
Extending the Polyhedral Compilation Model for
Debugging and Optimization of SPMD-style

Explicitly-Parallel Programs

Prasanth Chatarasi

Masters Thesis Defense
Habanero Extreme Scale Software Research Group

Department of Computer Science
Rice University

April 24th, 2017

40 Years of Microprocessor Trend

100

101

102

103

104

105

106

107

 1970 1980 1990 2000 2010 2020

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 103)

Transistors
(thousands)

Typical Power
(Watts)

Year

Moore’s law still continues

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 1

40 Years of Microprocessor Trend

100

101

102

103

104

105

106

107

 1970 1980 1990 2000 2010 2020

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 103)

Transistors
(thousands)

Typical Power
(Watts)

Year

Moore’s law still continues

Performance is driven more by parallelism than single-thread

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 1

A major challenge facing the overall computer field

Programming multi-core processors – how to exploit the parallelism in
large-scale parallel hardware without undue programmer effort

– Mary Hall et.al., in Communications of ACM 2009

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 2

A major challenge facing the overall computer field

Programming multi-core processors – how to exploit the parallelism in
large-scale parallel hardware without undue programmer effort

– Mary Hall et.al., in Communications of ACM 2009

Two major compiler approaches in tackling the challenge
Automatic parallelization of sequential programs

Compilers extract parallelism
Not much burden on programmer but lot of limitations!

Manually parallelize programs

Full burden on programmer but can get higher performance!

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 2

A major challenge facing the overall computer field

Programming multi-core processors – how to exploit the parallelism in
large-scale parallel hardware without undue programmer effort

– Mary Hall et.al., in Communications of ACM 2009

Two major compiler approaches in tackling the challenge
Automatic parallelization of sequential programs

Compilers extract parallelism
Not much burden on programmer but lot of limitations!

Manually parallelize programs

Full burden on programmer but can get higher performance!
Can the compilers help the programmer?

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 2

Focus of this work – SPMD-style parallelism

Focus on SPMD-style parallel programs

All processors execute the same program
Sequential code redundantly
Parallel code cooperatively

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 3

Focus of this work – SPMD-style parallelism

Focus on SPMD-style parallel programs

All processors execute the same program
Sequential code redundantly
Parallel code cooperatively

OpenMP for multi-cores, CUDA/ OpenCL for
accelerators, MPI for distributed systems

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 3

Focus of this work – Polyhedral compilation model

Polyhedral compilation model

Algebraic framework to reason about loop
nests

http://pluto-compiler.sourceforge.net/

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 4

Focus of this work – Polyhedral compilation model

Polyhedral compilation model

Algebraic framework to reason about loop
nests

Wide range of applications

Automatic parallelization
High-level synthesis
Communication optimizations

http://pluto-compiler.sourceforge.net/

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 4

Focus of this work – Polyhedral compilation model

Polyhedral compilation model

Algebraic framework to reason about loop
nests

Wide range of applications

Automatic parallelization
High-level synthesis
Communication optimizations

Used in

Production compilers (LLVM, GCC)
Just-in-time compilers (PolyJIT)
DSL compilers (PolyMage, Halide)

http://pluto-compiler.sourceforge.net/

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 4

Thesis Statement

Though the polyhedral compilation model was designed for analysis and
optimization of sequential programs, our thesis is that it can be extended
to enable analysis of SPMD-style explicitly-parallel programs with benefits

to debugging and optimization of such programs.

Chatarasi et.al (LCPC 2016), An Extended Polyhedral Model for SPMD Programs and its
use in Static Data Race Detection

Chatarasi et.al (ACM SRC @ PACT 2015), Extending Polyhedral Model for Analysis and
Transformation of OpenMP Programs

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 5

Overall flow

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 6

Polyhedral Compilation Model

Compiler (algebraic) techniques for analysis and transformation of
codes with nested loops

Advantages over Abstract Syntax Tree (AST)
based frameworks

Reasoning at statement instance in loops
Unifies many loop transformations into a
single transformation
Powerful code generation algorithms

http://pluto-compiler.sourceforge.net/

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 7

Polyhedral Representation of Programs - Schedule

1 for(int i = 1; i < M; i++) {

2 for(int j = 1; j < N; j++) {

3 S;

4 }

5 }

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 8

Polyhedral Representation of Programs - Schedule

1 for(int i = 1; i < M; i++) {

2 for(int j = 1; j < N; j++) {

3 S;

4 }

5 }

Schedule (θ) – A key element of polyhedral representation

Assigns a time-stamp to each statement
instance S(i, j)

