RICE UNIVERSITY

Extending the Polyhedral Compilation Model for
Debugging and Optimization of SPMD-style
Explicitly-Parallel Programs
by
Prasanth Chatarasi

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Master of Science

APPROVED, THESIS COMMITTEL:

Dr. Vivek Sarkar
Professor of Computer Science
E.D. Butcher Chair in Engineering

s

—
Dr. John M. r-Crummey

Professor of Computgr Science and of
Elegtrical and Compfiter Engineering

T

Dr. Keith D. Cooper d

Professor of Computer Science and

L. John and Ann H. Doerr Professor of
Computational Engineering

6 > 4

Dr. Jun Shirako
Research Scientist

HousToON, TEXAS
24TH APRIL, 2017

ABSTRACT

Extending the Polyhedral Compilation Model for Debugging ad Optimization of
SPMD-style Explicitly-Parallel Programs

by

Prasanth Chatarasi

The SPMD (Single Program Multiple Data) parallelism contiues to be one of the
most popular parallel execution models in use today, as explined by OpenMP
for multi-core systems, CUDA and OpenCL for accelerator sysmns, and MPI for
distributed-memory systems. The basic idea behind the SPMBodel, which di er-
entiates it from task-parallel models, is that all logical pocessors (worker threads)
execute the same program with sequential code executed radantly and parallel

code executed cooperatively.

This thesis extends the polyhedral compilation model to eb# analysis of SPMD-
style explicitly-parallel programs. This thesis demonsétes the value of this extended
polyhedral model by describing its use for identi cation ofdata races, as well as
identi cation and removal of redundant barriers. This thess evaluates the e ective-
ness of these two applications using 34 OpenMP programs frahe OmpSCéahd the
PolyBench/ACCOpenMP benchmark suites.

Dedicated to
Gautama Buddha (Siddhartha Gautama)
(c. 563 BCE/480 BCE c. 483 BCE/400 BCE)
&&
My grand parents

Late Ch.Rama Rao and T.V.Ravanamma

Acknowledgments

Taittiriya Upanishad, Shikshavalli 1.20
ma;a:"ua;de ;va;ea Ba;va ; a;fa;Vazede Rayen Bagya; A, d & da,yRaa Ba;va
matrudevo bhava pitrudevo bhavaacharyadevo bhava atithidevo bhava

\Respects to Mother, Father, Guru and Guest. They are all forms of God."

Foremost, | would like to express my gratitude to my motheCh. Anjanee Deviand
my father Dr. C. V. Subbaiahfor always being there for me, and loving me uncondi-
tionally through out the situations of extreme happiness taepression. Without the
two of you, | don't know where | would be. If | have learned anyting while being
away from you, it is that you are the most important people in g life, and | love

you both more than anything.

| would like to express my sincere appreciation to my guru (atsor) Prof. Vivek
Sarkar, who always has had time for me when | needed him { no matter wiher the
reason was a technical discussion, an administrative prebh, academic development,
or the planning of my next steps. There are no words that can psess my gratitude
towards your e orts. Thank you for believing in me and suppding. Without you, |
would not be able to handle everything that graduate programand life throw at me.
Having you backing me up 100% allows me to be at peace and do egsb. You're

much more than an advisor, and thanks for helping me in my pesal life too.

| am also very grateful to my co-advisorDr. Jun Shirako with whom | had

many very fruitful discussions on various topics of this thes. Thank you for always

iv

being supportive, even when | feel like | cant do it. Also, thadnyou for being a
humble teacher in explaining answers to my questions. ThasKor respecting my
opinions, and those lunch sessions not only are great to diss my ideas but to build

a relationship with you.

| would also like to thank rest of my committeeProf. John Mellor-Crummeyand
Prof. Keith Cooper for agreeing to be a part of my thesis committee. | am very fant
nate to have taken John's course on Parallel Computing and Mi#core Computing,
and Keith's course on Advanced Compiler Construction, whickaid the foundations
for my introduction to mainstream compiler optimizations ad parallel programming.
| would also like to thank you all for your time, feedback andwggestions for numerous

valuable improvements in my thesis.

| am also very grateful to the members of Polyhedral Researcddommunity {
Dr. Uday Bondhugulafor teaching me the foundations of polyhedral compilation
techniques,Dr. Albert Cohen for broadening my knowledge on applying expansion
techniques using polyhedral model, an®r. Martin Kong for having collaboration
on this thesis, and providing suggestions to improve my remeh. | would like to
acknowledge the members of the Habanero Extreme Scale SofsvResearch Project
at Rice, PARKAS research team at INRIA Paris, and Multicore compting lab at

IISc Bangalore for the research interactions.

| would also like to acknowledge my teacheProf. Kesav Nori for piquing my
curiosity about compilers during my undergraduate study atiT Hyderabad. Without
you, | would not be where | am today. Also, thanks are due to my lehelor thesis
advisorsDr. Aditya Nori, Dr. M. V. Panduranga Rao and Dr. Bheemarjuna Reddy
for giving me a research exposure in the undergraduate studgelf. Also, thanks to
all my professors who encouraged me to apply for graduate dites, and for quickly

providing reference letters.

Furthermore, | also really appreciate my senior graduate stlents Dr. Deepak

Majeti, Dr. Karthik Murthy, Dr. Milind Chabbi, Dr. Shams Ima m, and Dr. Rishi
Surendran for all the helpful advice in both research and pswnal life. | cannot thank
you enough for everything you taught me while your stay at Re | greatly value

your kindness and the expertise you imparted to me as my meno

Thanks are due to my friends for all the support and encouragemt during my
stay at Rice. There are too many of you to mention, but | would specially like
to thank Adithya, Ankush, Arghya, Arkabandu, Hamim, Kuldeep, Leden, Mohit,
Nishant, Priyanka, Quazi, Ramya, Rabimba, Rohan, Sharan, 8cav, Sriparna, Sriraj,
Suguman, Vivek, and Yaswanth. Thanks for always being up for good laugh over
the years. | would also like to thank members of Rice Comput&cience department
sta especially Belle, Melissa, Sherry, Beth, Lena, Annephand Carlyn for all the

help | received during my stay at Rice.

Also, | would appreciate O ce of International Students & Sclolar (OISS) at
Rice for organizing International Friends at Rice (IFR), thiough which | could meet
a beautiful U.S. family Larry and Carole Huelbig. | express deer gratitude to them
for helping me to feel more at home, introducing me to variouactivities/shows in

Houston, and sharing cross-cultural experiences.

My acknowledgments never end without mentioning siblings.e., my elder sister
Sree Pavaniand my elder brother Sreenivasa Prabhu First and for most, life may
not be that exciting without you. We may ght 50% of the time, but | love you a
lot for being my best friends, toughening up during tough sifations of my life, and
celebrating with me during happy moments. As per a Vietnameseqverb, you both
are as close as my hands and feet. Also, | would like to expresg gnatitude to my
sister's family including my brother-in-law Srinivasulu, and my cute niecesvenkata
Tejaswini and Sai Sugandhinj for the homely support during my stay in the United

States.

Contents

Abstract [
Acknowledgments iii
List of Illustrations iX
List of Tables Xii
Introduction 1
1.1 Thesis Statement. 4
1.2 Contributions 4
1.3 Outline. 4
Background 6
2.1 Explicitly-Parallel Programs 6
2.1.1 SPMD-style Parallelism 7
2.1.2 Serial-elision Property 9
2.2 Mathematical Foundations for the Polyhedral Model 13
2.3 Polyhedral Model. 17
2.3.1 Polyhedral Representation of Programs 18
2.3.2 Dependence Analysis oL 21
2.3.3 Ane Program Transformations 23
234 CodeGeneration. 25
2.4 Limitations of the Polyhedral Model 25
Extensions to the Polyhedral Model for SPMD Programs 28

3.1 Important Concepts in an SPMD Execution. 28

3.2 Space Mapping.
3.3 Phase Mapping.
3.4 May-Happen-in-Parallel (MHP) Analysis.
3.5 Past Work in Extending Polyhedral Model for Explicitly-Parallel

Programs

PolyOMP: A Polyhedral Framework for Debugging and

Optimizations of SPMD Programs
4.1 Overall Workow

Debugging Of SPMD Programs { Static Data Race De-

tection

5.1 Motivation

52 OurApproach.
5.2.1 An Algorithm to Identify Data Races.

5.3 Experimental Evaluation.
5.3.1 Experimental Setup.
5.3.2 OpenMP Source Code Repository
5.3.3 PolyBench/ACC OpenMP Suite.

