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Abstract—Performance modeling provides mathematical
models and quantitative analysis for designing and optimizing
computer systems. In high performance architectures, high-
latency memory accesses often dominate execution time in
many classes of applications. Thus, performance modeling for
memory accesses of high performance architectures has been
an important research topic. In high performance computation,
data layout can significantly affect the efficiency of memory
access operations. In recent years, the problem of data layout
selection has been well studied on various parallel CPU and
some GPU architectures. GPUs have memory hierarchies differ-
ent from multi-core CPUs. While data layout selection on GPUs
has been inspected by several existing projects, there is still
a lack of a mathematical cost model for data layout selection
on GPUs. This motivates us to investigate static cost analysis
methods that could better guide future data layout selection
work, and perhaps even designing new SIMT architectures.

In this paper, we propose a comprehensive cost analysis for
data layout selection for GPUs. We build our cost function based
on the knowledge of the GPU memory hierarchy, and develop
an algorithm which allows researchers to perform compile
time cost estimation for a given data layout. Furthermore,
we introduce a new vector based representation to represent
the estimated cost, which can better estimate the cost of
applications with dynamic length loops. We apply our cost
analysis to selected benchmarks from past publications on data
layout selection. Our experimental results show that our cost
analysis can accurately predict the relative costs of different
data layouts. Using the cost model presented in this paper, we
are developing an automatic data layout selection tool in our
ongoing work.

Index Terms—GPU, data layout selection, cost estimation, cost
vector

I. INTRODUCTION

Currently, the GPU plays an important role in the world
of parallel computing. Compared to multi-core CPUs, GPUs
have a larger number of computational cores available and
are able to better handle heavy computational tasks. Unlike
on the CPU, memory transactions are performed at the
granularity of warps on the GPU, where every warp consists
of a set of adjacent threads. If the threads inside a warp
are accessing nearby memory locations, then the memory
requests from multiple threads may be satisfiable by a single
memory transaction. The technique of combining memory
accesses in adjacent threads into fewer memory transac-
tions is called memory coalescing [1]. Thus, compared to

the CPU, a poor memory access pattern can lead to greater
performance loss on the GPU.

The data layout of an application refers to the manner in
which data is stored and organized. Due to the high global
memory access latency relative to the latency of arithmetic
operations, the choice of data layout can significantly affect
the efficiency of execution on the GPU. Moreover, as a
result of the unique architectural features of the GPU, the
best data layout on the GPU is usually different from the
best data layout on the CPU. For instance, in old GPU
models before the L1 and L2 cache were introduced, Struct-
of-Array (SoA) would usually be preferred since it would
achieve better coalescing of memory access. In contrast,
on the CPU, using Array-of-Struct (AoS) would be more
efficient in general, because using AoS would encourage
spatial locality. However, modern GPU models have enabled
on-chip L1 cache and off-chip L2 cache. For example, the
Fermi GPU has 64KB configurable shared memory and L1
cache, as well as 768KB unified L2 cache [2]. Later models
like Kepler and Maxwell further enlarge the size of the L1
and L2 cache [3] [4]. The GPU L1 and L2 cache brought
back the opportunity of cache reuse, which means merging
fields stored in discrete arrays in SoA into a single AoS
might lead to better performance. As a result, the best data
layout might be represented in the form of Struct-of-Array-
of-Struct (SoAoS), a hybridization of AoS and SoA.

Determining the best data layout for a GPU kernel is
difficult because the number of choices of different data
layouts can be numerous. For example, suppose there are N
fields, then the number of different SoAoS layouts is the Nth
Bell number B(N), where B(20) is already over 50 trillion [5].
Furthermore, finding the best data layout has been proved
to be NP-hard [6] [7]. In recent years, automatic data
layout selection had been studied on GPUs [8] [9] [10].
These approaches clearly identified the benefit of using
SoA for memory coalescing as well as using AoS for cache
reuse, and they propose polynomial time algorithms to
approximate the best data layout. Unfortunately, none of
these approaches proposed a mathematical cost model
to estimate the cost for a given data layout. Without a
mathematical cost model, the performance of the data
layout selection algorithm can be only examined from



the performance results of selected benchmarks, which
might be misleading. This motivates us to build a unified
cost model that can be further applied to all data layout
selection algorithms.

In this project, we introduce a comprehensive mathe-
matical cost model based on the GPU memory hierarchy,
as well as an algorithm to estimate the cost of a given data
layout at compile time. We also propose a novel cost vector
representation to better handle cost estimation in the pres-
ence of dynamic length loops. Our cost model is not limited
to SoAoS, and can be applied to any data layout selection
problem on GPUs. Our goal is to build an accurate cost
model for data layout selection on GPUs, where data layouts
with lower costs will have better execution efficiency.

The remainder of this paper is organized as follows: Sec-
tion II provides background on the basic terminologies and
concepts of the GPU computation model and data layout
to aid in understanding our approach for the cost analysis,
as well as our motivation for building a comprehensive
cost model for data layout selection on GPUs. Section III
introduces the design of our cost function. Section IV
describes our algorithm for static cost estimation based
on the GPU kernel and a given data layout. In Section V
we apply our cost estimation algorithm on selected bench-
marks, and compare our estimated cost with the actual
performance result. Section VI discusses related works on
GPU performance evaluation and data layout selection.
Section VII summarizes our conclusions and the ongoing
extension of this project.