Statement instances are executed in
increasing order of time-stamps

Captures program execution order
(total order in sequential programs) 0 1 2 3 4 5 6

loop i

0

2

4

6

8

10

lo
op

 j

θ(S(i , j)) = (i , j)

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 8

Limitations of Polyhedral Model

(a) An SPMD-style program

1 #pragma omp parallel num_threads(2)

2 {

3 {S1;}

4

5 #pragma omp barrier //B1

6

7 {S2;}

8 {S3;}

9

10 #pragma omp barrier //B2

11 }

(b) Program execution order

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 9

Limitations of Polyhedral Model

(a) An SPMD-style program

1 #pragma omp parallel num_threads(2)

2 {

3 {S1;}

4

5 #pragma omp barrier //B1

6

7 {S2;}

8 {S3;}

9

10 #pragma omp barrier //B2

11 }

(b) Program execution order

Limitations of Polyhedral Model

Currently, there are no approaches to capture partial orders from SPMD
programs and express onto schedules

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 10

Overall workflow (PolyOMP)

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 11

What are the important concepts in SPMD execution ?

1 #pragma omp parallel

2 {

3 for(int i = 0; i < N; i++)

4 {

5 for(int j = 0; j < N; j++)

6 {

7 {S1;} //S1(i, j)

8 #pragma omp barrier //B1(i, j)

9 {S2;} //S2(i, j)

10 }

11

12 #pragma omp barrier //B2(i)

13

14 #pragma omp master

15 {S3;} //S3(i)

16 }

17 }

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 12

What are the important concepts in SPMD execution ?

1 #pragma omp parallel

2 {

3 for(int i = 0; i < N; i++)

4 {

5 for(int j = 0; j < N; j++)

6 {

7 {S1;} //S1(i, j)

8 #pragma omp barrier //B1(i, j)

9 {S2;} //S2(i, j)

10 }

11

12 #pragma omp barrier //B2(i)

13

14 #pragma omp master

15 {S3;} //S3(i)

16 }

17 }

Program execution order for N = 2

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 12

What are the important concepts in SPMD execution ?

1 #pragma omp parallel

2 {

3 for(int i = 0; i < N; i++)

4 {

5 for(int j = 0; j < N; j++)

6 {

7 {S1;} //S1(i, j)

8 #pragma omp barrier //B1(i, j)

9 {S2;} //S2(i, j)

10 }

11

12 #pragma omp barrier //B2(i)

13

14 #pragma omp master

15 {S3;} //S3(i)

16 }

17 }

Program execution order for N = 2

Important concepts: 1) Threads and 2) Phases

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 12

Extension1 – Thread/Space/Allocation Mapping

Space Mapping (θA)

Assigns a logical processor id to each statement instance

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 13

Extension1 – Thread/Space/Allocation Mapping

Space Mapping (θA)

Assigns a logical processor id to each statement instance

1 #pragma omp parallel

2 {

3 for(int i = 0; i < N; i++)

4 {

5 for(int j = 0; j < N; j++)

6 {

7 {S1;} //S1(i, j)

8 #pragma omp barrier //B1(i, j)

9 {S2;} //S2(i, j)

10 }

11

12 #pragma omp barrier //B2(i)

13

14 #pragma omp master

15 {S3;} //S3(i)

16 }

17 }

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 13

Extension1 – Thread/Space/Allocation Mapping

Space Mapping (θA)

Assigns a logical processor id to each statement instance

1 #pragma omp parallel

2 {

3 for(int i = 0; i < N; i++)

4 {

5 for(int j = 0; j < N; j++)

6 {

7 {S1;} //S1(i, j)

8 #pragma omp barrier //B1(i, j)

9 {S2;} //S2(i, j)

10 }

11

12 #pragma omp barrier //B2(i)

13

14 #pragma omp master

15 {S3;} //S3(i)

16 }

17 }

For example, θA(S3(i)) = 0

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 13

Extension2 – Phase Mapping

Phase Mapping (θP)

Assigns a logical phase id to each statement instance

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 14

Extension2 – Phase Mapping

Phase Mapping (θP)

Assigns a logical phase id to each statement instance

1 #pragma omp parallel

2 {

3 for(int i = 0; i < N; i++)

4 {

5 for(int j = 0; j < N; j++)

