

ABSTRACT

Locality Transformations of Computation and Data for Portable Performance

by

Kamal Sharma

Recently, multi-cores chips have become omnipresent in computer systems ranging

from high-end servers to mobile phones. A variety of multi-core architectures have been

developed which vary in the number of cores on a single die, cache hierarchies within a

chip and interconnect across chips. This diversity of architectures is likely to continue for

the foreseeable future. With these architectural variations, performance tuning of an appli-

cation becomes a major challenge for the programmer. Code optimizations developed for

one architecture may have a different impact, even negative, across other architectures due

to the differences in tuning parameters. This problem is compounded when scaling from a

single node to multiple nodes in a cluster. Our thesis is that significant performance benefits

can be obtained from locality transformations of computation and data that require minimal

programmer effort. We establish this thesis by addressing three specific problems — tile

size selection, data layout optimization and automatic selection of distribution functions.

Tile size selection and data layout optimization improve intra-node performance, whereas

automatic selection of distribution functions also enhances inter-node performance.

Loop tiling is a well-known locality optimization technique that can increase cache

reuse at different levels of a memory hierarchy. Choosing tile sizes for different loop nests

is a non-trivial task for a programmer due to the large parameter search space and different

architectural parameters for different platforms. In this dissertation, we present analytical

bounds for tile size selection. Our approach uses different architectural parameters such as

cache size and TLB size to limit the tile size search space, and also includes an automated

algorithm to select optimized tile sizes.

Another important locality optimization is data layout transformation, which improves

cache performance by restructuring program data. An important challenge for a program-

mer is to select an efficient data layout for a given application and target platform. In the

past, selecting a data layout has been limited by the cost of rewriting applications for dif-

ferent layouts and by the effort required to find an optimized layout for a given platform.

In this work, we present an automated tool for implementing different layouts for a given

program. Using our approach, a programmer can experiment with different layouts across

varying platforms for efficient performance. We also provide an automatic algorithm to

select an optimized data layout for a given program and its representative executions.

When mapping an application onto multiple nodes, one challenge for scalable perfor-

mance is how to distribute computation and data across the nodes. In this work, we in-

troduce an algorithm to automatically select a task/data distribution function for a set of

nodes. We build this solution on Intel CnC’s distributed runtime system.

Overall, our approaches for the three problems provide automated methods for locality

optimization that enable portable performance while requiring minimal programmer effort.

Acknowledgments

I would like to thank all members of the Habanero group at Rice University for their

help during my thesis work. My dissertation has also built on discussions and collabora-

tions with other researchers at Rice, Ohio State University, LLNL and Intel CnC team.

For my tile size selection topic, I would like to thank Jun Shirako at Rice and Prof.

Sadayappan, Louis-Noel Pouchet and Naznin Fauzia from Ohio State University. Without

their insightful discussions and feedback, tile size selection topic would likely have not

been part of this dissertation. Their constant effort to overcome different challenges faced

in this topic have improved my problem solving skills. Our findings have been published

in a conference paper [1]∗.

I would like to acknowledge help from James R. McGraw, Ian Karlin and Jeff Keasler

from Lawrence Livermore National Laboratory (LLNL) for their help and support on the

data layout optimization topic. Apart from their contributions to the technical work, they

also made sure that my stay at LLNL was comfortable during my visits in 2011 and 2012.

A technical report on this work has been published [2]∗.

The distribution function topic was pursued in collaboration with Kath Knobe and

Frank Schlimbach of the Intel Concurrent Collections (CnC) team. I am grateful for their

help at various stages while pursuing this topic and providing me with various challenges

during my internship at Intel in 2012.

I thank Prof. John Mellor-Crummey for agreeing to be a part of my thesis committee.

His suggestions and feedback have always guided me during my PhD at Rice. I have thor-

oughly enjoyed deep technical discussions in his office. His constant effort to brainstorm

the rationale behind the results and pursue new ideas have always motivated me. I have

learnt a lot from him. I am also grateful to his HPCToolkit team for help investigating

performance issues. In particular, I am thankful to Xu Liu from this team for collaborating

with me on data layout optimization.

∗This dissertation contains text from these papers and reports.

I am grateful to Prof. Keith Cooper for his support during my PhD. His stress relieving

discussions have often worked magic for me. Sitting close to his office, he would pay a

regular visit to my office especially when I was working. I have fun moments meeting him

at different locations like the Rice gymnasium.

I would like to extend my sincere thanks to Prof. Timothy Warburton for agreeing to be

a part of my thesis committee. His comments and feedback have been extremely useful in

shaping this dissertation.

My thanks reach out to every member (present and past) of Habanero team for all the

support during my stay at Rice. I am grateful to them for patiently interacting with me and

providing me with valuable insights. I have also enjoyed attending the weekly Habanero

meeting which has helped me improve my presentation skills.

Above all, I would like to thank my advisor Prof. Vivek Sarkar for helping me in all

the projects. Without his support, most of this work would have not been possible. His

guidance to pursue challenges in the right direction has helped me at various points during

my PhD. I would also thank him for understanding my situation during my PhD and helping

me during troubled times. His enthusiasm has led me to pursue most of the topics in this

dissertation. I am grateful that he constantly believed in me.

A special thanks to my family for showing the necessary support throughout my PhD

degree. My parents, Gopal and Vijaya Sharma, have always provided the necessary mo-

tivation and enthusiasm at various stages. Their constant eagerness to see their son walk

the graduation ceremony, have always provided me the necessary impetus to pursue any

upcoming challenge. I am also grateful to my wife, Manavi Sharma, for supporting me

throughout this work. She has always been willing to serve late night food whenever

needed. Without their balancing support, this work would have not been possible. I ex-

tend my gratitude to my aunts and uncles for their constant encouragement.

I am thankful to the Almighty to help me pursue every aspect of my PhD degree and

making me complete this journey.

My research was partially supported by Defense Advanced Research Projects Agency

through AFRL Contract FA8650-09-C-7915, Lawrence Livermore National Labs through

Contract B597790, Department of Energy through Contract DESC0008882, Intel through

Contract CW1924113 and Texas Instrument Fellowship. I thank all these agencies for their

generous grants.

Contents

Abstract ii

List of Illustrations xi

List of Tables xv

1 Introduction 1
1.1 Thesis Statement . 4

1.2 Thesis Organization . 4

2 Background 6
2.1 Cache Structure . 6

2.2 Translation Lookaside Buffer (TLB) . 10

2.3 Locality Transformations . 11

2.3.1 Tiling Transformation . 13

2.3.2 Data Layout Transformation . 14

2.4 Distributed Memory Systems . 16

3 Tile Size Selection 19
3.1 A Motivating Example . 24

3.2 Background . 27

3.2.1 DL: Distinct Lines . 28

3.2.2 Parametric Tiling . 31

3.3 ML: Minimum Working Set Lines . 31

3.3.1 Operational Definition of ML . 32

3.3.2 Model of Computation . 32

viii

3.3.3 Distance in Tiled Iteration Space 33

3.3.4 Temporal and Spatial Reuse Distance 34

3.3.5 Definition of ML . 39

3.3.6 Example . 40

3.4 Bounding the Search Space by using DL and ML 41

3.4.1 Capacity Constraint for Intra-tile Reuse 42

3.4.2 Capacity Constraint for Inter-tile Reuse 42

3.4.3 Empirical Search within Bounded Search Space for Single-level

Tiling . 43

3.4.4 Compiler Pass for Bounded Search Space 44

3.5 Extension to Multi-level Tiling . 45

3.5.1 Distance in Multi-Level Tiling . 46

3.5.2 ML for Multi-Level Tiling . 47

3.5.3 Bounded Search Space for Multi-level Tiling 47

3.5.4 Empirical Search within Bounded Search Space for Multi-level

Tiling . 48

3.6 Experimental Results . 49

3.6.1 Performance Distribution of Different Tile Sizes 51

3.6.2 Search Space Reduction by DL-ML Model 53

3.6.3 Summary of Experiments . 60

3.7 Summary . 65

4 Data Layout Optimization 67
4.1 TALC Data Layout Framework . 68

4.2 User Specified Layout Results . 73

4.2.1 Test Codes . 73

4.2.2 Experimental Methodology . 75

4.2.3 Experimental Results . 77

ix

4.3 Automatic Data Layout Selection . 92

4.3.1 Use Graph . 92

4.3.2 Cache-Use Factor(CUF) . 94

4.3.3 Automatic Data Layout Algorithm 95

4.4 Automatic Data Layout Results . 97

4.5 Performance Anaylsis . 99

4.5.1 Register Allocation Analysis . 99

4.5.2 Locality and Prefetch Streams . 100

4.6 Summary . 101

5 Automatic Selection of Distribution Function 103
5.1 Intel CnC Programming Model . 104

5.2 Distributed Cholesky Example . 108

5.3 Distribution Function Selection Model . 112

5.3.1 Framework for Parameter Generation 112

5.3.2 Parameter List . 116

5.3.3 Overall Model using Linear Regression 118

5.4 Experimental Results . 121

5.4.1 Performance Variation across Different Distribution Functions . . . 123

5.4.2 Linear Regression Model Results 124

5.5 Summary . 125

6 Related Work 126
6.1 Tile Size Selection . 126

6.2 Data Layout Optimization . 129

6.3 Distribution Function Selection . 132

7 Conclusions and Future Work 135

x

Bibliography 139

Illustrations

2.1 Cache configurations with various associativities. Each block represents a

cache line. 7

2.2 An example three-level loop kernel . 13

2.3 Tiled loop kernel. min denotes a minimum function comparison. 14

2.4 Candidate example for data layout transformation 15

2.5 Distributed memory system organization. NIC denotes network interface

controller. 17

3.1 Matrix multiply IKJ loop order code . 24

3.2 Normalized metrics for matrix multiplication with an IKJ loop 25

3.3 Address translation on Intel architectures 26

3.4 Sample code for explaining distance in tiled iteration space 34

3.5 Sample code 2 for explaining reuse distance. 36

3.6 Temporal reuse vectors for sample code 2 38

3.7 Matrix multiplication with single-level tiling 40

3.8 Search space for matrix multiplication for T1 = 30 44

3.9 Compiler implementation of DL-ML bounds 45

3.10 Iteration space for level-k tile . 47

3.11 Performance distribution for 3.11a matmult-3000x3000 and 3.11b

2d-jacobi-50x4000x4000 on Nehalem, Xeon, and Power7 51

xii

3.12 Best tile sizes (achieves 95% or more of the performance with the optimal

tile size) for matmult-3000x3000 with k-i- j loop ordering on 3.12a

Nehalem,3.12b Power7and 3.12c Xeon. The x, y and z axes show tile size

values for outer loop k, middle loop i and inner loop j respectively. 54

3.13 Best tile sizes (achieves 95% or more of the performance with the optimal

tile size) for dsyrk-3000x3000 with i- j-k loop ordering on 3.13a Nehalem,

3.13b Power7 and 3.13c Xeon. The x, y and z axes show tile size values

for outer loop i, middle loop j and inner loop j respectively. 55

3.14 Best tile sizes (achieves 95% or more of the performance with the optimal

tile size) for 2d-jacobi-50x4000x4000 with t-i- j loop ordering on 3.14a

Nehalem, 3.14b Power7 and 3.14c Xeon. The x, y and z axes show tile

size values for outer loop t, middle loop i and inner loop j respectively. . . 56

3.15 Best tile sizes (achieves 95% or more of the performance with the optimal

tile size) for dtrmm-3000x3000 with i- j-k loop ordering on 3.15a

Nehalem, 3.15b Power7 and 3.15c Xeon. The x, y and z axes show tile

size values for outer loop i, middle loop j and inner loop j respectively. . . 57

3.16 Best tile sizes (achieves 95% or more of the performance with the optimal

tile size) for 2d-fdtd-100x2000x2000 with t-i- j loop ordering on 3.16a

Nehalem,3.16b Power7 and 3.16c Xeon. The x, y and z axes show tile size

values for outer loop t, middle loop i and inner loop j respectively. 58

4.1 Extended TALC framework . 69

4.2 Sample TALC field specification file . 70

4.3 Sample TALC meta file . 70

4.4 Sample C input file. 72

4.5 Stylized TALC output file. 73

4.6 IRSmk layouts selected for discussion. 77

xiii

4.7 IRSmk performance results on IBM Power 7 and AMD APU platforms

with varying threads. 78

4.8 IRSmk performance results on Intel Sandy Bridge and IBM BG/Q

platforms with varying threads. 79

4.9 IRSmk source code . 80

4.10 SRAD layouts selected for discussion. 84

4.11 SRAD performance results on IBM Power 7 and AMD APU platforms

with varying threads. 85

4.12 SRAD performance results on Intel Sandy Bridge and IBM BG/Q

platforms with varying threads. 86

4.13 LULESH layouts selected for discussion. 88

4.14 LULESH performance results on IBM Power 7 and AMD APU platforms

with varying threads. 89

4.15 LULESH performance results on Intel Sandy Bridge and IBM BG/Q

platforms with varying threads. 90

4.16 Sample use graph . 93

4.17 Hardware performance counter results for IRSmk on AMD APU 100

5.1 Matrix multiplication example in CnC. Note, this is a very simplistic

example of matrix multiply in Intel CnC. Other implementations with

finer granularity will be more efficient . 104

5.2 Execution steps of Cholesky benchmark 109

5.3 Cholesky benchmark on distributed cluster nodes 111

5.4 Framework for parameter generation . 113

5.5 Sample CnC Trace for Cholesky benchmark 114

5.6 Dynamic graph for Cholesky benchmark 115

5.7 Overall steps in Linear Regression Model for distribution function selection. 120

xiv

5.8 Cholesky performance variation across the different distribution functions.

x-axis shows the sorted data points based on execution time. y-axis shows

the percentage increase in execution time compared to the best point. Best

point refers to the minimum execution time across the data points. 123

Tables

3.1 Cache characteristics of the architectures considered 50

3.2 Search space reduction factor across different architectures 60

3.3 1-level tiling results (time in seconds, N: Nehalem, P: Power7, X: Xeon) . 61

3.4 Empirical search results for 1-level tiling 62

3.5 2-level tiling results on Xeon – improvement over 1-level tiling 63

3.6 Parallel 1-level tiling results . 65

4.1 Architecture and compiler specifications 75

4.2 Impact of source code lines changes across different layouts compared to

base version. LOC denotes Lines of Code. 76

4.3 Speedup of best manual layout and automated layout speedup relative to

base layout . 97

4.4 Register spills for IRSmk on AMD APU for three different layouts 99

5.1 Different distribution functions. blk denotes blocks and numNodes

represents number of cluster nodes in distributed environment. 122

5.2 Linear regression model results for Cholesky benchmark across all the

data points. 124

1

Chapter 1

Introduction

The multi-core revolution has resulted in a paradigm shift from single-core to multi-

core processors. This shift occurred not only in desktops and servers but also in tablets and

mobile phones. This range of platforms employ multi-core chips with a range of architec-

tures and capabilities. For example, multi-core processors on servers are more performance

oriented, whereas on mobile devices, they are more focused on energy efficiency. Perfor-

mance optimization becomes an ever increasing challenge due to the complexity of these

architectures. The performance optimization problem scales out even further as we move

from single node to multi-node configurations such as server/cluster systems. To address

this challenge, programmers generally adopt two approaches. First, programmers rely on

back-end automated compiler systems to extract performance from a given target architec-

ture. But, a key limitation of automatic compiler optimizations is that it can take at least

two to three years to develop a high-quality compiler for a given architecture [3]. In the

second approach, a programmer may spend significant amount of time, perhaps days or

weeks, to manually tune an application for a given single/multi-node platform. However, a

key limitation of this approach is that programmer’s optimization of an application is often

not portable across machines. In this work, we develop three approaches — tile size selec-

tion, data layout optimization and automatic selection of distribution functions, to enhance

2

portable performance optimizations across different machines. The first two approaches

are locality optimization techniques which improve cache use efficiency to optimize over-

all performance within a node. The third approach models addresses distributing of data

and tasks across nodes in a multi-node environment. Note that portable performance refers

to transformations that are portable across different machines by automatically exploiting

the underlying machine characteristics.

Loop tiling is an important locality optimization techniques that reorganizes the com-

putation iteration space to improve cache reuse, thereby reducing accesses to memory. By

reusing data, loop tiling helps in reducing expensive cache misses and thereby improv-

ing the performance of an application. Loop tiling has been widely studied in the past

[4, 5, 6, 7, 8, 9]. From this point onward, we will use the terms “loop tiling” and “tiling”

interchangeably. Tile size is one of the key parameters in tiling as it directly impacts the

amount of reuse in a cache. Selecting a large tile size will result in data being displaced

from cache, whereas a smaller tile size reduces the amount of reuse in cache; both extremes

can have sub-optimal performance. Moreover, tile size depends on architectural features

such as levels of memory hierarchy, cache line size, cache size, TLB line size and TLB size.

Thus, selecting tile sizes becomes a major challenge for any system, whether it is done by

a compiler or a programmer. In this work, we develop analytical bounds for tile size selec-

tion [1]. Our techniques uses architectural features such as cache size and cache line width

to automatically construct the bounds for a given loop nest. Using our approach, an auto-

mated system or programmer can limit the tile sizes considered to a bounded space rather

3

than exploring all the possibilities. Our experimental results show search space reduction

factors of upto 11,879× for tiling on modern processors such as Intel Xeon. Results also

indicate that automated tile size search techniques such as Nelder-Mead Simplex [10] and

Parallel Rank Ordering [11] can be improved using our analytical bounds.

Another important locality optimization is data layout transformation. Data layout

transformations improves cache performance by restructuring data in the programs which

helps in better packing of data elements for cache reuse, e.g., converting a struct of ar-

rays to an array of structs or changing the layout of a multidimensional array by using

space-filling curves. Past research has demonstrated that data layouts can have a significant

performance impact of an application [12, 13, 14, 15]. However, these optimizations have

not been widely adopted due to two reasons. First, selecting a good data layout is a big

challenge for a given architecture. Second, there is a huge cost to re-write applications

to use different layouts across varying architectures. In this dissertation, we demonstrate

a source-to-source data layout optimization, which performs different array interleavings

based on a layout specification [2]. Using our technique, a programmer can automatically

adapt his application across different layouts without re-writing them. Our experimental

results show performance improvements upto 20× on IBM Power7 for the IRSmk bench-

mark. We also develop a new approach to automatically recommend a good layout for a

given source program using machine characteristics such as cache line size.

When scaling out from single node to multi-node environments, performance chal-

lenges become compounded due to increased system complexity. A programmer has to not

4

only focus on optimizing their program on a single node, but also reason about effects of

communication and task dependencies in an inter-node environment. Distributing task and

data across nodes is a major challenge in such distributed configurations. In this disser-

tation, we develop an automated model to efficiently select a distribution function, which

maps task/data across nodes, for a given application. We use the Intel CnC programming

model [16, 17] to demonstrate our approach. Using our method, a programmer can se-

lect a good distribution function, without exploring the entire search space for distribution

functions.

1.1 Thesis Statement

Our thesis is that significant performance benefits can be obtained from local-

ity transformations of computation and data that require minimal programmer

effort. We establish this thesis by exploring locality transformations of compu-

tation and data in three well-known problems: tile size bounds for loop tiling,

data layout optimization and selection of inter-node task/data distributions. Us-

ing our proposed approaches, a programmer would not only save tuning time

for a given platform, but also improve overall performance across different

platforms.

1.2 Thesis Organization

The rest of this thesis is organized as follows:

5

• Chapter 2 contains background information on memory hierarchies in modern pro-

cessors.

• Chapter 3 describes our results for tile size selection.

• Chapter 4 describes our results for data layout optimization.

• Chapter 5 describes our results for automatic selection of distribution function.

• Chapter 6 includes a comparison with past related work.

• Chapter 7 presents our conclusions and also discusses some potential topics for future

work.

6

Chapter 2

Background

The chapter describes background material presented in this dissertation. First, we

introduce cache structure present in processor architectures. Second, we present concepts

of Translation Lookaside Buffer (TLB). Then, we describe various locality transformations

that form the foundation for our work. Finally, we discuss concepts of distributed memory

systems. All of these topics help in understanding the different methods developed in

this dissertation. In this section, we have limited the scope of background information to

relevant terms used in the later chapters.

2.1 Cache Structure

Cache is an associative small memory present between the processor and main memory

to reduce the memory latency by capturing frequently accessed data [18, 19, 20]. On

Intel Nehalem systems, read access latency to cache closest to the processor (L1) is 1.3 ns

whereas to memory is 65.1-106 ns [21]. This latency difference leads to huge performance

gains when values are present in the cache memory.

Due to access patterns within a program, caches benefit from locality of element values

that are frequently accesses across iterations. There are two types of locality present in a

7

!"#$%&'()**$+'
,)%-$'.'/001%2'3'4'5'

6#)7$'8'

6#)7$'4'

2'
2'
2'

6#)7$'9'

:;<)='/001%")>?$',)%-$'

6#)7$'8'

6#)7$'4'

6#)7$':'

6#)7$'@'

6ABB='/001%")>?$',)%-$'

6#)7$'8'

,)%-$'C"D$'

Figure 2.1 : Cache configurations with various associativities. Each block represents a
cache line.

program : temporal locality and spatial locality. Temporal locality refers to the property

where a current value is likely to be accessed in the future. Thus, holding these values

within a cache will benefit future accesses. Spatial locality denotes that nearby addresses

values to the current value will be referenced in the future. Thus, fetching contiguous

values from memory and storing them inside the cache will reduce the latency for future

accesses. For example, accesses to A[i+1] is very likely whenever the program accesses A[i].

However, both of these locality types is limited by the cache parameters.

Three parameters affect cache organizations – cache size, line size and associativity.

Cache size is the overall capacity of the cache and is measured in bytes. When a cache

reaches its capacity, it employs a replacement algorithm such as least recently used (LRU)

for the new value to be stored in the cache by evicting the old values. If the cache size

is small, often for level 1 caches, values might be frequently flushed out leading to no

8

reuse for future accesses to same cache line and imposing high latency accesses to main

memory. Line size is the unit of transfer between main memory and cache [18]. Line size

determines the number of data values can be held together inside the cache. For example, if

line size can hold four values, then a data transfer would bring “A[0]...A[3]” values together

from main memory whenever any one of them are accessed, assuming A[0] is aligned to a

cache line boundary. Associativity refers to degree of freedom to place a given cache line

within a cache. Whenever, there is a cache lookup to determine if a cache line is present

or not, it is mapped to corresponding cache frame. In this section, cache frame and cache

set are identical. A cache frame may hold one or more lines, depending upon associativity,

needs further examination to determine the value’s presence. The replacement algorithm

will determine which line should be replaced in case the value is absent. If the associativity

is 1 i.e. a single cache line maps to each cache frame, then it is referred to as direct mapped

cache. However, if a cache line can be present in any of the cache frames, such cache is

called as fully associative cache. On most systems, associativity usually ranges from 2-32.

Figure 2.1 shows the different cache configurations with varying associativity.

To mitigate the effects of conflicts misses arising due to low associative caches,

Jouppi [22] proposed victim cache. Victim cache is a fully associative cache present be-

tween the first level and next level of memory. As this cache is fully associative, it does

not suffer from conflicts arising from same cache line being mapped to the same frame/set.

The original proposal of victim cache was using direct mapped cache. However, modern

architectures such as IBM Power 7 have a large victim cache at L3 level [23].

9

As the cache capacity becomes a constraint, modern computer architectures employ

multiple levels of cache as opposed to a single cache. For example, Intel Nehalem has three

levels of cache [24]. The level of cache determining the closeness to the processor, starting

from one. Caches closer to the processor are smaller and more expensive as compared to

caches closer to main memory. There is an increase in the cache access latency as we move

away from level 1 (L1) cache. Often on modern multi-core architectures, caches beyond

L1 are shared across two or more cores to enhance reuse between the cores.

Multi-level caches enable another design choice for chip manufacturers, whether to

hold data values in any one level of cache (exclusive cache) or compose lower levels of

cache as subset of values from higher levels (inclusive cache). Exclusive caches store data

at any level but not multiple levels of cache. This property helps increase the cache capacity

as data present in L1 is separate from data present in L2 (level 2) and avoids duplication.

On a cache miss, data is brought from the level it is found and exchanged with cache line

at those level. A disadvantage of exclusive cache is data must be checked at all levels of

cache to invalidate a cache line. Inclusive cache have the property that data in lower levels

must be present in higher levels of cache, where levels increase as we move away from the

processor. Thus, data present in L1 is always present in L2. On a cache miss, cache line is

fetched from higher levels of cache if it is present there. An obvious disadvantage of this

approach is to duplication of data across different levels of cache. An advantage of this

approach is that cache invalidations by other processors are simplified as a check for cache

line presence is only performed at the highest level of a processor cache.

10

Another important classification for caches depends on the values they hold. Caches

can be classified as data cache, instruction cache or unified cache. As terms suggest, data

cache stores frequently accessed data values in a program whereas instruction cache stores

the instructions of a program. Unified cache stores both data and instructions. In this dis-

sertation, we focus on improving data cache effects as most of the benchmarks suffered

performance loss due to data cache limitations. We observed less profound effects of in-

struction caches for the benchmarks used in this work.

2.2 Translation Lookaside Buffer (TLB)

In the earlier section, we discussed data and instruction caches. There is another cache

used for storing the virtual to physical page translations called as Translation Lookaside

Buffer (TLB) . TLB’s have long existed on processors as far back as the IBM 360 processor

introduced in 1964 [25]. TLB is essential to a processor since programs access data via

virtual memory address and a cache is needed to store the mapping of these addresses to

physical memory address. Without a TLB, every memory access would impose a high

overhead to translate virtual address to a physical address. TLB’s act as a cache to store

recently performed translations for better performance of an application. TLB misses are

more expensive than data cache misses due to translation overheads. Even simple kernels

such as matrix multiplication have improved performance by optimizing TLB performance

[26]. However, the overall organization of TLB is different from data caches.