5.4 Strengths and Limitations of Our Approach

5.5 Past Work on Race Detection.

Optimization Of SPMD Programs { Static Redundant

Barrier Detection

6.1 Motivation e

6.2 Our Approach. e
6.2.1 An Algorithm to Identify Redundant Barriers
6.2.2 A Greedy Approach to Compute a Set of Required Barriers.

vii

30
33
40

43

46
47

50
50
53
53
55
55
56
58
63
64

67
68
70
70
74

6.3 Experimental Evaluation.

6.3.1 Experimental Setup.

6.3.2 OpenMP Source Code Repository.
6.3.3 PolyBench/ACC OpenMP Suite.

6.4 Strengths and Limitations of Our Approach

6.5 Past Work on Analysis of Barriers.
7 Conclusions & Future Work

Bibliography

viii

76
76
77
79
81
82

85

88

2.1
2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

lllustrations

SPMD programs of the class C1 satisfy the serial-elisipnoperty. . .
SPMD programs (having barriers) of the class C2 don't gafy the
serial-elision property.
A two dimensional integer set

S=f(@;))j2 i 8”@ j i 1)g, with horizontal axis as
dimensioni and vertical axis as dimension (courtesy: islplot
display tool [1]).. o o
AmapM = f(i;j)! (i+) +3;j+1)g with the input elements from
the orange colored se8; = f(i;j)j1 i;j 3gand output elements
from the blue colored set

So=1(;7) i 5+i)r @2] AN (3 +1i)g, with
horizontal axis as dimension and vertical axis as dimension .
Traditional work ow of polyhedral compilation framewaks
Working example: Smith-Waterman excerpt.
Iteration domain of statementS in the Smith-Waterman kernel for
the value of M = 5 and N = 9¥(courtesy: islplot display tool [1]). .
Execution order of instances of statemer® in the Smith-Waterman
kernel (courtesy:islplot display tool [1]).
Dependence relations on statemefin the Smith-Waterman kernel

(courtesy:islplot display tool [1]).

2.10 lteration domain of statement S in the Smith-Waterman &rnel after

loop skewing to expose parallelism at loop-j (courtesyslplot

display tool [1]).. e

11

12

13

14

17

18

19

21

22

2.11 Transformed code of Smith-Waterman kernel with paralism at

innermost loop (j-loop) 25
2.12 An example to discuss limitations of the polyhedral mode. 26
3.1 An example to motivate important concepts in an SPMD exetion . 29
3.2 Overall SPMD execution of the program in Figure 3.1 with te threads 29
3.3 An OpenMP SPMD-style program with various directives 32
3.4 An OpenMP SPMD program that includes barriers with depth> 0. . 35
3.5 Overall SPMD execution of the program in Figure 3.4 with tow

threadsandvalueof Nas 2. 36
4.1 Summary of thePolyOMPa polyhedral framework for debugging and

optimizations of SPMD programs 46
4.2 Overview of thePolyOMPsystem built on top of the Polyhedral

Extraction Tool (PET version: pet-0.08-30-g77689da) [2]. 48
5.1 Data races in the Jacobi benchmark fro@mpSCsenchmark suite. . 51
5.2 PolyBench/ACC OpenMP benchmark developer might have

forgotten to mark certain variable as private variables) in Cholesky,

nrmin Gramschmidt), and there by resulting races on such variéds. 61
5.3 PolyBench/ACC OpenMP benchmark developer have incorcty

parallelized the linear algebra kernels (some of them aretogously

hard to be parallelized because of complex dependence pattd, and

there by resulting races on array€in Symmand B in Trmnbenchmarks. 62
6.1 Redundant barrier (implicit) at line 11 in the 3mnbenchmark from

PolyBench/ACCbenchmark suite 68
6.2 Bipartite graph constructed by mapping each barrier i8mm

benchmark to data races that can be avoided with the barrier. . . . 72

Xi

List of Algorithms

Building phase mappings of statements. 38
Building May-Happen-in-Parallel (MHP) information between

statements Sand T.. 43
An approach to compute a set of data races in an SPMD program . 54
An approach to compute a set of redundant barriers in an SPMD

Program. e e e e e 71
An approach to construct a bipartite graph from barriers to dta races
inan SPMD program e 73

A greedy approach to compute a set of required barriers. 75

5.1

5.2

5.3

6.1

6.2

Tables

Race detection analysis over the subset @mpSClhienchmark suite.
PolyOMP- Detection time / Reported / False +ves : Total time taken
to detect races by PolyOMP, Number of reported races, Number of
false positives among reported. ARCHER / Intel Inspector XE:
Number of races reported..
Race detection analysis over the subset of PolyBench/8C0OpenMP
benchmark suite. PolyOMP- Detection time / Reported / False +ves
. Total time taken to detect races by PolyOMP, Number of reportd

races, Number of false positives among reported. Intel Insper XE:

Number of races reported, Hang up (H) and Application exceptiorA.

Closely related static approaches in race detection.

Hardware speci cations of the experimental setup for ekaating our
approach to identify redundant barriers.
Redundant barrier detection analysis over the subset @mpSCR
benchmark suite. Benchmarks labeled with (*) have no true s but
our race detection algorithm reported false positives, angenchmarks
with (**) indeed have true races. Our tool ignored () the
benchmarks with labels (*, **) because of the presence of ex
(including false positives).size, k, error, numiter are symbolic
parameters in the corresponding benchmarks. Note that we als
count implicit barriers after the omp parallel construct even though

these implicit barriers cannot be removed from the source de.

59
65

77

78

Xiii

6.3 Redundant barrier detection analysis over the subset of
PolyBench/ACC OpenMP benchmark suite. Benchmarks labelie
with (*) doesn't have redundant barriers, and we didn't run NR) the
benchmarks for performance evaluation. Benchmarks labedl with
(**) have true races, and our tool ignored (I) these benchmé&s. A -
Application exception, i.e., Segmentation fault in the origal
program itself. Note that we also count implicit barriers aféer the omp
parallel construct even though these implicit barriers cannot be
removed from the sourcecode. 80

6.4 Closely related static approaches in barrier analysis. 83

Chapter 1

Introduction

It is widely recognized that computer systems anticipatechithe 2020 time frame will
be qualitatively di erent from computer systems of previos decades. Speci cally,
they will be built using homogeneous and heterogeneous matgre processors with
hundreds of cores per chip. Also, the performance of these pessors will be driven
by parallelism and constrained by energy and data movemerd][This trend towards
ubiquitous parallelism has forced the need for improved padactivity and scalability in
parallel programming models. Two classical programming rdels that were conceived
to express parallelism are the Single-Program-Multiple-d&a (SPMD) computational

model §] and the fork-join computational model §].

In the SPMD computational model, all processes working toteer will execute the
same program 4], i.e., all logical processors (worker threads) executedltsame pro-
gram with sequential code executed redundantly and paralleode executed coop-
eratively. In the last couple of decades, the SPMD computatal model has been
exempli ed by OpenMP [6] for multi-core systems, CUDA] and OpenCL B] for

accelerator systems, as well as MP9] for distributed-memory systems.

In the fork-join computational model, a sequential thread gawns (fork) multiple
threads to execute a portion of code concurrently and waitgofn) for the spawned
threads to nish their part of execution [5]. This computational model is used by
task parallel programming models and libraries, such as OpdP [6], Chapel [LC],
Cilk [11], and X10 [LZ). There is a general agreement that the fork-join model is m®

productive than the SPMD model, i.e., programmers can exms di erent styles of

parallelism and concurrency more conveniently in the forjoin model than in the
SPMD model. However, the SPMD model has been developed as aisgfintforward
method of low-overhead parallel execution compared to therk-join model {4]. Hence,
some compiler approached B, 14, 15, 16| transform a given region of fork-join code
to the SPMD model for improved performance, a transformatio technique that is

referred to as \SPMDization".

Current production compilers enhance the performance ofsce programs by per-
forming SSA-based optimizations, automatic vectorizatigioop-level transformations
based on data-dependence analysis, inspector-executaatggies, and pro le guided
optimizations [17]. In the coming decades, compiler research is expected t@aypha
crucial role in addressing the multi-core programming chieihge, i.e., how to exploit
the parallelism in large-scale parallel hardware without ndue programmer e ort.
Also, multi-core programming challenge is mentioned as onétbhe major challenges
facing the overall computer eld [L8]. Traditionally, the two major approaches in han-
dling the parallel programming challenge are automatic paHelization of sequential

programs, and analysis and optimization of explicitly-pallel programs.

In the automatic parallelization approach 19, 20, 21, 22, 23, 24, 25 of sequential
programs, the programmer provides either a portion of a segutial program or a
high-level specication of a computation. Then, the compiiadenti es parallelism
available in the program and generates parallel code for adad range of architec-
tures. When successful, automatic parallelization removése signi cant burden from
a programmer to manually re-write sequential programs forgpallel execution, which
often requires the generation of di erent parallel code fadi erent parallel platforms.
The polyhedral model £6, 27, 28, 29, a mathematical algebraic framework, repre-
sents one of the major automatic parallelization approackdor a variety of architec-
tures including multi-cores P3, 24, accelerators such as GPU's/ FPGA'sZ5, 30, 31],
and distributed-memory systems32.. The polyhedral model reasons about execu-

tions (instances) of statements, and can be used for accuzatiependence analysis

over arrays, data ow analysis of arrays, applying loop trasformations holistically,
and generating transformed code in high-level languages. whver, despite decades
of research on automatic parallelization, fully automatigparallelization of sequen-
tial programs by compilers remains di cult due to its need fo a complex program
analysis and unknown input parameters (such as indirect ay subscripts) during

compilation [33, 34].

