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Moore’s law still continues

Performance is driven more by parallelism than single-thread

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
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A major challenge facing the overall computer field

Programming multi-core processors – how to exploit the parallelism in
large-scale parallel hardware without undue programmer effort

– Mary Hall et.al., in Communications of ACM 2009
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Programming multi-core processors – how to exploit the parallelism in
large-scale parallel hardware without undue programmer effort

– Mary Hall et.al., in Communications of ACM 2009

Two major compiler approaches in tackling the challenge
Automatic parallelization of sequential programs

Compilers extract parallelism
Not much burden on programmer but lot of limitations!

Manually parallelize programs

Full burden on programmer but can get higher performance!
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A major challenge facing the overall computer field

Programming multi-core processors – how to exploit the parallelism in
large-scale parallel hardware without undue programmer effort

– Mary Hall et.al., in Communications of ACM 2009

Two major compiler approaches in tackling the challenge
Automatic parallelization of sequential programs

Compilers extract parallelism
Not much burden on programmer but lot of limitations!

Manually parallelize programs

Full burden on programmer but can get higher performance!
Can the compilers help the programmer?
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Focus of this work – SPMD-style parallelism

Focus on SPMD-style parallel programs

All processors execute the same program
Sequential code redundantly
Parallel code cooperatively
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Focus of this work – SPMD-style parallelism

Focus on SPMD-style parallel programs

All processors execute the same program
Sequential code redundantly
Parallel code cooperatively

OpenMP for multi-cores, CUDA/ OpenCL for
accelerators, MPI for distributed systems
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Focus of this work – Polyhedral compilation model

Polyhedral compilation model

Algebraic framework to reason about loop
nests

http://pluto-compiler.sourceforge.net/
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Focus of this work – Polyhedral compilation model

Polyhedral compilation model

Algebraic framework to reason about loop
nests

Wide range of applications

Automatic parallelization
High-level synthesis
Communication optimizations

Used in

Production compilers (LLVM, GCC)
Just-in-time compilers (PolyJIT)
DSL compilers (PolyMage, Halide)

http://pluto-compiler.sourceforge.net/
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Thesis Statement

Though the polyhedral compilation model was designed for analysis and
optimization of sequential programs, our thesis is that it can be extended
to enable analysis of SPMD-style explicitly-parallel programs with benefits

to debugging and optimization of such programs.

Chatarasi et.al (LCPC 2016), An Extended Polyhedral Model for SPMD Programs and its
use in Static Data Race Detection

Chatarasi et.al (ACM SRC @ PACT 2015), Extending Polyhedral Model for Analysis and
Transformation of OpenMP Programs
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Overall flow
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Polyhedral Compilation Model

Compiler (algebraic) techniques for analysis and transformation of
codes with nested loops

Advantages over Abstract Syntax Tree (AST)
based frameworks

Reasoning at statement instance in loops
Unifies many loop transformations into a
single transformation
Powerful code generation algorithms

http://pluto-compiler.sourceforge.net/
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Polyhedral Representation of Programs - Schedule

1 for(int i = 1; i < M; i++) {

2 for(int j = 1; j < N; j++) {

3 S;

4 }

5 }
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Polyhedral Representation of Programs - Schedule

1 for(int i = 1; i < M; i++) {

2 for(int j = 1; j < N; j++) {

3 S;

4 }

5 }

Schedule (θ) – A key element of polyhedral representation

Assigns a time-stamp to each statement
instance S(i, j)

Statement instances are executed in
increasing order of time-stamps

Captures program execution order
(total order in sequential programs) 0 1 2 3 4 5 6

loop i

0

2

4

6

8

10

lo
op

 j

θ(S(i , j)) = (i , j)
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Limitations of Polyhedral Model

(a) An SPMD-style program

1 #pragma omp parallel num_threads(2)

2 {

3 {S1;}

4

5 #pragma omp barrier //B1

6

7 {S2;}

8 {S3;}

9

10 #pragma omp barrier //B2

11 }

(b) Program execution order
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Limitations of Polyhedral Model

(a) An SPMD-style program

1 #pragma omp parallel num_threads(2)

2 {

3 {S1;}

4

5 #pragma omp barrier //B1

6

7 {S2;}

8 {S3;}

9

10 #pragma omp barrier //B2

11 }

(b) Program execution order

Limitations of Polyhedral Model

Currently, there are no approaches to capture partial orders from SPMD
programs and express onto schedules

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 10



Overall workflow (PolyOMP)
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What are the important concepts in SPMD execution ?