6 {

7 {S1;} //S1(i, j)

8 #pragma omp barrier //B1(i, j)

9 {S2;} //S2(i, j)

10 }

11

12 #pragma omp barrier //B2(i)

13

14 #pragma omp master

15 {S3;} //S3(i)

16 }

17 }

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 14

Extension2 – Phase Mapping

Phase Mapping (θP)

Assigns a logical phase id to each statement instance

1 #pragma omp parallel

2 {

3 for(int i = 0; i < N; i++)

4 {

5 for(int j = 0; j < N; j++)

6 {

7 {S1;} //S1(i, j)

8 #pragma omp barrier //B1(i, j)

9 {S2;} //S2(i, j)

10 }

11

12 #pragma omp barrier //B2(i)

13

14 #pragma omp master

15 {S3;} //S3(i)

16 }

17 }

For example, θP(S3(0)) = 3

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 14

How to compute phase mappings?

We define phase mappings in terms of reachable barriers

Reachable barriers (RB) of a statement instance

Set of barrier instances that can be executed after the statement instance
without an intervening barrier instance

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 15

How to compute phase mappings?

We define phase mappings in terms of reachable barriers

Reachable barriers (RB) of a statement instance

Set of barrier instances that can be executed after the statement instance
without an intervening barrier instance

RB(S2(0,1)) = B2(0)

RB(S3(0)) = B1(1,0)

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 15

How to compute phase mappings?

Observation

Two statement instances are in same phase if they have same set of
reachable barrier instances

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 16

How to compute phase mappings?

Observation

Two statement instances are in same phase if they have same set of
reachable barrier instances

θP(S3(0)) = RB(S3(0))

= B1(1,0)

θP(S1(1,0)) = RB(S1(1,0))

= B1(1,0)

How to compute phase mappings?

Observation

Two statement instances are in same phase if they have same set of
reachable barrier instances

θP(S3(0)) = RB(S3(0))

= B1(1,0)

θP(S1(1,0)) = RB(S1(1,0))

= B1(1,0)

Ô⇒ θP(S3(0)) = θP(S1(1,0))

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 16

How to compute phase mappings?

Observation

Two statement instances are in same phase if they have same set of
reachable barrier instances

θP(S3(0)) = RB(S3(0))

= B1(1,0)

θP(S1(1,0)) = RB(S1(1,0))

= B1(1,0)

Ô⇒ θP(S3(0)) = θP(S1(1,0))

To compute absolute phase mappings, θP(S) = θ(RB(S))

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 16

Execution order in SPMD-style programs

In general, partial orders are expressed through
May-Happen-in-Parallel (MHP) or Happens-Before (HB) relations

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 17

Execution order in SPMD-style programs

In general, partial orders are expressed through
May-Happen-in-Parallel (MHP) or Happens-Before (HB) relations

We define MHP relations in terms of space and phase mappings

MHP

Two statement instances can run in parallel if they are run by different
threads and are in same phase of computation

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 17

Execution order in SPMD-style programs

In general, partial orders are expressed through
May-Happen-in-Parallel (MHP) or Happens-Before (HB) relations

We define MHP relations in terms of space and phase mappings

MHP

Two statement instances can run in parallel if they are run by different
threads and are in same phase of computation

Now, program order information in polyhedral model

(Space (θA), Phase (θP), Schedule (θ))

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 17

Overall workflow (PolyOMP)

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 18

Debugging of SPMD-style programs - Data races

Data races are common bugs in SPMD shared memory programs

Definition:

A race occurs when two or more threads perform a conflicting accesses
to a shared variable without any synchronization

Data races result in non-deterministic behavior

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 19

Debugging of SPMD-style programs - Data races

Data races are common bugs in SPMD shared memory programs

Definition:

A race occurs when two or more threads perform a conflicting accesses
to a shared variable without any synchronization

Data races result in non-deterministic behavior

Occurs only in few of the possible schedules of a parallel program

Extremely hard to reproduce and debug!