An alternate approach to address the multi-core programminghallenge is through
analysis and optimization of explicitly-parallel prograns [35, 36, 37, 38, 39, 40, 15,
41, 47], in which the programmer species the logical parallelisrnd explicit syn-
chronizations in the source program, and the compiler exicés the parallelism sub-
set that is best suited for a given target platform. An interesng property of an
explicitly-parallel program is that it speci es a partial execution order, unlike a se-
guential program, which speci es a total order. In this appoach, the compiler is
made aware of explicitly-parallel information (the partid execution order) such as
Happens-Before (HB) relations, May-Happen-in-Parallel (MHPjelations and Never-
Execute-in-Parallel (NEP) relations from the various consticts in the source pro-
gram. Then the compiler leverages the parallel informatioto perform stronger and
more focused debugging analyses with the goal of, for instan detecting races, dead-
locks or localizing the root cause of false sharing (an imgant source of \performance
bugs"); on the other hand, the explicit parallelism can alsde used to enable loop
transformations after fusing SPMD regions, removing redualant barriers, code mo-
tion on a region of code surrounded by constructs that enfaanutual exclusion. The
major challenge in the analysis of explicitly-parallel prgrams is the extraction and
representation of parallel information (HB, MHP, NEP) from di erent parallel and
concurrency constructs43). In this thesis, we propose a new systen0lyOMIPwhich
captures the partial execution order present in an SPMD-sky parallel program as
May-Happen-in-Parallel (MHP) information in the polyhedralmodel, and utilizes the

MHP information for debugging and optimizations of SPMD proams.

1.1 Thesis Statement

Though the polyhedral compilation model was designed for analysis and optimization
of sequential programs, our thesis is that it can be extended to enable analysis of
SPMD-style explicitly-parallel programs with bene ts to debugging and optimization

of such programs.

1.2 Contributions

This thesis makes the following contributions in defense otir thesis statement:

It describes our extensions to the polyhedral compilation odel to represent

partial execution order present in SPMD-style parallel prgrams.

It formalizes the partial order as May-Happen-in-Paralle{MHP) information

using our extensions to the polyhedral model.

It presents an approach for compile-time detection of dataaces in SPMD-style

parallel programs £4].

It also presents an approach for identi cation and removalfaedundant barriers

at compile-time in SPMD-style parallel programs.

It demonstrates the e ectiveness of our approaches on 34 Qpé&P programs

from the OmpSCahd the PolyBench/ACCOpenMP benchmark suites.

1.3 Outline

The rest of this thesis is organized as follows.

Chapter 2 summarizes background on the SPMD parallel execution modshd

on the polyhedral model. Some of the fundamental conceptslated to the

polyhedral model are taken from the PhD dissertations of Batugula, Grosser
and Kong @5, 46, 47].

Chapter 3 explains the lack of existing approaches in the polyhedralaodel to
capture partial execution orders originating from barries in SPMD programs.
Then, we present our formal extensions (space and phase mimgs) to the
polyhedral representation, and also introduce an algorith to formalize May-
happen-in-parallel relations from the extensions as a wag tapture the partial
orders. Also, we summarize the past work in extending polyhed model to

enable analysis of explicitly-parallel programs.

Chapter 4 provide an overview of our systemKolyOMPincluding the descrip-

tion of all components involved in the system.

Chapter 5 describes our approach to compile-time detection of dataaes in
SPMD-style parallel programs. Then, we evaluate our techoue for race de-
tection on 34 OpenMP programs from theOmpSC&nd the PolyBench/ACC
OpenMP benchmark suites. Also, we summarize related work op@oaches

for compile-time detection of data races.

Chapter 6 introduces an approach to compile-time detection and remal of
redundant barriers in SPMD-style parallel programs by buding on the race
detection approach ofChapter 5 Then, we analyze performance of the 34
OpenMP programs evaluated inrChapter 5 after applying our technique to re-
move redundant barriers. Also, we summarize related work orpproaches for

compile-time analysis of barriers in the SPMD programs.

Finally, Chapter 7 present our conclusions and directions for future research

Chapter 2

Background

| believe in innovation and that the way you get

innovation is you learn the basic facts.

Bill Gates

This chapter begins with a discussion of the motivation for xlicitly-parallel
programs, and brie y summarizes SPMD-style parallelism ursg OpenMP as an ex-
emplar. Then, we summarize the mathematical foundations ttie polyhedral model,
which in turn provide the theoretical foundation for the cotributions in this thesis.
Then, we brie y summarize the polyhedral model including tke polyhedral represen-
tation of programs, dependence analysis, loop transfornians, and code generation.
Finally, we conclude with limitations of the polyhedral modg which in turn provide

the motivation for our research in this thesis.

2.1 Explicitly-Parallel Programs

Traditionally, there have been two di erent approaches in ppgramming parallel ar-
chitectures: the automatic parallelization and the explitly-parallel programming ap-
proach. In the automatic parallelization approach, the prgrammer provides either a
portion of a sequential program or a high-level speci catioof a computation. Then,
the compiler identi es parallelism available in the progren and generates parallel

codes for a broad range of architectures. When successfultomoatic parallelization

removes the signi cant burden from a programmer to manuallye-write sequential
programs for parallel execution, which often requires theegeration of di erent par-
allel code for di erent parallel platforms. Also, there is aittle e ort required from
the programmer, but there are many fundamental limitationghat make it di cult

for compilers to identify the parallelism from the input pragram.

The alternate approach is to write explicitly-parallel prgrams, in which the pro-
grammer speci es the logical parallelism and explicit syheonizations in the source
program, and the compiler extracts the parallelism subsethat is best suited for a
given target platform. In this approach, the programmer taks care of providing the
parallelism required for performance, and then the compiléakes care of generating
low-level code for the architecture. Even though this appexh can be tedious for
programmers, it is the default approach used in practice bagse the programmers
are more con dent of a successful outcome with this approatchan with automatic

parallelization.

2.1.1 SPMD-style Parallelism

SPMD (Single Program Multiple Data) parallelism L3, 48] continues to be one of the
most popular parallel execution models in use today, as explired by OpenMP [6] for
multi-core systems, CUDA J] and OpenCL B] for accelerator systems, and MPI9]
for distributed-memory systems. The basic idea behind thePMD model is that
all logical processors (worker threads) execute the sameogram, with sequential
code executed redundantly and parallel code (worksharingarrier constructs, etc.)
executed cooperatively. In this thesis, we focus on OpenMB] [as an exemplar of
SPMD parallelism. In the rest of this section, we explain theemantics of OpenMP

constructs, which are considered in this thesis.

1. The OpenMP parallel construct creates a xed number of parallel worker

threads to execute an SPMD parallel region. The number of teads can be

speci ed in the code, or in an environment variable@QMINUM HREADSor via
a runtime function, ompset _numthreads() that is called before theparallel

region starts execution.

. The OpenMPbarrier construct speci es a barrier operation among all threads
in the current parallel region. In this thesis, we restrict our attention to tex-
tually aligned barriers 9, in which all threads reach the same textual sequence
of barriers. Each dynamic instance of the samearrier operation must be en-
countered by all threads, e.g., it is not allowed for a barriein a then-clause
of an if statement executed by (say) thread 0 to be matched wita barrier
in an else-clause of the same if statement executed by thread We plan to
address textually unaligned barriers as part of the future ark. However, many
software developers believe that textually aligned barnie are better from a

software engineering perspective.

. The OpenMPfor construct indicates that the immediately following loop ca
be parallelized and executed in a work-sharing mode by alléhthreads in the
parallel SPMD region. An implicit barrier is performed immedhtely after a
for loop, while the nowait clause disables this implicit barrier. Further, a
barrier is not allowed to be used inside gor loop. When theschedule(kind ,
chunk_size) clause is attached to aor construct, its parallel iterations are
grouped into batches othunksizeiterations, which are then scheduled on the

worker threads according to the policy speci ed bkind.

. The OpenMP single construct speci es that the enclosed code is to be exe-
cuted by only one thread among all the threads in the parallsbPMD region.
An implicit barrier is performed immediately after the enclsed code block by
single construct, while the nowait clause disables this implicit barrier. A
single OpenMP construct can be viewed as equivalent to a OpenM®Br con-

struct with a single-iteration loop.

5. The OpenMPmaster construct indicates that the immediately following region
of code is to be executed only by the master thread of the palellSPMD region.

Note that, there is no implied barrier associated with this aostruct.

Since programmers can also leverage modern task-based f@rprogramming models
such as ChapelJ0] towards SPMD-style parallelism, we provide a brief backgund

on required constructs in Chapel to express SPMD-style commation.

1. The chapelcoforall loop construct creates a distinct task per loop iteration,
each of which executes a copy of the loop body. The construetincbe seen as a

way to parallelize a loop where each iteration is independeaf other iterations.

2. The chapelbarrier construct can be used to prevent tasks from proceeding
until all other related tasks have also reached the barrierAccording to the
Chapel documentation, it is legal to insert barriers in the arallel loops ex-
pressed bycoforall construct unlike OpenMP which doesn't allow barriers

inside the parallel loops.