1 #pragma omp parallel

2 {

3 for(int i = 0; i < N; i++)

4 {

5 for(int j = 0; j < N; j++)

6 {

7 {S1;} //S1(i, j)

8 #pragma omp barrier //B1(i, j)

9 {S2;} //S2(i, j)

10 }

11

12 #pragma omp barrier //B2(i)

13

14 #pragma omp master

15 {S3;} //S3(i)

16 }

17 }

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 12
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1 #pragma omp parallel

2 {

3 for(int i = 0; i < N; i++)

4 {

5 for(int j = 0; j < N; j++)

6 {

7 {S1;} //S1(i, j)

8 #pragma omp barrier //B1(i, j)

9 {S2;} //S2(i, j)

10 }

11

12 #pragma omp barrier //B2(i)

13

14 #pragma omp master

15 {S3;} //S3(i)

16 }

17 }

Program execution order for N = 2
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What are the important concepts in SPMD execution ?

1 #pragma omp parallel

2 {

3 for(int i = 0; i < N; i++)

4 {

5 for(int j = 0; j < N; j++)

6 {

7 {S1;} //S1(i, j)

8 #pragma omp barrier //B1(i, j)

9 {S2;} //S2(i, j)

10 }

11

12 #pragma omp barrier //B2(i)

13

14 #pragma omp master

15 {S3;} //S3(i)

16 }

17 }

Program execution order for N = 2

Important concepts: 1) Threads and 2) Phases
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Extension1 – Thread/Space/Allocation Mapping

Space Mapping (θA)

Assigns a logical processor id to each statement instance
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Extension1 – Thread/Space/Allocation Mapping

Space Mapping (θA)

Assigns a logical processor id to each statement instance

1 #pragma omp parallel

2 {

3 for(int i = 0; i < N; i++)

4 {

5 for(int j = 0; j < N; j++)

6 {

7 {S1;} //S1(i, j)

8 #pragma omp barrier //B1(i, j)

9 {S2;} //S2(i, j)

10 }

11

12 #pragma omp barrier //B2(i)

13

14 #pragma omp master

15 {S3;} //S3(i)

16 }

17 }

For example, θA(S3(i)) = 0
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Extension2 – Phase Mapping

Phase Mapping (θP)

Assigns a logical phase id to each statement instance
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15 {S3;} //S3(i)

16 }

17 }

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 14



Extension2 – Phase Mapping

Phase Mapping (θP)

Assigns a logical phase id to each statement instance

1 #pragma omp parallel

2 {

3 for(int i = 0; i < N; i++)

4 {

5 for(int j = 0; j < N; j++)

6 {

7 {S1;} //S1(i, j)

8 #pragma omp barrier //B1(i, j)

9 {S2;} //S2(i, j)

10 }

11

12 #pragma omp barrier //B2(i)

13

14 #pragma omp master

15 {S3;} //S3(i)

16 }

17 }

For example, θP(S3(0)) = 3
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How to compute phase mappings?

We define phase mappings in terms of reachable barriers

Reachable barriers (RB) of a statement instance

Set of barrier instances that can be executed after the statement instance
without an intervening barrier instance
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How to compute phase mappings?

We define phase mappings in terms of reachable barriers

Reachable barriers (RB) of a statement instance

Set of barrier instances that can be executed after the statement instance
without an intervening barrier instance

RB(S2(0,1)) = B2(0)

RB(S3(0)) = B1(1,0)
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How to compute phase mappings?

Observation

Two statement instances are in same phase if they have same set of
reachable barrier instances
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How to compute phase mappings?

Observation

Two statement instances are in same phase if they have same set of
reachable barrier instances

θP(S3(0)) = RB(S3(0))

= B1(1,0)

θP(S1(1,0)) = RB(S1(1,0))

= B1(1,0)



How to compute phase mappings?

Observation

Two statement instances are in same phase if they have same set of
reachable barrier instances

θP(S3(0)) = RB(S3(0))

= B1(1,0)

θP(S1(1,0)) = RB(S1(1,0))

= B1(1,0)

Ô⇒ θP(S3(0)) = θP(S1(1,0))
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How to compute phase mappings?