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 19

Motivating example from OmpSCR Suite

1 #pragma omp parallel shared(U, V, k)

2 {

3 while (k <= Max) // S1

4 {

5 #pragma omp for nowait

6 for(i = 0 to N)

7 U[i] = V[i];

8 #pragma omp barrier

9

10 #pragma omp for nowait

11 for(i = 1 to N-1)

12 V[i] = U[i-1] + U[i] + U[i+1];

13 #pragma omp barrier

14

15 #pragma omp master

16 { k++;} // S2

17 }

18 }

1-dimensional stencil
(c jacobi3.c) from OmpSCR
suite

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 20

Motivating example from OmpSCR Suite

1 #pragma omp parallel shared(U, V, k)

2 {

3 while (k <= Max) // S1

4 {

5 #pragma omp for nowait

6 for(i = 0 to N)

7 U[i] = V[i];

8 #pragma omp barrier

9

10 #pragma omp for nowait

11 for(i = 1 to N-1)

12 V[i] = U[i-1] + U[i] + U[i+1];

13 #pragma omp barrier

14

15 #pragma omp master

16 { k++;} // S2

17 }

18 }

1-dimensional stencil
(c jacobi3.c) from OmpSCR
suite

Race b/w S1 and S2 on
variable ’k’

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 20

Motivating example from OmpSCR Suite

1 #pragma omp parallel shared(U, V, k)

2 {

3 while (k <= Max) // S1

4 {

5 #pragma omp for nowait

6 for(i = 0 to N)

7 U[i] = V[i];

8 #pragma omp barrier

9

10 #pragma omp for nowait

11 for(i = 1 to N-1)

12 V[i] = U[i-1] + U[i] + U[i+1];

13 #pragma omp barrier

14

15 #pragma omp master

16 { k++;} // S2

17 }

18 }

1-dimensional stencil
(c jacobi3.c) from OmpSCR
suite

Race b/w S1 and S2 on
variable ’k’

Our goal: Detect such races
at compile-time

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 20

Motivating example from OmpSCR Suite

1 #pragma omp parallel shared(U, V, k)

2 {

3 while (k <= Max) // S1

4 {

5 #pragma omp for nowait

6 for(i = 0 to N)

7 U[i] = V[i];

8 #pragma omp barrier

9

10 #pragma omp for nowait

11 for(i = 1 to N-1)

12 V[i] = U[i-1] + U[i] + U[i+1];

13 #pragma omp barrier

14

15 #pragma omp master

16 { k++;} // S2

17 }

18 }

1-dimensional stencil
(c jacobi3.c) from OmpSCR
suite

Race b/w S1 and S2 on
variable ’k’

Our goal: Detect such races
at compile-time

ARCHER: ”The data race in c jacobi3.c highly influences the execution
time of the benchmark, varying it by a factor of 1000 from run to run.”

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 21

Our approach for race detection

1 Generate race conditions for every pair of read/write accesses of all
statements

Race(S, T) = true on ’k’
Ô⇒ MHP(S ,T) = true and S,T conflict on ’k’
Ô⇒ θA(S) ≠ θA(T) and θP(S) = θP(T) and S,T conflict on ’k’

Chatarasi et.al (LCPC 2016), An Extended Polyhedral Model for SPMD Programs and its
use in Static Data Race Detection

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 22

Our approach for race detection

1 Generate race conditions for every pair of read/write accesses of all
statements

Race(S, T) = true on ’k’
Ô⇒ MHP(S ,T) = true and S,T conflict on ’k’
Ô⇒ θA(S) ≠ θA(T) and θP(S) = θP(T) and S,T conflict on ’k’

2 Solve the race conditions for existence of solutions.

If there are no solutions, there are no data races

Chatarasi et.al (LCPC 2016), An Extended Polyhedral Model for SPMD Programs and its
use in Static Data Race Detection

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 22

Our approach on the motivating example

1 #pragma omp parallel shared(U, V, k)

2 {

3 while (k <= Max) // S1 (loop-x)

4 {

5 #pragma omp for nowait

6 for(i = 0 to N)

7 U[i] = V[i];

8 #pragma omp barrier // B1

9

10 #pragma omp for nowait

11 for(i = 1 to N-1)

12 V[i] = U[i-1] + U[i] + U[i+1];

13 #pragma omp barrier

14

15 #pragma omp master

16 { k++;} // S2

17 }

18 }

Race cond. b/w S2(x’) & S1(x”)

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 23

Our approach on the motivating example

1 #pragma omp parallel shared(U, V, k)

2 {

3 while (k <= Max) // S1 (loop-x)

4 {

5 #pragma omp for nowait

6 for(i = 0 to N)

7 U[i] = V[i];

8 #pragma omp barrier // B1

9

10 #pragma omp for nowait

11 for(i = 1 to N-1)