In comparison with data caches, TLB store page entries as a cache frame. Thus, TLB

11

line size is equivalent to a page size which is quite large when compared to data cache line

size. On Intel Nehalem, TLB page size is configurable to 4KB, 2MB or 4MB [27]. Similar

to data caches, TLB’s are also organized in multiple levels, often two or three. Page not

found in the first level TLB is looked up in subsequent levels. Access latency increases as

we move from one level to the other. If the page is not found in any of the TLB’s, a TLB

miss occurs and processor does a page walk to find the appropriate page entry and bring it

into the TLB. Older pages are retired from TLBs by using replacement algorithm such as

LRU.

Chip manufacturers may provide separate specialized hardware to speedup the page

translations. For example, IBM Power 7 uses Effective to Real Address Translation (ERAT)

cache which enables direct translation of effective (software address) to real addresses

(physical memory addresses) [28]. ERAT is a first-level and fully associative translation

cache on Power 7, which helps in improving the overall performance of page translations.

2.3 Locality Transformations

Caches and TLB help in caching frequently accessed data in a program. This behav-

ior prevents expensive memory access for each data access, which often costs hundreds of

clock cycles. The discrepancy between processor frequency and memory access latency

have existed for more than two decades now, known as “memory wall” problem [29].

Programs usually face huge stalls due to memory accesses which pose high latency. To

overcome the memory wall problem, locality transformations are applied to programs to

12

improve their overall performance. Locality transformations exploit the spatial and tem-

poral reuse of accesses in a program. Such transformations are generally carried out by

automated compiler passes or by an expert programmer. Locality transformations enable

better use of memory hierarchy in an architecture, leading to more cache hits and improved

performance gains. Note that transformations must be done in a way so that they do not

change the program semantics.

In the past work, locality transformations have been classified into two categories: re-

organize instructions and reorganize data. These two categories can be used separately or

in conjunction with each other to promote better cache reuse. To reorganize instructions,

compilers mainly focus on loops in a program. Various loop transformations such as tiling,

fusion, distribution, skewing and reversal have been proposed in the literature to exploit

better locality [30,31,32,33]. In this dissertation, we focus on a sub-problem in tiling. For

data reorganization, compilers transform the data, i.e. arrays present in a program, without

changing much of the program structure. Due to this data transformation, the access pattern

to the arrays present in the memory changes, possibly, leading to better cache reuse. In this

dissertation, we develop array regrouping as part of data transformation. However, loop

transformations and data transformation are not mutually exclusive transformations and

can be combined together to have a better overall cache reuse. This dissertation presents

new approaches for sub-problems in these transformations separately.

13

2.3.1 Tiling Transformation

Tiling, also known as blocking, is a loop transformation which improves data locality of

a program by reusing elements in the cache [5, 30]. Tiling transformation divides the loop

iteration space into smaller chunks, so that data elements accessed in a loop are not evicted

out of the cache. Using this approach, data elements that have smaller reuse distance are

directly accessed from the cache. Different levels of memory hierarchy can benefit from

tiling including TLBs and cache simultaneously. Thereby, tiling based on loop access

patterns often improves the overall execution time. Tiling has shown to benefit numerical

scientific applications by improving locality across loop kernels [34, 35].

Tiling is a combination of two other well-known loop transformations, strip-mining

and interchange. Thus, the legality of tiling transformation depends on the strip-mining

and loop interchange. From dependence theory, we always know that strip-mining is a

legal transformation for a given loop. Now, tiling legality depends on legal conditions for

loop interchange. From dependence theory, interchange is legal if the direction is “=” or

“<” for dependence carried by any loops in a kernel [36].

for (k = 1 ; k < N ; k++)

for (i = 1 ; i < N ; i++)

for (j = 1 ; j < N ; j++)

... = A[i][j] + ...;

Figure 2.2 : An example three-level loop kernel

Figure 2.2 shows a simple three-level loop kernel with A array access. Figure 2.3 shows

the corresponding tiled version of the same loop kernel. From these two figures, we clearly

14

for (ii = 1 ; ii < N ; ii+=Ti)

for (jj = 1 ; jj < N ; jj+=Tj)

for (k = 1 ; k < N ; k++)

for (i = ii ; i < min(ii+Ti,N) ; i++)

for (j = jj ; j < min(jj+Tj,N) ; j++)

... = A[i][j] + ...;

Figure 2.3 : Tiled loop kernel. min denotes a minimum function comparison.

see that the original three-level loop kernel is transformed into five-level loop kernel by

tiling. In the original case, assuming N is large, all the elements of A array are accessed

before running the next iteration of k-loop. Thus, the cache will be unable to hold any array

elements, leading to poor data locality. However, the tiled loop chunks the iterations of i

and j loops. This approach enables to revisit elements of A array in cache more frequently

as compared to the original loop. The value of Ti and Tj parameters determine the number

of elements to be kept in the cache as visited in k-loop. In Chapter 3, we will have more

in-depth discussion about selecting the right parameters for loop tiling.

2.3.2 Data Layout Transformation

Locality optimization improves the performance of a program. In Section 2.3.1, we

have discussed how tiling reorders the iteration space to help improve locality of programs.

Besides reordering loops, there is another way to improve locality by means of data layout

transformation. Data layout transformation changes the organization of data in such a

way that subsequent data accesses are found in cache. Improving cache behavior leads

to overall improvement in program execution by proper packing of data for spatial and

15

temporal reuse. Scientific applications have significant amounts of data array accesses.

Array accesses may be improved by changing their data layouts.

for (i = 1 ; i < N ; i++)

for (j = 1 ; j < N ; j++)

C[i][j] = A[i][j] + B[j][i];

Figure 2.4 : Candidate example for data layout transformation

Figure 2.4 shows a simple candidate example for data layout transformation. Assuming

that the program has row-major access order, arrays C and A have efficient cache behavior

due to spatial locality. However, B array has poor locality since each array access would

fetch a different cache line as it has column access order. Interchanging the loop from i-j to

j-i would benefit B array, but would lead to poor locality for C and A. A simple method to

improve the overall performance is to change the data layout of B. Instead of storing data in

the default row-major order, an efficient compiler would apply data layout transformation,

so that the array is stored in column contiguous order. Before transformation, the data

layout for array B would be B[0][0], B[0][1], B[0][2] ... B[1][0], B[1][1] ... ,B[1][N] ... B[N][N]

and after transformation, it would be B[0][0], B[1][0], B[2][0] ..., B[N][0], B[0][1], B[1][1] ...,

B[N][1], ... B[N][N]. The compiler must also make sure that legality conditions for this

transformation are valid across the program. In this case, compiler must update all the

accesses to B array across the program to ensure correctness. An alternative approach that

the compiler may employ is to transform an array just before the loop and re-transform

the array after the loop. Often, such operations are quite expensive in terms of program

16

execution and lead to poor performance when there are multiple small loop kernels.

The above example shows one kind of data layout transformation. There are many

other data layout transformations, including Array Padding [37], Array Regrouping [15]

and Array alignment [38]. In Chapter 4, we will focus on a novel framework for data

layout optimization.

2.4 Distributed Memory Systems

Distributed Memory Systems employ multiple shared memory systems (or single-node

machines) for faster execution of programs. Different challenges emerge as programs scale

from a shared memory system to a distributed memory system. In shared memory sys-

tems, programmers tend to focus on optimizing their program without focusing data ad-

dress space, since data is accessed locally. However, as programs scale-out to distributed

systems, programs need to appropriately fetch remote data before any computation can be

performed on them, due to different address space.

Figure 2.5 shows a distributed memory system organization. In this organization, mul-

tiple shared memory systems are connected through an interconnect network. Each shared

memory node contains multiple processors and has deep memory hierarchy which con-

tains multi-level caches (shared and exclusive cache) and main memory. Tasks running

on a processor can access all the local available data on a shared memory system. The

interconnect network plays an important role in communicating data between nodes. This

network can be organized as point-to-point links or sharing common links. There are var-

17

!"#$%&&#"'
('

)*$+%'

,*-.'
,%/#"0'

!"#$%&&#"'

)*$+%'

1+*"%2',%/#"0'3#2%'4'

!"#$%&&#"'
('

)*$+%'

,*-.'
,%/#"0'

!"#$%&&#"'

)*$+%'

1+*"%2',%/#"0'3#2%'3'

('

5.6%"$#..%$6'3%67#"8'

35)' 35)'

Figure 2.5 : Distributed memory system organization. NIC denotes network interface con-
troller.

ious network topologies such as bus network, ring network and torus interconnect which

determines the communication scalability of distributed systems. Whenever any data needs

to be fetched from a remote system, a communication is initiated through the interconnect

network.

Two key challenges that arise while programming for distributed systems are: distribut-

ing task and data across the nodes and communication between nodes. Proper distribution

of task and data is important for load balancing the entire system, whereas communication

is important as remote data fetches are more expensive in terms of application time. There

have been various programming models such as MPI [39], OpenMPI [40], UPC [41] and

Intel CnC [16], which aid in programming distributed systems. Some of these program-

18

ming models such as MPI provide explicit control for communication, task/data control and

synchronization; other models such as Intel CnC uses a runtime to manage these activities.

Nevertheless, tuning applications to scale across distributed systems is a non-trivial prob-

lem. In Chapter 5, we present our approach to tune applications on distributed systems.

19

Chapter 3

Tile Size Selection

Modern computer systems employ multi-level memory hierarchies, with the latency of

data access from higher levels of memory hierarchy being orders of magnitude higher than

the time required to perform arithmetic operations. Reduction of data access overheads is

therefore critical to achieving high performance. Tiling [4,5,6,7,8,9] is a classical technique

to enhance data reuse in fast caches for loop-oriented computations. Recent advances have

resulted in the development of software to automatically generate parametrically tiled code,

even for imperfectly nested loops [42, 43, 44, 45]. It is well known that the choice of

tile sizes has a significant effect on performance, but effective selection of optimized tile

sizes remains an open problem that has become more challenging as processor memory

hierarchies increase in complexity.

The two main types of approaches pursued for tile size selection in past work are ana-

lytical and empirical. In analytical approaches, a compiler selects tile sizes based on static

analysis of loop nests and known characteristics of the memory hierarchy. Although sev-

eral analytical techniques have been proposed in the literature for tile size optimization

[46, 47, 48, 49, 50, 51, 52, 53, 54], none has been demonstrated to be sufficiently general

and robust to be used in practice for selecting the best tile sizes. It is unrealistic to build

a purely analytical model for tile size optimization that is capable of accurately modeling

20

the complex characteristics of modern processors with multiple levels of parallelism and

deep memory hierarchies. As a result, the gap between the performance delivered by the

best known tile sizes and those selected by an analytical approach has continued to widen,

thereby diminishing the utility of past analytical approaches.

In contrast, empirical approaches to tile size optimization treat the loop nest as a black

box, and perform empirical auto-tuning for a given architecture [55,56,57,58]. The highly

successful ATLAS (Automatically Tuned Linear Algebra Software) system [55] uses em-

pirical tuning at library installation time to find the best tile sizes for different problem

sizes on the target machine. One of the most challenging issues in empirical approaches

for tile size selection is the huge search space that needs to be explored when tiling multiple

loops. Further, the increasing depth of memory hierarchies in modern computer architec-

tures fundamentally requires multiple levels of tiling [59], which makes the search space

impractically large. In the near future, there would be an increase in the complexity of

choosing efficient tile sizes due to growth in memory hierarchy levels. As a result, most

empirical tuning frameworks employ simplifications to reduce the tile size search space.

One major simplification is to consider only “square” tiles, i.e., equal tile sizes along all

dimensions. For example, ATLAS ver3.9.35 uses single-level square tile search optimized

for the L1 cache. It is obvious that the square-tile approach drastically shrinks the search

space by the order of Nl−1 where l represents the loop nest level. However, considering

non-square tiles is important since it has been shown for many domains (e.g., by Goto

[26] for linear algebra and by Datta et al. [60] for stencil codes) that optimal tile sizes are

21

unequal in the different dimensions. The experimental results in this paper support this

observation with performance speedups of up to 1.40×, 1.28×, and 1.19× for the best

non-square tile sizes relative to the best square tile sizes on three different architectures

(Xeon, Nehalem, and Power7 respectively).

Another approach reducing the tile size search space is to use analytical approaches to

find candidates for empirical search [61, 62, 63] . A significant work was introduced by

Chen et al [62], which employs standard compiler heuristics to find profitable candidates

of optimization variants including loop permutation order, unroll-and-jam and single-level

tiling, although the optimal point, e.g., the best tile size in tiling, is not guaranteed to be

found by existing compiler analyses.

Since the search spaces for tile size selection increase explosively for multidimensional

non-square tiles and even more for multi-level tiling, an effective approach to prune the

search space is essential for any search strategy to find the best tile size. Furthermore,

while expensive empirical tuning is feasible for libraries such as BLAS that are tuned once

per machine and reused across applications, tiled user codes usually require the empirical

search to be done in a reasonable amount of time since it needs to be performed on all the

time-consuming loop nests in the applications.

Here, we introduce novel analytical bounds for empirical tuning of non-square multi-

level tiling. The analytical bounds help in vastly reducing the search space to a bounding

region which contains a near optimal tile size. The proposed approach to pruning the

search space is complementary to and can be combined with any existing empirical search

22

strategies, e.g., the analytical bounds can be integrated with existing auto-tuning frame-

works such as ATLAS [55]. The experimental results show that our approach can reduce

the search space by up to four orders of magnitude. The reduction factors ranged up to

81×-11880×, 21.90×-1978× , and 1.46×-1142× on the Xeon, Nehalem, and Power7 re-

spectively, for five benchmarks (matmult, syrk, trmm, 2d-jacobi, 2d-fdtd) that we studied.

The proposed approach considers both sequential and parallel (shared-memory) tiled pro-

grams, and the experiments indicate that optimal tile sizes for both sequential and parallel

codes can be found in the proposed boundaries.

The proposed approach employs a pair of analytical models to prune the search space

— a conservative model that under-estimates the tile size (DL), and an optimistic model

that over-estimates the tile size (ML). A conservative model from past work, DL (Distinct

Lines) [64], models the required cache capacity for a tile as its total data footprint. Thus,

with DL, we assume distinct space in cache for every referenced data element, regardless of

the order in which data elements are accessed within a tile. This is a pessimistic assumption

for many applications, especially applications with streaming data accesses. We also in-

troduce an optimistic analytical model, ML (Minimum Lines), that assumes ideal intra-tile

cache block replacement. With the optimistic ML model, the cache usage estimated for a

given tile volume never exceeds that of the conservative DL model. Conversely, for a given

cache size, the tile volume (number of iterations) allowed by the ML model is larger than

that of the DL model. Thus, DL and ML respectively provide lower and upper bounds for

tile sizes. We use the aggressive ML model and the conservative DL model to bound the

23

tile size search space for empirical tuning, and show in our experiments that this bounded

sub-space still contains optimal tile sizes, despite reductions of up to 4 orders of magnitude

in the size of the search space.

Our main contribution is to propose analytical models to bound the space of candi-

date tile sizes, that takes into account multi-level data caches and TLBs. The results in

Section 3.6 reinforce the following points:

1. Our analytical models significantly reduced the search space size, while preserving

the optimal points in the pruned space.

2. In most cases, the optimal points have non-square tile sizes with performance im-

provements of up to 40% improvements over square tiles.

3. The proposed model is also effective in finding optimized tile sizes for parallelized

code.

This chapter is organized as follows. Section 3.1 reinforces the motivation for this work

via a case study that showcases some of the challenges arising from modern memory hi-

erarchies. In Section 3.2, we provide background on parametric tiling and the DL model

from past work. Section 3.3 introduces the new ML model for single-level tiling, and Sec-

tions 3.4 elaborates on how the DL and ML models can be used to bound the search space

for empirical tuning. Section 3.5 extends the ML model to multi-level tiling. Section 3.6

presents experimental results on three platforms using a number of benchmarks, demon-

strating the effectiveness of the approach. Optimal tile sizes were always found within the

24

// inter-tile loops

for ii = 1 to N, Ti

for kk = 1 to N, Tk

for jj = 1 to N, Tj

// intra-tile loops

for i = ii to min(ii+Ti,N)

for k = kk to min(kk+Tk,N)

for j = jj to min(jj+Tj,N)

C[i][j] += A[i][k]*B[k][j];

Figure 3.1 : Matrix multiply IKJ loop order code

reduced search space.

3.1 A Motivating Example

Past work on performance models for tile size selection were developed for minimizing

first level capacity and conflict cache misses [30, 46, 47]. In this section, we illustrate the

impact of higher levels of data cache and Translation Lookaside Buffer (TLB) on tile size

selection. As a motivating example we provide a detailed analysis of the execution of a tiled

Matrix-Multiply kernel, an example that has been studied extensively. Figure 3.1 shows a

sample code from [46], with the the IKJ loop order.

Tiling is a critical transformation to increase data locality in this case: Ti, Tj and Tk

must be selected such that the data accessed during the computation of a tile fits entirely in

the first cache level, to avoid costly capacity misses.

Reuse analysis that considers only L1 cache suggests that we set Ti to N, in order

to take full advantage of temporal data locality for the matrix B along the i loop [46].

This solution is motivated by the fact that no element of B will be used in two different

25

!"

!#$"

!#%"

!#&"

!#'"

("

(!
"

)$
"

*!
"

&!
"

+!
"

'!
"

,!
"

(!
!"

($
!"

(*
!"

)!
!"

&!
!"

(!
!!
"

(*
!!
"

$!
!!
"

$*
!!
"

)!
!!
"

!"#$%&'!()#%*)%+"#%,-'./0'1222&1222'
34567284967:2;'

-./0"1203"
-./0"4(5678"
-./0"4$5678"
-./0"149568"

<'%#=$"#%,->'%-'#%)='>%?=8'4%

@
,$
A
")
%?
=B
'A
=#
$%+

Figure 3.2 : Normalized metrics for matrix multiplication with an IKJ loop

tiles, an apparently ideal solution in terms of L1 cache misses — provided Tj and Tk are

selected adequately. Furthermore, setting Ti = N allows us to explore a two-dimensional

search space Tk × Tj instead of a three-dimensional search space Ti × Tk × Tj, thereby

significantly reducing the search space to look for optimal tile sizes.

This solution focuses only on minimizing L1 cache misses. To illustrate the deficiency

of a Level 1 cache-centric approach, we now report a detailed analysis for an Intel Xeon

(E7330) 2.40 GHz processor with 32KB L1 cache, 3MB L2 cache, 16 Entries TLB1 and

256 Entries TLB2 (4KB Page Size) for a problem size of 3000×3000. After performing

an exhaustive empirical search for the tile sizes, we found that the optimal tile size on this

machine is (Ti,Tk,Tj) = (60,10,120). Note that this optimal point has unequal tile sizes in

26

TLB1 TLB2 MMU Cache
(Paging Structure Cache)

L2 Data Cache

Memory

Figure 3.3 : Address translation on Intel architectures

different dimensions because each array dimension has different data reuse distance, and

efficient vectorization needs the vectorized dimension (innermost tile size Tj) to be large.

To illustrate the performance impact of the values of Ti, we fix Tk = 10 and Tj = 120,

and plot the various values for Ti in Figure 3.2. This graph plots normalized values for a

number of metrics i.e., the y-axis plots the ratio of the metric for the optimized case relative

to the unoptimized case. The metrics plotted in Figure 3.2 are: L1 Misses (PAPI L1 DCM

: L1D REPL)∗, L2 Misses (PAPI L2 DCM : L2 LINES IN)†, TLB2 Misses (PAPI TLB

DM : DTLB MISSES)‡ and execution time, obtained by varying Ti.

First, we observe that L1 misses decrease as Ti increases, as expected. However, from

the graph it is clear that the optimal tile size does not occur at Ti = 3000. At Ti > 90,

we see that the execution time shows an upward trend, in contrast to what the L1 cache

consideration suggests. As the cache footprint of the kernel increases, it results in larger

∗All performance counters were collected using standard PAPI interface. PAPI L1 DCM : L1D REPL -
Number of lines brought into L1 cache.

†PAPI L2 DCM : L2 LINES IN - Total cache lines allocated in L2 cache.
‡PAPI TLB DM : DTLB MISSES - Level 2 TLB misses.

27

TLB2 misses and L2 misses, eventually leading to substantial degradation in execution

time.

To better understand this effect, Figure 3.3 shows the virtual to physical address trans-

lation for this machine. More details on virtual address translation can be found in [65,66].

A lookup for address translation is performed at both the TLB levels. When an entry is

not found in both TLBs, a radix tree page walk is performed, with higher (leftmost) bits

fetched from the MMU cache and lower (rightmost) bits from the L2 data cache. When

address translation bits are not found in L2 cache, it causes DRAM accesses, leading to

significant stalls for an application. Thus, increasing an application’s footprint causes sig-

nificant pressure on data cache and TLB. This page walk behavior is not just restricted to

Intel architectures. AMD’s Page Walking Cache and PowerPC’s Hashed Table approach

exhibit a similar characteristic, where address translation requires traversal of data caches

in case of TLB misses [65, 67].

These observations led us to rethink the tile size selection model. While it is still critical

to optimize for reuse in the L1 data cache, one also needs to consider the reuse effect at

Level 2 of the memory hierarchy even for single level tiling. This leads to considering the

Ti × Tk × Tj space to find the actual optimal tile size.

3.2 Background

In this section, we introduce Distinct Lines (DL) model, which had been developed in

the past for tile size selection. This model was developed by Sarkar et al. [53, 64]. Then,

28

we provide a brief overview of parametric tiling, which explores the current tile size search

space.

3.2.1 DL: Distinct Lines

The DL (Distinct Lines) model was designed to estimate the number of distinct cache

lines accessed in a loop-nest [53, 64]. Consider a reference to an m-dimensional array

variable (called A, say), enclosed in n perfectly nested loops with index variables i1, · · · , in:

A(f1(i1, · · · , in), · · · , fm(i1, · · · , in)) (Fortran)

A[fm(i1, · · · , in)] · · · [f1(i1, · · · , in)] (C)

where f j is an affine function of i1, i2, · · · , in. Let tk denote the tile size of loop-ik(1 ≤

k ≤ n) when rectangular parametric loop tiling is applied to the n-th perfectly nested loops.

We compute the number of distinct cache lines accessed in a tile, DL(t1, t2, · · · , tn), in the

following four steps [53].

1. Computing array subscript range for each dimension:

range j, which represents the access range of j-th dimensional subscript of array A in

the tile, is computed as follow.

range j = f max
j − f min

j (1 ≤ j ≤ m)

Here, f max
j and f min

j are the maximum and minimum values taken by subscript ex-

pression f j across the whole tile, respectively.

2. Computing memory range:

mem range j represents the number of bytes spanned by the first j dimensions of

29

array A. It will be computed by max address(j,A)− min address(j,A), where

max address(j,A) and min address(j,A) are the maximum and minimum address

values accessed by the first j dimensions. Let dim sized denote the d-th dimension

size of array A; strided , which is the stride of d-th dimension in bytes, is calculated

bellow.

stride1 = [size o f a single element o f array A]

strided = strided−1 ×dim sized−1 (1 ≤ j ≤ m)

Using strided and ranged , mem range j is computed as follow [53].

mem range j = ∑ j
d=1 ranged × strided

3. Estimating number of distinct lines for one-dimensional array reference:

An exact analysis to compute DL is only performed for array references in which

all coefficients are compile-time constants (affine). An upper bound for the num-

ber of distinct lines accessed by a one-dimensional array reference [64], or the first

dimension of multi-dimensional array, is

DL1 ≤ min
��mem range1

L
�
+1, range1

g1
+1

�

where g1 is the greatest common divisor of the coefficients of the enclosing loop

indices in f1 and L is the cache line size in byte. The basic idea is that the DL value

is bounded above by the number of cache lines to cover the whole accessed memory

range (mem range1/L), and the number of distinct accesses (range1/g1).

4. Estimating number of distinct lines for multi-dimensional array reference:

30

An upper bound of DL value for the first j dimensions of a multi-dimensional array

reference is computed by the following recurrence.

DL j ≤ min
��mem range j

L
�
+1,(range j

g j
+1)×DL j−1

�
(2 ≤ j ≤ m)

DLm is equivalent to the DL value for the whole dimensions of array A.

In practice we can simplify the above multi-dimensional DL expression as follows. First,

find dimension s such that s is the largest dimension to carry spatial data locality on array

A, or to satisfy gs × strides < L. The approximated DL value is defined as follow.

DL = DLm ≈
��mem ranges

L
�
+1

�
×∏m

j=s+1(
range j

g j
+1)

The relative error is reasonably small when, as is usually the case, all dimensions that are

smaller than s also carry spatial data locality on array A. The validity of this approximation

is discussed in the past literature [53].

The total number of distinct lines accessed by the whole tile is computed as the summa-

tion of individual array references. References on the same array are merged into a single

array reference if all their coefficients in the subscript expressions (c jk where 1 ≤ j ≤ m,

1 ≤ k ≤ n) are same. The difference between minimum and maximum values for con-

stant term of j-th subscript c j0 is recorded as merged range j (e.g., merged range = {1,2}

when A[i+j][i+k] and A[i+j+1][i+k-2] are merged). Using merged range j, the definition

of range j is modified as follow. A more precise discussion is outlined in [64].

range j = ∑n
k=1 |c jk|× (tk −1)+merged range j (1 ≤ j ≤ m)

The DL definition is also applicable to any level of cache or TLB by selecting its cache

line size or page size as L. Unfortunately, the DL model ignores possible replacement of

31

cache lines and therefore provides conservative upper bounds for the number of cache lines

needed.

3.2.2 Parametric Tiling

Although production compilers today have limited tiling capability, there have been

significant recent advances in automatic source-to-source code transformation for tiling

and several systems for parametric tiling have been developed and made publicly available

- TLOG [44], HITLOG [45], and PrimeTile [42]. With such tiled-code generators, it is now

possible to generate tiled code for compute-intensive inner kernels (including imperfectly

nested loops), that can be tuned to the cache characteristics of the target platform. Thus, just

as very effective auto-tuning is currently done for dense linear algebra with ATLAS [55],

it becomes feasible to use auto-tuning for user kernels such as stencil-based computations.

However, unlike library kernel optimization, exhaustive search of the tile parameter space

over several hours to days is generally not attractive for tuning user kernels. This motivates

the approach developed in this paper to significantly prune the search space.