Observation

Two statement instances are in same phase if they have same set of
reachable barrier instances

θP(S3(0)) = RB(S3(0))

= B1(1,0)

θP(S1(1,0)) = RB(S1(1,0))

= B1(1,0)

Ô⇒ θP(S3(0)) = θP(S1(1,0))

To compute absolute phase mappings, θP(S) = θ(RB(S))
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Execution order in SPMD-style programs

In general, partial orders are expressed through
May-Happen-in-Parallel (MHP) or Happens-Before (HB) relations
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Execution order in SPMD-style programs

In general, partial orders are expressed through
May-Happen-in-Parallel (MHP) or Happens-Before (HB) relations

We define MHP relations in terms of space and phase mappings

MHP

Two statement instances can run in parallel if they are run by different
threads and are in same phase of computation
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Execution order in SPMD-style programs

In general, partial orders are expressed through
May-Happen-in-Parallel (MHP) or Happens-Before (HB) relations

We define MHP relations in terms of space and phase mappings

MHP

Two statement instances can run in parallel if they are run by different
threads and are in same phase of computation

Now, program order information in polyhedral model

(Space (θA), Phase (θP), Schedule (θ))
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Overall workflow (PolyOMP)
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Debugging of SPMD-style programs - Data races

Data races are common bugs in SPMD shared memory programs

Definition:

A race occurs when two or more threads perform a conflicting accesses
to a shared variable without any synchronization

Data races result in non-deterministic behavior

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 19



Debugging of SPMD-style programs - Data races

Data races are common bugs in SPMD shared memory programs

Definition:

A race occurs when two or more threads perform a conflicting accesses
to a shared variable without any synchronization

Data races result in non-deterministic behavior

Occurs only in few of the possible schedules of a parallel program

Extremely hard to reproduce and debug!
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Motivating example from OmpSCR Suite

1 #pragma omp parallel shared(U, V, k)

2 {

3 while (k <= Max) // S1

4 {

5 #pragma omp for nowait

6 for(i = 0 to N)

7 U[i] = V[i];

8 #pragma omp barrier

9

10 #pragma omp for nowait

11 for(i = 1 to N-1)

12 V[i] = U[i-1] + U[i] + U[i+1];

13 #pragma omp barrier

14

15 #pragma omp master

16 { k++;} // S2

17 }

18 }

1-dimensional stencil
(c jacobi3.c) from OmpSCR
suite
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Motivating example from OmpSCR Suite

1 #pragma omp parallel shared(U, V, k)

2 {

3 while (k <= Max) // S1

4 {

5 #pragma omp for nowait

6 for(i = 0 to N)

7 U[i] = V[i];

8 #pragma omp barrier

9

10 #pragma omp for nowait

11 for(i = 1 to N-1)

12 V[i] = U[i-1] + U[i] + U[i+1];

13 #pragma omp barrier

14

15 #pragma omp master

16 { k++;} // S2

17 }

18 }

1-dimensional stencil
(c jacobi3.c) from OmpSCR
suite

Race b/w S1 and S2 on
variable ’k’

Our goal: Detect such races
at compile-time

ARCHER: ”The data race in c jacobi3.c highly influences the execution
time of the benchmark, varying it by a factor of 1000 from run to run.”
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Our approach for race detection

1 Generate race conditions for every pair of read/write accesses of all
statements

Race(S, T) = true on ’k’
Ô⇒ MHP(S ,T ) = true and S,T conflict on ’k’
Ô⇒ θA(S) ≠ θA(T ) and θP(S) = θP(T ) and S,T conflict on ’k’

Chatarasi et.al (LCPC 2016), An Extended Polyhedral Model for SPMD Programs and its
use in Static Data Race Detection
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Our approach for race detection

1 Generate race conditions for every pair of read/write accesses of all
statements

Race(S, T) = true on ’k’
Ô⇒ MHP(S ,T ) = true and S,T conflict on ’k’
Ô⇒ θA(S) ≠ θA(T ) and θP(S) = θP(T ) and S,T conflict on ’k’

2 Solve the race conditions for existence of solutions.

If there are no solutions, there are no data races

Chatarasi et.al (LCPC 2016), An Extended Polyhedral Model for SPMD Programs and its
use in Static Data Race Detection
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Our approach on the motivating example

