

Extending Polyhedral Model for Analysis and Transformations of OpenMP Programs

Department of Computer Science, Rice University

(1) Introduction & Motivation

• Moving towards Exa-scale and Extrem	me-scale machines
	4 I .

Enabling applications to fully exploit them is not easy

Software stack

- Explicitly parallel programming models
- Optimizing compilers
- Efficient runtime systems

• Our past work (PoPP) [PACT'15, IMPACT'15]

- Automatically optimize OpenMP programs
- Task-parallel, Loop-parallel
- Polyhedral compilation techniques
- Fine-grained synchronization in run-time

• Limitations of PoPP:

• Applicable only to set of parallel constructs that satisfy serial-elision property

Motivation:

• Analyze and Transform more generic OpenMP constructs such as parallel regions, work-sharing, barriers, sections etc. — PolyOMP

(2) Extending Polyhedral Representation

- Polyhedral representation of a statement instance
 - Domain + Schedule + Access relations
- **Domain** Set of statement instances
- Schedule Ordering among statement instances
 - Extended with Phase, Space dimensions
 - Phase Computation phase id
 - Space Thread id that executes it
- Access relations Array subscripts referenced

 Step-I: Conditions for Data-race b/w statement instances S&T S & T should touch the same memory location and one being a write S & T should be in same phase of computation S & T should be executed by different threads 					 Data dependence relations from S to T S & T should touch same memory location and one of them is write S should happens-before T (Computed based on phase and space) 						
					 Transformations Fusion of work-sharing directives 						
 Implementation details Frameworks: 					 Removal of redundant barriers Fusion of SPMD regions 						
• 11ai		nedral extractio	on tool). 7	R (SMT sol	ver)	• Example					
• Imp	 PET (Polyhedral extraction tool), Z3 (SMT solver) Implementation is in-progress 					#pragma omp parallel {					
 Preliminary Experimental Evaluation Manual evaluation on OMP SRC benchmarks Data races category 				<pre>#pragma omp for schedule(static, c) nowait for(int i = 0; i < N; i++) A[i] = B[i]; // SI #pragma omp barrier - Can be removed #pragma omp for schedule(static, c) for(int j = 0; j < N; j++) C[j] = A[j]; // S2</pre>							
	Pathg (LCTES'12)	OAT (ICPP'13)	ompVerify (IWOMP'11)	PolyX10 (PPoPP'13)	PolyOMP (Ours)		PoPP (PACT'15)	PIR-OPT (TOPLAS'13)	OMPD (PPoPP'12)	PolyOMP (Ours)	
Target parallelism	OpenMP Work sharing (loop), Barriers, Atomic	OpenMP Work sharing (loop, sections), locks, barriers, master, single, critical, atomic	OpenMP Work sharing (loop)	X10 Async/ finish parallelism	OpenMP SPMD regions, work sharing (loop, sections), master, single, barrier, doacross (OpenMP 4.1)	parallelism	OpenMP task-level and loop-level parallelism	X10 async-finish parallelism	Extended OpenMP	SPMD regions, work sharing (loop, sections), master, single, barrier, doacross (OpenMP 4.1)	
Approach	Extended Thread Automata	Symbolic execution	Polyhedral model	Polyhedral model	Extended Polyhedral model	Ordering relations in data	Intersection of conservative dependences with	HB relations	Dataflow analysis	HB relations	
Guarantees	Per- no.of threads, chunk size	Per- no. of threads	Per- Program	Per- Program	Per- Program	dependences	HB relations	Finish-	analyeie	SDMD fusion	
Dependent on scheduling techniques	Yes	Yes	Νο	Νο	Yes	Optimizations	Loop-level transformations	elimination, forall- coarsening, loop-chunking	Communication reduction	n SPMD fusion, Barrier removal, Worksharing fusion	
Nature of analysis	Precise ¹	False +Ve and False -Ve	Precise ¹	Precise ¹	Precise ¹		Igements Jun Shi		F ,		

Prasanth Chatarasi and Vivek Sarkar http://habanero.rice.edu

3) Analysis - Data race Detection

'In case of affine array subscripts and static affine control flow

Contact: <u>prasanth@rice.edu</u>

4) Transformations