2.1.2 Serial-elision Property

The serial-elision property is one of the interesting properties of explicithparallel
programs. It is informally de ned as the property that remowal of all parallel con-
structs results in a sequential program that is a valid (alkeine cient) implemen-
tation of the original parallel program semantics§0. In the context of the Cilk
programming language, serial-elision of a Cilk program isedhed a Cilk program,
when run on one processor, is semantically equivalent to ti@& program that results
from the deletion of the Cilk keywords $1]. It has been shown in past work that
restricting attention to parallel programs that satisfy the serial-elision property can
simplify debugging and optimization of parallel programs5, 41]. In contrast, this

thesis focuses on debugging and optimization of SPMD progna, which in general

10

do not satisfy serial-elision property.

We classify SPMD programs into two classes, C1 { SPMD progranwhose cor-
rectness doesn't depend on a xed number of logical threadsamicipating in the
SPMD region, and C2 { SPMD programs which depend on a xed nundy of logical
threads for correct semantics. For SPMD programs in the cla€1, one way to achieve
a serial elision is to simply run the program with one threadHowever, this approach
cannot be applied to SPMD programs in the class C2, which ingle certain pro-
grams that conform with the OpenMP speci cation (see sectin2.5.1 in b3]). Also,
modern task-based parallel programming models such as Cekajfil(] and X10 [L2]
allow barriers inside parallel loops unlike OpenMP programing model which doesn't
allow barriers inside the parallel loops. To de ne the seriglision version for generic
SPMD programs with barriers, we consider SPMD programs (bletin classes C1 and

C2) written using OpenMP and Chapel programming models.

1) Class C1: In this class of SPMD programs, programmer guarantees theroect-
ness independent of number of participating threads in theP31D regions. Hence,
serial-elision version of an SPMD program of class C1 is ded as a C program that
results from the removal ofomp parallel , omp barrier constructs in case of the
OpenMP, and replacingcoforall by a for loop, removal of allbarrier constructs
in case of the Chapel programming language. Since the semestof SPMD pro-
grams of the class C1 is unchanged with the number of logicdlreads participating
in the SPMD region, and execution of such programs with one thad is semanti-
cally equivalent to its serial-elision version, SPMD progims of the class C1 satisfy
the serial-elision property. As can be observed fromiigure 2.1 execution of both
OpenMP and Chapel SPMD programs of the class C1 with one thrqT = 1) is
semantically equivalent to its serial-elision version; Ilee SPMD programs of the class

C1 satisfy the serial-elision property.

2) Class C2: In this class of SPMD programs, programmer guarantees theroect-

11

1#pragma omp parallel n

1var b = new Barrier (T);

2 num_threads(T) > coforall tid in 1...T do
s f s f

4 Sl; 4 Sl;

s#pragma omp barrier //B1l 5 b.barrier ();

6 SZ; 6 52;

7 S3; 7 83;

s#pragma omp barrier //B2 8 b.barrier ();

s g s g

(@) An OpenMP prog\r/slm of the class C1
W

(b) A Chapel progran\wNof the class C1
W

> f o f

3 S1; 3 S1;

4 SZ; 4 52;
S3; 5 S3;

69 60

(c) Serial-elision version of the above program (d) Serial-elision version of the above program

Figure 2.1 : SPMD programs of the class C1 satisfy the serial-elision grerty.

ness only for a xed number of participating threads in the SMID regions. Hence,
serial-elision version of an SPMD program of class C2 is ded as a C program
that results from replacing each OpenMP parallel region ctaining a xed number

of threads, by a sequential loop that executes the body of thearallel region for
num_threads() iterations, as well as removal of all OpenMBarrier constructs from
the OpenMP program. In case of the Chapel, a serial-elision @btained by replacing
eachcoforall by afor loop, as well as of albarrier constructs from the program.
ConsiderFigure 2.2to illustrate the fact that eliding a barrier can alter the execution

order of the original program, possibly leading to incorréaesults and unexpected
behavior. Eliding the barrier B1 can (for example) result inrst logical thread exe-

cuting statement S2 without waiting for third thread to compete executing statement

S1. Likewise, eliding the barrier B2 can also lead to rst thead not waiting for the

12

1#pragma omp parallel n

2 num_threads(3)

s f

4 Sl;

s#pragma omp barrier //B1l
6 SZ;

7 S3;

s#pragma omp barrier //B2
°g

(@) An OpenMP prog\r/slm of the class C2

v
1 for(tid = 0; tid < 3; n
2 tid ++)
3 f
4 Sl;
5 S2;
6 83;
79

(c) Serial-elision version of the above program

1var b = new Barrier (3);
> coforall tid in 1...3 do
3 f

4 Sl;

5 b.barrier ();

6 52;

7 83;

8 b.barrier ();

°g

(b) A Chapel progran\wNof the class C2
W

1 for tid in 1...3 do
o f

3 Sl;

4 S2;

5 53;

60

(d) Serial-elision version of the above program

Figure 2.2 : SPMD programs (having barriers) of the class C2 don't satigfthe
serial-elision property.

remaining tasks to nish executing statements S2 and S3. Thefore, eliding a bar-

rier from SPMD programs of the class C2 can alter the origingdrogram semantics,

and violate the serial-elision property. However, SPMD programs of the class C2

without barrier satisfy the serial-elision property since executing all of thread related

iterations in a serial fashion keeps semantics of originatqgrams.

Our implementation (in PolyOMPis speci ¢ to SPMD-style programs using the

OpenMP programming model, and hence we don't encounter baers in parallel loops;

however, the ideas in this thesis can be applied to other lamages (such as Chapel and

CUDA) that support SPMD-style constructs with barriers in parallel loops, thereby

violating the serial-elision property.

13

[®
[[] ®
Figure 2.3 : A two dimensional integer setS = f(i;j)j (2 i 87" (1 |

i 1)g, with horizontal axis as dimensiori and vertical axis as dimensiof (courtesy:
islplot display tool [1]).

2.2 Mathematical Foundations for the Polyhedral Model

In this section, we provide a brief overview of the polyhedranodel 26, 27, 28, 29|, a
powerful framework that enables analyzing, reasoning, tnaforming and generating
programs using mathematical representations. Some of thenflamental concepts
related to the polyhedral model are taken from the PhD diss&tions of Bondhugula,
Grosser, and Kong45, 46, 47).

De nition 2.2.1. (Integer set) A d-dimensional integer set is de ned as a set of
integer tuples fromZ 9 as described by Presburger formula$4, 46]. Note that \ A
Presburger formula is de ned recursively as either a boolean constant, the result of
a boolean operation such as negation, conjunction, and disjunction or implication, a
quanti ed expression or a comparison between di erent quasi-a ne expressiori46)."

For example,S = f(i;j)j (2 1 N) ™~ (1 | i 1)gis an example of a

Note that the orange corner points also do belong to the triangle.

14

Figure 2.4 :Amap M = f(i;j) ! (i +] +3;] +1)g with the input elements from
the orange colored se§; = f(i;j)j1 i;j 3gand output elements from the blue
colored setS, = f(i;5) j (j 5+0)"2] HN(3+ 1)g, with horizontal

axis as dimension and vertical axis as dimensior .

two dimensional (dimensions i, j) integer set described iretms of a parameteN
Figure 2.3illustrates the integer setS (for the value of N = 8), which consists of the
brown integer points (including orange corner points) withm the triangle. The shape
is derived from the Presburger constraints (2 i N) ~ (1 j i 1)) imposed
on the setS and elements of the set are integral points in the shape. In mgral,

integer sets are used in describing the iteration space obfms in a program.

De nition 2.2.2. (Integer Map) An integer map is a binary relation from an
integer set of dimensiord; to another integer set of dimensiord,. The rst integer
set in the relation is called thedomain or the input set (according toisl [54]) and
the second integer set is called theange or the output set. These integer maps are

modeled as pairs of integer tuples frod % z 9%,

Figure 2.4illustrates a mapM = f(i;j)! (i+] +3;j +1)gwith input elements

from the orange colored se§, = f(i;j)j1 1i;j 3gand output elements from the

15

blue colored setS, = f(i;j) j (j 5+i)" (2 J 4" 3+1i)g. Each black
colored arrow represents an edge between an input tuple frahe orange colored set
S; to an output tuple from the blue colored setS,. In general, integer maps are
useful in transforming iteration space of loops in a prograrfor optimizations. The
mapM = f(i;j)! (i+]+3;j +1)g(in Figure 2.4 can be viewed as loop skewing

and shifting transformation on the S; set.

De nition 2.2.3. (A ne space/A ne set) A k-dimensional spaces is called an
a ne space if the space is closed under a ne combination i.eif vectors w; » are in
the spaces, then all the integer vectors lying on the line joiningw, and w should also
belong to spaces. In general, integer sets can be used to describe a ne spacésit
the integer sets can also be used to describe quasi-a ne spadhb4]. An example of

a space that is quasi-a ne but not a ne is as follows:

S=fjj©O i 3)" (=3 (imod3)g="f0;3;69

In the above quasi-a ne spaceS, the element2 on the line joining elements and 3

doesn't belong to the spacé&.

