Our tiles contained 928 × 960 elements each. Each
tile computation depends on values from its above, left and
upper-left neighbors. This dependence pattern enables Smith-
Waterman to progress with an asynchronous computation
wavefront. We use this insight into the algorithm to explore
three different tuning strategies: wave distributed, row dis-
tributed, and col distributed. These tuning approaches use only
distribution functions, without using any affinity groups. Fig. 8
shows the performance of these three approaches.

7.31

3.84

2.08 1.83

9.87

3.09

1.90

9.41

2.96
1.93

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

2 4 8 16

Ti
m

e
(s

)

Nodes (16 ppn)

SmithWaterman (185600, 192000)

Tuned Wave Distributed Tuned Row Distributed Tuned Col Distributed

41.83 40.44

Fig. 8: Execution times for tuned distributed variations of SmithWaterman
with string lengths of 185,600 and 192,000. (Shared-mem single-node time
was 10.35s.)

The wave distributed approach aims to enable locality,
without reducing parallelism, by chunking each diagonal.
Neighboring tiles in a chunk get mapped to the same node.
Fig. 9 shows the actual tuning code that maps the nodes on
the wavefront. The step computations, performed by swStep,
are distributed across the system by a tuning function called
wave_dist, which is a user-defined distribution function that
the tuning expert writes and links with the application. It
is called from the tuning code. The row/col distributed ap-
proaches distribute the rows/columns across the nodes in cyclic
manner. These results demonstrate that the most effective
tuning might not be easily expressible in our tuning DSL,
confirming the need to support calls external user-defined
functions from within a tuning specification.

Tuning Rician Denoising: The 2D Rician Denoising appli-
cation is part of a medical imaging pipeline developed in the
NSF Expeditions CDSC research project [12]. The application

// item collection distributions
[above:i,j]: {wave_dist(i,j,#tilesPerRow,$RANKS)};
[left: i,j]: {wave_dist(i,j,#tilesPerRow,$RANKS)};

// step collection distributions
(initAboveStep:): { 0 };
(initLeftStep:): { 0 };
(swStep:i,j): {wave_dist(i,j,#tilesPerRow,$RANKS)};

Fig. 9: Smith-Waterman wave-distribution tuning. The #var syntax denotes a
global parameter of the CnC graph.

(rdTunedStep: iter, row, col, iter0, row0, col0 =
rdStep: row0 + row, col0 + col, iter0 + iter);

(pyramid: row0, nRow, col0, nCol, nIter, iter0)
→ (rdTunedStep: iter @ 0...nIter,

iter...(nRow - iter),
iter...(nCol - iter),
iter0, row0, col0);

Fig. 10: Rician denoising pyramid tuning, showing a step mapping for
reshaping rdStep’s tag, and the pyramid tuning group. The var@ expr syntax
gives a name to a tag component’s value.

61.62

39.10

54.12

24.22

10.65
6.59

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

UnTuned
Shared Mem

(tile 128)

Pyramid
Tuned Shared

Mem (tile
256)

Tuned Row
Distributed
(tile 256) (2

Nodes)

Tuned Row
Distributed
(tile 256) (4

Nodes)

Tuned Row
Distributed
(tile 256) (8

Nodes)

Tuned Row
Distributed

(tile 256) (16
Nodes)

Ti
m

e
 (

s)
Tunings (16 ppn)

RicianDenoising 2D (8192 x 8192) (30 iterations)

Fig. 11: Tuned Rician Denoising performance

performs five-point stencil computation on each pixel of an
image. The computation is done iteratively until convergence.
The baseline task-parallel implementation of the application
performs the stencil computation on a 2D tile of elements,
while executing all tiles of an iteration in parallel.

We have developed both shared and distributed memory
specific tunings. Our tuning strategy on the shared memory
targets the reuse of the tiles computed from one iteration to
the next as early as possible. This is to benefit from temporal
locality of data in caches. Since the stencil computation needs
to read the data from neighboring tiles, the area of computation
in successive iterations that use the same tiles keep decreasing.
Stacking these tiles across iterations produce the effect of
constructing a pyramid. In order to benefit from tile reuse,
the whole pyramid must fit in the socket level shared L3
cache. Our tuning orders the pyramids such that a new pyramid
is brought into the shared L3 cache only when the current
pyramid is close to being done. Fig. 10 shows the tuning
spec that describes the affinity group for the pyramid. For the
distributed memory, we use a simple tuning spec declaring a
per-row distribution of the matrix. Fig. 11 shows the results
of the performance of both tuned and untuned versions of
the application. In our experiment, we use a matrix of size
8192 elements as the input. The best tile size of the untuned
version was 128 × 128 elements. In contrast, a tile size of
256 × 256 elements performed best for the pyramid-tuned
version. We observed that ordering the computation with the
pyramid tuning performs significantly better than the untuned
version. This result shows that tuning for temporal locality
can have a significant impact on performance. On distributed

nodes, we scaled the row-distributed version up to 16 nodes
or 256 cores using a tile size of 256× 256 elements.

V. RELATED WORK

Legion Mappers [6] are user-defined callback functions that
are called by the runtime when deciding where to map certain
parts of data and computation. The mapper is a part of an
application. In contrast, we propose a declarative approach
that allows the tuning expert to control when the computation
is happening, in addition to where the data and computation
is placed through the use of affinity groups. This allows us to
tune for temporal locality in addition to spatial locality, and
to avoid interference from different affinity groups that should
not be executing at the same time.