II. BACKGROUND

A. GPU Global Memory Access Mechanism

In order to improve global memory transaction efficiency,
modern GPU models have added both L1 and L2 caches.
The on-chip L1 cache has a relatively smaller size, but also a
lower latency and higher bandwidth. The L1 cache is shared
by all threads inside the same Streaming Multiprocessor
(SM), where there might be multiple CUDA thread blocks
inside each SM. For Fermi there can be up to 8 active
CUDA thread blocks per SM, and for Kepler there can be
up to 16 active CUDA thread blocks per SM [3] [11]. The L1
cache shares the same on-chip memory with CUDA shared
memory, and the user can partition the memory space
between the L1 cache and shared memory. In contrast, the
L2 cache has a larger size, but a much higher latency. The
L2 cache is shared by all threads inside the GPU.

The scheduling of threads on the GPU is done at the
granularity of warps. On current Nvidia GPUs, every 32 con-
secutive threads form a warp. Threads inside a warp share
the same program counter, but have their own registers and
local memory space [12]. At each cycle, all threads inside the
warp may execute one instruction in a single instruction,
multiple thread (SIMT) manner. If there are branches, all
threads will execute all possible branch paths. For each
branch path, threads not going through this path will be
disabled. After all paths are taken, threads will be resumed

for further execution. The execution of different warps is
independent of each other.

Global memory accesses are done in 32, 64 or 128-
byte transactions aligned at 32, 64, or 128-byte addresses.
When accessing global memory, the warp determines the
transaction length according to the type of the access (read
or write) and the cache hierarchy of the chip. On some
GPU models such as Kepler, a 128-byte transaction will
be reduced to a 64-byte transaction if only half of the 128
bytes is actually needed, and a 64-byte transaction can be
further reduced to a 32-byte transaction [13]. The number
of actual transaction requests will be equal to the number
of unique memory segments. For example, if all threads in
the warp are accessing the same memory location, then
only one global memory transaction will be needed. If all
threads inside a 32-thread warp are accessing adjacent 4-
byte memory locations, and the memory location accessed
by the first thread is a multiple of 128 bytes, then only a sin-
gle contiguous 128-byte memory segment will be accessed,
and this is an example of a fully coalesced memory access.

Fig. 1. The hierarchy of GPU memory, modified from the page [14]. From
the figure, we can see the L1 cache are shared by all the threads inside
the same SM, and all the SMs are sharing one L2 cache. The red lines
indicate the path of physical memory locations where global memory
access requests could traverse.

Like on the CPU, global memory transactions may go
through the L1 and L2 cache. If the L1 cache is present
and enabled, then global loads will first try to hit in the L1
cache. If a load transaction missed in the L1 cache, it will
then try to hit in the L2 cache. For current GPUs, global
stores are not cached in the L1 cache, as they directly go
to the L2 cache. Similarly, the L2 cache will be accessed if



the memory segment is found in the L2 cache, and GPU
Dynamic Random-Access Memory (DRAM) will be accessed
if the transaction misses in the L2 cache. Memory segments
will be cached in both L1 and L2 cache when being loaded
from the DRAM.

Figure 1 shows an example of the GPU memory hierar-
chy, together with the physical memory locations a global
memory access request might traverse. For this project,
we are only considering the benefit of the L1 and L2
cache. However, from the figure, we can still see GPU has
many special-purpose memories such as shared memory
and texture memory. We will study the modeling of these
special-purpose memories in our future work.

B. The Impact of Different Data Layouts

The selection of data layout can highly impact perfor-
mance on both CPU and GPU, as different data layouts
might influence the cache hit ratio, as well as the extent
of memory access coalescing. The most common choices
for data layout are Array-of-Struct (AoS) and Struct-of-Array
(SoA).

In AoS, all fields for a logical data point are grouped into
the same struct, and one array is declared for the grouped
struct. The following code shows a sample AoS declaration.

typedef struct
{

int x;
int y;
int z;

} AoS;
AoS arr[N];

In SoA, discrete arrays are declared for different fields.
The following code shows a sample SoA declaration.

typedef struct
{

int x[N];
int y[N];
int z[N];

} SoA;
SoA arr;

The main difference between AoS and SoA is how the
data is organized in memory. In AoS, fields for the same
logical data point stay together. In SoA, the same fields
tend to converge while different fields tend to diverge. Past
work has demonstrated that for many applications, the
AoS layout can improve CPU cache hierarchy utilization,
because different fields for the same logical data point
are often accessed together, and in AoS different fields
with same array index are declared in the same structure.
Accessing one field will also bring the adjacent fields into
the cache. On the other hand, SoA may not utilize the cache
well, as accessing x[i] will not result in loading y[i] into
the cache since x[i] and y[i] are unlikely to be in the
same cache line. Therefore, AoS is usually preferred on the
CPU.

However, on the GPU, using SoA will be more likely to
result in more coalesced memory accesses, because when

all threads in the same warp are accessing the same field
for different logical data points simultaneously, using SoA
will lead to fewer memory transactions as the same fields
are declared in adjacent memory locations. In contrast, AoS
might lead to worse coalesced accesses, as declaring differ-
ent fields in the same struct will waste memory bandwidth
when accessing only a single field. Thus, SoA was preferred
on the GPU before the GPU cache was introduced.

With the introduction of the GPU’s cache hierarchy,
merging closely accessed fields into the same structure
may bring back the benefit of cache reuse. As a result, the
best data layout may be some variant of Struct-of-Array-
of-Struct (SoAoS). The following example shows a sample
SoAoS declaration, designed for the scenario when fields x
and y are accessed closely, and field z is accessed away
from fields x and y.

typedef struct
{

int x;
int y;

} AoS;
typedef struct
{

AoS InnerArr[N];
int z[N];

} SoAoS;
SoAoS arr;

Figure 2 shows an example of the memory organization
of the AoS, SoA and SoAoS declarations above, with N =
100.