3.3 ML: Minimum Working Set Lines

In this section, we introduce a new analytical cost model, ML (Minimum working set

Lines), based on the cache capacity required for a tile when intra-tile reuse patterns are

taken into account. After defining the ML model, we develop an approach to computing

ML for a tile by first constructing a special sub-tile based on analysis of reuse characteristics

32

and then computing the DL value for that sub-tile. Although we mainly discuss cache

capacity in this section, the idea and definition is directly applicable to TLBs by replacing

the cache line size by the page size.

3.3.1 Operational Definition of ML

The essential idea behind the ML model is to develop an estimate of the minimal cache

capacity needed to execute a tile without incurring any capacity misses, if the pattern of

intra-tile data reuse is optimally exploited as described below. Consider a memory access

trace of the execution of a single tile, run through an idealized simulation of a fully associa-

tive cache. The cache is idealized in that it has unbounded size and an optimal replacement

policy where a line in cache is marked for replacement as soon as the last reference to data

on that line has been issued (through an oracle that can scan the tile’s entire future refer-

ences). Before each memory access, the simulator fetches the desired line into the idealized

cache if needed. After each memory access, the simulator evicts the cache line if it is the

last access (according to the oracle). ML corresponds to the maximum number of lines

(high water mark) held in this idealized cache during execution of the entire trace (tile).

3.3.2 Model of Computation

In this work, we focus on the class of affine imperfectly nested loops, where loop

bounds and array access expressions are affine functions of the surrounding loop iterators

and program constants. For this class of program, it is possible to automatically restructure

the code [68, 42] to expose rectangular tiles of parametric size. We assume that a system

33

such as PrimeTile [42] has already been used to generate parametric rectangularly tiled

code; and we focus on the problem of tile size optimization for such codes.

The outermost tiled loop is denoted by loop1, and innermost tiled loop is loopn. Since

tiles are rectangular by construction, loopi (1 ≤ i ≤ n) has the same trip count for any of

its executions, it is noted Ti (1 ≤ i ≤ n). The iteration domain of a tile is represented as a

tuple [T1; T2; · · · ; Tn]. A tile is surrounded by the loops iterating on all tiles, i.e., tiling

loops. For ease of presentation we first assume a single-level of tiling, and then extend our

definitions to the multi-level tiling case in Section 3.5.

3.3.3 Distance in Tiled Iteration Space

A specific instance of the loop body is identified by an iteration vector, that is, a

coordinate in the iteration space, noted �p = (p1, p2, · · · , pn). The distance between two

iteration vectors �p and �p� is expressed as distance vector �d = (d1,d2, · · · ,dn) = �p� − �p

[69]. Here, �p� is lexicographically after �p in the iteration space. For instance, in a

tiled loop nest one iteration of the innermost loop loopn strides over one iteration. We

consider that as the shortest scalar distance 1, which is corresponding to distance vector

(0, · · · ,0,1) = (p1, · · · , pn−1, pn+1)− (p1, · · · , pn−1, pn). Analogous to tile size tuple, this

shortest scalar distance is represented as [1; 1; · · · ; 1] and we call this form a sub-tile tuple

expression. Also, distance vector (1,2,3) = (p1+1, p2+2, p3+3)−(p1, p2, p3) has scalar

distance T2T3+2T3+3, which is represented as [1; T2; T3]+[1; 2; T3]+[1; 1; 3] in sub-tile

tuple expression. In general, one iteration of loopi strides over sizei, which is equivalent

34

for (p_1 = [low1 : low1+T_1-1])

for (p_2 = [low2 : low2+T_2-1])

for (p_3 = [low3 : low3+T_3-1])

B[p_1][p_2][p_3] = A[p_1][p_3]

+ B[p_1 - 2][p_2 - 3][p_3];

Figure 3.4 : Sample code for explaining distance in tiled iteration space

to the total number of iteration instances within the loop body of loopi. sizei is defined in

both of scalar and sub-tile tuple expression.

sizen = 1 = [1; 1; · · · ; 1] (i = n)

sizei = ∏n
j=i+1 Tj = [1; · · · ; 1; Ti+1; · · · ,Tn] (i < n)

Using size vector �size = (size1,size2, · · · ,sizen), we define the scalar distance of distance

vector �d = (d1,d2, · · · ,dn) and its sub-tile tuple expression as follows.

Scalar distance: �size · �d = ∑n
i=1(di × sizei)

Sub-tile tuple: ∑n
i=1([1; · · · ; 1; di; Ti+1; · · · ; Tn])

3.3.4 Temporal and Spatial Reuse Distance

Temporal and spatial data reuse are expressed with widely used definitions of “reuse

distance vectors” (often shortened to “reuse vectors”) [30]. A number of previous efforts

introduced methods to compute spatial reuse vectors [30], while temporal reuse vectors

are computed from standard dependence analysis using dependence equations. Since a

reusable data element, or cache/TLB line, is accessed several times within the loop nest,

there can be various definitions of reuse vector, such as first reuse vector to represent the

distance between closest reusable data accesses and last reuse vector to represent the dis-

35

tance between farthest accesses. In our approach, we calculate all first reuse vectors re-

garding temporal and spatial reuses within the target loop nest. According to this first reuse

distance analysis, we compute the smallest sub-tile within which any reusable data ele-

ments and cache/TLB lines are re-accessed at least once. We compute the ML value based

on this smallest sub-tile.

Let us consider coordinates �p and �p� that access the same array element or cache/TLB

line and have data reuse. The dependence equation and past work on computing spatial

reuse vector give the following expression to represent all the reuse vectors including first

and last reuses.

�dreuse = �p� −�p = (p�1 − p1, p�2 − p2, · · · , p�n − pn) = (m1,m2, · · · ,mn)

Here, mi is an integer value. �dreuse must include at least one non-zero mi element and the

first non-zero element must be plus because �p� comes after �p in the iteration space. The

first reuse vector is equivalent to the lexicographically smallest vector to satisfy the above

conditions.

For array A of Figure 3.4, let us consider coordinates �p = (p1, p2, p3) and �p� =

(p�1, p�2, p�3) that access the same element and have temporal reuse. The dependence equa-

tions for input dependence are p1 = p�1 and p3 = p�3, and the temporal reuse vector from �p

to �p� is represented as follow.

�dreuse1 = (p�1 − p1, p�2 − p2, p�3 − p3) = (0,m2,0) (p�2 − p2 = m2 ≥ 1)

Therefore, the first temporal reuse vector for array A is �d1 = (0,1,0) at m2 = 1. Note

that the temporal reuse vector �dreuse1 can be represented as the transitive vector of �d1, and

36

for (p_1 = [low1 : low1+T_1-1])

for (p_2 = [low2 : low2+T_2-1])

for (p_3 = [low3 : low3+T_3-1])

C[p_2 - p_1][p_3 - p_1] = C[p_2 - p_1 - 1][p_3 - p_1 - 1] ...

Figure 3.5 : Sample code 2 for explaining reuse distance.

the same array element of array A is accessed in each distance of �d1. The reuse vector

for spatial reuse is given in the same manner. Again for array A, the pair of �p and �p�

access neighboring elements (e.g., A[5][5] and A[5][6]) and have spatial reuse. Analogous

to dependence equation, the relationship among �p and �p� is represented as p1 = p�1 and

p3 +1 = p�3, which are reflected in the following spatial reuse vector from p to p�.

�dreuse2 = (p�1 − p1, p�2 − p2, p�3 − p3) = (0,m2,1) (p�2 − p2 = m2 ≥ 0)

Hence, the first spatial reuse vector for array A is �d2 = (0,0,1) at m2 = 0. For array B,

the pair with temporal reuse is (p1, p2, p3) and (p1 + 2, p2 + 3, p3), whose temporal reuse

vector is �d3=(2,3,0). The pair with spatial reuse is (p1, p2, p3) and (p1, p2, p3+1), whose

spatial reuse vector is �d4 = (0,0,1).

Figure 3.5 is another common case where loop skewing is applied to make the loop

nest fully permutable and enable rectangular tiling. Let �p and �p� denote coordinates to

access same element of array C and have temporal reuse. Since there are two references on

array C with different subscripts, flow and anti dependences should be taken into account.

Note that input/output dependence which can be handled as transitive dependency of flow

and anti dependences does not contribute to the first reuse analysis. Here we start with

the case of flow dependence where the dependence direction is from the first reference

37

C[p2 − p1][p3 − p1] to the second reference C[p�2 − p�1 −1][p�3 − p�1 −1].

Dependence equations:

p�1 − p1 = m1

p2 − p1 = p�2 − p�1 −1 ⇒ p�2 − p2 = p�1 − p1 +1 = m1 +1

p3 − p1 = p�3 − p�1 −1 ⇒ p�3 − p3 = p�1 − p1 +1 = m1 +1

Reuse distance vector from �p to �p�:

�dreuse5 = (p�1 − p1, p�2 − p2, p�3 − p3) = (m1,m1 +1,m1 +1) (p�1 − p1 = m1 ≥ 0)

Therefore, the first temporal reuse vector is �d5 = (0,1,1) at m1 = 0. For the case of anti-

dependence where the dependence direction is from C[p2− p1−1][p3− p1−1] to C[p�2−

p�1][p�3 − p�1], dependence equations and distance vector are described as follows.

Dependence equations:

p�1 − p1 = m1

p2 − p1 −1 = p�2 − p�1 ⇒ p�2 − p2 = p�1 − p1 −1 = m1 −1

p3 − p1 −1 = p�3 − p�1 ⇒ p�3 − p3 = p�1 − p1 −1 = m1 −1

Reuse distance vector from �p to �p�:

�dreuse6 = (p�1 − p1, p�2 − p2, p�3 − p3) = (m1,m1 −1,m1 −1) (p�1 − p1 = m1 ≥ 1)

We obtain the first temporal reuse vector �d6 = (1,0,0) at m1 = 1. Note that �dreuse5 and

�dreuse6 can be represented as the transitive vector of �d5 and �d6, and as shown in Figure 3.6,

the same element of array C is accessed in each distance of �d5 or �d6.

According to Section 3.3.3, we define the scalar distance for these reuse distance vec-

tors. For Figure 3.4, the size vector is �size = (T2T3,T3,1). The scalar distance of temporal

38

!"#

!"$

!"%

&'()(*+,(%,(%-

&.()(*%,(+,(+-

Figure 3.6 : Temporal reuse vectors for sample code 2

reuse vector �d1 = (0,1,0) is calculated by �size · �d1 = T3, and the scalar distance of spatial

reuse vector �d2= (0,0,1) is �size · �d2= 1. They are also represented as sub-tile tuple expres-

sions [1; 1; T3] and [1; 1; 1], respectively. Finally, we call the largest scalar distance Max-

imum Reuse Distance, or MRD. A MRD is defined per array. For example, MRD for array

A in the Figure 3.4 is [1; 1; T3], and MRD for array B is �size · �d3 = (T2T3,T3,1) · (2,3,0) =

2T2T3 + 3T3, or [2; T2; T3] + [1; 3; T3] in sub-tile tuple expression. Likewise, MRD for

array C in Figure 3.5 is �size · �d6 = (T2T3,T3,1) · (1,0,0) = T2T3 or [1; T2; T3] in sub-tile

expression.

It is still an open question how to approximate non-uniform first reuse vectors such

as sparse matrix. As described in section 3.4, ML is used to derive the upper bounds

of tile sizes and conservative approximation may make the tile size boundaries smaller

than optimal points. Therefore, we ignore non-uniform first reuse so as to estimate tile

sizes optimistically, and leave approximation for the non-uniform case to future work. In

practice this reuse analysis is individually performed for each merged array reference with

39

affine form array subscripts (defined in Section 3.2.1) because ML computation is based

on the DL expression. In this scenario, array references in a merged group have the same

coefficients and first reuse distances are guaranteed to be uniform.

3.3.5 Definition of ML

The sub-tile expression of Maximum Reuse Distance, or MRD, is exactly the target

sub-tile for computing ML value. In this section, we show how the ML for each array X

is obtained according to its Maximum Reuse Distance. First, a pair of iteration instances

(p1, p2, · · · , pn) and (p1+d1, p2+d2, · · · , pn+dn) has the following Maximum Reuse Dis-

tance for array X.

MRDX = ∑n
i=1([1; · · · ; 1; di; Ti+1; · · · ; Tn])

In order to leverage all data locality related to array X, the data at (p1, p2, · · · , pn) must not

be removed from the cache memory when (p1 + d1, p2 + d2, · · · , pn + dn) is accessed. It

means that the cache memory must keep the all distinct cache lines for array X within the

distance of MRDX . Therefore, ML for array X can be computed as the DL value for the

sub-tile tuple expression of MRDX .

MLX = DLX(MRDX) = ∑n
i=1 DL(1, · · · ,1,di,Ti+1, · · · ,Tn)

As shown in Section 3.3.3, the expression of Maximum Reuse Distance does not include

T1, and then MLX is always independent on T1. For instance MRDB and MLB for array B

of Figure 3.4 are computed as follows.

MRDB = [2; T2; T3]+ [1; 3; T3]

40

MLB = DLB(MRDB) = DLB(2,T2,T3)+DLB(1,3,T3)

ML in the tiled loop nest is defined as the summation for all array references.

ML = ∑X(MLX)

In order to leverage all intra-tile data locality within the tile, we should select tile sizes so

that ML is smaller or equal to the number of cache lines of the target cache memory, which

is usually level-1 cache. Therefore, the tile sizes which satisfy ML =CacheLines1 are the

upper boundaries to make full use of intra-tile reuse of level-1 tile.

// Tiling loops
for (p2_1 = [0 : M - 1 : T_1])

for (p2_2 = [0 : N - 1 : T_2])

for (p2_3 = [0 : K - 1 : T_3])

// Tiled loops
for (p_1 = [p2_1 : p2_1 + T_1 - 1])

for (p_2 = [p2_2 : p2_2 + T_2 - 1])

for (p_3 = [p2_3 : p2_3 + T_3 - 1])

C[p_1][p_2] += A[p_1][p_3] * B[p_3][p_2];

Figure 3.7 : Matrix multiplication with single-level tiling

3.3.6 Example

Figure 3.7 shows a single-level tiling example for Matrix Multiplication. We assume

an element of array has 8 Bytes, and the cache line size of L1/L2 is 64 Bytes (continuous 8

elements are kept in a cache line). DL is calculated as follow.

DL = DLC(T1,T2,T3)+DLA(T1,T2,T3)+DLB(T1,T2,T3)

= T1

�
T2
8

�
+T1

�
T3
8

�
+T3

�
T2
8

�

41

Also, Maximum Reuse Distance for each array is computed from size vector �size =

(T2T3,T3,1) as follows.

MRDC = (T2T3,T3,1) · (0,1,0) = [1; 1; T3]

MRDA = (T2T3,T3,1) · (0,1,0) = [1; 1; T3]

MRDB = (T2T3,T3,1) · (1,0,0) = [1; T2; T3]

Assigning each Maximum Reuse distance to corresponding DL expression, ML for single-

level tiling is computed.

ML = DLC(1,1,T3)+DLA(1,1,T3)+DLB(1,T2,T3)

= 1+
�

T3
8

�
+T3

�
T2
8

�

3.4 Bounding the Search Space by using DL and ML

This section presents how DL-ML model bounds a tiling search space. As discussed in

Section 3.3, ML is used for optimistic cache and TLB capacity constraints for intra-tile data

reuse and gives the upper boundaries for estimated tile sizes. In contrast, DL is used for

conservative constraints, and gives the lower boundaries. These lower and upper bound-

aries drastically reduce the search space for single and multi-level tiling. Furthermore, DL,

which represents the number of distinct lines within a tile, can be used as a capacity con-

straint for inter-tile data reuse on higher level of cache/TLB. In this section, we focus on

the single-level tiling case which fits within both of level-1 cache and TLB. We extend our

approach to multi-level tiling in Section 3.5.

42

3.4.1 Capacity Constraint for Intra-tile Reuse

Section 3.3.5 shows ML for single-level tiling can be dependent on tile sizes T2, T3,

..., Tn and is independent on T1 while DL can depend on all tile sizes T1, T2, ..., Tn. CS1

represents the number of cache lines or TLB entries at level-1 cache or TLB memory. All

tile sizes within the lower boundaries due to DL and upper boundaries due to ML satisfy

the following constraints.

DL(T1,T2, · · · ,Tn)≥CS1

ML(T2,T3, · · · ,Tn)≤CS1

We have two bounded regions according to cache and TLB. In our approach, we consider

the union of both regions as candidates for optimal tile sizes, and give higher search priority

to the intersection of both regions.

3.4.2 Capacity Constraint for Inter-tile Reuse

Although Section 3.4.1 shows the boundaries to maximize intra-tile data reuse of level-

1 tile, the outermost tile size T1 is actually not bounded above by the ML constraint. As

discussed in Section 3.1, this is corresponding to traditional single-level tiling to fit within

single-level cache, where the outermost loop is not tiled [46, 70, 48]. However, the outer-

most tile size affects inter-tile reuse on higher level of cache/TLB, and too large tile size

would harm the inter-tile data locality and even the overall performance. Using DL defi-

nition, we define an additional capacity constraint so as to preserve inter-tile data reuse on

level-k (k > 1) cache/TLB as follow.

43

DL(T1,T2, · · · ,Tn)≤CSk

This inequality, which ensures the whole distinct lines within the tile can be kept on level-k

cache/TLB and guarantees the inter-tile data reuse, gives upper boundary to the outermost

tile size T1. It is a subject for future work to select the suitable k according to the target

system. In the experiments in Section 3.6, we select the highest level of cache/TLB as k.

3.4.3 Empirical Search within Bounded Search Space for Single-level Tiling

Described in previous section, DL-ML capacity constraints for single-level tile consist

of the following three conditions.

DL(T1,T2, · · · ,Tn)≥CS1 (lower boundary for intra-tile reuse)

ML(T2,T3, · · · ,Tn)≤CS1 (upper boundary for intra-tile reuse)

DL(T1,T2, · · · ,Tn)≤CSk (upper boundary for inter-tile reuse)

The empirical search finds the optimal tile sizes for T1, T2, ..., Tn, which minimize the

objective metrics such as execution time.

Let us calculate the search space of Figure 3.7, which is a single-level tiling example of

Matrix Multiplication. We assume the experimental platform has 2-level cache and TLB.

The total number of cache lines is 512 for L1 and 49152 for L2 cache, and line size is 64

Byte for both L1 and L2 cache. Program size N = 3000 and each array has 8 Bytes per

element. Level-1 capacity constraints are

DL = T1

�
T2
8

�
+T1

�
T3
8

�
+T3

�
T2
8

�
≥ 512 (L1 cache)

ML = 1+
�

T3
8

�
+T3

�
T2
8

�
≤ 512

44

!"

#!!"

$!!"

%!!"

&!!"

'!!"

#!" ##!" $#!" %#!" &#!"

!"
#$

!"%$

()*+,-".+/0+-"12342"

Figure 3.8 : Search space for matrix multiplication for T1 = 30

DL = T1

�
T2
8

�
+T1

�
T3
8

�
+T3

�
T2
8

�
≥ 49152 (L2 cache)

Figure 3.8 shows the bounded search space for (T2, T3) when T1 is 30. These regions

bounded by DL/ML constraints are much smaller than the original 2-D search space 30002.

The empirical search for level-1 tile finds the optimal tile sizes T1 = 100, T2 = 20 and

T3 = 120 within the bounded region.

3.4.4 Compiler Pass for Bounded Search Space

Figure 3.9 shows the compiler framework to implement the DL-ML bounded search

space algorithm. This implementation requires standard compiler tools such as dependence

vector computation and array index expression extraction, those are readily available in

most modern compilers. This is the only program-specific data required to compute the DL-

ML equations. Plugging the additional machine-specific information about the different

cache level sizes and associated line sizes results in a bounded search space of candidate tile

45

Input Loop Nest

Extract Array Index Expression

Compute DL Bound

Compute ML Bound

Calculate Dependence Vector

Bounded Search Region
for Tile Sizes (Output)

Figure 3.9 : Compiler implementation of DL-ML bounds

sizes, which is drastically smaller than the original set of candidates. Using these bounds,

a tile size tuning framework explores only a fraction of points in the original search space,

thereby considerably reducing the tuning overhead.

3.5 Extension to Multi-level Tiling

In this section, we extend the DL-ML model to multi-level tiling. We label the inner-

most loops (for level-1 tiles) as loop1
i (1 ≤ i ≤ n), the innermost tiling loops, i.e., level-2

tiles by loop2
i etc. Our approach proceeds by tiling from the innermost level to the outer-

most, with a level-(k-1) tile being considered as an atomic element at the level-k tile. While

it may be intuitive to think of the number of levels of tiling as exactly matching the number

46

of levels in the hardware memory hierarchy, there are cases when it makes sense to use a

smaller number of levels for tiling so the two need not be the same.

3.5.1 Distance in Multi-Level Tiling

A level-k tile consists of the level-k tiled loops loopk
i (1 ≤ i ≤ n), whose loop index pk

i

iterates over tile size T k
i with stride T k−1

i . An iteration instance of a level-k tiled loop is

identified by the iteration vector �pk = (pk
1, pk

2, · · · , pk
n). Figure 3.10 shows an iteration space

of a triply nested level-k tiled loops. Each iteration instance corresponds to a level-(k-1)

tile represented as a gray cube.

For level-k tiled loops, the distance between two iteration vectors �pk and �pk� is ex-

pressed as a distance vector �dk = (dk
1,d

k
2, · · · ,dk

n) =
�pk� − �pk. Analogous to single-level

tiling, the minimum distance vector (0, · · · ,0,1) corresponds to one stride of the innermost

loop loopk
n. Let sizek

i denote the scalar distance for one stride of loopk
i . We define sizek

i as

follows:

sizek
n = ∏n

j=1 T k−1
j = [T k−1

1 ; T k−1
2 ; · · · ; T k−1

n] (i = n)

sizek
i = ∏i

j=1 T k−1
j ×∏n

j=i+1 T k
j

= [T k−1
1 ; · · · ; T k−1

i ; T k
i+1; · · · ; T k

n] (i < n)

Using size vector �sizek = (sizek
1,sizek

2, · · · ,sizek
n), we define scalar distance and its sub-tile

tuple expression for distance vector �dk = (dk
1,d

k
2, · · · ,dk

n) in the level-k tiled loops.

Scalar distance: �sizek · �dk = ∑n
i=1(d

k
i × sizek

i)

Sub-tile: ∑n
i=1([T

k−1
1 ; · · · ; T k−1

i−1 ; dk
i T k−1

i ; T k
i+1; · · · ; T k

n])

47

!"# !"$
!"%

!"&%# !"&%$
!"&%%

Figure 3.10 : Iteration space for level-k tile

3.5.2 ML for Multi-Level Tiling

Similar to the definition of reuse distance vector for level-1 tiled loops as

�d = (d1,d2, · · · ,dn), we define a corresponding level-k reuse distance vector �dk =

(dk
1,d

k
2, · · · ,dk

n), where dk
i =

�
di/T k−1

i

�
. A pair of iteration instances (pk

1, pk
2, · · · , pk

n) and

(pk
1 + dk

1, pk
2 + dk

2, · · · , pk
n + dk

n) has the following Maximum Reuse Distance in the level-k

tiled loops.

MRDk
X = ∑n

i=1([T
k−1

1 ; · · · ; T k−1
i−1 ; dk

i T k−1
i ; T k

i+1; · · · ; T k
n])

ML for array X within level-k tile is defined as MLk
X = DLX(MRDk

X)

Combining the contributions from all arrays, we have:

MLk = ∑X(MLk
X)

3.5.3 Bounded Search Space for Multi-level Tiling

We consider m-level tiling for an m-level cache hierarchy, where m is the highest cache

level. We assume that a level-k tile should fit within both the level-k cache and level-k TLB

constraints, where 1 ≤ k ≤ m.

48

Section 3.5.2 shows that MLk for level-k tiles can be dependent on tile sizes T k
2 , T k

3 , ...,

T k
n , T k−1

1 , T k−1
2 , ..., T k−1

n but not on T k
1 , while DL for level-k tile can depend on T k

1 , T k
2 , ...,

T k
n . Assuming CSk as the number of level-k cache lines or TLB entries, all tile sizes within

the lower boundaries due to DLk and upper boundaries due to MLk satisfy the following

constraints (1 ≤ k ≤ m, T 0
i = 1).

DLk(T k
1 ,T

k
2 , · · · ,T k

n)≥CSk

MLk(T k
2 ,T

k
3 , · · · ,T k

n , T k−1
1 ,T k−1

2 , · · · ,T k−1
n)≤CSk

We have two bounded regions according to cache and TLB constraints, and the union of

both regions is searched.

Furthermore, we define an additional capacity constraint for a level-k tile so as to pre-

serve inter-tile data reuse with the level-(k+1) cache/TLB.

DLk(T k
1 ,T

k
2 , · · · ,T k

n)≤CSk+1

These three inequalities correspond to the constraints described in Section 3.4.1 and 3.4.2.

3.5.4 Empirical Search within Bounded Search Space for Multi-level Tiling

In our approach, we first find the optimal tile sizes for level-1 tiles. Using the optimal

tile sizes of level-1 tiles, we update the level-2 constraints to bound the search region for

level-2 tiles, and so on. We use this decoupled stepwise approach to multi-level tile size

optimization because the product search space for multi-level tiling is intractable to fully

search even after the significant pruning enabled at each level by use of the DL/ML model.

While such a decoupling could result in some good tile combinations to be missed, the

49

experimental results in Section 3.6.3 demonstrate improvements over single level tiling for

most benchmarks.

When the optimal sizes for T k−1
1 , T k−1

2 , ... T k−1
n of level-(k-1) tile have been deter-

mined, we update the level-k ML boundary constraint by assigning the optimal sizes to

T k−1
i .

DLk(T k
1 ,T

k
2 , · · · ,T k

n)≥CSk

MLk(T k
2 ,T

k
3 , · · · ,T k

n)≤CSk

DLk(T k
1 ,T

k
2 , · · · ,T k

n)≤CSk+1

The empirical search finds the optimal tile sizes for T k
1 , T k

2 , ..., T k
n within the boundaries

recursively. We choose T k
i to be a multiple of T k−1

i so as to prevent tiles from being

fragmented; this also reduces the number of tile size candidates in the search space.