12 V[i] = U[i-1] + U[i] + U[i+1];

13 #pragma omp barrier

14

15 #pragma omp master

16 { k++;} // S2

17 }

18 }

Race cond. b/w S2(x’) & S1(x”)

Space: θA(S2) ≠ θA(S1)
∧ θA(S2) = 0

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 23

Our approach on the motivating example

1 #pragma omp parallel shared(U, V, k)

2 {

3 while (k <= Max) // S1 (loop-x)

4 {

5 #pragma omp for nowait

6 for(i = 0 to N)

7 U[i] = V[i];

8 #pragma omp barrier // B1

9

10 #pragma omp for nowait

11 for(i = 1 to N-1)

12 V[i] = U[i-1] + U[i] + U[i+1];

13 #pragma omp barrier

14

15 #pragma omp master

16 { k++;} // S2

17 }

18 }

Race cond. b/w S2(x’) & S1(x”)

Space: θA(S2) ≠ θA(S1)
∧ θA(S2) = 0

Phase: θP(S2) = θP(S1)
→ B1(x’ + 1) = B1(x”)
→ x’ + 1 = x”

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 23

Our approach on the motivating example

1 #pragma omp parallel shared(U, V, k)

2 {

3 while (k <= Max) // S1 (loop-x)

4 {

5 #pragma omp for nowait

6 for(i = 0 to N)

7 U[i] = V[i];

8 #pragma omp barrier // B1

9

10 #pragma omp for nowait

11 for(i = 1 to N-1)

12 V[i] = U[i-1] + U[i] + U[i+1];

13 #pragma omp barrier

14

15 #pragma omp master

16 { k++;} // S2

17 }

18 }

Race cond. b/w S2(x’) & S1(x”)

Space: θA(S2) ≠ θA(S1)
∧ θA(S2) = 0

Phase: θP(S2) = θP(S1)
→ B1(x’ + 1) = B1(x”)
→ x’ + 1 = x”

Conflict: TRUE (same
location ’k’)

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 23

Our approach on the motivating example

1 #pragma omp parallel shared(U, V, k)

2 {

3 while (k <= Max) // S1 (loop-x)

4 {

5 #pragma omp for nowait

6 for(i = 0 to N)

7 U[i] = V[i];

8 #pragma omp barrier // B1

9

10 #pragma omp for nowait

11 for(i = 1 to N-1)

12 V[i] = U[i-1] + U[i] + U[i+1];

13 #pragma omp barrier

14

15 #pragma omp master

16 { k++;} // S2

17 }

18 }

Race cond. b/w S2(x’) & S1(x”)

Space: θA(S2) ≠ θA(S1)
∧ θA(S2) = 0

Phase: θP(S2) = θP(S1)
→ B1(x’ + 1) = B1(x”)
→ x’ + 1 = x”

Conflict: TRUE (same
location ’k’)

Satisfiable assignment: (θA(S2) = 0, x’ = 0) and (θA(S1) = 1, x” = 1)

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 23

Our approach on the motivating example

Satisfiable assignment: (θA(S2) = 0, x’ = 0) and (θA(S1) = 1, x” = 1)

1 #pragma omp parallel shared(U, V, k)

2 {

3 while (k <= Max) // S1 (loop-x)

4 {

5 #pragma omp for nowait

6 for(i = 0 to N)

7 U[i] = V[i];

8 #pragma omp barrier // B1

9

10 #pragma omp for nowait

11 for(i = 1 to N-1)

12 V[i] = U[i-1] + U[i] + U[i+1];

13 #pragma omp barrier

14

15 #pragma omp master

16 { k++;} // S2

17 }

18 }

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 24

Experimental Setup

Quad core-i7 machine (2.2GHz) of 16GB main memory on macOS

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 25

Experimental Setup

Quad core-i7 machine (2.2GHz) of 16GB main memory on macOS

Benchmark suites

OmpSCR Benchmarks Suite,
Polybench-ACC OpenMP Benchmarks Suite

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 25

Experimental Setup

Quad core-i7 machine (2.2GHz) of 16GB main memory on macOS

Benchmark suites

OmpSCR Benchmarks Suite,
Polybench-ACC OpenMP Benchmarks Suite

Comparisons with existing tools

ARCHER (Static + Dynamic)
Intel Inspector XE (Dynamic)
ARCHER (Static)

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 25

Experiments - OmpSCR Benchmark suite

Evaluation on 12 benchmarks

Identified all documented races (5)

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 26

Experiments - OmpSCR Benchmark suite

Evaluation on 12 benchmarks

Identified all documented races (5)

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 26

Experiments - OmpSCR Benchmark suite

Evaluation on 12 benchmarks

Identified all documented races (5)

False positives because of linearized array subscripts

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 26

Experiments - OmpSCR Benchmark suites

Tool
ARCHER

(Static + Dynamic)
Intel Inspector XE

(Dynamic)
ARCHER
(Static)

PolyOMP
(Static)

True races 5 5 3 5

False +ves 0 5 * 27

Static part of ARCHER focuses on worksharing loops but not SPMD!