1 #pragma omp parallel shared(U, V, k)

2 {

3 while (k <= Max) // S1 (loop-x)

4 {

5 #pragma omp for nowait

6 for(i = 0 to N)

7 U[i] = V[i];

8 #pragma omp barrier // B1

9

10 #pragma omp for nowait

11 for(i = 1 to N-1)

12 V[i] = U[i-1] + U[i] + U[i+1];

13 #pragma omp barrier

14

15 #pragma omp master

16 { k++;} // S2

17 }

18 }

Race cond. b/w S2(x’) & S1(x”)
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Our approach on the motivating example

1 #pragma omp parallel shared(U, V, k)

2 {

3 while (k <= Max) // S1 (loop-x)

4 {

5 #pragma omp for nowait

6 for(i = 0 to N)

7 U[i] = V[i];

8 #pragma omp barrier // B1

9

10 #pragma omp for nowait

11 for(i = 1 to N-1)

12 V[i] = U[i-1] + U[i] + U[i+1];

13 #pragma omp barrier

14

15 #pragma omp master

16 { k++;} // S2

17 }

18 }

Race cond. b/w S2(x’) & S1(x”)

Space: θA(S2) ≠ θA(S1)
∧ θA(S2) = 0
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Our approach on the motivating example
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2 {

3 while (k <= Max) // S1 (loop-x)
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18 }

Race cond. b/w S2(x’) & S1(x”)

Space: θA(S2) ≠ θA(S1)
∧ θA(S2) = 0
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Our approach on the motivating example

1 #pragma omp parallel shared(U, V, k)

2 {

3 while (k <= Max) // S1 (loop-x)

4 {

5 #pragma omp for nowait

6 for(i = 0 to N)

7 U[i] = V[i];

8 #pragma omp barrier // B1

9

10 #pragma omp for nowait

11 for(i = 1 to N-1)

12 V[i] = U[i-1] + U[i] + U[i+1];

13 #pragma omp barrier

14

15 #pragma omp master

16 { k++;} // S2

17 }

18 }

Race cond. b/w S2(x’) & S1(x”)

Space: θA(S2) ≠ θA(S1)
∧ θA(S2) = 0

Phase: θP(S2) = θP(S1)
→ B1(x’ + 1) = B1(x”)
→ x’ + 1 = x”

Conflict: TRUE (same
location ’k’)
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Our approach on the motivating example

1 #pragma omp parallel shared(U, V, k)

2 {

3 while (k <= Max) // S1 (loop-x)

4 {

5 #pragma omp for nowait

6 for(i = 0 to N)

7 U[i] = V[i];

8 #pragma omp barrier // B1

9

10 #pragma omp for nowait

11 for(i = 1 to N-1)

12 V[i] = U[i-1] + U[i] + U[i+1];

13 #pragma omp barrier

14

15 #pragma omp master

16 { k++;} // S2

17 }

18 }

Race cond. b/w S2(x’) & S1(x”)

Space: θA(S2) ≠ θA(S1)
∧ θA(S2) = 0

Phase: θP(S2) = θP(S1)
→ B1(x’ + 1) = B1(x”)
→ x’ + 1 = x”

Conflict: TRUE (same
location ’k’)

Satisfiable assignment: (θA(S2) = 0, x’ = 0) and (θA(S1) = 1, x” = 1)
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Our approach on the motivating example

Satisfiable assignment: (θA(S2) = 0, x’ = 0) and (θA(S1) = 1, x” = 1)

1 #pragma omp parallel shared(U, V, k)

2 {

3 while (k <= Max) // S1 (loop-x)

4 {

5 #pragma omp for nowait

6 for(i = 0 to N)

7 U[i] = V[i];

8 #pragma omp barrier // B1

9

10 #pragma omp for nowait

11 for(i = 1 to N-1)

12 V[i] = U[i-1] + U[i] + U[i+1];

13 #pragma omp barrier

14

15 #pragma omp master

16 { k++;} // S2

17 }

18 }
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Experimental Setup

Quad core-i7 machine (2.2GHz) of 16GB main memory on macOS
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Quad core-i7 machine (2.2GHz) of 16GB main memory on macOS

Benchmark suites

OmpSCR Benchmarks Suite,
Polybench-ACC OpenMP Benchmarks Suite
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Experimental Setup