Fig. 2. The memory organization of our sample AoS, SoA, and SoAoS with
N = 100. It can be seen in AoS, x[i], y[i] and z[i] are stayed together for all
i from 0 to 99. In SoA, all field x are staying before all field y, and all field
y are straying before all field z. In SoAoS, the field x and y are organized
like in AoS, while all field x and y are staying before all field z.



The number of possible SoAoS is the Bell number of
the number of fields, which grows exponentially. Moreover,
finding the optimal SoAoS is proven to be NP-hard. Most
of the existing approaches use a distance-based algorithm
for automatic data layout selection. These approaches start
from SoA, and merge fields which are accessed within a
predefined instruction distance. More details about exist-
ing distance-based approaches will be discussed in Sec-
tion VI-B. However, none of these approaches proposed
a mathematical cost function to minimize, which can
make objective analysis of these approaches difficult. This
motivates us to develop a comprehensive cost analysis
mechanism for data layout selection on GPUs.

In this project, we first propose a cost function based on
data layout and kernel memory accesses. Then we provide
an algorithm that enables the cost estimation for a given
data layout at compile time. Our goal is to develop an
accurate cost function and static cost estimation algorithm,
so that the data layouts with lower estimated cost will have
smaller cost function value and less running time.

III. COST FUNCTION

In this section, we introduce our cost function for data
layouts. In order to emulate the real cost, we build our
cost function based on knowledge of the GPU memory
hierarchy. At a high level, the cost function multiplies the
number of global transactions that are likely to target L1, L2,
and DRAM with the overhead of accessing those memory
hierarchy levels and then sums up the product terms.

To build up our cost function, we first define the cost
coefficient as the overhead of accessing different memory
hierarchies. We define WL1, WL2 and WDR AM as the costs
for accessing the L1 cache, accessing the L2 cache, and
accessing the DRAM, respectively. Since off-chip mem-
ory accesses take significantly more time than on-chip
memory accesses, WL1 is usually much smaller than WL2

and WDR AM . Furthermore, hitting in the L2 cache is still
preferred relative to accessing the DRAM.

Then we use Nr ead and Nwr i te to denote the total num-
ber of global memory transaction requests made during
the execution of the kernel. Moreover, we define RL1_r ead ,
RL2_r ead and RL2_wr i te as the overall L1 hit ratio for read
requests, the overall L2 hit ratio for read requests, and
the overall L2 hit ratio for write requests. Then we could
calculate the cost according to the formula below.

Costr ead = WL1 * Nr ead * RL1_r ead + WL2 * Nr ead * (1 -
RL1_r ead ) * RL2_r ead + WDR AM * Nr ead * (1 - RL1_r ead )
* (1 - RL2_r ead )

Costwr i te = WL2 * Nwr i te * RL2_wr i te + WDR AM * Nwr i te

* (1 - RL2_wr i te )
Total Cost = Costr ead + Costwr i te

All the variables in the above formula can be retrieved
from GPU profiling metrics when executing the kernel. This
offers a quantitative and precise target to validating our cost
estimation algorithm described in Section IV. The goal of

data layout selection is to find out the data layout which
minimizes the total cost.

IV. COST ESTIMATION

To estimate the cost from a given data layout at compile
time, we have to estimate the cost of different memory
access operations separately and sums up all costs. To
compute the cost of a memory access operation, we have
to estimate the following terms for that operation, and we
use the ∼ symbol to refer to the estimated values:

• Cost coefficient: W̃L1, W̃L2, and W̃DR AM .
• Number of transaction requests: Ñr ead , Ñwr i te .
• Cache hit ratio: R̃L1_r ead , R̃L2_r ead and R̃L2_wr i te .

A. Assumptions

It is difficult to estimate the behavior of the GPU cache at
compile time because both L1 and L2 caches are shared by
many warps, and the scheduling of warps is not predictable
at compile time. Moreover, our cost model is not intended
to estimate the actual running time, but rather to determine
whether a given data layout is better than another in terms
of the total cost of global memory accesses. Thus, we make
the following assumptions.

1) Both L1 and L2 cache adopt LRU cache replacement
policy, as most modern GPUs use LRU or pseudo-LRU
for both L1 and L2 caches [15].

2) We assume all threads are running in lockstep as a
large, cross-SM warp, i.e. they are executing the same
instruction concurrently, before moving on to the next
instruction. The reason for making this assumption
is that it is hard to determine the order of warp
execution at compile time. Although this assumption
may overestimate the cache hit ratio, it is one of the
most reasonable ways to estimate cache behavior at
compile time.

3) Moreover, we only consider the L1 and L2 cache for
the memory locality. On current GPUs, the shared
memory and the L1 cache are sharing the same piece
of on-chip memory, hence have the same latency. The
only difference is that the shared memory is utilized
explicitly, and the L1 cache is utilized implicitly. Thus,
under our cost model, we can treat the shared mem-
ory like the L1 cache. More detailed studies about
shared memory and other on-chip special-purpose
memories are left for future work.

B. Basic Terms of Accessing Global Memory

Before describing our cost estimation algorithm, we first
define some basic terms about accessing global memory.
Although some of these terms may have been mentioned
in previous studies on data layout selection, we provide
our own definitions to ensure our estimation algorithm is
unambiguous. The terms in this section are not limited
to SoAoS selection, although we will illustrate these terms
using SoAoS.

In general, each global array Arr in the SoAoS layout can
be declared in the following format.



typedef struct {
type x;
type y;
type z;
...

} StructType;
StructType Arr[Len];

The type here can be any 1, 2, 4 or 8-byte data type.
There will be some padding bytes to ensure the starting
address alignment of every N-byte field is a multiple of N
bytes. StructType may have one or more fields inside.