3.6 Experimental Results

An experimental assessment was performed on three Linux-based systems: an Intel

Core i7 920 running at 2.66 GHz with shared L3 cache (labeled Nehalem), an IBM Power

7 running at 3.55 GHz (Power7), and an Intel Xeon E7330 running at 2.40GHz with shared

L2 cache (Xeon). Previous work has used published cache capacity data from manufac-

turers in analytical models for cache performance. However, due to factors such as page

table entries, OS processes, etc., the full capacity of higher level caches may not be actually

available for use by the application. We report in Table 4.1 the effective capacities for the

cache and TLB — the published capacity Spec versus the effective capacity Effective that

50

was observed using micro-benchmarks for hardware characterization [71]. It may be seen

that the effective capacity may be as low as half the documented size, which can affect the

DL-ML capacity constraints. In our experiments, we used the effective capacities. The im-

pact of using published capacities instead of effective capacities is studied in Section 3.6.2.

Nehalem Power7 Xeon
L1 Spec. 32kB 32kB 32kB
L1 Effective 32kB 32kB 32kB
L2 Spec. 256kB 256kB 3MB
L2 Effective 256kB 256kB 1.5MB
L3 Spec. 8MB 32MB N/A
L3 Effective 5.2MB 18.4MB -
Line Size 64B 128B 64B
TLB1 Entries 64 64 16
TLB2 Entries 512 512 256
Page Size 4kB 64kB 4kB

Table 3.1 : Cache characteristics of the architectures considered

We studied five benchmarks using double precision floating point arithmetic. matmult

is a standard matrix-multiply kernel: C = A.B; dsyrk is a symmetric rank 1 computation:

C = α.A.AT +β.C; and dtrmm is a triangular in-place matrix multiplication: B = α.A.B (A

is triangular). We also considered a representative 9-point two-dimensional stencil compu-

tation, 2d-jacobi, and a 2D Finite Difference Time Domain method, 2d-fdtd. Parametrically

tiled code for each benchmark was generated using the publicly available PrimeTile code

generator [42] after any necessary preprocessing such as skewing [68] to ensure that rect-

angular tiling of the loops was legal. For all tested versions, including the original code,

the same compiler optimization flags were used: for Nehalem and Xeon, we used Intel ICC

51

! "! #! $! %! &! '! (!)! *! "!!
!

!+#

!+%

!+'

!+)

"

!"#"$%&'()*+",+)&+*-.*/-'0&+*+)%123)45)
1.-

1#
%0

2)
*0

-1
#

%$'
6)

4*
&-

*,
)+

&*/
)1

.-
1#

%0
2) 7)-0

5-8)19
:)3%$)#

!"# $%%&'()*+%,

(a) matmult-3000x3000

! "! #! $! %! &! '! (!)! *! "!!
!

!+#

!+%

!+'

!+)

"

!"#"$%&'()*+",+)&+*-.*/-'0&+*+)%123)45)
1.-

1#
%0

2)
*0

-1
#

%$'
6)

4*
&-

*,
)+

&*/
)1

.-
1#

%0
2) 7)-0

5-8)19
:)3%$)#

!"# $%%&'()*+%,

(b) 2d-jacobi-50x4000x4000

Figure 3.11 : Performance distribution for 3.11a matmult-3000x3000 and 3.11b 2d-jacobi-
50x4000x4000 on Nehalem, Xeon, and Power7

11.0 with option -O3; for Power7, we used IBM XLC 10.1 with option -O3.

3.6.1 Performance Distribution of Different Tile Sizes

For each benchmark, in the case of single-level tiling, we conducted an extensive set of

experiments, for a subset of tile sizes for each loop ranging from 1 to the loop length, in

steps of 10 (approximately).

52

Figure 3.11a plots the data for matmult (size 3000 × 3000) for the three considered

architectures. A point (x,y) in this cumulative plot indicates that x% of the tile combi-

nations achieved normalized performance greater than or equal to y, where normalization

is with respect to the best performing case among all runs and performance is inversely

proportional to execution time.

It may be observed that only a small fraction of the tile combinations achieve very

good performance — for example, on the Nehalem, only 2% of the tile size configurations

achieve more than 90% of the maximal performance. Also, there is a very large variation

in performance between the best and worst tile size choices, up to a factor of 10. The

performance distribution also varies for different targets — for Power7, over 20% of the

cases provide good performance. Further, we have also observed that the points with good

performance are not uniformly distributed in the search space but are clustered in clouds.

This highlights the complexity of the search problem when using a blind random search —

convergence towards an optimal point may require sampling of a significant fraction of the

search space.

Figure 3.11b shows a similar analysis for the 2d-jacobi benchmark. For the target ma-

chines, we observe quite a different trend compared to matmult: about 55% of the tile sizes

achieve 90% or more of the maximal performance for Nehalem, while this ratio signifi-

cantly decreases for the two other architectures, down to 1% for Xeon.

53

3.6.2 Search Space Reduction by DL-ML Model

To assess the effectiveness of search space pruning by use of the DL-ML model, Fig-

ures 3.12-3.16 show the bounded search region superposed with a marking of all tile

choices that achieve over 95% of the maximal performance on Nehalem, Power7 and Xeon.

In each 3-D space, the x, y, and z axes show tile size values for the outer loop, middle loop

and inner loop respectively. These tile choices are called “best” points in this section. The

surface in each 3-dimensional plot represents the DL-ML upper boundary for single-level

tiling, considering intra-tile reuse for level-1 cache and TLB, and inter-tile reuse on the

highest level of cache and TLB, as described in Section 3.4. In order to enhance viewabil-

ity, the figures do not show the lower DL boundaries, since they fall below the best points.

54

Figure 3.12 : Best tile sizes (achieves 95% or more of the performance with the optimal tile
size) for matmult-3000x3000 with k-i- j loop ordering on 3.12a Nehalem,3.12b Power7and
3.12c Xeon. The x, y and z axes show tile size values for outer loop k, middle loop i and
inner loop j respectively.

55

Figure 3.13 : Best tile sizes (achieves 95% or more of the performance with the optimal
tile size) for dsyrk-3000x3000 with i- j-k loop ordering on 3.13a Nehalem, 3.13b Power7
and 3.13c Xeon. The x, y and z axes show tile size values for outer loop i, middle loop j
and inner loop j respectively.

56

Figure 3.14 : Best tile sizes (achieves 95% or more of the performance with the optimal
tile size) for 2d-jacobi-50x4000x4000 with t-i- j loop ordering on 3.14a Nehalem, 3.14b
Power7 and 3.14c Xeon. The x, y and z axes show tile size values for outer loop t, middle
loop i and inner loop j respectively.

57

Figure 3.15 : Best tile sizes (achieves 95% or more of the performance with the optimal
tile size) for dtrmm-3000x3000 with i- j-k loop ordering on 3.15a Nehalem, 3.15b Power7
and 3.15c Xeon. The x, y and z axes show tile size values for outer loop i, middle loop j
and inner loop j respectively.

58

Figure 3.16 : Best tile sizes (achieves 95% or more of the performance with the optimal tile
size) for 2d-fdtd-100x2000x2000 with t-i- j loop ordering on 3.16a Nehalem,3.16b Power7
and 3.16c Xeon. The x, y and z axes show tile size values for outer loop t, middle loop i
and inner loop j respectively.

59

For all the plots in Figures 3.12-3.16, we see that although a small number of points lie

outside the bounded search space, the vast majority of best points lie inside it. The density

of good solutions in the space is thus very much larger than in the non-pruned space. For

all the benchmarks, we found that an optimal tile was within the bounded search region.

Figures 3.12-3.16 also show that the best tile sizes are relatively smaller on Nehalem, and

larger on Power7. For example, the best points in dsyrk are within the region of (Ti≤ 400,

Tj ≤ 50, Tk ≤ 100) on both Nehalem and Xeon. However, the best points on Power7 are

distributed much more broadly, up to the maximum size of 3000. This trend pertains to the

impact of the level-1 TLB size on each system; the small (4KB) page size on Nehalem and

Xeon causes the best tile sizes to be small, while the large (64KB) page size on Power7

allows much larger tiles without causing severe TLB misses. These differences are directly

reflected in the upper boundary of the DL-ML model, which covers a larger region for

Power7 than the other machines. As discussed in Section 3.4.2, the outermost tile size

(x axis) is bounded above only by the inter-tile reuse constraints due to the highest level

of cache and TLB. It is obvious that the outermost tile size boundaries also contribute to

search space reduction in Figures 3.12-3.16.

Table 3.2 shows the ratio of the space considered in the DL-ML range for the three

architectures, compared to the full space of tile sizes. This ratio corresponds to the minimal

acceleration factor for an exhaustive or random empirical search compared to using the full

space. The factor is much lower for Power7 due to the larger page size, as explained above.

In order to assess the impact of using published versus effective capacities, we repeated

60

Problem Size Xeon Power 7 Nehalem

matmul
600x600 81.12 1.46 21.90

3000x3000 8710.81 93.79 1856.49

dsyrk
1000x1000 492.24 2.04 91.62
3000x3000 11879.67 83.99 1978.26

dtrmm
600x600 41.37 2.31 32.74

3000x3000 2565.00 1142.23 1238.24
2d-jacobi 50x4000 3102.90 76.43 693.45
2d-fdtd 100x2000x2000 1307.19 45.55 358.74

Table 3.2 : Search space reduction factor across different architectures

our analysis also using the published capacity for the highest level of cache instead of

the effective capacity. We found the reduction in search space by use of the ML model

was virtually identical with use of published size or effective size (Table 3.2), with one

exception: for matmult with 3000×3000 size on Power7, the reduction rate decreased from

93.79 to 84.01. This is because the constraint due to the highest level of cache did not

affect the search space boundaries for the evaluated benchmarks and platforms except for

Power7/matmult.

3.6.3 Summary of Experiments

1-Level Tiling

We summarize our experiments for 1-level tiling in Table 3.3. We report, for each

benchmark and each architecture, the execution time (in seconds) of the original, untiled

code in the Untiled Time column. DL reports the tile sizes and its execution time as obtained

by the purely analytical approach using the DL model [64]; Best Square Tile reports the

61

Untiled DL Best Square Tile Best DL-ML Impr. by DL-ML
Time Tile Size Time Tile size Time Tile size Time vs. DL vs. Sq.

matmult-N 33.25 (40, 40, 30) 16.40 (80,80,80) 17.27 (150, 30, 80) 13.48 1.22× 1.28×
matmult-P 25.46 (50, 30, 20) 13.90 (80,80,80) 12.28 (90, 10, 120) 10.60 1.31× 1.15×
matmult-X 153.66 (40, 40, 30) 29.51 (50,50,50) 23.98 (100, 20, 120) 18.35 1.60× 1.31×
dsyrk-N 25.39 (30, 40, 40) 15.47 (80,80,80) 15.54 (30, 30, 90) 12.50 1.23× 1.24×
dsyrk-P 23.32 (40, 30, 30) 15.10 (300,300,300) 10.86 (60, 10, 1000) 9.16 1.64× 1.19×
dsyrk-X 84.89 (30, 40, 40) 26.08 (120,120,120) 25.44 (100, 30, 80) 18.19 1.43× 1.40×
dtrmm-N 142.42 (40, 40, 30) 19.20 (60,60,60) 18.87 (150, 30, 60) 18.20 1.05× 1.04×
dtrmm-P 62.74 (30, 50, 20) 14.60 (60,60,60) 13.06 (600, 30, 32) 11.96 1.22× 1.09×
dtrmm-X 114.70 (40, 40, 30) 28.98 (120,120,120) 29.13 (30, 10, 120) 23.49 1.23× 1.24×
2d-jacobi-N 2.43 (10, 40, 10) 2.60 (50,50,50) 2.24 (10, 8, 150) 2.16 1.20× 1.04×
2d-jacobi-P 2.10 (10, 40, 10) 2.09 (10,50,50) 1.31 (10, 40, 120) 1.19 1.76× 1.10×
2d-jacobi-X 8.75 (10, 40, 10) 2.77 (10,8,8) 2.81 (50, 40, 20) 2.54 1.09× 1.11×
2d-fdtd-N 15.35 (10, 60, 8) 2.41 (50, 8, 8) 2.35 (50, 50, 8) 2.26 1.07× 1.04×
2d-fdtd-P 9.56 (10, 40, 1) 6.90 (50,70,70) 2.11 (40,70,40) 2.09 3.30× 1.01×
2d-fdtd-X 16.42 (10, 60, 8) 4.47 (100,40,40) 4.22 (50,100,8) 4.01 1.11× 1.05×

Table 3.3 : 1-level tiling results (time in seconds, N: Nehalem, P: Power7, X: Xeon)

tile sizes and execution time obtained by an exhaustive empirical search only for square tile

sizes; and Best DL-ML is obtained by an exhaustive empirical search in the DL-ML range.

The Best DL-ML point was also the globally optimal point in the whole search space for all

programs/platforms. We observed that the optimal points represent non-square tile sizes for

all cases. For efficient vectorization on all three platforms, the vectorized dimension should

correspond to a sufficiently large tile size. Furthermore, the different temporal/spatial data

reuse pattern along different dimensions contributes to the unequal sizes of tiles in the

different dimensions for the optimal choices.

Empirical search using DL-ML model

This section demonstrates the integration of the analytical bounds with existing search

optimization algorithms, the Nelder-Mead Simplex method [72] and the Parallel Rank Or-

62

dering (PRO) method [73]. To handle boundary constraints due to the DL-ML model, we

used the extended version of the PRO algorithm introduced in the Active Harmony frame-

work [58]. The same extension to handle boundaries was employed in our implementation

of the Simplex method, and its stopping criteria are based on the work by Luersen [10].

Regarding initial simplex selection for our Simplex search implementation, we used a

model-driven approach based on the DL model for square tiling. The square tile size tuple,

T 1 = T 2 = T 3, which satisfies the DL capacity constraint is selected as one vertex of the

initial simplex. Other tree vertices were chosen so as to form a regular triangular pyramid.

Note that all the studied kernel loops are triply nested and the simplex always has four

vertices. The initial simplex is bounded by the upper and lower tile sizes in addition to the

DL-ML bounds.

Without DL-ML Bounds With DL-ML Bounds
Total [sec] Best Size / Time [sec] Total [sec] Best Size / Time [sec]

matmult-nehalem-simplex 3173.36 (17, 120, 1369) / 13.86 640.98 (36, 56, 64) / 14.71
matmult-nehalem-pro 1294.88 (52, 344, 2270) / 15.64 380.73 (36, 80, 29) / 15.24
matmult-power7-simplex 940.81 (114,1142,858) / 11.4 709.22 (22,82,117) / 11.32
matmult-power7-pro 691.01 (172,1784,2989) / 11.39 442.26 (28,72,126) / 10.58
matmult-xeon-simplex 4268.52 (98,1257,1258) / 21.69 1039.69 (35,56,57) / 19.52
matmult-xeon-pro 2453.03 (97,904,1315) / 21.81 831.73 (31,64,56) / 19.22
2d-jacobi-nehalem-simplex 88.84 (42, 465, 498) / 2.25 26.48 (34,15,64) / 2.32
2d-jacobi-nehalem-pro 51.09 (29, 2001, 2000) / 2.41 50.33 (25,10,627) / 2.2
2d-jacobi-power7-simplex 96.95 (50,37,92) / 1.15 54.94 (50,28,116) / 1.14
2d-jacobi-power7-pro 83.98 (25,8,3495) / 1.61 33.81 (10,53,84) / 1.17
2d-jacobi-xeon-simplex 351.52 (50,40,16) / 2.49 75.49 (50,33,16) / 2.49
2d-jacobi-xeon-pro 248.12 (26,1976,2098) / 8.85 57.34 (10,12,21) / 2.75

Table 3.4 : Empirical search results for 1-level tiling

Table 3.4 shows the total execution time for the whole empirical tuning, the best tile size

63

Best DL-ML (2-level tiling) Perf. Impr. vs.
Tile sizes Time (sec) DL-ML (1-level)

matmult ((3000, 240, 600),
(100, 20, 120)) 16.28 1.12×

dsyrk ((3000, 600, 240),
(100, 30, 80)) 17.28 1.05×

dtrmm ((3000, 400, 240),
(30, 10, 120)) 22.93 1.02×

2d-jacobi ((50, 120, 640),
(50, 40, 8)) 3.19 1.01×

2d-fdtd ((100, 400, 40),
(50, 100, 8)) 4.25 0.94×

Table 3.5 : 2-level tiling results on Xeon – improvement over 1-level tiling

found by each approach, and its execution time. The DL-ML bounds significantly reduced

the total tuning time by a factor of 1.02 to 4.95 on Nehalem, 1.33 to 2.48 on Power7,

and 2.95 to 4.66 on Xeon. Furthermore, the Simplex and PRO methods using DL-ML

boundary constraints found better tile sizes than the cases without DL-ML bounds, except

for the simplex method on Nehalem. The tile size search space contains various local

optimal points, and these empirical search approaches not using the boundary constraints

got stuck at local optimal far from the global optimal point. Note that these search methods

can take arbitrary tile sizes in the search space, and hence found slightly better tile sizes in

some cases than Table 3.3, which shows the result of scanning the search space with strided

access.

64

Multi-level Tiling

This section presents preliminary experimental results for multi-level tiling. Table 3.5

shows the execution time of the best point within DL and ML boundaries for single and 2-

level tiling on Xeon. Due to the huge search space for 2-level tiling, we adopted a decoupled

approach to model-driven empirical search for tile size optimization. For the first level

of tiling, we use the same tile sizes as for single level tiling, based on the lowest level

cache/TLB parameters. The tile size candidates for second level tiling were chosen to be

multiples of the first level tile sizes, in the space bounded by the DL-ML model based

on parameters of the last level cache/TLB. For all benchmarks, 2-level tiling gives better

performance than single-level tiling except for 2d-fdtd.

Parallel execution of tiled code

Table 3.6 reports the best tile sizes found by an exhaustive empirical search using DL-

ML bounds when the outer-most tiling loop is parallelized with OpenMP parallel for

directives. It shows the speedup with respect to the untiled sequential execution when run-

ning each program with all cores (parallel) and when running with a single core (sequential,

same as Table 3.3). Although the performance with parallelization is not always better than

sequential, the best tile sizes for parallelized benchmarks also lie in the region bounded by

the proposed DL-ML model except for dtrmm and jacobi-2d on Xeon, whose parallel per-

formance is lower than sequential performance. This performance degradation results from

inefficient data distribution, which may also cause unexpected effects on tile size selection.

65

Optimal Point (parallel) Optimal Point (sequential)
Tile Speedup vs. Tile Speedup vs.
Size Untiled Seq. Size Untiled Seq.

matmult-nehalem (8 Threads) (80, 10, 120) 9.39× (150, 30, 80) 2.47×
matmult-power7 (32 Threads) (100, 1, 300) 15.24× (90, 10, 120) 2.40×
matmult-xeon (8 Threads) (150, 32, 80) 57.12× (100, 20, 120) 8.37×
dsyrk-nehalem (8 Threads) (150, 30, 120) 0.86× (30, 30, 90) 2.03×
dsyrk-power7 (32 Threads) (32, 70, 300) 13.79× (60, 10, 1000) 2.54×
dsyrk-xeon (8 Threads) (30, 10, 90) 3.64× (100, 30, 80) 4.66×
dtrmm-nehalem (8 Threads) (32, 50, 32) 0.93× (150, 30, 60) 7.83×
dtrmm-power7 (32 Threads) (10, 30, 100) 1.90× (600, 30, 32) 5.25×
dtrmm-xeon (8 Threads) (1, 1, 30) 1.69× (30, 10, 120) 4.88×
2d-jacobi-nehalem (8 Threads) (10, 50, 120) 1.77× (10, 8, 150) 1.13×
2d-jacobi-power7 (32 Threads) (10, 32, 120) 2.12× (10, 40, 120) 1.76×
2d-jacobi-xeon (8 Threads) (10, 40, 600) 3.06× (50, 40, 20) 3.44×
2d-fdtd-nehalem (8 Threads) (30, 80, 8) 14.08× (50, 50, 8) 6.79×
2d-fdtd-power7 (32 Threads) (10, 80, 8) 15.17× (40, 70, 40) 4.57×
2d-fdtd-xeon (8 Threads) (10, 60, 8) 11.99× (50, 100, 8) 4.09×

Table 3.6 : Parallel 1-level tiling results

3.7 Summary

Our approach to model-driven empirical search for tile size selection is based on a con-

servative model (DL) that ignores intra-tile cache block replacement, and a new aggressive

model (ML) that assumes optimal replacement. In effect, the empirical search can be re-

stricted (pruned) by the two models (DL and ML). Search space reductions ranging from

44× - 11,879× were obtained by using this pruning technique. Our experimental results

for single-level tiling on different benchmarks show that almost all of the “best” tile sizes

that deliver 95% or more of the optimal performance fall between the ML and DL bounds

used in our approach. Furthermore, we demonstrate significant performance improvement

for the best tile sizes relative to the tiles sizes obtained by using the analytical DL model

66

for all five kernels (matmult, syrk, trmm, 2d-jacobi, 2d-fdtd) on the three hardware systems

(Nehalem, Xeon, Power7) studied in this work. The experiments for parallel execution

show our DL-ML model also works efficiently for tile size selection of parallelized pro-

grams. Our results for multi-level memory hierarchy are effective for two-level tiling using

DL-ML model on Xeon. Taken together, these experimental results make a convincing

case of the effectiveness of our proposed new approach to model-driven empirical search

for tile sizes.

67

Chapter 4

Data Layout Optimization

This dissertation describes a framework and methodology to automatically improve the

performance of array-intensive codes running on a variety of computing platforms. As

computing platforms increase in diversity, “portable performance” has become one of the

most challenging problems for application developers. Achieving good performance on a

specific platform often requires coding adjustments to fit a specific set of machine param-

eters e.g., cache size, cache line size, number of registers, main memory latency, memory

bandwidth, etc. Unfortunately, adjustments for one platform can impede performance on

other platforms. This dissertation focuses on data layout optimization, which has been in-

creasing in importance in recent years. Most programming languages require developers

to make array-of-struct (AoS) or struct-of-array (SoA) decisions (or combinations thereof)

early in development. For long-lived applications, the following challenge can be encoun-

tered repeatedly (and now with increasing frequency): what to do when a new architecture

is introduced with a memory subsystem that would benefit from a different data structure

layout in the program? With current languages, a near-complete rewrite of an application

is usually necessary, since each data access needs to be rewritten. Historically, developers

of large codes avoid changing data layouts because it involves changing too many lines of

code, the expected benefit of a specific change is difficult to predict, and whatever works

68

well on one system may hurt on another. Our approach demonstrates how these obstacles

can be overcome.

In the next section, we present the data layout framework named TALC. Section 4.2

shows the effect of data layouts across different platform using user-specified layouts. Au-

tomated Layout Selection and its experimental results is presented in Section 4.3 and

Section 4.4 respectively.

4.1 TALC Data Layout Framework

This section describes our extensions to the TALC Framework [74,75] to support user-

specified and automatic data layouts, driven by a Meta file specification. TALC stands for

Topologically-Aware Layout in C. TALC is a source-to-source compiler translation tool and

accompanying runtime system that dramatically reduces the effort needed to experiment

with different data layouts. Our extended version of TALC has been implemented in the

latest version of the ROSE [76] compiler infrastructure. In the process of extending TALC,

we have re-implemented its entire code, added new functionality for automated layouts and

extended layout transformations. The entire source repository can be found online [77].

Figure 4.1 shows the overall framework. TALC can be configured to run in two modes:

Automated Layout and User Specified Layout. For both of these modes, a user needs to pro-

vide some input to perform data layout transformation. In the Automated Layout mode, the

user provides a field specification. A field specification file is a simple schema file, which

specifies arrays that should be considered for transformation. The field specification file

69

!"

#$%&'()*"
+(,&$%"

-./.0(%&0"

+(,&$%"12)'34.5"
6&$0*."70&80('"

9.%(":3;." <(%("+(,&$%"
=0(/>?&0'()&/"

:3.;5"
62.*3@*()&/"

70&@;.5"+&&2"
A&$/%>"

B>.0"C/2$%>"

D$/)'."
+3E0(0,"

FG.*$%(E;."
70&80('"

70&80('"
H3/(0,"

6&$0*."70&80('"

9(*I3/."
AI(0(*%.03>)*>"

J./5&0"A&'23;.0"

6(?.%,KF00&0"AI.*L>"

Figure 4.1 : Extended TALC framework

is necessary because it enables our tool to only transform the specified arrays. Figure 4.2

shows a sample field specification file. The View keyword is used internally to parse the

data layouts. The field keyword specifies arrays considered for layout transformation. Each

field has a type associated with it, specified by the : separator. In this example, d stands for

the double data type. Specifying the data type helps with type checking array subscripts

during layout transformations. More information on the Automatic Data Layout Selection

will be provided in Section 4.3. We focus next on the user specified layout scheme.

The Meta file specifies the data layouts TALC should produce. A Meta file can be

generated either automatically or manually. Figure 4.3 contains an example of a Meta

70

View node

{

Field {x:d}

Field {y:d}

Field {z:d}

...

}

Figure 4.2 : Sample TALC field specification file

View node

{

Field { x:d, y:d, z:d }

Field { xd:d, yd:d, zd:d }

Field { xdd:d, ydd:d, zdd:d }

}

Figure 4.3 : Sample TALC meta file

file. Unlike the field specification file in Figure 4.2, the Meta file also specifies which fields

should be combined into the same array. So, this schema specifies that four arrays of structs

are desired. For example, arrays x, y and z will be interleaved in a single array.

Before performing the data layout transformation, we perform safety/error checks for a

programmer. These checks not only enable correctness for data layout transformation, but

also relieve the programmer from subtle runtime bugs. The safety/error checks perform a

pre-pass of the entire program before applying any transformation. A programmer can see

the warnings/errors produced by this pre-pass. Following is the list of checks performed by

extended TALC framework:

• Type check array fields in Meta file with source program.

• Type check function parameters with array fields in Meta file

71

• Name check between formal and actual parameters in every function call where pa-

rameters match array fields in Meta file

Data Layout transformation is a key component in the TALC framework. The trans-

formation accepts a C/C++ source program and Meta file, produces an equivalent program

and changes the data layout of the specified arrays to match the Meta file. The layout trans-

formation matches the names and data type of the arrays before modifying the source code.