Quad core-i7 machine (2.2GHz) of 16GB main memory on macOS

Benchmark suites

OmpSCR Benchmarks Suite,
Polybench-ACC OpenMP Benchmarks Suite

Comparisons with existing tools

ARCHER (Static + Dynamic)
Intel Inspector XE (Dynamic)
ARCHER (Static)
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Experiments - OmpSCR Benchmark suite

Evaluation on 12 benchmarks

Identified all documented races (5)
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Identified all documented races (5)
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Experiments - OmpSCR Benchmark suite

Evaluation on 12 benchmarks

Identified all documented races (5)

False positives because of linearized array subscripts
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Experiments - OmpSCR Benchmark suites

Tool
ARCHER

(Static + Dynamic)
Intel Inspector XE

(Dynamic)
ARCHER
(Static)

PolyOMP
(Static)

True races 5 5 3 5

False +ves 0 5 * 27

Static part of ARCHER focuses on worksharing loops but not SPMD!

Remaining 2 races incurred significant overhead in dynamic analysis
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Experiments - OmpSCR Benchmark suites

Tool
ARCHER

(Static + Dynamic)
Intel Inspector XE

(Dynamic)
ARCHER
(Static)

PolyOMP
(Static)

True races 5 5 3 5

False +ves 0 5 * 27

Static part of ARCHER focuses on worksharing loops but not SPMD!

Remaining 2 races incurred significant overhead in dynamic analysis

Intel Inspector reported false +ves on worksharing loop iterators
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Experiments - Polybench-ACC OpenMP Benchmark suite

Evaluation on 22 benchmarks
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Evaluation on 22 benchmarks
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Experiments - Polybench-ACC OpenMP Benchmark suite

Evaluation on 22 benchmarks

Our tool found 61 races and no False positives (All verified)
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Experiments - Polybench-ACC OpenMP Benchmark suite

Evaluation on 22 benchmarks

Our tool found 61 races and no False positives (All verified)

Intel Inspector found only 31 races
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Source of races

Shared scalar variables inside the work-sharing loops (Eg: cholesky.c)
1 int x;

2 #pragma omp parallel

3 {

4 #pragma omp for private (j,k)

5 for (i = 0; i < _PB_N; ++i) {

6 x = A[i][i];

7 for (j = 0; j <= i - 1; ++j)

8 x = x - A[i][j] * A[i][j];

9 } ......

10 }
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Source of races

Shared scalar variables inside the work-sharing loops (Eg: cholesky.c)
1 int x;

2 #pragma omp parallel

3 {

4 #pragma omp for private (j,k)

5 for (i = 0; i < _PB_N; ++i) {

6 x = A[i][i];

7 for (j = 0; j <= i - 1; ++j)

8 x = x - A[i][j] * A[i][j];

9 } ......

10 }

Accessing common elements of arrays in parallel (Eg: trmm.c)

1 #pragma omp parallel

2 {

3 #pragma omp for private (j, k)

4 for (i = 1; i < _PB_NI; i++)

5 for (j = 0; j < _PB_NI; j++)

6 for (k = 0; k < i; k++)

7 B[i][j] += alpha * A[i][k] * B[j][k];

8 }
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Strengths and Limitations of our approach

Strengths

Input independent and schedule independent
Guaranteed to be exact (No false +ves and No false -ves) if the input
program satisfies all the standard preconditions of the polyhedral model
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Strengths and Limitations of our approach

Strengths

Input independent and schedule independent
Guaranteed to be exact (No false +ves and No false -ves) if the input
program satisfies all the standard preconditions of the polyhedral model

Limitations
Textually aligned barriers

All threads encounter same sequence of barriers

Pointer aliasing
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Closely related static approaches for race detection

Supported Constructs Approach Guarantees

Pathg
(Yu et.al)

OpenMP worksharing loops,
Simple Barriers,

Atomic

Thread
automata

Per number
of threads

OAT
(Ma et.al)

OpenMP worksharing loops,
Barriers, locks,

Atomic, single, master

Symbolic
execution

Per number
of threads

ompVerify
(Basupalli et.al)

OpenMP ‘parallel for’
Polyhedral

(Dependence
analysis)

Per worksharing
loop

ARCHER (static)
(Atzeni et.al)