Then for each access to the field x inside the array Arr,
where Arr is an array of StructType, we define the
following terms.

1) Block Size, Grid Size, Number of Blocks per SM, and
Thread ID: For a GPU kernel, the block size is the number
of threads inside each CUDA thread block, and the grid size
is the number of CUDA thread blocks in total. The number
of blocks per SM is the maximum number of CUDA thread
blocks each SM can have when executing the kernel, and it
is bounded by the GPU architecture as well as the amount
of resources each block is requesting. For each thread, the
thread ID (tid) is its one-dimensional rank inside the global
thread pool.

2) Structure Size: The structure size of a structure is the
number of bytes of the structure including the padding
bytes. For example, the structure size of the following
MyType structure is (1 + 3 + 4 + 1 + 1 + 2) = 12 bytes,
due to the padding bytes after fields w and y.

typedef struct {
char w; // 1 byte

// 3 padding bytes after w to ensure the
// starting address of y is multiple of 4

int x; // 4 bytes
char y; // 1 byte

// 1 padding byte after y to ensure the
// starting address of z is multiple of 2

short z; // 2 bytes
} MyType;

3) Array Index: The array index for accessing data field
x using AoS as Arr[i].x, or using SoA as Arr.x[i],
will both be i. Array indices can also be mathematical
expressions or even functions of variables. For example,
Arr[i*j].x and Arr[foo(i+j)].x are allowed in the
cost estimation, although we conservatively handle these
cases.

4) Stride: For a global access to data field x, the stride
between a pair of adjacent threads in the same warp is the
difference between the two memory addresses of the field
x these two threads are accessing. The value of the stride
depends on the difference of the array indices accessed
between adjacent threads, as well as the structure size of
the structure field x belongs to. Strides can be different for
different pairs of adjacent threads.

The following formula shows how to calculate the stride
between thread tid and tid + 1.

indexDiff = abs(array_index(tid) - array_index
(tid + 1))

stride(tid, tid + 1) = indexDiff * sizeof(
StructType)

Sometimes, indexDiff cannot be computed at compile
time, especially when array indices are non-analyzable
functions of the thread ID. In such cases, we would say the
stride cannot be computed at compile time, or the stride
is undefined for static cost estimation.

Below is an example of vector addition using AoS and
SoA layout. Consider the following sample code written in
CUDA.

__global__ void vectorAdditionAoS (MyAoS *
inputStruct, float *result)

{
const int tid = blockIdx.x * blockDim.x +

threadIdx.x;
float tempX = inputStruct[tid].x;
float tempY = inputStruct[tid].y;
result[tid] = tempX + tempY;

}

__global__ void vectorAdditionSoA (MySoA *
inputStruct, float *result)

{
const int tid = blockIdx.x * blockDim.x +

threadIdx.x;
float tempX = inputStruct->x[tid];
float tempY = inputStruct->y[tid];
result[tid] = tempX + tempY;

}

We can see if using AoS, both accesses to x and y has
array_index(tid) = tid, thus indexDiff will be 1 for
all adjacent threads. Thus all strides will be indexDiff *
sizeof (MyAoS) = 8 bytes. On the other hand, if using SoA,
both accesses to x and y also has array_index(tid) = tid,
then indexDiff will also be 1 for all adjacent threads.
Thus all strides will be indexDiff * sizeof (int) = 4 bytes.

5) Instruction Distance: We define the L1 and L2 instruc-
tion distance between two memory access instructions I1

and I2, as the number of unique memory locations accessed
by all threads sharing the L1 or L2 cache between I1 and
I2. According to our second assumption in Section IV-A,
different threads will have the same contribution to the
instruction distance. Moreover, fetching a field into the
cache will also fetch the fields declared in the structure
if they fall in the same cache line, and these fields will also
contribute to the unique memory locations even if they
were not accessed.

Then, the L1 instruction distance between two memory
access instructions can be calculated as:

#_blocks_per_SM * block_size * unique memory
locations in between (inclusively) in one
thread

And the L2 instruction distance between two memory
access instructions can be calculated as:



grid_size * block_size * unique memory
locations in between (inclusively) in one
thread

Based on our LRU assumption in Section IV-A, there
will be no benefit of cache reuse between accesses with
instruction distance larger than the cache size.

For example, for the following accesses to Arr1[i].x
and Arr1[i].y, where Arr1 is an array of structure
containing integer fields x and y, and Arr2 is an array
of structure containing integer fields w and z. All fields are
4-byte data type.

... = Arr1[i].x // Instruction A

... = Arr2[i].z

... = Arr2[i].w

... = Arr2[i].z

... = Arr2[i].y // Instruction B

Suppose the grid size is 1024, the block size is 256, and
the number of blocks per SM is 8. Then between Instruction
A and B, the L1 instruction distance is 8 * 256 * 4 * 4 = 32768
bytes, and the L2 instruction distance is 1024 * 256 * 4 * 4
= 4194304 bytes.

6) Index Accordance: In a thread, for accesses to different
fields x and y which are candidates for cache reuse, we
are less interested in the actual difference between their
array indices. Instead, we are more interested if these two
instances of field x and y will be in the same cache line.
Thus, we say two accesses are L1_beneficial if the elements
accessed can be proved to be in the same L1 cache line,
and they are L2_beneficial if the elements accessed can be
proved to be in the same L2 cache line. In our approach,
index accordance is only meaningful for fields declared in
the same structure.

For example, the following accesses to x and y are neither
L1_beneficial nor L2_beneficial, as we cannot guarantee
that Arr1[i].x and Arr1[N - i].y will be in the
same L1 or L2 cache line.