Array subscripts are automatically rewritten to array and field accesses, as appropriate. The

layout transformation also rewrites the memory allocation of the layout transforming arrays

to a library call. This call is made at the runtime thereby handling memory allocation grace-

fully for the entire group in a field. The runtime library ensures memory-aligned allocation

for the array grouping. Figure 4.4 shows the key portion of an input file. Figure 4.5 shows a

stylized output file (the new array names were inserted for descriptive purposes; the TALC

implementation generates synthetic names instead) generated by the layout transformation,

based on the Meta file in Figure 4.3.

To ensure that data layout transformations can safely be performed, TALC currently

imposes some programming restrictions on the input code:

• All accesses to candidate arrays for data layout transformation must be written as

array[index]. The alternate form, index[array] is prohibited.

• All “aliases” for the same array must use the same name. This is especially important

when passing arrays by reference across functions.

72

for (int Node=0; Node<numNode; ++Node) {

// Calculate new Accelerations for the Node

xdd[Node] = fx[Node] / Mass[Node];

ydd[Node] = fy[Node] / Mass[Node];

zdd[Node] = fz[Node] / Mass[Node];

// Calculate new Velocity for the Node

xd[Node] += xdd[Node] * dt ;

yd[Node] += ydd[Node] * dt ;

zd[Node] += zdd[Node] * dt ;

...

}

Figure 4.4 : Sample C input file.

• All arrays in the same field group (as specified in the Meta file) must be of the same

length.

• Multidimensional arrays can only be supported if sub-matrices are known to al-

located contiguously. The current implementation requires multidimensional sub-

scripts to be transformed to single-dimensional subscripts before data layout trans-

formation. This is a simple transformation for compilers to perform automatically.

We have discussed these limitations with developers of scientific applications at mul-

tiple institutions (including LLNL) and have been informed that the assumptions made by

the TALC tool are consistent with the assumptions made by the application developers.

73

for (int Node=0; Node<numNode; ++Node) {

// Calculate new Accelerations for the Node

Acc[Node].xdd = force[Node].x / Mass[Node];

Acc[Node].ydd = force[Node].y / Mass[Node];

Acc[Node].zdd = force[Node].z / Mass[Node];

// Calculate new Velocity for the Node

Vel[Node].xd += Acc[Node].xdd * dt ;

Vel[Node].yd += Acc[Node].ydd * dt ;

Vel[Node].zd += Acc[Node].zdd * dt ;

...

}

Figure 4.5 : Stylized TALC output file.

4.2 User Specified Layout Results

We ran a series of tests to evaluate the productivity and performance gains obtained

by using TALC to perform layout transformations. In this section we describe the three

benchmarks we tested TALC with and the four architectures these tests were performed on.

We then describe the manual layouts we tried using TALC and discuss the performance

results obtained for the code and architecture combinations that were evaluated.

4.2.1 Test Codes

We ran tests on three codes that are all standard single-node benchmarks containing

OpenMP parallelism. A brief overview of each code is described below.

74

IRSmk

The implicit radiation solver (IRS) [78] is a benchmark used as part of the procurement

of the Sequoia system at Lawrence Livermore National Laboratory. It uses a conjugate gra-

dient solver on a 27 point stencil. Included with IRS is a microkernel IRSmk that represents

the largest fraction of work in IRS.

SRAD

The SRAD benchmark [79] from the Rodinia suite performs the image processing cal-

culation speckle reducing anisotropic diffusion. The algorithm removes speckles (locally

correlated noise) from images without removing image features. We focus on the loop that

iterates over the image as it takes almost all of the time in SRAD.

LULESH

The largest application we focus on is the Livermore Unstructured Lagrange Explicit

Shock Hydrodynamics (LULESH) mini-application [80]. LULESH solves the Sedov prob-

lem on a 3D hexahedral mesh. Within LULESH there are three categories of arrays that can

be combined: node centered, element centered and symmetry. Different array sizes and the

fact that they are used in various combinations throughout the loops in LULESH provide a

larger search space for data layouts and tension for data layout transformations not found

in the smaller benchmarks. The version of LULESH used in this study has undergone a

variety of optimizations from the original published code, including aggressive loop fusion

75

Machine Architecture Specification
IBM Power7 Quad IBM Power 7 (eight-core 3.55 GHz processor, 32KB L1 D-Cache

per core, 256KB L2 Cache, 32MB L3 Cache) Compiler: xlc v11.1

-O3 -qsmp=omp -qthreaded -qhot -qtune=pwr7 -qarch=pwr7

AMD APU Single AMD A10-5800K APU (quad-core 3.8 GHz processor, 16KB
L1 D-Cache per core, 4MB L2 Cache) Compiler: gcc v4.7.2 -O3

-fopenmp

Intel Sandy Bridge Dual Intel E5-2670 Sandy Bridge CPU (eight-core 2.6 GHz proces-
sor, 32KB L1 D-Cache per core, 256KB L2 Cache per core, 20MB L3
Cache) Compiler: icc v12.1.5 -O3 -fast -parallel -openmp

IBM BG/Q 16 IBM PowerPC A2 cores/node, 1.6 GHz processor, 32 MB eDRAM
L2 cache Compiler: gcc v.4.4.6 -O3 -fopenmp

Table 4.1 : Architecture and compiler specifications

and elimination of temporary arrays [81].

4.2.2 Experimental Methodology

To show the impact of data layouts on performance we ran experiments using our three

test codes on four different platforms. The Linux-based systems are: IBM Power7, AMD

APU, Intel Sandy Bridge and IBM BG/Q. Table 4.1 summarizes the specifications of these

architectures and compiler options used. For the AMD APU, we focused on the CPU and

ignored the GPU. IRSmk and LULESH were both run in double precision, while SRAD

was run in single precision. All were run on varying thread counts on the four platforms.

Specifically, we ran IRSmk on a problem based on a 1003 mesh for 500 iterations. LULESH

was run with a problem size = 90 (i.e. 903 elements and 913 nodes). SRAD was run for 200

iterations on a 40962 grid with the x1 and y1 speckle values set to 0, the x2 and y2 values

set to 127 and lambda set to 0.5.

76

Benchmark LOC for Base version LOC (Added+Modified)
Min Max

IRSmk 330 56 272
LULESH 2640 98 477
SRAD 239 11 39

Table 4.2 : Impact of source code lines changes across different layouts compared to base
version. LOC denotes Lines of Code.

All of these benchmarks use OpenMP for parallelism. We use the default memory

allocation scheme provided in these benchmarks and limit experiments to one socket.

Before showing the specific results, we first comment on the critical impact of TALC

on our ability to run these experiments. We calculated the number of source code line

changes that were made by the data layout framework across the two benchmarks. Results

are tabulated in Table 4.2. Results show the number of source code lines modified or added

as compared to the base or original version of source code. These modifications represent

the data layout transformation effects on the original code. For IRSmk, the base code is

330 lines and the changes/additions ranged from 56-272 per experiment. For LULESH,

the base code is 2640 lines and the changes/additions ranged from 98-477 per experiment.

For SRAD, the base code is 239 lines and the changes/additions ranged from 11-39 per

experiment. We show the minimum(Min) and maximum(Max) source code changes across

the layouts. The upper bound on source line changes are 82% (272 lines) for IRSmk, 18%

(477 lines) for LULESH and 16% (39 lines) for SRAD as compared to their base version.

These results reiterate the need for having an automated transformation to explore efficient

data layouts. By using TALC, we not only were able to automate these changes, but also

77

!"
#$
%&

' ('
)

('
*

('
+

(*
)

(*
*

(*
+

(, (-
*

(-
+

*'
)

*'
*

*'
+

**
)

**
*

**
+

*, *-
*

*-
+

%'
)

%'
*

%'
+

%*
)

%*
*

%*
+

%, %-
*

%-
+

.
/ 0+$%12. 0+$%12/ 0+$%123 0+$%124 0+$%125 0+$%126 0+$%127 0+$%128 0+$%129
3 22 0+$%12.
4 0+$%12.
5 0+$%12. 0+$%12/ 0+$%123
6 0+$%12. 0+$%12/
7 0+$%12. 0+$%12/
8 0+$%12. 0+$%12/
9 0+$%12. 0+$%12/ 0+$%123 0+$%124

Figure 4.6 : IRSmk layouts selected for discussion.

eliminate the possibility of subtle bugs when these changes are performed manually.

4.2.3 Experimental Results

For each benchmark, we conducted extensive experiments across different layouts on

four architectures. Although we have experimented with a larger set of layouts, we limit

the number of layouts presented here to the most interesting ones.

IRSmk

Figure 4.6 shows the nine IRSmk layouts for which we present results. Each row

”block” represents a set of arrays (identified by column) that have been interleaved. So,

for example, layout 2 consists of nine arrays of structs containing three fields each. The

names in each block are added for clarity of presentation. Figures 4.7 and 4.8 shows the re-

sults obtained by running IRSmk with different thread counts on all nine layouts on each of

the four platforms. For each test case, we report the speedup (or slowdown, for values < 1)

of each layout against the “base case” which is the original code, running with an equiv-

78

(a) IBM Power7

(b) AMD APU

Figure 4.7 : IRSmk performance results on IBM Power 7 and AMD APU platforms with
varying threads.

79

(a) Intel Sandy Bridge

(b) IBM BG/Q

Figure 4.8 : IRSmk performance results on Intel Sandy Bridge and IBM BG/Q platforms
with varying threads.

80

!"#$%&$'(&"'"$#$))*)'+(#'"#,-$.*/001,,1,2'
+(#'/33'4'3&,56'33'7'3&$86'33992':'

''+(#'/00'4'0&,56'00'7'0&$86'00992':'

''''+(#'/,,'4',&,56',,'7',&$86',,992':'

!"!#!""!$!%%!&!%'!$!((!&!(')!

!*+",!#!-*.+",!&!/-*.+",!!$-*0+",!&!/-*0+",!$!-*1+",!&!/-*1+",!$!

!!! ! !!!!!!!!!-0.+",!&!/-0.+",!!$!-00+",!&!/-00+",!$!-01+",!&!/-01+",!$!

!!! ! !!!!!!!!!-2+",!&!/-2+",!!!$!-30+",!&!/-30+",!!$!-31+",!&!/-31+",!$!

! !!!!!!!!!0*.+",!&!/0*.+",!!$!0*0+",!&!/0*0+",!$!0*1+",!&!/0*1+",!$!

! !!!!!!!!!00.+",!&!/00.+",!!!$!000+",!&!/000+",!!$!001+",!&!/001+",!$!

! !!!!!!!!!02+",!&!/02+",!!!!$!!030+",!&!/030+",!!$!031+",!&!/031+",!$!

! !!!!!!!!!4*.+",!&!/4*.+",!$!4*0+",!&!/4*0+",!$!4*1+",!&!/4*1+",!$!

! !!!!!!!!!40.+",!&!/40.+",!!$!400+",!&!/400+",!$!401+",!&!/401+",!$!

! !!!!!!!!!42+",!&!/42+",!!!$!!430+",!&!/430+",!$!431+",!&!/431+",!)!

!!!!5!

!!5!

5!

Figure 4.9 : IRSmk source code

alent number of threads. In some cases, for example IBM BG/Q for 2, 4 and 8 threads,

we omitted thread counts because their results were similar to adjacent thread counts of 1

and 16. From these figures, we clearly see speedup from 1.10×-22.23×. Improvements

are more for lower thread count as compared to higher thread count since there is more

effective cache capacity at higher thread counts for the same problem size. This trend was

observed across all benchmarks.

To understand how layouts impact the performance of IRSmk, one first needs to un-

derstand that this kernel is memory bound. Each iteration of the innermost loop in Figure

4.9 reads one unique double from 27 arrays, writes a single value to the b array and may

read data from other parts of x from memory if it is not in cache already. Array references

81

starting with ’x’ alias to the same array with different offsets. Since each array is about

9MB, other than x, there is no chance of any array staying within cache between iterations.

Therefore, performance should be limited by memory bandwidth. However, we see that

except for Sandy Bridge significant speedups occur at all thread counts due to data layouts.

To better understand what is happening, we examined the total bandwidth requirement

for moving all 29 arrays either from or to memory. For the 500 iterations, this is about 119

GB of data motion. For now we ignore the fact that x might be moved multiple times from

memory, assume good caching to obtain an upper bound on performance, and determine

the bandwidth limited runtime of each system using the Stream Triad numbers [82]. For

Sandy Bridge, which has about 40 GB/s stream bandwidth this is just under 3.0 seconds.

For BG/Q with about 28 GB/s of bandwidth, this is 4.3 seconds. For the AMD APU with

about 15 GB/s of bandwidth, this is just under 8.0 seconds. For the Power 7, there is about

13 GB/s of bandwidth, implying a lower bound of 9.2 seconds. Therefore, we have a best

case runtime for each machine.

The results of the best layout for IRS on all machines show performance of at least

70% of optimal and over 95% on Sandy Bridge. For Sandy Bridge, the execution time

for the best layout is 3.05 seconds, for the AMD APU it is 10.04 seconds, for BG/Q it is

5.2 seconds and for the Power 7 it is 12.52 seconds. BG/Q performs slightly worse than

other architectures due to in-order cores not hiding as much latency as the other processors,

while the AMD APU could be hurt by less data in the x array staying in its smaller cache.

Finally, all the processors might be limited in their handling of the unequal amount of read

82

and write data in IRSmk.

While the best case scenarios for each processor are similar in their efficiency, the

efficiency of the base case is significantly different. On the Sandy Bridge, data layouts

only sped up the computation by 1.11× as the base case was already running at over 85%

of peak memory bandwidth. On the other processors, performance is significantly worse

for the base case. From looking at the hardware specifications the largest difference in

this regard is the number of hardware prefetch streams each processor can keep active at

once. The Sandy Bridge can handle 32 per core [83], while BG/Q can handle 16 per core

[84], the Power7 can handle 8 per core to the L2 and 24 per socket to the L3 [23] and

the AMD APU can handle 12 per core [85]. Therefore, the Sandy Bridge processor can

handle all the arrays in the computation at once. However on other processors fusing arrays

decreases the number of streams coming from memory, resulting in fewer data elements

read in a latency-bound manner. This is especially important for in-order cores such as

BG/Q. Also the Power 7 benefits significantly from fewer arrays. Other layouts that are

not shown in these figures indicate a trend of steadily improving performance as more

arrays are grouped. A single array of struct(AoS) is generally not the best case for an

application since access patterns in segments of the code may not use all the arrays. Also

when a calculation is latency bound, such as the base case, doubling the thread count halves

runtime, by doubling the number of latency bound reads occurring concurrently. However,

the memory bound layouts, that do not use all the prefetchers have their runtime barely

decrease, such as layout 5, from 2 to 8 threads.

83

An important observation is that improvements from data layouts are more significant at

lower core counts. This implies two conclusions. First compute-bound codes also benefit

from data layout transformations. In the case of Sandy Bridge where there are enough

stream prefetchers for the base code and enough bandwidth to feed a few, but not, all, cores

merging arrays reduces the number of registers used as pointers by the compiler resulting

in fewer instructions and possibly fewer pipeline stalls. Another benefit is that the number

of elements accessed in each loop from an array can be matched to cache boundaries, such

as layout 9. The second observation is that for processors with an under provisioning of

prefetchers when fewer cores are used the computation becomes latency-bound. With fewer

cores to issue memory requests, the memory bus becomes idle for a larger percentage of

the time. Therefore, bandwidth is used less efficiently, allowing for larger speedups when

the core uses it more effectively.

A final observation is that not merging read only arrays in a loop with arrays that are

written increases the performance significantly. Modern architectures, such as AMD APU,

often implement a write buffer to combine multiple writes to the same cache line to re-

duce the amount of data sent to main memory. This optimization is known as Write-

Combining [86]. For IRSmk, when b was not merged with other groups, performance

was better in all cases (except some single threaded examples) as compared to combining

it with other arrays. The performance difference between layouts 3 and 4 illustrates this

phenomenon, as an example.

84

!"
#$
%& ' () (* +, +- . / 0) 0* 0, 0-

1
2 34$%561
7 66 34$%561
8 34$%561
9 34$%56734561 345626

Figure 4.10 : SRAD layouts selected for discussion.

SRAD

Figures 4.11 and 4.12 show SRAD results for running the five layouts presented in

Figure 4.10 on our four test platforms. SRAD contains many of the same trends and results

as IRSmk, but adds some new features and complexity. SRAD contains multiple loops so

there are cases where two arrays are used together in one loop and only one array is used

in another loop. Examples of this are the IN, IS loop pair and the JW , JE set of loops.

In addition, some of the arrays such as J are accessed in multiple places in the same loop

in SRAD, but can be combined with other arrays, such as DN, which are only accessed in

one place. Finally, since SRAD is run on more compute intense problems vectorization can

increase its performance significantly. Our results show how some of these tensions impact

performance.

For example, if we compare layout 5 and layout 4, layout 5 combines more array ref-

erences across different loops and outperforms layout 4, yet layout 5 is not the best layout

as the array references combined appear to benefit limited number of loops. An example

85

(a) IBM Power7

(b) AMD APU

Figure 4.11 : SRAD performance results on IBM Power 7 and AMD APU platforms with
varying threads.

86

(a) Intel Sandy Bridge

(b) IBM BG/Q

Figure 4.12 : SRAD performance results on Intel Sandy Bridge and IBM BG/Q platforms
with varying threads.

87

of this effect is seen on BG/Q platform, where combining the two arrays when using 64

threads increases performance. There are two possible explanations. First by combining

these pairs the number of streams per hardware thread is reduced to 4, which is the most

that can be fetched on this machine. Second, if the code is not memory bound then the extra

data motion caused by the combination does not negatively impact performance when only

one element is used. Since the only other machine to see a performance gain is the Power7

at a low thread count when memory bandwidth is plentiful the first explanation is likely the

reason and the gains in one loops are overcoming the negative impacts in the other.

When combining arrays accessed in multiple places with arrays only accessed in one

place, the results are mixed. In some cases the combination helps performance, while in

others it hurts performance. Layouts two and three allow a simple comparison of this.

What is seen is that on thread counts below 64 on BG/Q and on the Power 7 that combining

the arrays is helpful. However, on other machines and large BG/Q, thread counts it is

better to keep the arrays separate. What is happening is that in some cases the data are

staying in cache long enough to be reused and in other cases poor caching along with data

transformations is causing extra data motion. Note the caches with the worst performance

are all 512 KB or less per thread and with perfect caching the loop with the most data would

need to hold at least 400 KB of data to prevent extra reads from memory.

Finally, on the Sandy Bridge chip with the Intel compiler SRAD gets a significant

performance boost from vector instructions. However, when data layout transformations

are performed the compiler no longer vectorizes any instructions due to the use of pointers

88

!"#$%&'(($)* +),,-.() /%-,-0.&'(($)*

!"
#$
%&
'()

&1 &) &2 &1
#

&)
#

&2
#

&1
##

&)
##

&2
##

&31 &3) &32 &0
"#

$%
4
$*
*

&*
),

,
5

&*
),

,
6

&*
),

,
7

&%1
8,

&%1
89

&%-
.$
,

&%-
.$
9

&%2
-.
$,

&%2
-.
$9

&:
%

&:
:

&9 &: &-
%-
,
;<

&- &*
*

&-
%-
,
4
$*
*

&#
-%
=

&=
"%
"

&= &=
#"

=

&$
(-
$%
>

?
@ A("B9&? A("B9&@ A("B9&C A("B9&D A("B9&E
C A("B9&? A("B9&@ A("B9&C A("B9&D A("B9&E A("B9&F
D A("B9&? A("B9&@ A("B9&C
E A("B9&? A("B9&@ A("B9&C A("B9&D
F A("B9&? A("B9&@ A("B9&C A("B9&D A("B9&E A("B9&F
G A("B9&? A("B9&@ A("B9&C A("B9&D A("B9&E A("B9&F A(9&G A(9&H
H A("B9&? A("B9&@ A("B9&C A("B9&D A("B9&E A("B9&F A(9&G A(9&H A(9&I A(9&?J A(9&??
I A("B9&? A("B9&@ A("B9&C A("B9&D A("B9&E A("B9&F A(9&G A(9&H A(9&I A(9&?J A(9&?? A(9&?@
?J A("B9&? A("B9&@ A("B9&C A("B9&D A("B9&E A("B9&F A(9&G A(9&H &&A("B9&I& A(9&?J A(9&??

?? A("B9&? A("B9&@ A("B9&C A("B9&D A("B9&E A("B9&&F &A(9&G

Figure 4.13 : LULESH layouts selected for discussion.

to the structures. The result is a performance hit from vectorization that is greater than the

gain from data layout transformations. To confirm this we ran the base version of SRAD

with compiler vectorization turned off and data layout transformations resulting in a 1.66×

to 1.84× speedup from data layout transformations.

Overall, though performance gains on SRAD ranged from the minor 1.07× on most

BG/Q thread counts to 3.68× on a single thread of an AMD APU. With three different

layouts being best depending on architecture there is no clear good cross platform layout

for SRAD. It is important to note the impact of prefetching on SRAD as well. For example

on BG/Q performance gains are slight except for 32 threads, where all the layouts tried use

8 or fewer prefetchers per threads while the initial code uses more.

89

(a) IBM Power7

(b) AMD APU

Figure 4.14 : LULESH performance results on IBM Power 7 and AMD APU platforms with
varying threads.

90

(a) Intel Sandy Bridge†

(b) IBM BG/Q†

Figure 4.15 : LULESH performance results on Intel Sandy Bridge and IBM BG/Q platforms
with varying threads.
† To show performance variation, we start scales from non-zero values.

91

LULESH

Figures 4.14 and 4.15 show LULESH results for running the eleven layouts presented

in Figure 4.13 on our four test platforms. As with IRSmk the number of threads was varied

for each platform and we only show selected interesting thread counts. For each test case,

we report the speedup (or slowdown) of each layout against the “base case” which is the

original code, running with an equivalent number of threads.

Data layout transformations on LULESH were less profitable overall than for IRSmk.

This is not surprising since LULESH is a larger application that IRSmk, and some arrays

in LULESH are used together in certain places and not together in others. Therefore, com-

bining them together will help and hurt performance simultaneously For example, layout 4

combines all four triples of x, y , z values together. Many of these triples are used together

in many functions, but not all. However, most of the time layout 6 which leaves the triples

separate is faster. A notable exception can be seen on Power7 for a single thread, which

has the most cache, but the least bandwidth. It also suffers the most from not getting good

prefetching as shown by the IRSmk results.

The most interesting result from LULESH is that in most cases it seems the code not

the hardware is dictating the best data layout. On the AMD APU, Intel Sandy Bridge and

BG/Q the list of the best layouts always includes 8 and 10 and usually, includes 2 and 3.

However, the Power7 is an outlier with its best layout being 11 for all thread counts by a

significant margin for the reasons explained above.

For LULESH, as with IRSmk and SRAD, data layouts impacted the Sandy Bridge

92

system the least with the largest speedup seen being only 1.02×. There are a few likely

reasons for this. First, as with IRSmk, the Sandy Bridge architecture should be able to

prefetch many streams at once. Also, in the case of bundling indirect accesses, the large re-

order window of the Sandy Bridge might hide memory latency better than the other chips.

Finally, the Intel compiler used on this platform was the best at generating SIMD instruc-

tions for some of the compute bound loops of LULESH. Some of the data transformations

result in the compiler no longer generating SIMD instructions and, therefore, while data

layouts save on data motion in memory-bound portions of the code they can sometimes

hurt performance in the compute bound sections.

4.3 Automatic Data Layout Selection

In this section, we describe the automatic data layout selection algorithm. The algo-

rithm takes in a user-written field specification file and uses a greedy algorithm to automat-

ically construct a data layout based on the architecture and input program. We first describe

the use graph and cache-use parameter used by the algorithm, and then the algorithm itself.

4.3.1 Use Graph

The automated analysis begins by creating a mapping of all arrays used within each

loop of the source program. We are only interested in determining which arrays appear

inside each loop, not the exact location or order of use. So, our use graph is a mapping

from each array name to a function name along with the loop for the reference. In the case

93

of nested loops, each array points to the inner-most loop in which the reference occurs.

Multiple references to the same array in a loop are not distinguished; however, we do keep

track of the types of accesses that occur: read, write, read/write. If a reference does not

appear in a loop, we only use reference’s enclosing function name.

Field { x DOUBLE }

CollectElemPositions:200

LagrangeNodal:986

Field { y DOUBLE }

Field { z DOUBLE }

Field { xd DOUBLE }
CollectElemVelocities:218

Field { yd DOUBLE }

Field { zd DOUBLE }

Field { xdd DOUBLE }

ApplyAccelerationBoundaryConditionsForNodes
:916

CalcAccelerationForNodes:893

Field { ydd DOUBLE }

Field { zdd DOUBLE }

Figure 4.16 : Sample use graph

The use graph is a bipartite graph G=(U,V,E) where U is the set of arrays in the field

specification, V is a set of uses of array references (a static array reference is summarized

by the function name and innermost loop in which it occurs). E is a set of edges (u,v) such

that u ∈ U denotes an array variable, and v ∈ V denotes a use of the array. Figure 4.16

shows a small subset of a sample use graph. The left entries (U) denoted by Field corre-

sponds to the arrays specified in the user specification file, along with its type. The right

entries (V) specify function names and inner loop statement number. This graph aids in

easy identification of common array accesses across the loops. For example, if two arrays

94

never share a common use, they are not likely candidates for merging. From the sample

graph, it is clear that merging of arrays for layouts is a non-trivial problem. For example,

arrays x, y and z are exclusively used in CollectElemPositions function and jointly used in

LangrangeNodal function with arrays xd, yd, zd, xdd, ydd and zdd. Merging these two

arrays sets would lead to better locality for LangrangeNodal, but lead to additional lines

being fetched in CollectElemPositions. The complexity of automated layout selection in-

creases with larger numbers of arrays and array references. We believe that the use graph

is a useful data structure for guiding the selection of data layouts, whether the selection is

done automatically or manually.

4.3.2 Cache-Use Factor(CUF)

We introduce the cache-use factor as a metric to capture the possible cache impact of

merging two or more array groups. We explicitly use dynamic loop counts from profiled

data along with the use graph to calculate this metric. This factor indicates usage efficiency

of cache lines fetched during a loop execution. On merging two arrays groups, the cache-

use factor may be lowered since all arrays in both groups might not be used across the loops.