Past work on tuning for locality includes cache-oblivious
algorithms, auto-tuners and domain specific stencil compilers.
The Pochoir [13] and Halide [14] compilers target data reuse
from trapezoidal computations, similar to the pyramidal struc-
ture in our tuning of Rician Denoising. The key difference is
that the data reuse they target is specific to the cache hierarchy
of each processor, while our work aims to benefit also from
data reuse of the shared caches through runtime co-scheduling
of tasks.

The approach we are describing in this paper is runtime-
based, as opposed to compiler-based approaches proposed
by autotuning [15], [16], [17]. This allows the tuner to use
tuning actions to make more dynamic decisions reacting to
the changes in the application behavior.

Recent work [18] has shown that dynamic selection of
depth-first vs breadth-first scheduling decisions based on
statically analyzed memory access patterns can significantly
improve performance. In contrast, our framework allows the
tuning expert to express any scheduling constraint for dynamic
task graphs.

Many programming systems, such as X10 [8], Chapel [1]
and Habanero-Java [5], [11] introduce a mechanism to specify
places or locales to localize data and computation, but to the
best of our knowledge, this work is the first to unify spatial and
temporal locality using a declarative and dynamic approach.

VI. CONCLUSIONS

In this paper, we have presented a dynamic and declarative
approach for controlling the locality of computation and data
on shared and distributed memory systems for dependence-
based execution models. A declarative tuning specification
based on hierarchical affinity grouping of tasks in the Con-
current Collections (CnC) programming system enables user-
directed task grouping and ordering for optimizing both spatial
and temporal locality. We have implemented the runtime and
compiler support that automatically translates the declarative
tuning specification and combines it with the application into
an executable that is tuned for a specific platform and for a
specific tuning goal. This approach allows the domain expert
to focus on the application (the data and control dependences
in the algorithm), while at the same time allowing the tuning
expert to affect the execution by constraining how data and

computation should be grouped, where they should be located,
and when should the computation tasks be executed.

We show that a choice of data distribution, computation dis-
tribution and computation ordering can have a great impact on
application performance. We anticipate even larger impact on
future systems with more cores, deeper hierarchies and higher
ratios in the costs of data movement and communication vs
computation.

ACKNOWLEDGMENTS

This work was supported in part by the X-Stack program
funded by U.S. Department of Energy, Office of Science,
Advanced Scientific Computing Research (ASCR). We would
like to thank Michael Burke for laying the foundations of the
tuning language semantics and acknowledge his early work on
the tuning language in [19].

REFERENCES

[1] Cray Inc., “The Chapel language specification version 0.4,” Cray Inc.,
Tech. Rep., Feb. 2005.

[2] R. D. Blumofe et al., “CILK: An efficient multithreaded runtime
system,” (PPoPP’95), pp. 207–216, Jul. 1995.

[3] Z. Budimlić et al., “Concurrent Collections,” Scientific Programming,
vol. 18, pp. 203–217, August 2010.

[4] S. Chatterjee, S. Tasirlar, Z. Budimlić, V. Cavé, M. Chabbi, M. Gross-
man, Y. Yan, and V. Sarkar, “Integrating Asynchronous Task Parallelism
with MPI,” in IPDPS ’13.

[5] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar, “Habanero-Java: the New
Adventures of Old X10,” in PPPJ’11.

[6] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing
locality and independence with logical regions,” ser. SC ’12, Los
Alamitos, CA, USA.

[7] OpenMP Architecture Review Board, OpenMP Application Program In-
terface, Version 4.0, July 2013, http://www.openmp.org/mp-documents/
OpenMP4.0.0.pdf.

[8] P. Charles et al., “X10: An Object-oriented Approach to Non-uniform
Cluster Computing,” ser. OOPSLA ’05, pp. 519–538.

[9] Y. Etsion et al., “Task superscalar: An out-of-order task pipeline,” ser.
MICRO ’43. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 89–100, http://dx.doi.org/10.1109/MICRO.2010.13.

[10] S. Taşırlar and V. Sarkar, “Data-Driven Tasks and their Implementation,”
in ICPP’11, Sep 2011.

[11] Y. Yan et al., “Hierarchical Place Trees: A Portable Abstraction for
Task Parallelism and Data Movement,” in LCPC’09, ser. Lecture Notes
in Computer Science, vol. 5898, 2009.

[12] Center for Domain-Specific Computing, “Customizable Domain-
Specific Computing,” http://cdsc.ucla.edu.

[13] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E.
Leiserson, “The Pochoir Stencil Compiler,” ser. SPAA ’11, New York,
NY, USA, 2011, pp. 117–128.

[14] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Ama-
rasinghe, “Halide: A language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines,” ser. PLDI
’13, 2013.

[15] K. Datta, “Auto-tuning Stencil Codes for Cache-Based Multicore Plat-
forms,” Ph.D. dissertation, EECS Department, University of California,
Berkeley, Dec 2009.

[16] J. Shin et al., “Speeding Up Nek5000 with Autotuning and Specializa-
tion,” ser. ICS ’10, 2010, pp. 253–262.

[17] T. Yuki, G. Gupta, D. Kim, T. Pathan, and S. Rajopadhye, “AlphaZ:
A system for design space exploration in the polyhedral model,” ser.
LCPC ’12, Sep. 2012.

[18] H.-S. Kim, I. El Hajj, J. Stratton, S. Lumetta, and W.-M. Hwu, “Locality-
centric thread scheduling for bulk-synchronous programming models on
cpu architectures,” ser. CGO ’15, 2015.

[19] K. Knobe and M. G. Burke, “The Tuning Language for Concurrent
Collections,” 16th Workshop on Compilers for Parallel Computing
(CPC), 2012.