... = Arr1[i].x

... = Arr1[N - i].y

C. Estimating the Cost Coefficient

Because the GPU has the ability to overlap memory
accesses with computational instructions, precisely defining
the cost of different types of memory accesses can be
difficult. However, since arithmetic operation latency on
the GPU usually consumes significantly fewer cycles than
memory access operations, a conservative approach is to
assign cost coefficients based on memory access latency
normalized to a hit in the L1 cache. Unfortunately, there
is no official release of latencies of the GPU memory
hierarchy. Table I shows some approximated latency values
for Fermi from running profiling benchmarks [16] [17].

Thus, we would set W̃L1= 1, W̃L2 = 30, W̃DR AM = 100 for
Fermi as relative costs. For difference GPU architectures, we
will set W̃L1, W̃L2 and W̃DR AM in a similar way.

Memory Hierarchy Latency (Cycles)
L1 Cache 10
L2 Cache 300

DRAM 1000
TABLE I

LATENCIES FOR FERMI MEMORY HIERARCHY.

D. Estimating the Number of Transaction Requests

Stride is the only attribute needed to estimate the
number of transaction requests. For each memory access
instruction, there are three common cases:

• If all strides within a warp equal 4 bytes, we say the
access has a unit stride, or the access is fully coalesced.
In this case, if the memory address of the field to
be requested from the first thread is a multiple of
128 bytes, then inside a warp, there will be only one
global memory transaction. Moreover, if all strides = 0
inside a warp, i.e. all threads are accessing the same
element, then only one global memory transaction will
be needed for all threads inside the same warp as well.

• If all strides equal to N * 4 inside a warp, for some N
where 1 < N < 32, then inside a warp there will be N
128-byte transactions needed.

• If all strides can be proven to be larger than or equal
to 128 bytes, where they do not have to be equal
among different warps, then we say the access is fully
non-coalesced. In such case, inside a warp, 32 separate
global memory transactions will be needed. Moreover,
if the array index is independent of the thread id, and
the stride cannot be analyzed at compile time, then we
will regard the access as fully non-coalesced.

Unfortunately, in some cases, the stride cannot be known
at compile time since the array indices may be functions of
runtime variables. In these cases, we make the conservative
estimation that all dynamic strides are larger than 128 bytes.

Finally, inside a warp, by examining all the strides as
well as all the relative memory address, we would be able
to determine the number of unique memory segments
requested by the warp.

E. Estimating the Number of Blocks per SM

In order to calculate the L1 instruction distance, we
have to firstly estimate the number of blocks per SM.
When executing a kernel, the number of blocks per SM
is restricted by the following factors:

• The maximum number of thread blocks an SM can
have for the GPU architecture, max_#_blocks_per_SM.

• The maximum number of threads an SM can have for
the GPU architecture, max_#_threds_per_SM. For any
kernel, we always have

block_size * #_blocks_per_SM <= max_#
_threds_per_SM.

• The number of registers an SM has for the GPU
architecture, #_registers_per_SM, which can be re-
trieved using cudaGetDeviceProperties API [18].



Moreover, when compiling a kernel, we can retrieve
the number of registers requested by the kernel,
#_registers_per_thread. For example, we may pass the
-Xptxas="-v" option if using the nvcc compilation
command [19]. Finally, we should have

#_registers_per_thread * block_size * #
_blocks_per_SM <= #_registers_per_SM

As a summary, we can use the following formula to
estimate the number of blocks per SM for a kernel.

#_blocks_per_SM = max(1, min(max_#
_blocks_per_SM, max_#_threds_per_SM /
block_size, #_registers_per_SM / #
_registers_per_thread / block_size))

F. Estimating the Cache Hit Ratio

We will use the following rule to estimate the cache hit
ratio: for an access to field y after an access to field x, if
and only if their instruction distance is no greater than the
L1 or L2 cache size, and the two accesses are L1_beneficial
or L2_beneficial, then y may be a hit in the L1 or L2 cache.

To determine if the index accordance is satisfied, we have
to look at the array indices, as well as the structure size.
Suppose we have two accesses to Arr[i].x and Arr[j].y. First,
if the difference of array indices, i.e. the absolute value of i
– j, cannot be known at compile time, then we will say the
index accordance is not satisfied, although this may miss
some opportunities for cache reuse. Otherwise, we look into
such difference times the size of the struct of the array Arr.

(|i - j| + 2) * sizeof(dataType(Arr))

Then, we say the L1 or L2 index accordance will be
satisfied, if and only if the above value is less than or equal
to the L1 or L2 cache line size.

An access to the field x will be hit in the L1 or L2 cache
if there exists some field y declared in the same structure
with x, where there is an access to the field y before
the access to the field x within the L1 or L2 instruction
distance, and the L1 or L2 index accordance was satisfied.
Otherwise, DRAM will be accessed for accessing field x.
Among different threads inside the same warp, whether the
access will be hit in the L1 or L2 cache may be different.
Finally, the cache hit ratio can be retrieved by considering
the cache hit or miss of all threads.

G. Estimating the Cost

To estimate the cost, we must have access to the kernel,
a given data layout, as well as:

1) Grid size and block size. We also provide default
values for them if they are not explicitly specified.

2) The number of threads per warp. For all current
Nvidia GPUs this value is 32.

3) L1 cache size. For Fermi the L1 cache size can be
configured as 16KB or 48KB, and for Kepler the L1
cache size can be configured as 16KB, 32KB or 48KB.
We set this value to be 0 if the L1 cache is not enabled.

4) L1 cache line size. For all current GPUs this value is
128 Bytes.

5) L2 cache size. The L2 cache size for Fermi is 768KB,
and for Kepler it is 1536KB.

6) L2 cache line size. For all current GPUs this value is
32 Bytes.