Remaining 2 races incurred significant overhead in dynamic analysis

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 27

Experiments - OmpSCR Benchmark suites

Tool
ARCHER

(Static + Dynamic)
Intel Inspector XE

(Dynamic)
ARCHER
(Static)

PolyOMP
(Static)

True races 5 5 3 5

False +ves 0 5 * 27

Static part of ARCHER focuses on worksharing loops but not SPMD!

Remaining 2 races incurred significant overhead in dynamic analysis

Intel Inspector reported false +ves on worksharing loop iterators

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 27

Experiments - Polybench-ACC OpenMP Benchmark suite

Evaluation on 22 benchmarks

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 28

Experiments - Polybench-ACC OpenMP Benchmark suite

Evaluation on 22 benchmarks

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 28

Experiments - Polybench-ACC OpenMP Benchmark suite

Evaluation on 22 benchmarks

Our tool found 61 races and no False positives (All verified)

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 28

Experiments - Polybench-ACC OpenMP Benchmark suite

Evaluation on 22 benchmarks

Our tool found 61 races and no False positives (All verified)

Intel Inspector found only 31 races

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 28

Source of races

Shared scalar variables inside the work-sharing loops (Eg: cholesky.c)
1 int x;

2 #pragma omp parallel

3 {

4 #pragma omp for private (j,k)

5 for (i = 0; i < _PB_N; ++i) {

6 x = A[i][i];

7 for (j = 0; j <= i - 1; ++j)

8 x = x - A[i][j] * A[i][j];

9 }

10 }

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 29

Source of races

Shared scalar variables inside the work-sharing loops (Eg: cholesky.c)
1 int x;

2 #pragma omp parallel

3 {

4 #pragma omp for private (j,k)

5 for (i = 0; i < _PB_N; ++i) {

6 x = A[i][i];

7 for (j = 0; j <= i - 1; ++j)

8 x = x - A[i][j] * A[i][j];

9 }

10 }

Accessing common elements of arrays in parallel (Eg: trmm.c)

1 #pragma omp parallel

2 {

3 #pragma omp for private (j, k)

4 for (i = 1; i < _PB_NI; i++)

5 for (j = 0; j < _PB_NI; j++)

6 for (k = 0; k < i; k++)

7 B[i][j] += alpha * A[i][k] * B[j][k];

8 }

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 29

Strengths and Limitations of our approach

Strengths

Input independent and schedule independent
Guaranteed to be exact (No false +ves and No false -ves) if the input
program satisfies all the standard preconditions of the polyhedral model

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 30

Strengths and Limitations of our approach

Strengths

Input independent and schedule independent
Guaranteed to be exact (No false +ves and No false -ves) if the input
program satisfies all the standard preconditions of the polyhedral model

Limitations
Textually aligned barriers

All threads encounter same sequence of barriers

Pointer aliasing

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 30

Closely related static approaches for race detection

Supported Constructs Approach Guarantees

Pathg
(Yu et.al)

OpenMP worksharing loops,
Simple Barriers,

Atomic

Thread
automata

Per number
of threads

OAT
(Ma et.al)

OpenMP worksharing loops,
Barriers, locks,

Atomic, single, master

Symbolic
execution

Per number
of threads

ompVerify
(Basupalli et.al)

OpenMP ‘parallel for’
Polyhedral

(Dependence
analysis)

Per worksharing
loop

ARCHER (static)
(Atzeni et.al)

OpenMP ‘parallel for’
Polyhedral

(Dependence
analysis)

Per worksharing
loop

PolyOMP
Our Approach

OpenMP worksharing loops,
Barriers in arbitrary nested loops,

Single, master

Polyhedral
(MHP relations)

Per program

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 31

Overall workflow (PolyOMP)

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 32

Optimization of SPMD-style programs - Redundant barriers

Redundant usage of barriers is a common performance issue

Definition:

A barrier is redundant if its removal doesn’t change the program
semantics (No data races)

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 33

Optimization of SPMD-style programs - Redundant barriers

Redundant usage of barriers is a common performance issue

Definition:

A barrier is redundant if its removal doesn’t change the program
semantics (No data races)

Hence, we assume input programs to be data-race-free.