De nition 2.2.4. (A ne function/A ne map) A function f is called an a ne
function [45] from a k-dimensional a ne space to a d-dimensional a ne spae if it

can be expressed of the form:

f(¥) = Myv+ 1o (2.1)

wherew and f; are k-dimensional and d-dimensional vectors of integergspectively.
Also, M is an integer matrix with d rows andk columns. In general, integer maps

can be used to describe a ne maps, but integer maps can also dabe quasi-a ne

maps p4.

16

De nition 2.2.5. (A ne hyperplane) An ane hyperplane can be viewed as
a one-dimensional a ne function that maps an n-dimensionakpace onto a one-

dimensional space4Q).

(v) = hw+c (2.2)

Such an ane hyperplane can divide the input n-dimensional gace into two half-
spaces i.e., the positive half space (v) 0) and the negative half space (v) 0).
The a ne hyperplanes (a special case of a ne functions) can laso be described with

integer maps.

De nition 2.2.6. (Polyhedron) A polyhedron can be formally de ned as the set

of solutions to a system of linear inequalities.

Mx D (2.3)

wherex;D are k and d dimensional vectors respectively. A polyhedron can be vied
as an intersection of a nite number of half-spaces from a nenyperplanes. Also, M
can be seen as set dfconstraints onk dimensional vectors and expressed using an in-
teger matrix with d rows andk columns. In general, an integer set cannot completely
describe the set of points inside a polyhedron since the plbédron can contain non-
integer points as well. But, when the polyhedron is intersésd with integer space,
then the resulting polyhedron can be described using intagsets, and such resulting

polyhedra are calledZ -polyhedra.

17

Sequential Polvhedral [2) D d
rogram olyhedra o ependence
_PTogram, | 1) Extractor representation analysis
(SCoP)
Dependences
v
Parallel [
program 4) Code 3) Loop
generator Optimized transformations
schedules

Figure 2.5 : Traditional work ow of polyhedral compilation frameworks

2.3 Polyhedral Model

Many scientic and engineering applications often spend nsb of their execution
time in nested loops. Therefore, optimizing such nested lo® can signi cantly im-
prove the performance of the applications. The polyhedral mdel is a mathemat-
ical algebraic representation for such arbitrarily nestedbops that enables system-
atic analysis and transformation at the granularity of arrg cells and statement in-
stances 26, 27, 28, 29. The polyhedral model has been shown to have signi cant ad-
vantages over AST-based (Abstract Syntax Tree) representatis with respect to anal-
ysis and transformation of code regions consisting of looasd array accesse$, 56.
One of its primary distinguishing factors is the use of powgr and robust code gener-
ation algorithms that can synthesize new code from algebcaspeci cations of trans-
formations [57, 58, 59. In the original formulation of the polyhedral model, all aray
subscripts, loop bounds, and branch conditions ianalyzableprograms were required
to be a ne functions of loop index variables and global pararaters. However, decades
of research since then have led to a signi cant expansion ihd set of programs that

can be considered analyzable by polyhedral compilation tedques B0, 61, 62].

18

1 for(int i = 1; i < M i++) f
2 for(int j =1; j < N; j++) f
Al I[1 1 = MAXAL 1101 1, ALi 110 1], ALV 10D 1D /IS
4 g
949

Figure 2.6 : Working example: Smith-Waterman excerpt

Figure 2.5presents a traditional work ow in restructuring input programs based
on the polyhedral model. In the rest of this section, we desbe each step of the

workow using the Smith-Waterman kernel (shown irFigure 2.6 as a running exam-

ple.

2.3.1 Polyhedral Representation of Programs

Loop nests amenable to polyhedral (algebraic) represenitat are calledStatic Control
Parts (SCoP's) and represented in th&CoRormat, which includes three elements for
each statement, namely, the iteration domain, access relans and program sched-
ule [63].

De nition 2.3.1. (Iteration Vector) The iteration vector (denoted by s) of a
statement S is de ned as a multi-dimensional vector in which each elemegorre-
sponds to a loop that surrounds the statement, ordered fromutermost to innermost.
The length of the vector is the number of loops surrounding thstatement. As an

example, the iteration vector for the rst instance of statenent S in Figure 2.4 is

s=(i=1j=1)

Thus, an iteration vector represents a dynamic instance ofsiatement in a loop nest.

19

[) []
[[] [] °
L [] [] °
o [] [] °
[[] [] °
[[] [] °
[[] [] °

L4 L4

Figure 2.7 : Iteration domain of statementS in the Smith-Waterman kernel for the
value of M = 5 and N = 9¥(courtesy: islplot display tool [1]).

De nition 2.3.2. (Statement Instance) Each dynamic instance of a statement
Sin a program is identi ed by its iteration vector (i), which contains values for
the iterators of the surrounding loops. For example, S(i = 1j = 1) in the Smith-
Waterman kernel refers to the statemens when the values of loop iterators, and]

are 1, i.e., the rstinstance that gets executed among all thstatement instances of.

De nition 2.3.3. (Iteration Domain) The iteration domain (denoted byDS®) of
a statementSis de ned as the set of all iteration vectors, i.e., the set ddll possible
dynamic instances of the statement. The iteration domain dhe statementSin the

Smith-Waterman kernel as follows:

D(S@s) = fGjH)j@ i+ M 1)~ @ j N 1)g

Figure 2.7shows the iteration domain of statemengin the Smith-Waterman kernel

for the value of M =5 and N = 9. Each point in the iteration domainis an execution

YNote that the orange corner points also do belong to the iteration domain.

20

instanceis 2 D of the statement. If the length of the iteration vector of thestatement
is m then the iteration domain of the statement can be viewed asnan-dimensional

bounded polyhedron(polytope) 64].

De nition 2.3.4. (Access Relation) Each memory reference (such as scalars, ar-
rays, structures), denoted byA, in a statement is expressed as an access relation,
which maps a statement instancds to one or more memory locations to be read-
/written [65]. The read memory referencé\[i-1][j-1] in the statement S of the

Smith-Waterman can be expressed as follows:

2 3
[
2

3¢ j
1 00 0 1
9 L

AF(S(7%)) =

M
0100 1
N

1

De nition 2.3.5. (Schedule) A schedule (denoted by S(S(i3))) is an a ne func-
tion that describes the order in which each dynamic instanagf the statement will be

executed in the original or transformed version of the progm.

In other words, the execution order of a program is capturedyhthe schedule,
which maps a statement instanceés(is) to a logical timestamp. In general, a sched-
ule is expressed as a multidimensional vector, and stateniémstances are executed
according to the increasing lexicographic order of theirmiestamps. For example,
the execution order of instances of statement S in the origihversion of the Smith-

Waterman kernel is as follows:

>(S(18)) = (i)

21

o> 0> 0> 0> 0> O
OS> 0> 0> 0> 0>

> 0> 4> a> 0> 0> 0>
o>

> 0> 6> a> 0> > 0> 0
>e>

o>

Figure 2.8 : Execution order of instances of statemer in the Smith-Waterman
kernel (courtesy:islplot display tool [1]).

As can be seen fronfrigure 2.8 the points in the iteration domain of the statement

Swill be executed in the order speci ed by the scheduleS(i3).

2.3.2 Dependence Analysis

After extracting the polyhedral representation of an input pogram, dependence anal-
ysis phase computes memory based dependences which neecttprbserved in trans-

formations. A statement instance T is dependent on anotheitagement instance S

if they access the same memory location (at least one of thecasses is a write),

and there exists a possible program execution path from S to. Dependence rela-
tions denoted byDS' T capture the precise constraints under which the statement
instances S and T are dependent on a memory location. For exampa dependence
relation arising from the pair of memory accesses, i.4[i]j] and A[i-1][j-1] of

statement Sin the Smith-Waterman are as follows:

22

(a) Dependence between instances of (b) Dependence between instances of
statement S with read on A[i-1][j-1] and statement S with read on A[i-1][j] and write
write on A[i][j] on A[i][j]

(c) Dependence between instances of .
statement S with read on A[i][j-1] and write (d) Union of depzabr;dig)ces from parts (),
on A[i][j] '

Figure 2.9 : Dependence relations on statemer@ in the Smith-Waterman kernel
(courtesy: islplot display tool [1]).

DS S=1f(i5 = (isijs)) ! (1% = (i) (78 2D (S(i))
Ais= il DM (=i 1)
~OS(S(iE) (SR g

where °5(S(i3)) 3(S(iQ)) = (is<iQ) _(is=ig"js<jg) (2.4)

23

In the equation (2.4), i3, it are iteration vectors of source and sink of the dependence
relation respectively. The constraint that the iteration \ectors of source and sink
should belong to their corresponding iteration domain is gaured by the condition,
(i3;12 2 D(S(i3)). Also, the constraint that the source and sink of the deperehce
should access same memory location is captured by the comatit ((is = i2 1)7 (js =

jo 1)). Further more, the constraint that the source of the depedence should

execute before the sink of the dependence is captured by tlendition S(S(ig))
S(S(i2)).

Figure 2.9 shows all dependence relations among instances of S arisiram
all the read accessesA(i-1][j-1], A[i-1]], Ali][j-1]) and the write access
(A[iII]) inthe Smith-Waterman kernel. Above dependence relationsdim the input
program are then leveraged to compute a new program schedti@t can expose

parallelism in the Smith-Waterman kernel.