OpenMP ‘parallel for’
Polyhedral

(Dependence
analysis)

Per worksharing
loop

PolyOMP
Our Approach

OpenMP worksharing loops,
Barriers in arbitrary nested loops,

Single, master

Polyhedral
(MHP relations)

Per program
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Overall workflow (PolyOMP)
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Optimization of SPMD-style programs - Redundant barriers

Redundant usage of barriers is a common performance issue

Definition:

A barrier is redundant if its removal doesn’t change the program
semantics (No data races)
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Optimization of SPMD-style programs - Redundant barriers

Redundant usage of barriers is a common performance issue

Definition:

A barrier is redundant if its removal doesn’t change the program
semantics (No data races)

Hence, we assume input programs to be data-race-free.
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Optimization of SPMD-style programs - Redundant barriers

1 #pragma omp parallel

2 {

3 #pragma omp for

4 for(int i = 0; i < N; i++) {

5 for(int j = 0; j < N; j++)

6 for(int k = 0; k < N; k++)

7 E[i][j] = A[i][k] * B[k][j]; //S1

8 }

9

10 #pragma omp for

11 for(int i = 0; i < N; i++) {

12 for(int j = 0; j < N; j++)

13 for(int k = 0; k < N; k++)

14 F[i][j] = C[i][k] * D[k][j]; //S2

15 }

16

17 #pragma omp for

18 for(int i = 0; i < N; i++) {

19 for(int j = 0; j < N; j++)

20 for(int k = 0; k < N; k++)

21 G[i][j] = E[i][k] * F[k][j]; //S3

22 }

23 }
A sequence of matrix multiplications, i.e., E = A×B; F = C×D; G = E×F;
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Overall execution with data dependences
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Overall execution with data dependences

Barrier B1 is redundant ,
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Optimization of SPMD-style programs - Redundant barriers

1 #pragma omp parallel

2 {

3 #pragma omp for

4 for(int i = 0; i < N; i++) {

5 for(int j = 0; j < N; j++)

6 for(int k = 0; k < N; k++)

7 E[i][j] = A[i][k] * B[k][j]; //S1

8 } //B1

9

10 #pragma omp for

11 for(int i = 0; i < N; i++) {

12 for(int j = 0; j < N; j++)

13 for(int k = 0; k < N; k++)

14 F[i][j] = C[i][k] * D[k][j]; //S2

15 }

16

17 #pragma omp for

18 for(int i = 0; i < N; i++) {

19 for(int j = 0; j < N; j++)

20 for(int k = 0; k < N; k++)

21 G[i][j] = E[i][k] * F[k][j]; //S3

22 }

23 }
Implicit barrier on line 8 is redundant ,
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Our approach for identification of redundant barriers

Remove all barriers from the program and compute data races

Races are computed with our race detection approach
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Our approach for identification of redundant barriers

Remove all barriers from the program and compute data races

Races are computed with our race detection approach

Map each barrier to a set of races that can be fixed with that barrier

For each barrier, our approach computes phases again, and see whether
source and sink of the race are in different phases
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Our approach for identification of redundant barriers

Remove all barriers from the program and compute data races

Races are computed with our race detection approach

Map each barrier to a set of races that can be fixed with that barrier

For each barrier, our approach computes phases again, and see whether
source and sink of the race are in different phases

Greedily pick up set of barriers from the map so that all races are
covered.

Subtract the required barriers from set of initial barriers
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Experimental Setup

Benchmark suites

OmpSCR Benchmark Suite, Polybench-ACC OpenMP Benchmark suite

Two platforms, i.e., Intel Knights Corner and IBM Power 8

Intel KNC IBM Power 8

Micro architecture Xeon Phi Power PC

Total threads 228 192

Compiler Intel ICC v15.0 IBM XLC v13.1

Compiler flags -O3 -O5
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Experimental Setup

Benchmark suites

OmpSCR Benchmark Suite, Polybench-ACC OpenMP Benchmark suite

Two platforms, i.e., Intel Knights Corner and IBM Power 8

Intel KNC IBM Power 8

Micro architecture Xeon Phi Power PC

Total threads 228 192

Compiler Intel ICC v15.0 IBM XLC v13.1

Compiler flags -O3 -O5

Two variants:

Original OpenMP program
OpenMP program after removing redundant barriers
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Experiments - OmpSCR Benchmark suite