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 33

Optimization of SPMD-style programs - Redundant barriers

1 #pragma omp parallel

2 {

3 #pragma omp for

4 for(int i = 0; i < N; i++) {

5 for(int j = 0; j < N; j++)

6 for(int k = 0; k < N; k++)

7 E[i][j] = A[i][k] * B[k][j]; //S1

8 }

9

10 #pragma omp for

11 for(int i = 0; i < N; i++) {

12 for(int j = 0; j < N; j++)

13 for(int k = 0; k < N; k++)

14 F[i][j] = C[i][k] * D[k][j]; //S2

15 }

16

17 #pragma omp for

18 for(int i = 0; i < N; i++) {

19 for(int j = 0; j < N; j++)

20 for(int k = 0; k < N; k++)

21 G[i][j] = E[i][k] * F[k][j]; //S3

22 }

23 }
A sequence of matrix multiplications, i.e., E = A×B; F = C×D; G = E×F;

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 34

Overall execution with data dependences

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 35

Overall execution with data dependences

Barrier B1 is redundant ,

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 35

Optimization of SPMD-style programs - Redundant barriers

1 #pragma omp parallel

2 {

3 #pragma omp for

4 for(int i = 0; i < N; i++) {

5 for(int j = 0; j < N; j++)

6 for(int k = 0; k < N; k++)

7 E[i][j] = A[i][k] * B[k][j]; //S1

8 } //B1

9

10 #pragma omp for

11 for(int i = 0; i < N; i++) {

12 for(int j = 0; j < N; j++)

13 for(int k = 0; k < N; k++)

14 F[i][j] = C[i][k] * D[k][j]; //S2

15 }

16

17 #pragma omp for

18 for(int i = 0; i < N; i++) {

19 for(int j = 0; j < N; j++)

20 for(int k = 0; k < N; k++)

21 G[i][j] = E[i][k] * F[k][j]; //S3

22 }

23 }
Implicit barrier on line 8 is redundant ,

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 36

Our approach for identification of redundant barriers

Remove all barriers from the program and compute data races

Races are computed with our race detection approach

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 37

Our approach for identification of redundant barriers

Remove all barriers from the program and compute data races

Races are computed with our race detection approach

Map each barrier to a set of races that can be fixed with that barrier

For each barrier, our approach computes phases again, and see whether
source and sink of the race are in different phases

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 37

Our approach for identification of redundant barriers

Remove all barriers from the program and compute data races

Races are computed with our race detection approach

Map each barrier to a set of races that can be fixed with that barrier

For each barrier, our approach computes phases again, and see whether
source and sink of the race are in different phases

Greedily pick up set of barriers from the map so that all races are
covered.

Subtract the required barriers from set of initial barriers

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 37

Experimental Setup

Benchmark suites

OmpSCR Benchmark Suite, Polybench-ACC OpenMP Benchmark suite

Two platforms, i.e., Intel Knights Corner and IBM Power 8

Intel KNC IBM Power 8

Micro architecture Xeon Phi Power PC

Total threads 228 192

Compiler Intel ICC v15.0 IBM XLC v13.1

Compiler flags -O3 -O5

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 38

Experimental Setup

Benchmark suites

OmpSCR Benchmark Suite, Polybench-ACC OpenMP Benchmark suite

Two platforms, i.e., Intel Knights Corner and IBM Power 8

Intel KNC IBM Power 8

Micro architecture Xeon Phi Power PC

Total threads 228 192

Compiler Intel ICC v15.0 IBM XLC v13.1

Compiler flags -O3 -O5

Two variants:

Original OpenMP program
OpenMP program after removing redundant barriers

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 38

Experiments - OmpSCR Benchmark suite

Evaluation on 12 benchmarks

Detected 4 benchmarks as race-free

All barriers are necessary to respect program semantics

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 39

Experiments - Polybench-ACC OpenMP Benchmark suite

Evaluation on 22 benchmarks

Detected 14 benchmarks as race-free

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 40

Experiments - Polybench-ACC OpenMP Benchmark suite

Evaluation on 22 benchmarks

Detected 14 benchmarks as race-free

Less improvement because of well load-balanced work-sharing loops

More effective IBM XLC barrier implementation than Intel ICC

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 40

Closely related work in barrier analysis

Style Key idea Limitations

Kamil et.al
LCPC’05

SPMD
Tree traversal on
concurrency graph

Conservative MHP in case of
barriers enclosed in loops

Tseng et.al
PPoPP’95

SPMD +
fork-join

Communication analysis b/w
computation partitions

Structure of loops
enclosing barriers

Zhao et.al
PACT’10

fork-join
SPMDization by

loop transformations
Join (barrier) synchronization

from only for-all loops

Surendran et.al
PLDI’14

fork-join
Dynamic programming on

scoped dynamic structure trees

Limited to finish construct
but the finish placement
algorithm is optimal

Our approach SPMD
Precise MHP analysis with

extensions to Polyhedral model
Can support barriers in
arbitrarily nested loops

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 41

Closely related work in barrier analysis

Style Key idea Limitations

Kamil et.al
LCPC’05

SPMD
Tree traversal on
concurrency graph

Conservative MHP in case of
barriers enclosed in loops

Tseng et.al
PPoPP’95

SPMD +
fork-join

Communication analysis b/w
computation partitions

Structure of loops
enclosing barriers

Zhao et.al
PACT’10

fork-join
SPMDization by

loop transformations
Join (barrier) synchronization

from only for-all loops

Surendran et.al
PLDI’14

fork-join
Dynamic programming on

scoped dynamic structure trees

Limited to finish construct
but the finish placement
algorithm is optimal

Our approach SPMD
Precise MHP analysis with

extensions to Polyhedral model
Can support barriers in
arbitrarily nested loops

Limitations in our approach: Greedy heuristic on barrier selection may not
be optimal

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 41

PolyOMP Infrastructure

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 42

Conclusions

Extensions (Space and Phase mappings) to the polyhedral model to
capture partial order in SPMD-style programs

Formalization of May-Happen-in-Parallel (MHP) relations from the
extensions

Approaches for static data race detection and redundant barrier
detection in SPMD-style programs

Demonstration of our approaches on 34 OpenMP programs from the
OmpSCR and PolyBench-ACC benchmark suites

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 43

Future work

Enhancing OpenMP dynamic analysis tools for race detection with
our MHP analysis

Replacing barriers with fine grained synchronization for better
performance

Repair of OpenMP programs with barriers

Enabling classic scalar optimizations (code motion) on concurrency
constructs in OpenMP programs

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 44

Acknowledgments

Thesis Committee

Prof. Vivek Sarkar,
Prof. John M. Mellor-Crummey,
Prof. Keith D. Cooper, and
Dr. Jun Shirako

Co-author: Dr. Martin Kong

Rice Habanero Extreme Scale Software Research Group

Polyhedral research community

Family, friends and department staff

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 45

Finally,

“Extending the polyhedral compilation model for explicitly parallel
programs is a new direction to multi-core programming challenge.”

Thank you!

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 46

Serial-elision

A Cilk program, when run on one processor, is semantically equivalent to
the C program that results from the deletion of the three keywords. Such
a program is called the serial elision or C elision of the Cilk program.

https://arxiv.org/pdf/cs/0608122.pdf
Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 47

Parallel Loops with Barriers do not satisfy Serial Elision

New programming models such as Chapel, X10 have barriers enclosed
in parallel loops.

Parallel Loops with Barriers do not satisfy Serial Elision

1 forall (i = ...) {

2 S1;

3 barrier;

4 S2;

5 }

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 48

SPMD programs satisfy serial elision if they can be run on
1 thread

SPMD programs satisfy serial elision if they can be run on 1 thread

1 #pragma omp parallel

2 {

3 {S1;}

4

5 #pragma omp barrier //B1

6

7 {S2;}

8 {S3;}

9

10 #pragma omp barrier //B2

11 }

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 49

What about SPMD programs with fixed number of
threads?

May not have an execution on one thread

1 #pragma omp parallel num_threads(2)

2 {

3 {S1;}

4

5 #pragma omp barrier //B1

6

7 {S2;}

8 {S3;}

9

10 #pragma omp barrier //B2

11 }

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 50

What about SPMD programs with fixed number of
threads?

May not have an execution on one thread

Chatarasi, Prasanth (Rice University) Masters Thesis Defense April 24th, 2017 51