2.3.3 A ne Program Transformations

Polyhedral optimizers such as PLuToZ3], PolyAST [24], PPCG [25] take polyhedral
representation of an input program along with memory basedegpendences as input.
Then, the optimizers compute a best a ne program transformaon, i.e., a sequence
of tens of textbook loop transformations, so as to enable pdlelism, vectorization or

improve data locality, while obeying the inherent dependees in the input program.

De nition 2.3.6. (A ne Transformation) \ A ne transformations (denoted by
T (S(13))) are the class of transformations that preserve the collinearity and convexity

of points in space, besides the ratio of distancelsty|.

Several loop transformations such as skewing, interchangkstribution, fusion,

non-parametric tiling, and others can be represented usirgne transformations.

24

Figure 2.10 : Iteration domain of statement S in the Smith-Waterman kernkafter
loop skewing to expose parallelism at loop-j (courtesyslplot display tool [1]).

An a ne transformation can reorder the execution of statemehinstances to expose
hidden parallelism while obeying the inherent dependencisthe input program. For
example, neither of the loopsi(j loops) in the Smith-Waterman kernel can be par-
allelized because of carried dependences on bathh loops. However, loop skewing
can be applied on the Smith-Waterman kernel to enable innewst loop (j-loop) to
be executed in parallel. The ane program transformation (sown in Figure 2.10

corresponding to the loop skewing on Smith-Waterman kerndd as follows.

T(S(E) = f(i;j) ! (519 G0°=i+1)"(°=])g (2.5)

In general, polyhedral optimizers rely on integer linear jmgramming (ILP) based cost
modeling to compute the best a ne program transformation byrespecting program

dependences, and maximizing the parallelism and data loital] 23, 24, 25.

25

{for (int i =2; i < M+ N 1;i + 1) f
#pragma omp parallel for
for(int j = max1, M+ i + 1); j < min(N, i); j += 1)f
Al JI00] = MAXAL j 1001, AL j 1] 1], n
Al 10 1D

W N

N o g

g

Figure 2.11 : Transformed code of Smith-Waterman kernel with parallelis at
innermost loop (j-loop)

2.3.4 Code Generation

Generating code in the polyhedral model is nding a set of nesl loops visiting
each integral point of each polyhedra, once and only oncelléwing the execution
order from schedules. As explained, one of the key distingoilsg factors of the
polyhedral model is the use of powerful code generation algloms (Quillee [66] and
Extended Quillee [58]) that can synthesize new code from algebraic speci catisrof
transformations. Figure 2.11shows the transformed code of Smith-Waterman kernel

after applying loop skewing transformation (show in equatn 2.5).

2.4 Limitations of the Polyhedral Model

In the original formulation of the polyhedral model, all aray subscripts, loop bounds,
and branch conditions inanalyzableprograms were required to be a ne functions of
loop index variables and global parameters. As can be obsatvieom an example
program in Figure 2.12 the array subscript (A[i*j]) in the statement S1, the i-loop
bound (M*N| and the branch condition C[j] > 0) are non-a ne functions of the
loop index variables {;]), and the global parameters {1, N; hence they are not
analyzable with the polyhedral model precisely. However, dades of research since

then have led to a signi cant expansion of programs that canéasconsidered analyzable

26

lint M;
4int N= M2;
4int A[1000], B[1000], C[1000];

#pragma scop

gint P= M2;

1for(int i =0; i <M M i++) f

8 for(int j = i; jJ < N; j++) f

9 for(int k=j; k< P; k++) f
10 if (C[k] > 0)

11 A[I j] = B[J]; /1S1
12 g

13 g

14 0

s[#pragma endscop

Figure 2.12 : An example to discuss limitations of the polyhedral model

by polyhedral frameworks using the approaches such as arreggion analysis 2],
fuzzy array data ow analysis p7] and other variants to approximate the access
relations for arrays having non-a ne subscripts. Also, cemin polyhedral extraction
tools such as PET 2] can extract the relation between parameters (e.g., P = M/2
in line 6) in the program shown inFigure 2.12 and capture these relations into the
polyhedral representation of the program. However, thesetexction tools may not
be able to capture some relations e.g., N = M/2 in line 2 of thel®ove program since
the extraction tools ignore regions of code not surrounded Ipragma scop's. Finally,
the remaining constraints in the polyhedral model stem fromestrictions on various
program constructs including pointer aliasing, unknown foction calls, recursion, and

unstructured control ow.

Previously [68, 41], we showed how explicit structured (loop and task level) pa
allelism can be harnessed to enhance dependence analybisteby enabling a larger
set of transformations on the input program. The dependenamalysis is improved
by rst enabling conservative dependence analysis eérial-elision version of the in-

put program, i.e., the program without parallel constructs (This past work assumed

27

that the input parallel program was constrained to satisfy he serial-elision property,
which requires that the serial-elision version is a correaghplementation of the paral-
lel program.) Next, happens-beforeelations are identi ed from the explicitly-parallel

constructs, such as tasks and parallel loops, andtersectedwith the conservative
dependences. Finally, the resulting set of dependences isg&d on to a polyhedral
optimizer, such as PLuTo 2] or PolyAST [24], to enable transformations of explicitly-
parallel programs with unanalyzable data accesses. The apaches in 8, 41] did not

require alteration in the polyhedral intermediate repres#ation since the serial-elision

version of the input program always has a total program exetian order.

In general, SPMD parallel programs have partial program egation order and
don't satisfy the serial-elision property in general (SeeSection 2.1.2. Also, there
are no existing approaches to extract the partial executionrder originating from
barriers in the SPMD programs, and represent in the polyhedl model. Hence, we
propose extensions to the polyhedral model in the next chagtto capture such partial

execution orders and enable debugging and optimizations ®MD programs.

28

Chapter 3

Extensions to the Polyhedral Model for SPMD
Programs

Research is creating new knowledge.

Neil Armstrong

In the polyhedral model, schedules (de ned isection 2.3 are introduced to cap-
ture total execution orders present in the sequential progms. These total execution
orders are extracted and expressed in a variety of ways indlng 2d+1-schedulesgf],
Schedule treesq9, 59 among others in the existing polyhedral frameworks. These
schedules can also express some partial execution orderadsigning the same logical
timestamp to multiple statement instances, thereby indicing that they can execute
at the same time $3]. However, there are no existing approaches to extract the pa
tial execution order originating from barriers in the SPMD pograms, and express
them onto schedules. In this thesis, we present novel exténss (i.e., space and phase
mappings) to the polyhedral model to express such partial egution orders from
SPMD programs. Also, these extensions are subsequently ugexplained in further

chapters) to enable both debugging and optimizations of SPMprograms.

3.1 Important Concepts in an SPMD Execution

There are two important concepts in an SPMD execution with barers to extract

partial order in the execution.

29

1#ipragma omp parallel
o f

3 fS1;g

5 #pragma omp barrier // Bl
7 fS2;9

9 #pragma omp barrier // B2
11 #pragma omp master

12 fS3;9

139 /I B3

Figure 3.1 : An example to motivate important concepts in an SPMD executio

Thread 0 Thread 1
s1 Phase =0 S1
B1
S2 Phase =1 S2
B2
S3 Phase =2
B3

Figure 3.2 : Overall SPMD execution of the program inFigure 3.1with two threads

The overall execution of the SPMD program irFigure 3.1 with two threads is
shown inFigure 3.2 As can be seen from it, both threads (threads with id's 0 and
1) execute the same program with sequential code (S1, S2) wadantly, and parallel
code (B1, B2, S3) cooperatively. Since the programmer anateéd the statement S3
(line 12) with omp master only master thread, i.e., thread with id 0, can execute the

statement. Hence, thehread mappinginformation, i.e., which thread executes which

30

statements, is one of the important mappings required to ctyre the partial order in

an SPMD program.

A key property of the SPMD programs is that their execution ca be partitioned
into a sequence of phases separated by the textually alignbdrriers. The overall
SPMD execution inFigure 3.2can be seen as a sequence of three di erent partitions
(execution phasgsseparated by the barriers B1, B2 and B3. It has been observed
in past work that statements from di erent execution phasesannot execute con-
currently [70], i.e., the statement S1 can never run in parallel with the stement
S3. So, thephase mappingnformation, i.e., which statement is in which phase, is
another important mapping, and together withthread mappingcan help in capturing

the partial orders in the SPMD programs.