For example in Figure 4.16, merging array groups {x,y,z} and {xdd,ydd,zdd} will likely

lead to a low cache-use factor, since these groups just share a single loop LagrangeNodal

in common.

Before defining cache-use factor, we define another term cache-loop factor (CLF). CLF

metric is weighted loop count values for a given loop, where weight is a fractional value

95

between 0 and 1, calculated based on arrays present in a given loop. If all arrays in an array

group are used in a given loop, CLF is equal to the loop count. The cache-loop factor is

defined as follows, given an array group A (i.e. set of arrays) and loop L,

CLFL =
|{A}∩{ array references in L }|

|A| ∗LCL (4.1)

where LCL denotes the loop count of loop L. The cache-use factor is then defined as follows,

CUF =
∑numLoops

i=1 CLFi

∑numLoops
i=1 LCi

,where LCi = 0 if CLFi = 0 (4.2)

For the base case, where all array are separate, we have CUF = 1. However, as we

merge array groups the CUF value might lie somewhere between 0 and 1(inclusive of

the two bounds), with 1 indicating better cache line use. This might lead us to refrain

from merging some arrays, as we desire the highest CUF. However, whenever possible, we

merge array groups as it helps in better register use, prefetching and locality of elements as

we have seen in Section 4.2.

4.3.3 Automatic Data Layout Algorithm

Our automated data layout algorithm uses the cache-use factors and platform character-

istics to produce a meta file that contains the recommended data layout. Algorithm 1 shows

the automated data layout algorithm. To begin, each array in the field specification is placed

in its own ArrayGroup. The algorithm compares all pairs of ArrayGroups to determine the

96

Algorithm 1 Automated Data Layout Algorithm
1: procedure AUTODATALAYOUT(ArrayGroupList)
2: while IsMerge is true do
3: IsMerge ← false
4: for pairs ∈ ArrayGroupList do
5: if (pair writes) > 2*(pair reads+pair read/writes)
6: Ignore pair
7: end if
8: best pair ← pair with highest cache use factor
9: end for

10: if best pair > threshold
11: merge pair
12: IsMerge ← true
13: end if
14: end while
15: sortGroups(ArrayGroupList)
16: splitCacheLine(ArrayGroupList)
17: return ArrayGroupList
18: end procedure

profitability of merging each pair. The pair with the highest cache-use factor is merged to

form a new group. This process is repeated until the best candidate pair for merging falls

below the acceptable merge threshold. After the final grouping is determined, each group’s

arrays are sorted based on data type(largest data size to smallest data size), to better pack

them. The final step performs cache line splitting i.e. split array groups based on cache

line boundaries of an architecture, to efficiently utilize each cache line fetch for the target

platform.

The evaluation of the profitability of merging two candidate ArrayGroups considers

two factors. The first consideration examines reads versus writes to an ArrayGroup. Our

manual results (Section 4.2) showed that grouping arrays written to frequently with arrays

97

Benchmark Power7-
8Threads

AMD APU-
4Threads

Sandy Bridge-
8Threads

BG/Q-
64Threads

IRSmk - Best Manual
Layout

4.70 1.46 1.11 2.20

IRSmk - Automated
Layout

4.67 1.43 1.10 2.08

LULESH - Best Manual
Layout

1.43 1.50 1.02 1.10

LULESH - Automated
Layout

1.58 1.46 0.96 1.07

SRAD - Best Manual
Layout

1.35 3.13 1.00 1.08

SRAD - Automated
Layout

1.20 2.55 0.46 0.98

Table 4.3 : Speedup of best manual layout and automated layout speedup relative to base
layout

that are only read can decrease performance significantly. Our current heuristic prohibits

creating a new merged ArrayGroup, if the number of write-only arrays is more than 2× the

number of read and read-write arrays The second consideration for merging ArrayGroups

computes the cache use factor for the proposed combination. If the cache use factor is

greater than our established thresholds, the ArrayGroups are viable for merging. From our

empirical results, we have chosen Cache Use threshold = 0.57 for our algorithm.

4.4 Automatic Data Layout Results

Table 4.3 shows the speedup of the best manual layout and the automated layout relative

to the base layout. The results demonstrate that automated layouts were close to 95-99%

of best manual layout for IRSmk, and close to 90% of best manual layout for LULESH

98

except on the Power 7 where it performs better than the manual layouts on 8 threads.

These results prove the effectiveness of our automated results. In one particular case, 8

Threads on Power7 for LULESH, automated layout improved performance as compared

to manual layouts. For SRAD, automated results were close to 88% for Power 7 and

BG/Q. However, on AMD APU and Sandy Bridge, automated results could not match the

performance of user specified layouts. On AMD APU, we speculate compiler specific

optimization improving performance on the original benchmark by observing compiler

debug information. Incorporating some hardware counter profiling in our algorithm would

help in selecting better layouts. However, hardware profiling is not considered in this

work. On Sandy Bridge, Intel compiler prohibited vectorization on layout optimized code

as mentioned in Section 4.2.1, thereby degrading performance of automated layouts. One

could add a prepass to ignore layouts where backend compiler would efficiently vectorize

the original source code.

Another point to consider is that these architectures exhibit NUMA behavior, which

our automated algorithm doesn’t consider for this work. We believe that either extending

our algorithm to incorporate memory allocation or using NUMA libraries for memory allo-

cation would further increase layout performance on these architectures. However, in this

dissertation, we only used the default memory allocation provided on these systems and

leave NUMA enabled data layouts for future work.

99

Version Register Spills
Base 348

Layout 9 220
Layout 11 153
Layout 12 159

Table 4.4 : Register spills for IRSmk on AMD APU for three different layouts

4.5 Performance Anaylsis

This section analyzes the performance gains obtained by our automatic algorithm, as

an extension to the performance analyses reported in Section 4.2. We conducted exten-

sive experimentation to determine that performance is impacted by three factors: register

allocation, prefetch streams and locality. In this section, we analyze each of these effects.

4.5.1 Register Allocation Analysis

To observe register allocation efficiency, we measured register spills generated for the

base code in comparison to different layouts. We had to modify the internal register pass

in gcc for this purpose. We show limited results in this section due to space limitations, but

have confirmed that these conclusions hold across all the layouts and benchmarks that we

studied.

Table 4.4 shows the effects of register allocation across different layouts for IRSmk

on AMD APU. These results show that there is significant decrease in register spills (upto

2.28×) due to the layout transformation. On close observation, we found that in the Base

version, the code generation pass tried to allocate a single register for every array variable,

100

!"

#"
#$%"
&"

&$%"
'"

'$%"
("

($%"
!"

!$%"

)*
)+
,-
&,
.
/0

"
)*

)+
,-
&,
+/
0
"

)*
)+
,-
',
.
/0

"
)*

)+
,-
',
+/
0
"

)*
)+
,-
&,
1/
0
"

)*
)+
,-
',
1/
0
"

)*
)+
,2
)3

,+
.
-"

)*
)+
,1
-4
,.

0
"

)*
)+
,1
-4
,+
0
"

)*
)+
,1
-4
,1
-"

)*
)+
,5
1-
,+
/6

"
)*

)+
,7

8
,+
9
1"

)*
)+
,4

:,
1;
9
"

)*
)+
,4

:,
0
5)
"

)*
)+
,1
<
1,
+9
5"

)*
)+
,2
),

+9
5"

)*
)+
,4

:,
+9
5"

)*
)+
,=

>/
,+
9
5"

)*
)+
,:

>5
,5
1-
"

)*
)+
,1
<
1,
/6
/"

)*
)+
,-
',
.
/7

"
)*

)+
,-
&,
.
/*

"
)*

)+
,-
',
.
/*

"
)*

)+
,-
&,
+/
7
"

)*
)+
,-
',
+/
7
"

)*
)+
,-
&,
+/
*
"

)*
)+
,-
',
+/
*
"

)*
)+
,-
&,
+/
:"

)*
)+
,-
&,
1/
7
"

)*
)+
,-
',
1/
7
"

)*
)+
,-
&,
1/
*
"

)*
)+
,-
',
1/
*
"

)*
)+
,2
0
-,
+9
5"

)*
)+
,2
*
.
,+
9
5"

)*
)+
,2
),

<
)5
"

)*
)+
,.

),
<
)5
"

!"
#$
%&
'!
(#
)*
+,
-.
&-

/%01*02#34%-5*+3,%0$-6%$+7,$-1*0-8692:-

Figure 4.17 : Hardware performance counter results for IRSmk on AMD APU

thereby increasing register pressure. However, the layout transformation greatly impacted

this behavior. As we used array of structs for our transformation, the code generation pass

can allocate a single register for every array of structs. This effect reduced the number

of register to be simultaneously hold for the same benchmark, leading to reduced spills.

Though register spills has a great impact on performance, merging all the arrays into a

single AoS does not lead to the most efficient code. Locality and prefetch streams also

impact performance, as discussed next.

4.5.2 Locality and Prefetch Streams

Layout transformations have deep impact on spatial locality due to the organization of

data within a cache line. Figure 4.17 shows hardware performance counter results collected

101

for IRSmk on AMD APU machine using the PAPI Interface. Results show the ratio of each

of the performance counters for base relative to Layout 9. Similar behavior was observed

across the layouts and different benchmarks. From the overall results, we find that the data

cache misses (L1 DCM and L2 DCM) have decreased significantly showing improvements

of 2.5× and 3.5× respectively. This effect can be attributed to the better cache manage-

ment by our layout transformations. Improving locality not only impacts performance but

also reduces the stalls (RES STL) in the program. An interesting thing to observe is the

decrease in L1 data cache accesses (L1 DCA) and instruction misses. Due to better register

allocation, there are fewer accesses to the memory hierarchy, leading to reductions in L1

accesses and instruction misses. Overall, we observe significant improvements across most

of the performance counters.

From our analysis, we also found that prefetch streams improved by using the lay-

out transformation. The reason being that most of the current architectures have limited

prefetch streams which fetch arrays accesses from the code. When arrays are combined into

array of structs, the number of prefetch streams reduces by the number of arrays present

in the AoS. This effect helps in improving the overall performance of an application as the

pressure on prefetch streams reduces as we merge arrays into AoS.

4.6 Summary

In this dissertation, we establish the foundation for a new approach to supporting

portable performance of scientific codes across HPC platforms. The upgraded TALC

102

source-to-source transformation tool permits application developers to maintain one “neu-

tral” data layout source code and explore architecture specific array layouts. The new

automated portion of TALC can analyze the original source code based on platform charac-

teristics and produces a new source code with new array data layouts ready to be compiled

and run on that system. The results for the three test codes show that manual layouts im-

prove performance by 1.10× to 22.23× for IRSmk, 1.00× to 3.68× for SRAD and 1.02×

to 1.82× for LULESH with results varying with thread count and architecture. The auto-

mated algorithm resulted in performance of 95-99% of the best layout manual layout for

IRSmk. For LULESH, the automated results was close to 90% of the best manual layout

on all other processors. For SRAD, automated results were close to 78% of the best man-

ual layout for all architectures except for Intel Sandy Bridge where layouts interfered with

vectorization provided by Intel compiler.

103

Chapter 5

Automatic Selection of Distribution Function

Distributed applications use multiple cluster nodes to run an application. These appli-

cations allocate multiple sub-tasks onto different cluster nodes during its execution. Pro-

gramming models often expose distribution choices of sub-tasks across cluster nodes to

a programmer for efficient computation. Programmers are faced with challenges such as

communication pattern, load balancing, task dependencies and locality optimization to de-

cide efficient distribution of sub-tasks. In the past, distribution functions such as block,

cyclic and block-cyclic have been commonly used in the literature. However, experiment-

ing with such distributions takes multiple runs to tune an application due to parameters

associated with each of distributions.

In this work, we develop a novel model to automatically select a distribution function

for an application. Our approach uses dynamic graph generated from an application run

and creates an analytical model on this graph to compare different distributions and select

an efficient one out of them. To demonstrate the effectiveness of our approach, we use

Intel CnC programming model. Intel CnC model provides an efficient way to specify

distribution function for allocating tasks and data across different cluster nodes. In the next

section, we provide details about the Intel CnC programming model and its distributed

behavior. Section 5.2 discusses Cholesky benchmark and its distribution across nodes. In

104

!"#$%&'!()*+),'

!"

-$$",.'-'

-$$",.'/'

-$$",.'0'

##$%&'&()"

Figure 5.1 : Matrix multiplication example in CnC. Note, this is a very simplistic example
of matrix multiply in Intel CnC. Other implementations with finer granularity will be more
efficient

Section 5.3, we present our framework to automatically select a distribution function. Our

experimental results are presented in Section 5.4, followed by summary in Section 5.5.

5.1 Intel CnC Programming Model

Intel CnC Programming Model [16, 17, 87] is a generic programming model, which

exposes data and control dependence to a programmer using dynamic single assignment

semantics ∗. The Intel CnC programming model is deterministic in nature and is well

adapted for asynchronous parallel applications. There are three main constructs in the Intel

CnC model:

• Step Collections

Step Collections corresponds to basic units of executions in an application. In Figure

5.1, matrix multiply operation is a step collection. Step Collections are represented

∗Dynamic Single Assignment property states that there will be only one writer for a data item. The data
item can be read multiple times

105

by capsule like shape.

• Data Collections

Data Collections represent set of data items in an application. These are data that is

produced (using put operation) or consumed by (using get operation) steps. How-

ever, due to dynamic single assignment property, a data item is produced only once

but may be consumed many times. In Figure 5.1, A, B and C are data collections.

Rectangular boxes represent Data Collections. In some references, data collections

may be referred to as item collections.

• Control Collections

Control Collections corresponds to factory of step instances [17]. These are used as

control inputs to determine which step instances will execute. In the programming

model, the term control tag is associated with control collections. A step collection

will be associated with a control collection, which executes only is a matching tag ex-

ists for the corresponding step. However, details like when a step should be executed

are left to the CnC scheduler.

As mentioned earlier, tags are associated with control collections. However, tags are

also associated with step collection and data collection instances to uniquely identify them.

Steps may produce tags to control other steps, which ensure an ordering between them.

As shown in Figure 5.1, edges show the flow of data into a step and from it. The curved

arrows represent the environment, which means an item or tag comes from or arrives into

106

an environment. These environment actions are necessary for initializing a data item or tag

and producing output from an application.

Besides the constructs, Intel CnC imposes two sources of ordering constraint in their

model for an application. First, a producer step must execute before the consumer step.

This ordering is fundamental, as the consumer step needs to consume an item produced by

a producer. The second ordering specifies that controller must execute before a controllee.

This ensures that a step producing a control tag always executes before a step consuming

the tag. More details about Intel CnC programming model can be found on the website [16].

Distributed Intel CnC

The simplistic producer-consumer relationship model in Intel CnC makes it a viable

candidate for distributed memory applications. Steps and data can be easily distributed

across a cluster for efficient computations. However, communication across cluster nodes

is necessary for transferring data or control tags between steps. Also, the dynamic single

assignment feature in Intel CnC helps in maintaining consistent data across cluster nodes.

As we create distributed applications, an important point to consider is how should

we distribute data and tasks across the nodes. In the CnC model, programmers have the

flexibility to choose both of these options,i.e. distribute task and/or data in an efficient

way. Programmers can specify tuning options to control distribution of computation units

or specify where a particular data item resides.

The default implementation is a round-robin distribution of computation units across

107

the cluster nodes. However, round-robin distribution may not always be an efficient choice

to distribute tasks. Experimental results for four benchmarks: cholesky, matrix inverse,

primes and mandelbrot †, have demonstrated performance losses for default distribution

in [88].

In the Intel CnC model, programmers can specify a user-defined distribution function

in a separate tuning file to improve from the default behavior. A separate tuning file is

always desired as it enables separation of concerns from problem at hand with performance

tuning. Note that the distribution function in the tuning file is devoid of any low level

constructs such as specifying explicit communication among tasks or data. Communication

and shipping of data is automatically handled by the runtime. Following are three tuning

functions to enable efficient distribution, which can be used by the programmer:

• compute on

This method enables task-based distribution. Programmer may specify user-based

distribution in this method to appropriately schedule steps across cluster nodes by

Intel CnC runtime.

• consumed on

This method enables efficient communication by specifying which cluster nodes will

consume the data items produced by the current step. If this method is not present,

Intel CnC runtime will broadcast the data item to all the cluster nodes. This method

provides an efficient way to distribute the data items.

†Benchmarks are available in standard Intel CnC package [16]

108

• produced on

This method is substitute to consumed on method. This method will be only evalu-

ated if the consumed on cannot determine where data items will be consumed. pro-

duced on specifies where a particular data item will be produced to enable efficient

communication in the Intel CnC runtime system. Thus, a step will remotely fetch a

data item from another cluster node appropriately.

In this work, we restrict ourselves to selecting an appropriate distribution function for

tasks. However, the approach mentioned in this proposal is in no way restricted to only task

based distribution and can be easily adapted to data distribution as well. We use compute

on function to assign tasks across different cluster nodes. We also employ consumed on

function to determine the nodes where the items produced by a step should be shipped.

consumed on function helps in generating lesser message traffic across the cluster nodes

by directing items produced to where it would be needed in the future.

5.2 Distributed Cholesky Example

Cholesky benchmark is used for solving system of linear equations of the form Ax =

b. Cholesky method solves these equations by using a decomposition step which solves

A = LLT , where L is lower triangular matrix and then uses substitution method to calculate

values for x. Cholesky decomposition is a time consuming step and often results in overall

bottleneck for the benchmark. Various scientific applications use cholesky decomposition

and it is an important application in the Intel CnC framework. Thus, speeding up Cholesky

109

!"#$%&'()

*+,&#$-%)

*+,&#$-%)

*+,&#$-%)

./012%)

./012%)

./012%)

./012%)

./012%) ./012%)

!"#$%&'()

*+,&#$-%)

*+,&#$-%)

./012%)

./012%) ./012%)

32%+14#5)6)

32%+14#5)7)

Figure 5.2 : Execution steps of Cholesky benchmark

benchmark is important.

For faster execution, it is a good option to run the Cholesky decomposition in parallel.

Using parallelization, multiple steps can be computed at the same time. Past work have

demonstrated the benefits of parallelizing cholesky benchmark [89, 90, 91]. An important

factor for cholesky performance is communication across the different computations.

Figure 5.2 shows the overall execution steps of Cholesky decomposition in Intel CnC.

Cholesky decomposition is divided into three distinct steps: Cholesky, Trisolve and Update,

110

which work on separate parts of the data matrix in each iteration. Trisolve step computes

corresponding column values for each Cholesky step, whereas update step computes row

values to the corresponding Trisolve step. The arrows in the figure indicate the dependency

across the different steps. For example, Trisolve is dependent on Cholesky step. Iterations

in the figure, compute different elements of the matrix. Dependencies across the iterations

are not shown in this figure, but it can be easily deduced from the different steps across the

matrix in the same position. Each block represents a tile or block of operation for a step.

Computing tasks in blocks in beneficial as it balances the computation to communication

ratio. Intel CnC provides an efficient method to model the Cholesky decomposition. Each

step is modeled in terms of its dependencies. As soon as, all the dependencies of a step

are satisfied the runtime schedules a step for execution. On a multi-core chip, the Intel

CnC runtime automatically places these steps based on Intel TBB scheduling. Employing

a distributed multi-node cluster is a feasible option as we scale out the Cholesky benchmark

across multiple nodes.

Figure 5.3 illustrates working of Cholesky benchmark across distributed cluster nodes.

A key difference between the earlier figure (Figure 5.2) and this figure is that the Cholesky

application is run across multiple nodes. In this figure, each box associated with a step

which indicates the cluster node on which the computation takes place. For example,

Cholesky step in iteration 0 computes on node 0. In this particular example, steps were

distributed across four nodes (Node 0-3). Applications can use more nodes depending

on the distributed environment. Intel CnC framework provides an extensible model for

111

!"#$%&'()

*+,&#$-%)

*+,&#$-%)

*+,&#$-%)

./012%)

./012%)

./012%)

./012%)

./012%) ./012%)

!"#$%&'()

*+,&#$-%)

*+,&#$-%)

./012%)

./012%) ./012%)

32%+14#5)6)

32%+14#5)7)

7)

6)

8)

8)

7)

8)

9)

9)

6)

6)

7) 8)

9)

9)

7)6)

!$:&2%+);#0%)6)

Figure 5.3 : Cholesky benchmark on distributed cluster nodes

scaling applications across different nodes. The arrows in this example also shows the de-

pendencies across the different steps. However, if steps are computed on different nodes,

communication takes place across the different nodes to transfer data computed from one

step to another. If steps are computed on the same node, intra-node communication oc-

curs which is less expensive than across the nodes. In this example, we have shown one

possible distribution of steps across the cluster nodes. Intel CnC provides with a tuning

interface where a programmer specifies different distributions. Based on these task distri-

butions, overall execution of the application is impacted as distributions lead to different

112

computation and communication behavior.

5.3 Distribution Function Selection Model

Intel CnC programming model provides an efficient way to specify distribution func-

tion. Programmers can choose to specify their own distribution or use any of the standard

distribution such as blocked, cyclic or block-cyclic. These distributions can be specified

using the three tuning functions, specifically compute on for task distribution. However,

these choices lead to experimenting with multiple runs for an application to select the best

distribution. Distributions such as block-cyclic need multiple parameters to control the

number of elements distributed across the cluster nodes. Programmers may often limit

their choice by selecting a sub-optimal distribution when full-scale experimentation is not

possible. In this section, we describe an automatic distribution function selection approach.

Our approach builds on a dynamic graph analysis of CnC application with analytical model

to choose parameters for linear regression. First, we describe our approach to compute dif-

ferent parameters, which help in distinguishing different distributions. Then, we present

our linear regression model to select the best distribution for an application.

5.3.1 Framework for Parameter Generation

One of the challenges that programmers face is to select an efficient distribution func-

tion. An automatic model should be able to compare different distribution to present a final

efficient solution. In order to distinguish different distribution choices, we use varying pa-

113

!"

#$#"%&'()"
*+,)"

-../0"12+&+0"
3'&/)&"

45$'6+("
7&'28"

#$#"
3&.9&'6"

:;',<'0)"4+=)&)$0"
4+/0&+><?.$"*<$(?.$/"

7)$)&'0)"3'&'6)0)&/"

Figure 5.4 : Framework for parameter generation

rameters to compare them. Appropriate parameter selection is key to creating an effective

overall model. These parameters act as input to our linear prediction model, which auto-

matically selects an efficient distribution. In this section, we describe our framework for

generating different parameters using an analytical model. A key factor to consider in this

approach is that the parameters are generated using a single sequential run of the applica-

tion. Parameters are produced by mapping the distribution choices on a dynamic graph.

This approach helps in avoiding expensive runs across all the possible distribution function

choices. For now, we just describe the framework and in Section 5.3.2 present each of

these parameters.

Figure 5.4 shows our approach to collect different parameters across the distributions.

First, we collect CnC trace through a sequential run of the application. Tracing is essen-

tial in our approach since it gathers dynamic dependencies and association between steps

114

!"#$%#&'$()*+%,$($-.$-.$-$//$01$23456'78&9:;<&$7#$-=>7777?&--?4-$
!"#$%#&'$()*+%,$($-.$@.$-$//$01$23456'78&9:;<&$7#$-=>7777?&--AB-$
!"#$%#&'$()*+%,$($-.$@.$@$//$01$23456'78&9:;<&$7#$-=>7777?&--A&-$
C#76#$D#&<$EFG5H&D*;,$-I-=>7777?A4J4>-$
K&#$%#&'$()*+%,$($-.$-.$-$//$01$23456'78&9:;<&$7#$-=LMMM4A---$
!"#$%#&'$()*+%,$($@.$-.$-$//$01$23456'78&9:;<&$7#$-=>7777?&--9L-$
N39$D#&<$EFG5H&D*;,$-I$$
C#76#$D#&<$E:6%D5HO&,$E-.@II-=>7777?A4J4>-$
K&#$%#&'$()*+%,$($-.$@.$-$//$01$23456'78&9:;<&$7#$-=LMMMPM-$
K&#$%#&'$()*+%,$($@.$-.$-$//$01$23456'78&9:;<&$7#$-=LMMMP4&-$
!"#$%#&'$()*+%,$($@.$@.$-$//$01$23456'78&9:;<&$7#$-=>7777?&--&--$
N39$D#&<$E:6%D5HO&,$E-.@II$
C#76#$D#&<$EFG5H&D*;,$@I-=>7777?A4J&Q-$
K&#$%#&'$()*+%,$($@.$@.$@$//$$E$35#$6&79;I
C"D<&39$D#&<$EFG5H&D*;,$@I$$E%3<"#$%#&'$35#$6&79;I$-$
C#76#$D#&<$E2<97#&,$($-.$@.$@$/I-=>7777?A4J99-$
RS$

Q$

Figure 5.5 : Sample CnC Trace for Cholesky benchmark

and items. Intel CnC model provides a clean tracing framework with detailed information

about step executions and data item uses within a step. Figure 5.5 shows a sample trace

collected for Cholesky benchmark. Note that put item calls are data items produced by

current step and get item denotes data items consumed by a step. Start step and end step

implies beginning and termination of step execution. The hex code shown in figure is used

for internal purposes in the Intel CnC environment and can be safely ignored for this work.

In the figure, Lkji is a data item collection and Cholesky and Trisolve are steps with their

tags.

The trace file helps in understanding the relationship across steps through data items.