Theoretically, to compute the total amount of memory
transactions, we would need to consider each execution of
every memory access instruction. However, in practice, we
usually cannot retrieve how many times each memory ac-
cess instruction will be executed at compile time, especially
when the instruction is in a loop with dynamic length. Thus
we may need to give an estimation of the value of dynamic
loop lengths. In practice, our give the estimation of the
length of all dynamic loops as 100. Then we can unroll all
the loops, and transform the kernel into an extend basic
block.

In the transformed code, for each global memory access
instruction, we estimate the cost in the granularity of warps.
We use the approaches in Section IV-D to estimate the
number of global transaction requests, and use the rules
in Section IV-F to estimate the cache hit ratio. Then we
multiply the number of transactions hit in the L1 cache, hit
in the L2 cache, and go to DRAM with their corresponding
cost coefficient, which will be estimated using the rules
introduced in Section IV-C. Finally, the cost of the memory
access instruction can be calculated by summing up the
costs from all warps.

Finally, adding up the cost of all global memory accesses,
we will get the total estimated cost.

In practice, given two different data layouts, using our
cost estimation algorithm we are able to compute the
cost of each data layout. The layout with lower cost will
potentially have a better memory access efficiency, hence
smaller execution time.

H. Handling Dynamic Loop Lengths

Using a constant to approximate the length of dynamic
loops is a standard approach in static cost estimation.
However, in our experience, this approach can be less
effective when some loops have dynamic lengths and others
have lengths that are compile-time constants. Thus, as in
big-O analysis, where variable terms are assumed to be
more significant than constant terms, we take an approach
in which loops with variable lengths are considered to be
more significant than loops with constant lengths.

We start by defining the complexity degree, C D(I ), of
memory access instruction, I , as the number of loops
enclosing I with variable loop length. We also define the
complexity vector, CV (I ), of memory access instruction, I ,
enclosed in n loops as a vector of size n + 1 with a 1 at
position C D(I ) and zeroes in all other positions.

For example, consider the following loop nest in which
M and N are unknown at compile time:

for (i = 0; i < M; i++)
for (j = 0; j < 128; j++)



for (k = 0; k < N; k++)
{

...
a[index].x ++; // Instruction A
...

}

Then the complexity degree of instruction A will be
C D(A) = 2, since there are two loops with unknown length
enclosing A, and the complexity vector will be CV (A) =
(0,0,1,0) with a 1 in position 2, thereby representing a
quadratic complexity.

During cost estimation, for each memory access in-
struction, once we have computed its estimated cost, we
multiply it by the complexity vector for that instruction. The
resulting vector is called the cost vector. Two cost vectors
can be added using standard vector addition, and we use
this way to sum up the total cost.

Finally, we have to be able to determine if one cost vector
is larger than the other. Since the rightmost entry of a cost
vector is the most significant entry, we say that (X0, X1, ...,
Xn) > (Y0, Y1, ..., Yn), if and only if, there exists some 0 <
m <= n, (Xm > Ym) and (Xm+1 = Ym+1) and (Xm+2 = Ym+2)
... and (Xn = Yn).

Our vector-based representation will prefer data layouts
which focus on optimizing accesses within dynamic length
loops, which will have a higher chance of being executed
more frequently. For example, for the following code, In-
struction A and B are the only global memory access
instructions, and the value of M and N cannot be known
at compile time. Suppose the grid size is 100, the block
size is 256, and the number of blocks per SM is 8. Assume
that we have two data layouts: Layout_1 and Layout_2. To
make the example simple, suppose using Layout_1, for each
warp, the cost of every execution of Instruction A is always
1 and the cost of every execution of Instruction B is always
3. Similarly, if using Layout_2, for each warp, the cost of
every execution of Instructions A is always 3 and the cost
of every execution of Instruction B is always 1.

for (i = 0; i < M; i++)
{

for (j = 0; j < 128; j++)
{

... = a[index1].x; // Instruction A
}
for (k = 0; k < N; k++)
{

... = a[index2].y; // Instruction B
}

}

First, we see that the complexity degrees for instructions
A and B are C D(A) = 1 and C D(B) = 2, yielding CV (A) =
(0,1,0) and CV (B) = (0,0,1) Then, if we assume the loop i
and k will execute 100 times, the cost vector for Layout_1
will be 100 * 128 * 100 * 256 * 1 * (0, 1, 0) + 100 * 100 * 100
* 256 * 3 * (0, 0, 1) = (0, 327680000, 768000000).

And the cost vector for Layout_2 will be 100 * 128 * 100
* 256 * 3 * (0, 1, 0) + 100 * 100 * 100 * 256 * 1 * (0, 0, 1) =

(0, 983040000, 256000000).
Since (0, 327680000, 768000000) > (0, 983040000,

256000000), Layout_2, which better accommodate Instruc-
tion B, will be preferred by our cost estimation algorithm.
The reason is we believe Instruction B will be executed more
frequently than Instruction A in practice.

V. PERFORMANCE EVALUATION

The performance evaluation is done in the following way.
First, for each benchmark, we propose some reasonable
data layouts, including AoS and SoA. Then we compute
the cost for each data layout using our cost estimation
algorithm. After that, we run the benchmark written in each
of the chosen data layouts, and record the total running
time and all profiling metrics related to global memory
access operations. We can compute the dynamic cost using
the profiling metrics and the relative costs W̃L1, W̃L2 and
W̃DR AM . Finally, we compare the actual running time with
the estimated cost and the dynamic cost. We expect the
layout with lower estimated cost will have smaller dynamic
cost, as well as smaller execution time.