3.2 Space Mapping

A space mapping (denoted by #(S(i3))) is an a ne function which assigns a logical
processor ID to a statement instance (${)) on which the instance has to be exe-
cuted [71]. The space mapping can be viewed as a one-dimensional a nenttion
that maps a statement instance onto a one-dimensional spactlogical processors.
For example, the space mappings of the statements iagure 3.1are as follows (Note
that we replaced the parallel region with a logical loop thatterates over threads, and

the loop induction variable istid):

A(S1(iz1)) = tid ; where ig; = (tid)
A(S1(isy)) = tid : where i3, = (tid)
A(S1(i33)) = 0 ; whereiss = (tid)

In our tool PolyOMPwe recognize the SPMD-style parallelism using OpenMP

constructs with the support foromp parallel, omp for, omp parallel for, omp

31

barrier, omp single, omp master directives and the nested parallel regions. To

compute the space mappings in case of the above OpenMP cousts, we

1. Replace theomp parallel region header by a logical parallel loop that iterates

over threads to model the entire SPMD execution with all thrads,

2. Enclose the body of a statically scheduled worksharingdp in anif block with
the condition on the thread iterator to be a function of lowerupper loop bounds,
the loop chunk size if specied and total number of threads pacipating in
the worksharing loop (the last two are treated as xed but unkown program

parameters),

3. Enclose the body of a non-statically scheduled workshagi loop or body of a
omp single region in anif block with the condition on the thread iterator to

be a function,

4. Enclose the body of @mp masterregion in anif block with the condition on

the thread iterator to be zero,

5. Insert an explicitbarrier immediately after a parallel region (or) a worksharing

loop (or) asingle region if anowait clause is not speci ed.

Note that the transformations are only performed for the purpse of computing
space mappings in an easier and cleaner fashion, and don'aehe the semantics of
the original program. Also, note that the temporary functionname (introduced as
part of above transformations) for all the static scheduledvorksharing loops is the

same.

The SPMD program (shown inFigure 3.3 contain several OpenMP constructs
of type worksharing @mp parallel for, omp for, omp single), and synchroniza-
tion (omp master, omp barrier). This input SPMD program is transformed at AST
level by applying the above transformations so that space rppings can be easily com-

puted. For example, theomp single construct enclosing statement S3 (line 10) is

32

1#ipragma omp parallel num_threads(Ty)

o f

3 fS1;g

5 #pragma ompfor

6 for(int i = 0; i < N; i++)
7 fS2;9

9 #pragma omp single

10 fS3;g

12 #pragma omp master

13 fS4;9

15 #pragma omp parallel for num_threads(T,)
16 for(int j = 0; j < N; j++)
17 f S5;9

180

Figure 3.3 : An OpenMP SPMD-style program with various directives

replaced with anif block with a condition on the thread iterator to be equal to a
function f,. An explicit omp barrier is also inserted after theif block since the
omp single has a default enclosing barrier according to OpenMP specatons [53].

After the transformations, space mappings of the statementis Figure 3.3 are as

follows:

A(S1(i31) = tid; ; whereig; = (tidy)

A(S2(i32)) = 1(i; O;N; T1) ; whereis, = (tidy;i)
A(S3(i33)) = f2(T1) ; whereigs = (tid,)

A(S4(i34)) =0 ; whereig, = (tid,)

A(S5(i35)) = fa(j; O;N; T,) ; whereiss = (tid;tid ;)

Consider space mapping (*(S2(is2))) of the statement instance S2(,). The

33

logical processor id that executes the statement instanc&Z(s;)) is a function f;'s
value over the variable i, and parameters N, I In general, space mappings can
consist of non-a ne and unknown functions (in the case of S&3, and S5) particularly
when the statement instance is surrounded by an OpenMsingle construct or an
OpenMP worksharing loop. When comparing space mappings ofdwtatements, the
non-a ne mappings can create hard challenges for program alysis. Therefore, we
conservatively compare only the name and arguments of thes@appings to distinguish

the non-a ne space mappings of the statementssp).

3.3 Phase Mapping

In this thesis, we assume the barriers in SPMD programs to bextually aligned,
which statically ensures that all threads of the SPMD regiomeach the same tex-
tual sequence of barriers inside the SPMD regioi(]. A fundamental property of
the SPMD programs with barriers is that their execution can b partitioned into a

sequence of phases separated by the textually aligned bars.

A phase mapping (denoted by P (S(i3))) is a multi-dimensional a ne function
that assigns a logical identi er, which we refer to as @hasestampto each statement
instance. The statement instances are executed according the increasing lexico-
graphic order of their phase timestamps, and similarly, thaastances follow increasing
lexicographic order of the schedule (de ned iection 2.3 within a given phasestamp.
For example, phase mappings of the statements iigure 3.1are as follows (Note that

we replaced the parallel region with a logical parallel looghat iterates over threads,

34

and the loop induction variable istid):

P(S1(i31)) =0 ; wherei3; = (tid)
P(S1(i3,) = 1 ; whereis, = (tid)

P(S1(i33)) = 2 ; wherei3; = (tid)

Also, phase mappings of the statements iRigure 3.3are as follows:

P(S1(i51)) = (0) ; whereis; = (tid,)
P(S2(i32)) = (0) ; whereis, = (tid4;i)
P(S3(i33)) = (1) ; whereiss = (tidy)
P(S4(i54)) = (2) ; whereis, = (tidy)
P(S5(iss)) = (2) ; whereiss = (tid;tidy;j)

De nition 3.3.1. (Depth of a barrier) The depth of a barrier is de ned as the
number of sequential loops surrounding the barrier from thenmediately enclosing
SPMD region. For example, all the barriers present irFigures 3.1and 3.3 have
zero depth, i.e., these barriers are not surrounded by anygeeential loop from its
immediately enclosing SPMD region. Most relevant past work72] in computing

phasestampsvere limited to barriers having zero depth.

The example SPMD program shown ifrigure 3.4 contains two explicit barriers,
i.e., one barrier (at line 10) with depth 2 and another barrie(at line 16) with depth
1. This pattern of barrier usage is common in accelerator pgoramming where each
thread proceeds in a lock step fashiorvy. The overall execution of the SPMD
program in Figure 3.4 with two threads is shown inFigure 3.5 As can be seen from
it, the statement instances S3(i = 0) and S1(i = 1,] = 0) are in ame execution

phase of computation, i.e., they are not separated by any b&r during the program

35

1#ipragma omp parallel

o f

3 for(int i = 0; i < N; i+4)

4 f

s for(int j = 0; j < N; j+¥)

6 f

7 fS1;,g9 //S1(i,)

9 /I Barrier B1(i, j) with depth 2
10 #pragma omp barrier

12 fS2;9 /1/S2(i, |)

13 g

15 /I Barrier B2(i) with depth 1
16 #pragma omp barrier

18 #pragma omp master

19 fS3;9 // S3(i)

20 g

a0 /I Implicit Barrier3 with depth 0
Figure 3.4 : An OpenMP SPMD program that includes barriers with depth> 0.

execution.

P(S1(i3)) = "(S3(i53)) for i51=(1;0) andizs = (0)

In the rest of section, we propose a novel approach to compuyihase mappings

of the statements in SPMD programs including barriers with epth > O.

De nition 3.3.2. (Barrier instance) . Similar to the de nition of a statement in-
stance (in Section 2.3, each dynamic instance of a barrieB in an SPMD region is
identi ed by its iteration vector (ig). For example, B1(i = 1, j = 1) in Figure 3.4

refers to the barrierB1 (at line 10) when the values of loop iterators, j are 1.

36

Thread 0 Thread 1
$1(0, 0) Phase =0 $1(0, 0)
B1(0. 0)

S2(0, 0) S2(0, 0)
s1(0, 1) Phase =1 s1(0, 1)
B1(0. 1)

S$2(0, 1) Phase =2 $2(0, 1)
B2(0)

S3(0) ~
s1(1, 0) Pliasn =3 s1(1, 0)

Bi(1.0)

Figure 3.5 : Overall SPMD execution of the program inFigure 3.4 with two threads
and value of N as 2

De nition 3.3.3. (Reachable barriers / Immediately succeeding barriers):
Reachable barriers (or) Immediately succeeding barrier$ @ statement instance (de-
noted by RB (S(is))) is de ned as the set of barrier instances that can be exetad
after the statement instance §(is))) without an intervening barrier instance. For ex-
ample, a reachable barrier/ immediately succeeding barriéor the statement instance
(S1(1=1,)=0)) from Figure 3.5is B1(i = 1, j= 0). Symbolically, reachable barriers
for a statement instance §$2(is, = (i;j))) in Figure 3.4include the barrier instance
(B1(ig1)) in the next iteration of j-loop , and another barrier instance B2(ig>)) in

the same iteration ofi-loop . These reachable barriers are shown below:

RB(S2(is2)) = f Bl(igy) j i=1i°"j=j° 1;
B2(i52) j i=i""j=N 19

whereis, = (i;j); i1 = (i%j9; andizg, = (i%

During the execution, there exists only one reachable baerifor a given dynamic

statement instance under the assumption of textually aliggd barriers, and it would

37

be one (based on the program parameters, for example, N kgure 3.4 from the

statically determined set of reachable barriers.

Observation: Two statement instances are in same execution phase if andoif
they have same set of reachable barrier instances. For exdeyphe statement in-
stances S3(i = 0) and S1(i = 1,] = 0) are in same execution phasd computation
since they have same reachable barrier/ immediately sucdesg barrier instance, i.e.,
B1(i=1,j=0).

De nition 3.3.4. (Phase mapping) : The phase mapping of a statement instance
(denoted by P (S(i%))) is computed as theunion (collection) of the schedules (times-

tamps, de ned in Section 2.3 of reachable barriers of the statement instances.