Evaluation on 12 benchmarks

Detected 4 benchmarks as race-free

All barriers are necessary to respect program semantics
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Experiments - Polybench-ACC OpenMP Benchmark suite

Evaluation on 22 benchmarks

Detected 14 benchmarks as race-free
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Experiments - Polybench-ACC OpenMP Benchmark suite

Evaluation on 22 benchmarks

Detected 14 benchmarks as race-free

Less improvement because of well load-balanced work-sharing loops

More effective IBM XLC barrier implementation than Intel ICC
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Closely related work in barrier analysis

Style Key idea Limitations

Kamil et.al
LCPC’05

SPMD
Tree traversal on
concurrency graph

Conservative MHP in case of
barriers enclosed in loops

Tseng et.al
PPoPP’95

SPMD +
fork-join

Communication analysis b/w
computation partitions

Structure of loops
enclosing barriers

Zhao et.al
PACT’10

fork-join
SPMDization by

loop transformations
Join (barrier) synchronization

from only for-all loops

Surendran et.al
PLDI’14

fork-join
Dynamic programming on

scoped dynamic structure trees

Limited to finish construct
but the finish placement
algorithm is optimal

Our approach SPMD
Precise MHP analysis with

extensions to Polyhedral model
Can support barriers in
arbitrarily nested loops
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Closely related work in barrier analysis

Style Key idea Limitations

Kamil et.al
LCPC’05

SPMD
Tree traversal on
concurrency graph

Conservative MHP in case of
barriers enclosed in loops

Tseng et.al
PPoPP’95

SPMD +
fork-join

Communication analysis b/w
computation partitions

Structure of loops
enclosing barriers

Zhao et.al
PACT’10

fork-join
SPMDization by

loop transformations
Join (barrier) synchronization

from only for-all loops

Surendran et.al
PLDI’14

fork-join
Dynamic programming on

scoped dynamic structure trees

Limited to finish construct
but the finish placement
algorithm is optimal

Our approach SPMD
Precise MHP analysis with

extensions to Polyhedral model
Can support barriers in
arbitrarily nested loops

Limitations in our approach: Greedy heuristic on barrier selection may not
be optimal
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PolyOMP Infrastructure
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Conclusions

Extensions (Space and Phase mappings) to the polyhedral model to
capture partial order in SPMD-style programs

Formalization of May-Happen-in-Parallel (MHP) relations from the
extensions

Approaches for static data race detection and redundant barrier
detection in SPMD-style programs

Demonstration of our approaches on 34 OpenMP programs from the
OmpSCR and PolyBench-ACC benchmark suites
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Future work

Enhancing OpenMP dynamic analysis tools for race detection with
our MHP analysis

Replacing barriers with fine grained synchronization for better
performance

Repair of OpenMP programs with barriers

Enabling classic scalar optimizations (code motion) on concurrency
constructs in OpenMP programs
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Finally,

“Extending the polyhedral compilation model for explicitly parallel
programs is a new direction to multi-core programming challenge.”

Thank you!
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Serial-elision

A Cilk program, when run on one processor, is semantically equivalent to
the C program that results from the deletion of the three keywords. Such
a program is called the serial elision or C elision of the Cilk program.

https://arxiv.org/pdf/cs/0608122.pdf
Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 47



Parallel Loops with Barriers do not satisfy Serial Elision

New programming models such as Chapel, X10 have barriers enclosed
in parallel loops.

Parallel Loops with Barriers do not satisfy Serial Elision

1 forall (i = ...) {

2 S1;

3 barrier;

4 S2;

5 }
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SPMD programs satisfy serial elision if they can be run on
1 thread

SPMD programs satisfy serial elision if they can be run on 1 thread

1 #pragma omp parallel

2 {

3 {S1;}

4

5 #pragma omp barrier //B1

6

7 {S2;}

8 {S3;}

9

10 #pragma omp barrier //B2

11 }
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What about SPMD programs with fixed number of
threads?

May not have an execution on one thread

1 #pragma omp parallel num_threads(2)

2 {

3 {S1;}

4

5 #pragma omp barrier //B1

6

7 {S2;}

8 {S3;}

9

10 #pragma omp barrier //B2

11 }
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What about SPMD programs with fixed number of
threads?

May not have an execution on one thread
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