A. Machine Configuration

We run our benchmarks on both Fermi and Kepler
GPUs. The Fermi GPU we used was an Nvidia Tesla M2050
GPU [20]. The Kepler GPU we used was an Nvidia Tesla
K20c GPU [21]. In this generation of Kepler GPU, the L1
cache is not enabled for caching global memory trans-
actions. Table II shows more detailed attributes of the
machines used during performance evaluation.

Attribute Tesla M2050 Tesla K20c
# Cuda Cores 448 2496

# Threads per Warp 32 32
Max # Blocks per SM 8 16

Max # Threads per SM 1536 2048
# Registers per SM 32768 65536

Max # Registers per Thread 63 255
L1 Cache Size 64KB 0KB

L1 Cache Line Size 128 Bytes N/A
L2 Cache Size 768KB 1536KB

L2 Cache Line Size 32 Bytes 32 Bytes
TABLE II

RELATED ATTRIBUTES OF THE TESTING MACHINES.

B. Benchmarks

In this paper, we present results for the following bench-
marks. All these benchmarks have their unique feature to
be studied in data layout selection problems.

1) K-means: K-means is a clustering algorithm in data
mining. It keeps assigning the points to the cluster, re-
computes the centroid of the new clusters, until reaching a
fixed point. Inside the kernel, although the fields feature
and clusters field are accessed within a short instruction
distance, however, the index accordance was not satisfied.
Thus using AoS will not be beneficial from the cache reuse.
For this benchmark, we choose AoS, SoA, and SoAoS which
merges the fields feature and clusters.



2) N-body: N-body is the physics algorithm that predicts
the motion of each object by considering the forces from all
other objects. Except loading and storing the coordinates
of the current object, all of the other global accesses are
accessing the same element at each time. Thus most of
the accesses can be done within one transaction in every
warp. We choose data layouts AoS, SoA, and two versions
of SoAoS. The first SoAoS groups input fields x, y, z and
output fields vx, vy and vz, and the second SoAoS groups
x with vx, y with vy, and z with vz.

3) LavaMD: LavaMD simulates the relocation of particles
in 3D space. The computation is performed on the granular-
ity of cubes, where each cube has 26 surrounding neighbors.
Since the grid computation will take the advantage of cache
reusing, using AoS for each point might be more beneficial.
We choose data layouts AoS, SoA and two versions of SoAoS.
Like N-body, the first SoAoS groups all the dimensions of
the input point, as well as the output point. The second
SoAoS groups each dimension of the input and the output
point.

4) Summary: Table III shows the benchmarks and data
layouts we selected for our performance evaluation.

Benchmark Data Layout Field Grouping

K-means AoS
{feature, clusters,

membership}

K-means SoA
feature, clusters,

membership

K-means SoAoS
{feature, clusters},

membership

N-body AoS {x, y, z, vx, vy, vz}
N-body SoA x, y, z, vx, vy, vz
N-body SoAoS 1 {x, y, z}, {vx, vy, vz}
N-body SoAoS 2 {x, vx} , {y, vy}, {z, vz}

LavaMD AoS

{d_rv_gpu.v, d_rv_gpu.x,
d_rv_gpu.y, d_rv_gpu.z,
d_fv_gpu.v, d_fv_gpu.x,
d_fv_gpu.y, d_fv_gpu.z}

LavaMD SoA

d_rv_gpu.v, d_rv_gpu.x,
d_rv_gpu.y, d_rv_gpu.z,
d_fv_gpu.v, d_fv_gpu.x,
d_fv_gpu.y, d_fv_gpu.z

LavaMD SoAoS 1

{d_rv_gpu.v, d_rv_gpu.x,
d_rv_gpu.y, d_rv_gpu.z},
{d_fv_gpu.v, d_fv_gpu.x,
d_fv_gpu.y, d_fv_gpu.z}

LavaMD SoAoS 2

{d_rv_gpu.v, d_fv_gpu.v},
{d_rv_gpu.x, d_fv_gpu.x},
{d_rv_gpu.y, d_fv_gpu.y},
{d_rv_gpu.z, d_fv_gpu.z}

TABLE III
BENCHMARKS AND DATA LAYOUTS FOR OUR PERFORMANCE EVALUATION

C. Performance Results

The reference code for our N-body benchmark was mod-
ified from Nyland’s Fast N-body implementation [22]. The
reference code for our K-means and LavaMD benchmarks

was modified from Rodinia’s implementation [23]. All the
codes are written in CUDA. To simplify comparison of our
results, all the loop lengths are given at compile time so that
the estimated cost can be represented by a single value.

Table IV shows the performance results on Fermi, and
Table V shows the performance results on Kepler. For each
benchmark, the data layouts are sorted by increasing order
of the speedup. For the estimated cost and the dynamic
cost, since the actual number can be very large, we give
the relative ratio against the cost of the AoS layout. Since
the cost of memory access operations is only part of the
execution overhead, we do not expect the ratio of the cost
to be approximately equal to the ratio of the execution time,
but they are supposed to have a positive correlation.

Benchmark
+ Data Layout

Estimated Cost
Against AoS

Dynamic Cost
Against AoS

Speedup
Against AoS

K-means (SoAoS) 0.667 0.663 1.208×
K-means (SoA) 0.333 0.399 1.531×

N-body (SoAoS 2) 1.003 1.272 0.917×
N-body (SoA) 0.826 0.905 1.088×

N-body (SoAoS 1) 0.826 0.915 1.089×
LavaMD (SoAoS 2) 4.041 3.967 0.589×

LavaMD (SoA) 2.810 3.197 0.706×
LavaMD (SoAoS 1) 0.643 0.791 1.014×

TABLE IV
PERFORMANCE RESULTS ON SELECTED BENCHMARKS AND DATA LAYOUTS ON

FERMI, RELATIVE TO AOS.