Next, we parse the trace file to create a dynamic graph for our analysis in distribution

function selection. Our parsing framework is built on the standard boost spirit framework

115

Step: Cholesky Tag:0
 Cluster Node :0

Item: Lkji Tag:1, 0, 0
 Cluster Node :0

Step: Trisolve Tag:0,1
 Cluster Node :0

Step: Trisolve Tag:0,2
 Cluster Node :0

Item: Lkji Tag:1, 1, 0
 Cluster Node :0

Item: Lkji Tag:1, 2, 0
 Cluster Node :0

Step: Update Tag:0, 1, 1
 Cluster Node :0

Step: Update Tag:0, 2, 1
 Cluster Node :0

Item: Lkji Tag:1, 1, 1
 Cluster Node :0

Item: Lkji Tag:1, 2, 1
 Cluster Node :0

Step: Cholesky Tag:1
 Cluster Node :0

Item: Lkji Tag:2, 1, 1
 Cluster Node :0

Step: Trisolve Tag:1,2
 Cluster Node :0

Item: Lkji Tag:2, 2, 1
 Cluster Node :0

Step: Update Tag:1, 2, 2
 Cluster Node :0

Item: Lkji Tag:2, 2, 2
 Cluster Node :0

Step: Cholesky Tag:2
 Cluster Node :0

Item: Lkji Tag:3, 2, 2
 Cluster Node :0

Step: Update Tag:0, 2, 2
 Cluster Node :0

Item: Lkji Tag:1, 2, 2
 Cluster Node :0

Figure 5.6 : Dynamic graph for Cholesky benchmark

116

[92]. Figure 5.6 shows dynamic graph for Cholesky example. Steps denote dynamic steps

in the application and item denotes the data item produced and consumed across different

steps. In this example, cluster node value assigned to each item and step represents that

all steps and items were computed on the same cluster node. Our goal is to automatically

distribute these steps and data items across cluster nodes for efficient computation.

After generating the dynamic graph, we proceed to the next step of evaluating a dis-

tribution function for a given application as seen in Figure 5.4. First, we assign cluster

nodes to different steps and items based on a distribution function and then generate dif-

ferent parameters to compare these distributions. These parameters can be a considered

as a goodness of fit test to judge different distributions. Although this approach evaluates

multiple distributions, it does not perform multiple dynamic runs for the application. Our

approach evaluates distribution function using the generated dynamic graph. This helps in

limiting the number of runs for any application.

5.3.2 Parameter List

Here, we present the parameter list which helps the linear regression in predicting an

efficient distribution.

1. Critical Path Length

This parameter denotes the critical path length of the application using the dynamic

graph. Critical path is the longest directed path from the start node in the dynamic

graph to the final node.

117

2. Number of Communication Links

This parameter represents the number of communication links present in the dynamic

graph. For example, if a Cholesky step is computed on Node 0 and a Trisolve step

using it’s data, is computed on Node 1, then we count a single communication link.

However, if both of them were computed on the same node, we would avoid counting

local communication.

3. Total Communication

In the Intel CnC model, certain tags are communicated from master node to other

nodes during the execution. The key difference between this parameter and earlier

one (Number of communication links), is that this parameter counts the total commu-

nication links present in the application. In contrast, number of communication links

parameter only add communications present in the dynamic graph of an application.

4. Critical Steps Ratio

This ratio denotes the number of different steps present on the critical path to the

total number of steps in the application.

5. Step Load Balance Factor

This parameter signifies the load balancing factor for different steps present in an

application. The load balancing factor is calculated as the standard deviation across

the number of steps distributed on different cluster nodes for a given distribution

function. For example, if the total number of Cholesky steps computed on Node 0

118

and 1 are 12 and 13 correspondingly, we will have a good load balance factor as

compared to 20 and 6 steps were computed on the same nodes. Lower value of load

balance factor denotes a better load management across the nodes. Ideal value of load

balance factor should be close to 0, indicating equal balance across all the nodes.

5.3.3 Overall Model using Linear Regression

Linear regression is a modeling technique where data is modeled using linear predic-

tor functions. Unknown model parameters are learned from the data and applied to future

observations. Overall, linear regression models the relationship between variables to re-

sponse by fitting a linear equation to observed data. If linear regression has a single vari-

able present, then the model is termed as simple regression. A different model, multiple

linear regression (MLR) is used for determining relationship between two or more vari-

ables corresponding to an observed response. Linear regression models have long been

used in various domains such as finance, economics and statistics.

We model the selection of distribution function using multiple linear regression (MLR).

From this point onwards, whenever we refer to linear regression, it denotes MLR. Linear

regression model was a good fit for our problem statement, since we had to choose a min-

imum execution time from a set of search space points based on a few parameters. We

found that the model parameters could be easily learned from a small set of observations

and later be applied to the entire search space to find the best point (minimum execution

time). Based on these facts, we chose linear regression to map the distribution selection

119

problem.

The linear regression model is represented as follows,

yi = β0 +β1xi,1 + ...+βnxi,n +ξi, where 0 < i ≤ N

In the above equation, xi,1,,xi,n are N predictor variables and yi is the corresponding

ith response. N is the total number of observations for training data. β’s are the correspond-

ing linear model coefficients which are learned from training or sample data. ξi denotes the

errors in the model and is used to adjust the overall linear regression model. This equation

is a generalized MLR equation. We need to appropriately set the response and predictor

variables for our problem statement.

The above equation is adapted for distribution function selection model. For our model,

yi denotes the overall execution of a single distribution function run and xi’s represent the

set of variable parameters as presented in Section 5.3.2. β and ξ is learned from the training

set or sample data.

Figure 5.7 shows the overall flow of our model using linear regression. First, we sam-

ple random data points from the overall search space of distribution function choices. We

perform a stratified random sampling to have equal representation from the different distri-

bution functions. These data points are used as training data for our MLR model. Sufficient

points are collected to avoid under-fitting or over-fitting the regression model. As the next

step (Step 2), we generate the different parameters using the framework described in Sec-

tion 5.3.1. We also execute these different distribution choices on the real environment to

120

Sample Data Points as
training data across
different distributions

Learn the linear regression
model variables

Apply linear regression
model across all points

Generate the different
parameters

Choose Best Point with
Minimum Execution Time

Prediction

Step 1

Step 2

Step 3

Step 4

Step 5

Figure 5.7 : Overall steps in Linear Regression Model for distribution function selection.

note the response (yi). In Step 3, we use these parameters to learn the overall regression

model. The xi values are set of parameters generated in the previous step and yi is execu-

tion time. This model results in generating the β and ξ values. Learning the model helps in

predicting the execution time for any choice of distribution function.

By using this MLR model, we predict execution time across the whole set of data

points in the search space in Step 4. Note, that this search space is sufficiently larger than

the training data. Thus, we need to run the application for a limited set of points (training

data) rather than the entire search space. We use β and ξ values from the previous step

121

and xi are generated from the parameter framework without running the program itself.

This approach helps in predicting the execution time for different data points and select

the minimum execution time from the entire search space in Step 5. Our method avoids

expensive runs for the entire search space and at the same time, is not overly simplistic

by using only analytical methods to predict best distribution function choices for a user.

All of these steps are automatically executed without little or no user intervention. This

approach is not restricted to Intel CnC model, but can applied to a much broader generalized

framework.

5.4 Experimental Results

For our experiments, we used an 8-node Intel Westmere (X5660) based cluster. Each

node is configured with two Intel Westmere chips having 6-cores per chip (12 cores per

node) running at 2.80 GHz. A single core has 32KB L1 data cache, 32KB instruction

cache and 256KB L2 cache. Each chip contains a 128MB shared L3 cache across the six

cores. The total main memory capacity of each node is 48GB (4GB per core). All the

nodes are interconnected using QDR Infiniband network with capacity upto 40 Gb/sec. We

used Intel CnC v0.9 with Intel MPI and gcc v4.6.4 with -O3 optimization level across all

our experiments. For all applications, we use 12 threads per node (1 thread per core).

We conducted experimented on Cholesky benchmark available in the standard Intel

CnC distribution. We selected a problem size of N=5000 and block size (BS) = 50 for

Cholesky. Note, that block size parameter is a tile of computation performed by each step

122

Steps Block-Cyclic1 (Distb1) Block-Cyclic2 (Distb2) Checkered (Distb3)
Cholesky Step
(i)

(i/blk1)%numNodes (i/blk1)%numNodes (i/blk1)%
numNodes

Trisolve Step
(i,j)

(j/blk3)%numNodes (i/blk2)%numNodes (i/blk2 + j/blk3)%
numNodes

Update Step
(i,j,k)

(j/blk5)%numNodes (i/blk4)%numNodes (i/blk4 + j/blk5 +
k/blk6)% numNodes

Table 5.1 : Different distribution functions. blk denotes blocks and numNodes represents
number of cluster nodes in distributed environment.

in the benchmark. This parameter is different from any of distribution function parameter.

Three different distribution functions along with varying parameters were chosen for

our experiments. The three distribution functions were based on two variations of block-

cyclic and a checkered distribution. Table 5.1 shows the distribution function for each of

the steps in Cholesky application. There are six block parameters across the three steps.

Each of these block parameters control the number of tiles that would be placed on the

same nodes in each dimension. As these parameters could vary from 0 to dimension itself,

we sub-sampled the search space to limit our processing time. Block sizes were selected

from the following set of numbers: [1 2 5 8 10 12 15 20]. Explicit enumeration of these

block sizes across different steps provided sufficient data points. These sampled points

were sufficient to create appropriate representation of the entire search space. Based on

these parameter selections, we had 512 data points for each distribution and 1536 points

overall. In the next section, we present performance variations across these data points,

followed by our linear regression model results.

123

0 500 1000 15000

50

100

150

200

250

300

350

400

Sorted Data Points

%
 in

cr
ea

se
 re

la
tiv

e
to

 b
es

t p
oi

nt
Performance Distribution of Data Points for Cholesky Benchmark

Figure 5.8 : Cholesky performance variation across the different distribution functions. x-
axis shows the sorted data points based on execution time. y-axis shows the percentage
increase in execution time compared to the best point. Best point refers to the minimum
execution time across the data points.

5.4.1 Performance Variation across Different Distribution Functions

Figure 5.8 shows the performance variation across the set of data points for Cholesky

benchmark. A single (x,y) point in this graph shows the relative performance of that data

point compared to the best point (minimum execution time). The data points are sorted

based on execution time. Thus, the minimum execution time appears in the lower left

corner whereas the highest execution time (worst point) appears on the top right corner.

From the figure, we clearly observe that there is significant performance variation across

the data points, which shows that choosing the right distribution with correct parameters

is important to have efficient application performance. The performance variation between

124

Model Predicted Ac-
tual Execution
Time (secs)

Overall Best
Execution
Time (secs)

% Differ-
ence

Linear Regression
Model applied
across search points

0.8428 0.7222 16.69%

Table 5.2 : Linear regression model results for Cholesky benchmark across all the data
points.

the best point to worst point is from 0% to 418%.

From the results, we observe that only about 6.50% data points are no more than 18%

slower than the best point. This shows the complexity in choosing a data point close to the

best point is a difficult decision. A efficient distribution selection model would pick a point

that would be closest to the best data point. In the ideal case, this data point would be the

minimum data point.

5.4.2 Linear Regression Model Results

Results presented in this section is based on our linear regression model in Section

5.3.3. We use stratified random sampling of 150 data points as training data. For Cholesky

application parameters, we use Critical Path Length, Number of Communication Links,

Total Communication, Cholesky Critical Step Ratio, Trisolve Critical Step Ratio, Update

Critical Step Ratio, Cholesky Load Balance Factor, Trisolve Load Balance Factor and Up-

date Load Balance Factor.

Table 5.2 shows the results for our linear regression model applied on Cholesky bench-

125

mark across the search space points. Predicted Actual Execution Time is the real world

execution time based on the predicted distribution function by the linear regression model.

Overall Best Execution Time denotes the best (minimum) execution time across all the data

points. The last column represents the percentage difference between predicted and best

execution time. From the results, we observe that the linear regression model was pre-

dicted efficient distribution function, close to the overall points. As seen in Section 5.4.1,

the model could have predicted a span from 0% to 418%. These results show that the

model was efficient enough to predict a suitable distribution function without exhaustively

running all the data points in this search space.

5.5 Summary

Distribution function play a key role in determining the performance of an application.

Complexity of this problem further increases as programmers have not only to choose an

efficient distribution function, but also the correct parameters associated with it. In this dis-

sertation, we developed a novel approach that helps solve this problem by using automatic

selection model based on linear regression. The linear regression quickly learns the pa-

rameters based on a few sample inputs and then predicts an efficient distribution function.

We demonstrate the effectiveness of this approach on Cholesky benchmark using the Intel

CnC platform. Our results indicate that linear regression model based approach can predict

efficient distribution function which had a difference of 16% from the optimal point. We

believe that our model shows promising approach to select an efficient distribution.

126

Chapter 6

Related Work

Locality optimization improves performance of an application by reusing cache ele-

ments in the memory hierarchy. As stated earlier, our focus in this work, for the first two

problems is tile size selection and data layout optimization, both of which are methods of

locality optimization. For the third problem, we look at automatically selecting a distribu-

tion function for inter-node performance. There has been a lot of prior work in all of these

domains. In this chapter, we look at past work in tile size selection domain. Next, we ex-

plore related work in data layout optimization and distribution function selection. Contents

of tile size selection and data layout optimization sections are extracts from our previously

published work in [1, 2].

6.1 Tile Size Selection

Exploiting data locality is a key issue in achieving high levels of performance and tiling

has been widely used to improve data locality in loop nests. Nevertheless, the choice of

tile sizes greatly influences the realized performance. Wolf and Lam [30] were the first

to provide precise definitions of reuse and locality and develop transformations to improve

locality. Ferrante el al. [64], Wolf and Lam [30], and Bodin et al. [93] were among the ear-

127

liest to develop cache estimation techniques designed for data locality optimizations. Sev-

eral authors proposed techniques for selecting tile sizes aimed at reducing self-interference

misses [70, 46, 49]. Ghosh et al. [50] developed cache miss equations to find sizes of the

largest tiles that eliminate self-interference, while fitting in cache. Chame and Moon [48]

developed techniques to minimize the sum of the capacity and cross-interference misses

while avoiding self-interference misses. Rivera and Tseng [51] developed padding tech-

niques to reduce interference misses and studied the effect of multi-level caches on data

locality optimizations. Hsu and Kremer [47] presented a comprehensive comparative study

of tile size selection algorithms. To the best of our knowledge, all of these techniques find

a single tile size for each loop that is being tiled. Recently, Yuki et al. [94] have explored

the automatic creation of cubic tile size models. In contrast, we demonstrate in Section 3.6

that the best performance is often realized only for rectangular tiles.

Work proposed by Christ et al. [95] and Grey et al. [96] use communication avoidance

algorithms for calculating tile size using lower bound analysis on examples such as blocked

matrix multiply. Their approach works by using linear programming model based on the

affine indices of program references. Their algorithm predicts best tile sizes which mini-

mize communication by using values as large as the constraints fit into the memory. For

example, in case of blocked matrix multiply, their approach suggests maximizing the value

of block size (b) subject to 3b2 ≤ M where M is memory size. In contrast, our approach

predicts a range of values, between the DL-ML, as opposed to a single value. For multiple

levels of caches, their approach uses recursive decomposition techniques similar to cache

128

oblivious algorithm to limit the tile sizes at each level. In our model, we have incorporated

multi-level cache hierarchies including TLB’s in our single level tiling constraints. How-

ever, our model in the current form, has not been generalized to distributed applications. In

comparison, their approach has been shown to be scalable and effective across single nodes

and multi-node cluster environments.

Kondukula et al. [97] proposed a new approach called data shackling. Data shackling

approach applied transformation based on data-centric analysis in contrast to the traditional

iteration or control-centric analysis. This work was designed to be useful on imperfectly

nested loops. In this approach, the compiler would block the data arrays instead of loops

and appropriately schedule statements using this data block. Tile sizes for data was cho-

sen to be fraction of cache capacity, since statements were scheduled whenever data was

fetched into the cache. In contrast, our approach works on the traditional loop tiling.

Search-based techniques for finding tile sizes (and unroll factors) have received much

attention in performance optimization [55,56,57,58,52]. The ATLAS system employs ex-

tensive empirical tuning to find the best tile sizes for different problem sizes in the BLAS

library; tuning is done once at installation. Unfortunately such an approach is not suited

for general tiled codes, as the search process is tuned for dense linear algebra codes only.

Only square tile sizes are considered, which significantly hampers the performance of a

variety of codes (such as stencils for instance) that require rectangular tiles for best per-

formance. Furthermore, ATLAS currently includes a simplistic model where tile sizes are

searched as to not exceed the square root of the L1 cache size. Our analytical bounds offer

129

a significantly higher accuracy, capturing both intra- and inter-tile reuse at various cache

level.

Yotov et al. [98] have discussed the benefits of using model-driven approaches over

empirical techniques for BLAS libraries, which closely relates to our approach. However,

their approach proposed a single value of tile size as compared to our approach which

creates DL-ML (lower-upper) bounds for tile size.

Kisuki et al. [52] have used different techniques such as genetic algorithms and simu-

lated annealing to manage the size of the search space. Tiwari et al. [58] note: “a key chal-

lenge that faces auto-tuners, especially as we expand the scope of their capabilities, involves

scalable search among alternative implementations.” The Active Harmony project [57, 58]

uses several different algorithms to reduce the size of the search space such as the Nelder-

Mead simplex algorithm. In contrast to these approaches, we use a pair of analytical

models—a conservative model that overestimates the number of cache lines by ignoring

lifetimes and an aggressive model that underestimates the number of cache lines—each

leading to different sets of tile sizes, which are used to bound the search space. With our

technique, any of the search algorithms [57,58,52] can be used to further reduce the search

time.

6.2 Data Layout Optimization

Past research has proposed various data layout optimization techniques [12,13,14,15].

Here, we present a brief survey of past work, focusing on aspects that are most closely

130

related to our work.

Zhang et al. [99] introduced a data layout framework that targets on-chip cache locality,

specifically reducing shared cache conflicts while observing data patterns across threads.

Using polyhedral analysis, their framework rearranges data layout tiles to reduce on-chip

shared cache conflicts. However, their optimization currently works with single arrays. In

contrast, our approach works on merging multiple arrays and operates at the element level

rather than tiles.

Henretty et al. [100] presented a data layout framework to optimize stencil operations

on short-SIMD architectures. Their work specifically targets stream alignment conflicts on

vector registers and uses a dimension transposition method (non-linear data layout opti-

mization) to mitigate the conflicts. In comparison, our approach works for more general

applications, not just stencil benchmarks. Also, our work did not specifically address the

impact of data layout on vectorization.

Ding and Kennedy [15] introduced a data-regrouping algorithm, which has similari-

ties to our work on automatic selection of data layouts. Their compiler analysis merges

multi-dimensional arrays based on a profitability cache analysis. Dynamic regrouping was

also provided for layout optimization at runtime. Experimental results show significant

improvement in cache and TLB hierarchy. However, their results were all obtained on

uniprocessor systems and it is unclear how their approach works in the presence of data

aliasing.

Raman et al. [101] used data layout transformations to reduce false sharing and im-

131

prove spatial locality in multi-threaded applications. They use an affinity based graph

approach (similar to our approach) to select candidates. Inter-procedural aliasing issues

arising due to pointers is not addressed in this work. Our work is intended to explore data

layout transformations more broadly, not just for false sharing and spatial locality. Using

polyhedral layout optimization, Lu et al. [102] developed a data layout optimization for

future NUCA CMP architectures. Their work reduces shared cache conflict on such ar-

chitectures. Simulation results show significant reductions in remote accesses. Finally, a

number of papers, [103,104,105,106] have explored the integration of loop and data layout

transformations.

Kremer [107] explored automatic data layout selection for distributed machines. He

mapped the data layout problem into a 0-1 integer programming problem to find an optimal

layout. Using an automatic framework, his tool explored choices of layouts for languages

such as Fortran D or High Performance Fortran (HPF). This work explored possibilities of

changing layouts across different phases (or loop partitions) in the same program. In con-

trast, our work explores data layout choices for a single node as compared to distributed

machines and does not account for communication across the nodes. Our framework is

based on choosing a global data layout for the entire program as opposed to region based

layouts, due to expensive time spent in retransformation of a layout. Kremer’s work ex-

plored multiple dimensions for a single array. However, in our current framework, we are

limited with single dimensional arrays, including muti-dimensional arrays which have been

transformed to single dimension.

132

To the best of our knowledge, our work is the first to support both user-specified and

automatic AoS and SoA data layout transformations, while allowing the user to provide a

data layout specification file. Our results (Section 4.2) on the LULESH mini-application

demonstrates the importance of data layout transformations on modern multicore proces-

sors.

6.3 Distribution Function Selection

Fortran D Language [108, 109] introduced data distribution function across nodes.

Block, Cyclic and Block-Cyclic were the three distributions primarily focused in this lan-

guage. This functionality allowed programmer to choose an appropriate distribution func-

tion across different arrays in their program. Irregular distributions were handled by a

separate distribution array, often named MAP. However, limited support was present for

user-defined multi-dimensional functions. Computation or task partitioning was automati-

cally derived using owner-computes rule from data distribution. Balasundaram et al. [110]

developed a static performance estimator tool for prediciting distributions across machines.

This tool worked by training a performance model on a variety of kernel and then mapping

source program to one of their training sets in order to select an efficient distribution. Using

this approach, they predicted efficient distributions for REDBLACK benchmark.

In PARADIGM Compiler Framework, Manish Gupta et al. [111] developed an auto-

matic distribution for arrays using owner computes rule. Their approach used cost based es-

timation for computation and communication to select block-cyclic distribution with vary-

133

ing block sizes.

High Performance Fortran (HPF) was a successor to the Fortran D language [112]. HPF

provided further extensions to data distribution such as dynamic realignment and redistri-

bution at runtime. In addition, it provided special directives (like SHADOW) to improve

stencil computations on distributed nodes. The dHPF compiler and runtime system permit-

ted dynamic selection of the dimensionality of a partitioning (2D-KD), the number of cuts

per data dimension, and the mapping of tiles for multipartitionings based on data sizes and

processor counts [113,114]. This system employed computation partitioning framework to

select optimal number of cuts to balance communication and computation across different

nodes. The dHPF compiler automatically inserted appropriate MPI communication calls

as compared to user specified communication calls.

Chapel programming language provides a more flexible and general framework for user

specified data distribution with the standard block-cyclic distributions [115, 116].

In a separate but related domain, polyhedral methods map tiled code onto distributed

node [117, 118]. Uday et al. [118] use polyhedral framework to automatically generate

communication calls using MPI for affine loops, which minimizes communication and also

satisfies data dependencies.

In contrast to the above work, our work is based on the Intel CnC model, which provides

flexibility in user specified distribution function and also supports a wider set of programs

as compared to affine-based models. In addition, our approach automatically selects a

distribution function by using linear regression model. To the best of our knowledge, our

134

work is the first one to support dynamic graph analysis using regression model of CnC

computations to automatically select an efficient distribution function.

135

Chapter 7

Conclusions and Future Work

Due to the ever increasing computing power capabilities, a plethora of processor archi-

tectures have emerged in modern times. One of the key challenges is extracting maximum

performance from these emerging architectures. Programmers employ various optimiza-

tion techniques to increase the application performance on processor architectures. How-

ever, varying architectures often require different optimizations for performance. Opti-

mizations that take into account different architectural parameters help reduce this problem

and enables portable performance.

In this dissertation, we have developed three approaches for portable locality optimiza-

tions: tile size selection, data layout optimization and distribution function selection. Our

methods help improve performance of single node and multi-node environment. The first

approach, tile size selection, introduces a novel model-driven empirical search using a new

aggressive model named ML and conservative model named DL. Using these models as

upper and lower bounds for tile size selection, our results demonstrate reduction in overall

search space from 44×−11,879× across different architectures. These models help the

programmer select efficient tile sizes as compared to exploring a larger search space across

varying architectures. Our results show that for tile sizes that fall in-between the DL-ML

model were 95% close to performance of optimal tile sizes.

136

Our second approach, data layout optimization, addresses the problem of selecting ef-

ficient data layouts across different platforms. We present a source-to-source framework

for data layout optimization. Using our framework, programmers can specify a manual

data layout or use our automated algorithm to select an efficient layout based on a given

architecture. This approach avoids recurring changes to the source program for portable

performance. Experimentation carried out using this method show performance improve-

ments upto 20×.

Distribution function selection presents a new method to automatically select a distribu-

tion function based on a linear regression model as part of our third approach. While tuning

applications in distributed environment, programmers have difficulty in selecting distribu-

tion functions and appropriate parameters for them. We present a linear regression model

which uses sample runs for an application, learns the model and automatically selects a dis-

tribution function choice for a programmer. Our results show distribution function selection

choices to be about 16% difference when compared to the optimal choice.

With these approaches, we show that efficient performance can be achieved from lo-

cality transformation. These transformations present computation and data optimizations

for varying environments to enable minimal programmer effort. We believe that these ap-

proaches provide a sound foundation for future locality transformations and holds promis-

ing future directions.

137

Future Work

This dissertation opens new directions for future research. Some of those are listed

below. However, this list is just a representation and directions can go much beyond these

topics.

1. For work on tile size selection, the next step would be to develop auto-tuning learning

models which would select tile sizes from the broader search space. These auto-

tuning models would use dynamic profiles of the program to collect different metrics

such as hardware performance counters to select an efficient tile size.

2. Our data layout optimization work transforms arrays into array of structs(AoS). Mod-

ern architectures such as Intel Xeon Phi, employ larger vector processing unit for

performance efficiency. Extension to the data layout approach such as using array of

structs of array (AoSoA), which benefits locality and vectorization appears to be a

promising future approach.

3. From tile size selection and data layout optimization, we observe that locality op-

timization plays a key role in performance efficiency of an application. However,

another important concern is energy optimization for application. Future research

directions could study the impact of these transformation on energy optimization.

4. In the distribution function selection problem, we have focused on task distribution.

In our work, we have used the default Intel CnC model, which places data where

it is computed (owner-computes rule). Another future direction could be to see the

138

impact of separate task and data distribution.

5. As the number of cores and nodes increase in a distributed environment, leading to

various constraints on the systems, fault tolerance will play a key role in applica-

tions. Faults can occur in different hardware components such as disk, memory and

processor. Making applications resilient to these faults can be explored in the future

along with performance efficiency.

139

Bibliography

[1] J. Shirako, K. Sharma, N. Fauzia, L.-N. Pouchet, J. Ramanujam, P. Sadayappan, and

V. Sarkar, “Analytical Bounds for Optimal Tile Size Selection,” in Proceedings of

the 21st International Conference on Compiler Construction, CC’12, (Berlin, Hei-

delberg), pp. 101–121, Springer-Verlag, 2012.