Benchmark
+ Data Layout

Estimated Cost
Against AoS

Dynamic Cost
Against AoS

Speedup
Against AoS

K-means (SoAoS) 0.667 0.692 1.416×
K-means (SoA) 0.333 0.385 1.570×

N-body (SoAoS 2) 1.004 1.010 0.973×
N-body (SoA) 0.950 0.950 1.018×

N-body (SoAoS 1) 0.950 0.950 1.022×
LavaMD (SoAoS 2) 5.239 5.871 0.443×

LavaMD (SoA) 2.241 2.256 0.714×
LavaMD (SoAoS 1) 0.625 0.623 1.147×

TABLE V
PERFORMANCE RESULTS ON SELECTED BENCHMARKS AND DATA LAYOUTS ON

KEPLER, RELATIVE TO AOS.

From both tables, we can see our cost function and esti-
mated cost vector can accurately predict the benefit among
different data layouts on different GPU architectures. Most
of the errors between estimated cost and dynamic cost
come from our assumption about warp scheduling. More-
over, ignoring the GPU’s ability to overlap computation
with communication will also simplify the actual warp
scheduling.

For example, for the LavaMD benchmark, the difference
between the estimated cost and the dynamic cost is much
larger than the other two benchmarks. We believe the
reason is because there are more arithmetic operations in
LavaMD, so the warp scheduling might be more compli-
cated than our assumption. Furthermore, from the results,
our cost estimation works better on Kepler than Fermi. We



believe the reason is that Kepler has a faster processing unit
than Fermi, so the ratio of cycles of arithmetic operations
over memory access operations on Kepler will be smaller
than Fermi. Thus, our assumption about ignoring the arith-
metic operations will have less impact on Kepler.

VI. RELATED WORK

A. Cost Analysis on GPU

The general cost analysis on GPU is well studied. In
particular, Govindaraju et al. [24] discussed the cost of GPU
cache in details. Hong et al. [25] proposed an analytical
model to estimate the execution time of GPU kernels, and
they discussed the concept of memory coalescing in details.
Zhang et al. [26] proposed a cost model that considers the
efficiency of global memory access together with the shared
memory access and instruction pipeline.

However, some of the above algorithms are making as-
sumptions on the input program, and might tolerate small
errors in the estimation. In contrast, we developed our cost
function only based on the GPU memory hierarchy, and
made little assumption on the input program. Moreover,
our cost estimation enables compile time estimation, which
is especially good for the data layout selection problem.

B. Data Layout Selection on GPUs

Most of the existing automatic GPU data layout selection
projects are using distance-based approach. Here the term
‘distance’ is referring to the instruction distance defined
in Section IV-B. The main idea of these approaches is
defining the instruction distance between two instructions
as the amount of unique memory spaces between these
two instructions, and the cost between two fields as the
maximum instruction distance among all closest pair of
instructions accessing these pair of fields. Then the field
pairs whose cost below a threshold are candidates to be
merged into the same struct.

Existing distance based approaches make the same as-
sumptions our cost model did:

1) LRU replacement policy for L1 and L2.
2) Threads are executing as in a big warp. There is

no difference among the formula to calculate the
distance across different threads.

3) Ignoring the ability of GPU to overlap the compu-
tation with communication, as well as the possible
utilization of shared memory.

However, existing distance based approaches make addi-
tional assumptions relative to our approach. Without these
assumptions, our cost analysis would be able to handle
more general cases accurately.

1) Most related works use one ‘distance’ for the L1 and
the L2 cache, or just ignoring the benefit of the L2
cache. We define L1 and L2 instruction distances
separately, as the threads sharing the L1 and the L2
cache are organized differently. Moreover, the benefit
of hitting in the L1 and the L2 cache are also different.

2) Most related works do not look into the array indices
of each access, or assume the array indices always fall
into the same cache line, i.e. they ignore the index ac-
cordance defined in Section IV-B. This assumption is
not true in general, and it is sometimes unreasonable.

In particular, Mei et al. [27] discusses the benefit of differ-
ent data layouts such as AoS, SoA, SoAoS, and hybrid data
layout. Majeti et al. [8] uses a greedy approach to select the
best SoAoS based on the instruction distance, while their
work also inspected the data layout transformation between
multiple kernels. Kofler et al. [9] uses a minimum spanning
tree construction method to do the field partitioning based
on the instruction distance, while they also enabled array
tiling based on the profiling runs of the kernel with different
tile sizes. Weber et al. [28] proposed an adaptive data layout
selector based on the prediction function which predicts
the cache behavior of GPU. Moreover, Dymaxion which
developed by Che et al. [29], provides a series of APIs which
enables automatic data layout transformation on GPU.

VII. CONCLUSION AND FUTURE WORK

In this work, we proposed a novel cost analysis scheme
for the data layout selection on GPUs. We built our cost
function based on the cache hierarchy and memory access
semantics of GPU, in order to maximize the accuracy of the
cost model. We also developed an algorithm to estimate the
cost of a given data layout at compile time, which mainly
simulates the LRU behavior of the GPU cache. We also
introduced our novel cost vector representation to handle
variable loop lengths at compile time. We tested our cost
estimation using selected benchmarks on Nvidia Fermi and
Kepler GPU. Our performance result shows our cost model
can accurately predict the efficiency of a given data layout.

Currently, we are developing an automatic data layout
selector for CUDA kernels. The data layout selector extends
the existing distance based field merging algorithm, and it
follows the cost model proposed in this paper. We are also
proposing extending the cost model to other heterogeneous
architectures such as Intel Xeon Phi co-processor.
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