[2] K. Sharma, I. Karlin, J. Keasler, J. R. McGraw, and V. Sarkar, “User-specified and

automatic data layout selection for portable performance,” Tech. Rep. TR13-03, Rice

University, Houston, Texas, USA, April 2013. http://compsci.rice.edu/TR/

TR_Download.cfm?SDID=307.

[3] “The Platform-Aware Compilation Environment - Design Document,” Septem-

ber 2010. http://pace.rice.edu/uploadedFiles/Publications/

PACEDesignDocument.pdf.

[4] F. Irigoin and R. Triolet, “Supernode partitioning,” in Proceedings of the 15th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

’88, (New York, NY, USA), pp. 319–329, ACM, 1988.

[5] M. Wolfe, “More iteration space tiling,” in Proceedings of the 1989 ACM/IEEE Con-

ference on Supercomputing, Supercomputing ’89, (New York, NY, USA), pp. 655–

140

664, ACM, 1989.

[6] R. Schreiber and J. Dongarra, “Automatic blocking of nested loops,” Tech. Report

90.38, RIACS, NASA Ames Research Center, 1990.

[7] J. Ramanujam and P. Sadayappan, “Tiling multidimensional iteration spaces for mul-

ticomputers,” JPDC, vol. 16, no. 2, pp. 108–230, 1992.

[8] P. Boulet, A. Darte, T. Risset, and Y. Robert, “(Pen)-ultimate tiling?,” Integration,

the VLSI Journal, vol. 17, no. 1, pp. 33–51, 1994.

[9] J. Xue, Loop tiling for parallelism. Norwell, MA, USA: Kluwer Academic Publish-

ers, 2000.

[10] M. Luersen, R. L. Riche, and F. Guyon, “A constrained, globalized, and bounded

Nelder-Mead method for engineering optimization,” Structural and Multidisci-

plinary Optimization, vol. 27, no. 1-2, pp. 43–54, 2004.

[11] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. Hollingsworth, “Scalable autotuning

framework for compiler optimization,” in Proceedings of the 2009 IEEE Interna-

tional Symposium on Parallel&Distributed Processing, IPDPS ’09, May 2009.

[12] T. M. Chilimbi, M. D. Hill, and J. R. Larus, “Cache-conscious structure layout,”

in Proceedings of the ACM SIGPLAN 1999 Conference on Programming Language

Design and Implementation, PLDI ’99, (New York, NY, USA), pp. 1–12, ACM,

1999.

141

[13] B. Calder, C. Krintz, S. John, and T. Austin, “Cache-conscious data placement,”

in Proceedings of the Eighth International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS VIII, (New York, NY,

USA), pp. 139–149, ACM, 1998.

[14] T. M. Chilimbi and R. Shaham, “Cache-conscious coallocation of hot data streams,”

in Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’06, (New York, NY, USA), pp. 252–262, ACM,

2006.

[15] C. Ding and K. Kennedy, “Inter-array data regrouping,” in Proceedings of the

12th International Workshop on Languages and Compilers for Parallel Computing,

LCPC ’99, (London, UK, UK), pp. 149–163, Springer-Verlag, 2000.

[16] “Intel CnC.” http://software.intel.com/en-us/articles/

intel-concurrent-collections-for-cc.

[17] M. Burke, K. Knobe, R. Newton, and V. Sarkar, “The Concurrent Collections Pro-

gramming Model,” Tech. Rep. TR 10-12, Rice University, Houston, TX, USA, De-

cember 2010. http://compsci.rice.edu/TR/TR_Download.cfm?SDID=285.

[18] A. J. Smith, “Cache memories,” ACM Comput. Surv., vol. 14, pp. 473–530, Sept.

1982.

[19] O. P. Agrawal and A. V. Pohm, “Cache Memory Systems for Multiprocessor Archi-

tecture,” in Proceedings of the June 13-16, 1977, National Computer Conference,

142

AFIPS ’77, (New York, NY, USA), pp. 955–964, ACM, 1977.

[20] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-

proach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 3 ed., 2003.

[21] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller, “Memory Performance

and Cache Coherency Effects on an Intel Nehalem Multiprocessor System,” in Pro-

ceedings of the 2009 18th International Conference on Parallel Architectures and

Compilation Techniques, PACT ’09, (Washington, DC, USA), pp. 261–270, IEEE

Computer Society, 2009.

[22] N. P. Jouppi, “Improving direct-mapped cache performance by the addition of a

small fully-associative cache and prefetch buffers,” in Proceedings of the 17th An-

nual International Symposium on Computer Architecture, ISCA ’90, (New York,

NY, USA), pp. 364–373, ACM, 1990.

[23] B. Sinharoy, R. Kalla, W. Starke, H. Le, R. Cargnoni, J. Van Norstrand, B. Ronchetti,

J. Stuecheli, J. Leenstra, G. Guthrie, et al., “IBM POWER7 multicore server proces-

sor,” IBM Journal of Research and Development, vol. 55, no. 3, pp. 1–1, 2011.

[24] “Intel Xeon Processor 5500 Series Datasheet, Vol. 1.” http://www.intel.com/

content/www/us/en/processors/xeon/xeon-5500-vol-1-datasheet.html.

[25] G. M. Amdahl, G. A. Blaauw, and F. P. Brooks, “Architecture of the IBM Sys-

tem/360,” IBM J. Res. Dev., vol. 8, pp. 87–101, Apr. 1964.

143

[26] K. Goto, “High-performance implementation of the level-3 blas,” ACM Transactions

on Mathematical Software (TOMS), vol. 35, July 2008.

[27] D. Levinthal, “Performance Analysis Guide for Intel Core i7 Processor and In-

tel Xeon 5500 processors.” https://software.intel.com/sites/default/

files/m/0/8/8/performance_analysis_guide.pdf.

[28] B. Hall, M. Anand, B. Buros, M. Cilimdzic, H. Hua, J. Liu, J. MacMillan, S. Mad-

dali, K. Madhusudanan, B. Mealey, et al., POWER7 and POWER7+ Optimization

and Tuning Guide. IBM Redbooks, 2013.

[29] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of the obvi-

ous,” SIGARCH Comput. Archit. News, vol. 23, pp. 20–24, Mar. 1995.

[30] M. E. Wolf and M. S. Lam, “A data locality optimizing algorithm,” in Proceedings

of the ACM SIGPLAN 1991 Conference on Programming Language Design and

Implementation, PLDI ’91, (New York, NY, USA), pp. 30–44, ACM, 1991.

[31] K. S. McKinley, S. Carr, and C.-W. Tseng, “Improving Data Locality with Loop

Transformations,” ACM Transactions on Programming Languages and Systems,

vol. 18, pp. 423–453, July 1996.

[32] S. Carr, K. S. McKinley, and C.-W. Tseng, “Compiler optimizations for improving

data locality,” in Proceedings of the Sixth International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS VI, (New

York, NY, USA), pp. 252–262, ACM, 1994.

144

[33] K. Kennedy and K. S. McKinley, “Loop Distribution with Arbitrary Control Flow,”

Supercomputing ’90, November 1990.

[34] M. Giles, G. Mudalige, C. Bertolli, P. Kelly, E. Laszlo, and I. Reguly, “An analytical

study of loop tiling for a large-scale unstructured mesh application,” in High Perfor-

mance Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion:,

pp. 477–482, Nov 2012.

[35] G. Rivera and C.-W. Tseng, “Tiling optimizations for 3D scientific computations,”

in Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, pp. 32–32,

Nov 2000.

[36] K. Kennedy and J. R. Allen, Optimizing compilers for modern architectures: a

dependence-based approach. San Francisco, CA, USA: Morgan Kaufmann Pub-

lishers Inc., 2002.

[37] D. F. Bacon, J.-H. Chow, D.-c. R. Ju, K. Muthukumar, and V. Sarkar, “A compiler

framework for restructuring data declarations to enhance cache and tlb effective-

ness,” in Proceedings of the 1994 Conference of the Centre for Advanced Studies on

Collaborative Research, CASCON ’94, pp. 3–, IBM Press, 1994.

[38] P. Ranjan Panda, H. Nakamura, N. Dutt, and A. Nicolau, “A data alignment tech-

nique for improving cache performance,” in Proceedings of the 1997 International

Conference on Computer Design (ICCD ’97), ICCD ’97, pp. 587–592, Oct 1997.

145

[39] MPI Forum, “Message Passing Interface (MPI) Forum Home Page.”

http://www.mpi-forum.org/ (Dec. 2009).

[40] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sa-

hay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L.

Graham, and T. S. Woodall, “Open MPI: Goals, concept, and design of a next gener-

ation MPI implementation,” in Proceedings, 11th European PVM/MPI Users’ Group

Meeting, (Budapest, Hungary), pp. 97–104, September 2004.

[41] T. El-Ghazawi, W. W. Carlson, and J. M. Draper, “UPC Language Specification

v1.1.1,” October 2003.

[42] A. Hartono, M. M. Baskaran, C. Bastoul, A. Cohen, S. Krishnamoorthy, B. Nor-

ris, J. Ramanujam, and P. Sadayappan, “Parametric multi-level tiling of imperfectly

nested loops,” in International Conference on Supercomputing (ICS), 2009.

[43] M. Baskaran, A. Hartono, S. Tavarageri, T. Henretty, J. Ramanujam, and P. Sadayap-

pan, “Parameterized tiling revisited,” in Proceedings of the 8th Annual IEEE/ACM

International Symposium on Code Generation and Optimization, CGO ’10, pp. 200–

209, 2010.

[44] L. Renganarayanan, D. Kim, S. Rajopadhye, and M. M. Strout, “Parameterized tiled

loops for free,” in Proceedings of the 2007 ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI ’07, (New York, NY, USA),

pp. 405–414, ACM, 2007.

146

[45] D. Kim, L. Renganarayanan, D. Rostron, S. Rajopadhye, and M. M. Strout, “Multi-

level tiling: M for the price of one,” in Proceedings of the 2007 ACM/IEEE Con-

ference on Supercomputing, SC ’07, (New York, NY, USA), pp. 51:1–51:12, ACM,

2007.

[46] S. Coleman and K. McKinley, “Tile Size Selection Using Cache Organization and

Data Layout,” in Proceedings of the ACM SIGPLAN 1995 Conference on Program-

ming Language Design and Implementation, PLDI ’95, (New York, NY, USA),

pp. 279–290, ACM, 1995.

[47] C. Hsu and U. Kremer, “A quantitative analysis of tile size selection algorithms,” J.

Supercomput., vol. 27, no. 3, pp. 279–294, 2004.

[48] J. Chame and S. Moon, “A tile selection algorithm for data locality and cache in-

terference,” in ICS ’99: Proceedings of the 13th international conference on Super-

computing, (New York, NY, USA), pp. 492–499, ACM Press, 1999.

[49] K. Esseghir, “Improving data locality for caches,” Master’s thesis, Dept. of Com-

puter Science, Rice University, Sep. 1993.

[50] S. Ghosh, M. Martonosi, and S. Malik, “Cache miss equations: a compiler frame-

work for analyzing and tuning memory behavior,” ACM TOPLAS, vol. 21, no. 4,

pp. 703–746, 1999.

[51] G. Rivera and C. Tseng, “Locality optimizations for multi-level caches,” in Super-

computing ’99: Proceedings of the 1999 ACM/IEEE conference on Supercomputing

147

(CDROM), 1999.

[52] P. M. W. Knijnenburg, T. Kisuki, and M. F. P. O’Boyle, “Combined selection of tile

sizes and unroll factors using iterative compilation,” The Journal of Supercomputing,

vol. 24, no. 1, pp. 43–67, 2003.

[53] V. Sarkar, “Automatic Selection of High Order Transformations in the IBM XL For-

tran Compilers,” IBM J. Res. & Dev., vol. 41, May 1997.

[54] V. Sarkar and N. Megiddo, “An analytical model for loop tiling and its solution,” in

Proceedings of the 2000 IEEE International Symposium on Performance Analysis

of Systems and Software, ISPASS ’00, (Washington, DC, USA), pp. 146–153, IEEE

Computer Society, 2000.

[55] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical optimization of

software and the ATLAS project,” Parallel Computing, vol. 27, no. 1–2, pp. 3–35,

2001.

[56] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel, “Optimizing matrix multi-

ply using PHiPAC: A portable, high-performance, ANSI C coding methodology,”

in Proceedings of the 11th International Conference on Supercomputing, ICS ’97,

(New York, NY, USA), pp. 340–347, ACM, 1997.

[57] C. Tapus, I.-H. Chung, and J. K. Hollingsworth, “Active Harmony: towards auto-

mated performance tuning,” in Proceedings of the 2002 ACM/IEEE Conference on

148

Supercomputing, SC ’02, (Los Alamitos, CA, USA), pp. 1–11, IEEE Computer So-

ciety Press, 2002.

[58] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. Hollingsworth, “Scalable autotun-

ing framework for compiler optimization,” in 23rd IEEE International Parallel &

Distributed Processing Symposium Rome, Italy, Italy, May 2009.

[59] J. Navarro, A. Juan, and T. Lang, “MOB Forms: A Class of Multilevel Block Algo-

rithms for Dense Linear Algebra Operations,” in Proc. ACM International Confer-

ence on Supercomputing, 1994.

[60] K. Datta, “Auto-tuning stencil codes for cache-based multicore platforms,” technical

report, University of California, Berkeley, Dec. 2009.

[61] K. Yotov, K. Pingali, and P. Stodghill, “Think globally, search locally,” in Interna-

tional Conference on Supercomputing, 2005.

[62] C. Chen, J. Chame, and M. Hall, “Combining models and guided empirical search to

optimize for multiple levels of the memory hierarchy,” in International Symposium

on Code Generation and Optimization (CGO’05), 2005.

[63] A. Qasem and K. Kennedy, “Model-guided empirical tuning of loop fusion,” Inter-

national Journal of High Performance Systems Architecture, vol. 1, no. 3, pp. 183–

198, 2008.

[64] J. Ferrante, V. Sarkar, and W. Thrash, “On estimating and enhancing cache effective-

149

ness,” in Proceedings of the Fourth International Workshop on Languages and Com-

pilers for Parallel Computing, (London, UK, UK), pp. 328–343, Springer-Verlag,

1992.

[65] T. W. Barr, A. L. Cox, and S. Rixner, “Translation caching: skip, don’t walk (the

page table),” in ISCA ’10: Proceedings of the 37th annual international symposium

on Computer architecture, (New York, NY, USA), pp. 48–59, ACM, 2010.

[66] “Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System

Programming Guide Part 1.”

[67] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne, “Accelerating two-dimensional

page walks for virtualized systems,” in ASPLOS XIII: Proceedings of the 13th in-

ternational conference on Architectural support for programming languages and

operating systems, (New York, NY, USA), pp. 26–35, ACM, 2008.

[68] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A practical auto-

matic polyhedral program optimization system,” in Proceedings of the 2008 ACM

SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’08, 2008.

[69] U. Banerjee, Dependence Analysis. Kluwer Academic Publishers, 1997.

[70] M. Lam, E. Rothberg, and M. Wolf, “The cache performance and optimizations of

blocked algorithms,” in Proceedings of the Fourth International Conference on Ar-

150

chitectural Support for Programming Languages and Operating Systems, ASPLOS

IV, pp. 63–74, 1991.

[71] “Resource Characterization in the PACE Project.” http://www.pace.rice.edu/

Content.aspx?id=41.

[72] J. A. Nelder and R. Mead, “A simplex method for function minimization,” Computer

Journal, vol. 7, no. 4, pp. 308–313, 1965.

[73] V. Tabatabaee, A. Tiwari, and J. Hollingsworth, “Parallel Parameter Tuning for Ap-

plications with Performance Variability,” in Proceedings of the 2005 ACM/IEEE

Conference on Supercomputing, SC ’05, pp. 57–57, 2005.

[74] J. Keasler, T. Jones, and D. Quinlan, “TALC: A Simple C Language Extension For

Improved Performance and Code Maintainability,” in 9th LCI International Confer-

ence on High-Performance Clustered Computing, April 2008.

[75] “TALC Infrastructure.” https://wci.llnl.gov/codes/talc/index.html.

[76] D. Quinlan, “ROSE: Compiler support for object-oriented frameworks,” Tech. Rep.

UCRL-ID-136515, Lawrence Livermore National Laboratory, 1999.

[77] “Weblink.” https://github.com/rose-compiler/edg4x-rose/tree/master/

projects/TALCDataLayout.

[78] “ASC Sequoia Benchmark Codes.” https://asc.llnl.gov/sequoia/

benchmarks/.

151

[79] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron,

“Rodinia: A benchmark suite for heterogeneous computing,” in Proceedings of

the 2009 IEEE International Symposium on Workload Characterization (IISWC),

IISWC ’09, pp. 44–54, IEEE, 2009.

[80] “Hydrodynamics Challenge Problem,” Tech. Rep. LLNL-TR-490254, LLNL, Liv-

ermore, CA, USA, July 2011. https://codesign.llnl.gov/pdfs/spec-7.pdf.

[81] I. Karlin, J. McGraw, J. Keasler, and C. Still, “Tuning the LULESH Mini-app for

Current and Future Hardware,” in Nuclear Explosive Code Development Conference

Proceedings (NECDC12), December 2012.

[82] J. D. McCalpin, “Memory Bandwidth and Machine Balance in Current High Perfor-

mance Computers,” IEEE TCCA Newsletter, pp. 19–25, Dec. 1995.

[83] Intel, “Intel 64 and IA-32 Architectures Optimization Reference Manual,” Tech.

Rep. 248966-026, April 2012.

[84] I.-H. Chung, C. Kim, H.-F. Wen, and G. Cong, “Application data prefetching on the

ibm blue gene/q supercomputer,” in Proceedings of the International Conference

on High Performance Computing, Networking, Storage and Analysis, SC ’12, (Los

Alamitos, CA, USA), pp. 88:1–88:8, IEEE Computer Society Press, 2012.

[85] AMD, “Software Optimization Guide for AMD Family 15h Processors,” Tech. Rep.

47414, January 2012.

152

[86] “ AMD64 Architecture Programmer’s Manual Volume 2: System Programming.”

[87] Budimlić, Zoran and Burke, Michael and Cavé, Vincent and Knobe, Kathleen and

Lowney, Geoff and Newton, Ryan and Palsberg, Jens and Peixotto, David and

Sarkar, Vivek and Schlimbach, Frank and Tasirlar, Sağnak, “Concurrent collections,”

Sci. Program., vol. 18, pp. 203–217, Aug. 2010.

[88] F. Schlimbach, K. Knobe, and J. Brodman, “Concurrent collections.” unpublished.

[89] D. Zheng and T. Chang, “Parallel cholesky method on {MIMD} with shared mem-

ory,” Computers and Structures, vol. 56, no. 1, pp. 25 – 38, 1995.

[90] A. George, M. T. Heath, and J. Liu, “Parallel Cholesky factorization on a shared-

memory multiprocessor,” Linear Algebra and its Applications, vol. 77, no. 0, pp. 165

– 187, 1986.

[91] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, “Communication-optimal paral-

lel and sequential Cholesky decomposition: Extended abstract,” in Proceedings of

the Twenty-first Annual Symposium on Parallelism in Algorithms and Architectures,

SPAA ’09, (New York, NY, USA), pp. 245–252, ACM, 2009.

[92] “Boost Spirit.” http://boost-spirit.com/home/.

[93] F. Bodin, W. Jalby, D. Windheiser, and C. Eisenbeis, “A quantitative algorithm for

data locality optimization,” in In Code Generation-Concepts, Tools, Techniques,

pp. 119–145, 1992.

153

[94] T. Yuki, L. Renganarayanan, S. Rajopadhye, C. Anderson, A. Eichenberger, and

K. O’Brien, “Automatic creation of tile size selection models,” in Proceedings of

the 8th Annual IEEE/ACM International Symposium on Code Generation and Opti-

mization, CGO ’10, pp. 190–199, 2010.

[95] M. Christ, J. Demmel, N. Knight, T. Scanlon, and K. Yelick, “Communication lower

bounds and optimal algorithms for programs that reference arrays – Part 1,” Tech.

Rep. UCB/EECS-2013-61, Electrical Engineering and Computer Sciences, Univer-

sity of California at Berkeley, July 2013.

[96] B. Grey, J. Demmel, O. Holtz, and O. Schwartz, “Minimizing Communication in

Numerical Linear Algebra,” Tech. Rep. UCB/EECS-2011-15, Electrical Engineer-

ing and Computer Sciences, University of California at Berkeley, Feb. 2011.

[97] I. Kodukula, N. Ahmed, and K. Pingali, “Data-centric Multi-level Blocking,” Pro-

ceedings of the ACM SIGPLAN ’97 Conference on Programming Language Design

and Implementation, Las Vegas, Nevada, pp. 346–357, June 1997.

[98] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran, D. A. Padua, K. Pin-

gali, P. Stodghill, and P. Wu, “A comparison of empirical and model-driven opti-

mization.,” in Proceedings of the ACM SIGPLAN 2003 Conference on Programming

Language Design and Implementation, PLDI ’03, pp. 63–76, 2003.

[99] Y. Zhang, W. Ding, J. Liu, and M. Kandemir, “Optimizing data layouts for parallel

computation on multicores,” in Proceedings of the 2011 International Conference on

154

Parallel Architectures and Compilation Techniques, PACT ’11, (Washington, DC,

USA), pp. 143–154, IEEE Computer Society, 2011.

[100] T. Henretty, K. Stock, L.-N. Pouchet, F. Franchetti, J. Ramanujam, and P. Sadayap-

pan, “Data layout transformation for stencil computations on short-vector simd ar-

chitectures,” in Proceedings of the 20th International Conference on Compiler Con-

struction: Part of the Joint European Conferences on Theory and Practice of Soft-

ware, CC’11/ETAPS’11, (Berlin, Heidelberg), pp. 225–245, Springer-Verlag, 2011.

[101] E. Raman, R. Hundt, and S. Mannarswamy, “Structure layout optimization for mul-

tithreaded programs,” in Proceedings of the International Symposium on Code Gen-

eration and Optimization, CGO ’07, (Washington, DC, USA), pp. 271–282, IEEE

Computer Society, 2007.

[102] Q. Lu, C. Alias, U. Bondhugula, T. Henretty, S. Krishnamoorthy, J. Ramanujam,

A. Rountev, P. Sadayappan, Y. Chen, H. Lin, and T.-f. Ngai, “Data layout transfor-

mation for enhancing data locality on nuca chip multiprocessors,” in Proceedings of

the 2009 18th International Conference on Parallel Architectures and Compilation

Techniques, PACT ’09, (Washington, DC, USA), 2009.

[103] C. Ding and K. Kennedy, “Improving effective bandwidth through compiler en-

hancement of global cache reuse,” in Proceedings of the 15th International Parallel

& Distributed Processing Symposium, IPDPS ’01, (Washington, DC, USA), IEEE

Computer Society, 2001.

155

[104] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee, “A framework for in-

terprocedural locality optimization using both loop and data layout transformations,”

in Proceedings of the 1999 International Conference on Parallel Processing, ICPP

’99, (Washington, DC, USA), pp. 95–, IEEE Computer Society, 1999.

[105] M. Taylan Kandemir, “Improving whole-program locality using intra-procedural and

inter-procedural transformations,” J. Parallel Distrib. Comput., vol. 65, pp. 564–582,

May 2005.

[106] M. F. P. O’Boyle and P. M. W. Knijnenburg, “Efficient parallelization using com-

bined loop and data transformations,” in Proceedings of the 1999 International Con-

ference on Parallel Architectures and Compilation Techniques, PACT ’99, (Wash-

ington, DC, USA), pp. 283–, IEEE Computer Society, 1999.

[107] U. Kremer, Automatic Data Layout for Distributed Memory Machines. PhD thesis,

Rice University, October 1995.

[108] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C.-W. Tseng, and M.-Y.

Wu, “Fortran D Language Specification,” tech. rep., 1990.

[109] S. Hiranandani, K. Kennedy, and C.-W. Tseng, “Compiling Fortran D for MIMD

Distributed-memory Machines,” Commun. ACM, vol. 35, pp. 66–80, Aug. 1992.

[110] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer, “A static performance esti-

mator to guide data partitioning decisions,” in Proceedings of the Third ACM SIG-

156

PLAN Symposium on Principles and Practice of Parallel Programming, PPOPP ’91,

(New York, NY, USA), pp. 213–223, ACM, 1991.

[111] M. Gupta and P. Banerjee, “Paradigm: A compiler for automatic data distribution on

multicomputers,” in Proceedings of the 7th International Conference on Supercom-

puting, ICS ’93, (New York, NY, USA), pp. 87–96, ACM, 1993.

[112] High Performance Fortran Forum, “High Performance Fortran Language Specifica-

tion Version 2.0,” tech. rep., Rice University Houston, TX, Oct. 1996.

[113] A. Darte, J. Mellor-Crummey, R. Fowler, and D. Chavarrı́a-Miranda, “Generalized

multipartitioning of multi-dimensional arrays for parallelizing line-sweep computa-

tions,” J. Parallel Distrib. Comput., vol. 63, pp. 887–911, Sept. 2003.

[114] V. Adve, G. Jin, J. Mellor-Crummey, and Q. Yi, “High Performance Fortran compila-

tion techniques for parallelizing scientific codes,” in Proceedings of Supercomputing

’98, pp. 1–23, 1998.

[115] R. Diaconescu and H. Zima, “An approach to data distributions in Chapel,” Int. J.

High Perform. Comput. Appl., vol. 21, pp. 313–335, Aug. 2007.

[116] B. L. Chamberlain, S. J. Deitz, D. Iten, and S.-E. Choi, “User-defined distribu-

tions and layouts in Chapel: Philosophy and framework,” in Proceedings of the 2nd

USENIX Conference on Hot Topics in Parallelism, HotPar’10, (Berkeley, CA, USA),

pp. 12–12, USENIX Association, 2010.

157

[117] M. Classen and M. Griebl, “Automatic code generation for distributed memory ar-

chitectures in the polytope model,” in Parallel and Distributed Processing Sympo-

sium(IPDPS), 2006., p. 7, 2006.

[118] U. Bondhugula, “Compiling affine loop nests for distributed-memory parallel archi-

tectures,” in Proceedings of SC13: International Conference for High Performance

Computing, Networking, Storage and Analysis, SC ’13, (New York, NY, USA),

pp. 33:1–33:12, ACM, 2013.