"(S(s) = °(RB(S(13))

Algorithm 1 summarizes the overall approach to compute the phase mapgof the
statements by taking regular statements and barriers schels as an input (at lines 2-
3). For example, the 2d+1-schedules of regular statementadbarriers in Figure 3.4

are as follows:

5(S1(i31) = (0;i; 0;j; 0); 3(S2(i32)) = (0;i; 0;); 2); 3(S3(i33)) = (0;i; 1,0;0)
S(B1(iz1)) = (0;i; 0;j; 1); 3(B2(ig2)) = (0;i; 1,0;0); °(B3) =(1;0;0;0;0)

Then, reachable barriers are computed by identifying the X&ographically closest

barrier instances to each regular statement instance (ankes 4-8).

RB(S1(i51)) = f B1(iz1) j i=1i°" j=]°g

whereiz; = (i;j); andig: = (i%j9

38

Algorithm 1: Building phase mappings of statements

Input : Regular statements (S) and barriers (B)

1 begin
[* Extract original program schedules (time stamps, define d
in Section 2.3) */
2 S(S) := Schedules of the regular statements
3 S(B) := Schedules of the barriers

/* Build a map from the regular statements to the barriers

such that the statements are lexicographically strictly

smaller than those of barriers */
4 SUBo= fxl oy S(x) S(¥);%2 S;¥2 Bg

/* Build another map from the time stamps of the regular
statements to the time stamps of the barriers that must
precede it */

5 S(s)! S(B) ::(S(S)) 1 S!' B S(B)

[* Extract a map from pairs of statement and barrier
timestamps to their time difference */
(SB) (3(B) S(S) =
FCSEOL SO (%% S(%):%2S;¥2Bg

/* Build another map from each statement time stamp to the
time stamp of the immediately succeeding barriers i.e.,
reachable barriers */

; S(8)' °(8) := dom(lexmin((SB) (°(B) S(s)Y)

/* Build a map from each statement instance to the immediatel vy
succeeding barriers, i.e., reachable barriers */

: S' B = lexmin(S(S) °® *®) ($(B)) ?

[* Compute phase mappings of a statement instance by union of
timestamps of the reachable barriers of the statement
instance */
9 Phase mappings, " = B B

10 end

39

RB(S2(i)) = f BL(g1) j i=i°" j=j° 1;
B2(i52) j i=i%" j=N 1g

whereis, = (i;j); ig1=(i%9; andig, = (i%

RB(S3(5)) = f BL(gs) j i=1° 17 j°=0;
B3ji=N 1g

whereizs = (i;j); andig: = (i%j9

Finally, phase mappings of each statement instances are oioad by union of the

schedules (timestamps) of reachable barriers of the statent instance (at line 9).

"(S1(5)) = °(RB(S1(i51))
=f S(BL(igy) j i=1i°" j =j°whereizi=(i;j)andiz:=(i%j%9

= £(0;i%0;j%1) ji=i%" j =°g

f(0;i; 0;j; 1) g

°(RB(S2(i52))
f S(BL(igy) j i
5(B2(ig2) j i=1%" j =N 1whereis, =(i;j)andigz = (i%g

" (S2(i52))

i%7 j =j% 1whereis, =(i;j)andizgy = (i%j9;

= f(0;i%0;j%1) ji=i°~j=j° 1,
(0;i%1) ji=i%r j=N 1g

=f(0;i;0;) +1;1) j j +1 <N;
O jj=N 1g

40

"(S3(i33)) = °(RB(S3(i33)))
=f S(Bi(igy) ji+1=i°" j°=0 whereigs = (i) andig; = (i%9;
S(B3) ji=N 1whereisz=(i)g
= (0;i%0;j%1) ji+1=1i°" j°=0;
(3;0;0;0;0) j i=N 1g
=f0;i+1;0;0;1) ji+1<N;
(1,0,0,06,0) ji=N 19

In general, the partial execution order of parallel prograsi are expressed either
through Happens-before (HB) relations or May-happen-in-patlel (MHP) relations.
In this thesis, after computing both space and phase mappis@f all statement in-
stances in an SPMD program, we construct partial executionrager of the SPMD

program in the form of MHP relations.

3.4 May-Happen-in-Parallel (MHP) Analysis

Parallel programming languages o er many high-level paral constructs for paral-
lelism and synchronization. All these parallel constructsidicate the relative progress
and interactions of logical threads during execution. Fultermore, these interactions
among threads can impact the possible execution order of &ments. For example,
statements before and after darrier are ordered within an SPMD region, as they
cannot execute simultaneously. Knowledge of these possildrderings can be very
helpful when debugging parallel programs. May-Happen-in-Parallel (MHP) analy-

sis determines if it is possible for execution instances of two statements (or the same
statement) to run in parallel” [43. The MHP can be reformulated as follows with

our extensions to the polyhedral representation.

41

De nition 3.4.1. May-Happen-in-Parallel : Two statement instances 3§) and
T(i7) can run in parallel if and only if both the instances are in tlk same execution
phase (based orbarriers) and are executed by two di erent logical threads of the

SPMD region.

MHP(S(i5); T(i7)) = True , (P(S(R) = P(T(7))

A A(S(E) 8 A(T3R)) (3.1)

For example, any instance of the statement S2 would never exge in parallel with any
instance of the statement S3 irFigure 3.4 because they are always either separated
by barrier B2 (at line 14) or barrier B1 (at line 7).

The MHP condition in (3.1) appears quite simple because MHP contains less
information than the happens-before (HB) information. If MHRS((s), T(i7)) Is true,
then we know that HB(S(s), T(17)) and HB(T(iF), S(i's) must both be false.

MHP (S(is); T(i7)) = True =) (HB(S(is); T(i7)) = False)
A (HB (T(i7); S(is)) = False) (3.2)

However, if MHP(S(@3), T(i7)) is false, then we know either of HB(S§), T(i7)) or
HB(T(i7), S(i's)) must be true and the other false, but there is insu cient information

in MHP(S(i5), T(i7)) to indicate which of the two disjuncts evaluates to true ad

42

which to false.

MHP (S(is); T(17)) = False =) ((HB(S(is); T(i7))= True)
" (HB (T(i7); S(is)) = False))
[((HB(S(i5); T(i7)) = False)
" (HB(T(i7);S(is)) = True)) (3.3)

Algorithm 2 summarizes the overall steps to build the MHP information on a
given pair of statements S and T. Lines 2-3 of the algorithm &act the space and
phase mappings of both statements S and T. Line 4 builds a mapm each point
in the iteration domain of S to each point in the iteration donain of T such that
their phase mappings are the same. Likewise, line 5 computesnap such their
space mappings are same. To compute a map (line 7) such thatead mapping of S
and T are di erent, we subtract the cross product of thread mps (line 5) from the
map having same thread mappings (line 6)(e.g. the identity appings). Lastly, MHP
information (line 8) between a pair of statements S and T arebtained by intersecting
the maps with the same phase from line 4 and the maps with di en¢ space from

line 7.

Finally, the program execution order in an SPMD program is cdpred through
MHP relations from the combination of Space mappings ¢), Phase mappings (°),

and Schedule (time) mappings () in the polyhedral model.

43

Algorithm 2: Building May-Happen-in-Parallel (MHP) information between

statements S and T.
Input : Regular statements Sand T

1 begin

[* Extract space and phase mappings of statements S and T */
2 A(S(i3)); A(T(i7)) := Space mappings of S and T
3 P(S(i5)); P(T(i7)) := Phase mappings of Sand T

/* Build a map from S to T such that an element from S is
mapped to another element in T with same phase mappings */

Samephase = (S(13)) (P(T(F)) *

/* Build a map from S to T such that an element from S is
mapped to another element in T with same space mappings */

g!arTTeSpace = A(S(ré)) (A(T(FI'))) !

/* Compute cross product of S and T)
6 g!rosTsProduct = dom(A(S(|~S))) dom(A(T(FI')))

/* Build another map from S to T such that an element from S
is mapped to another element in T with different space

mappings */
7 SI'T = S!'T _ ST
NotSameSpace * CrossP roduct SameSpace

/* Build MHP information by intersecting the map with same
phase mappings and another map with different space

mappings */
8 SI' T .— S!'T \ SI'T
MHP T NotSameSpace SameP hase

9 end

3.5 Past Work in Extending Polyhedral Model for Explicitly-

Parallel Programs

In the last few years, a signi cant interest (f1, 74, 75, 76, 77, 78]) from the polyhedral

research community has started to address the challengesusing the polyhedral

44

model to analyze and optimize explicitly-parallel program

Firstly, Yuki et al. [75] started with addressing the problem of data- ow analysis
of explicitly-parallel programs using the polyhedral mode It included an adaptation
of array data- ow analysis to X10 programs with nish/async parallelism [75 and
extended some support to clocks/f]. In this approach, the happens-before (HB)
relations are rst analyzed, and then the data- ow is compuéd based on the partial
order imposed by happen-before relations. Their work'] also extended happens-
before relations to X10 clocks and proved that comparing twdaement instances
with the extended happens-before relations to be undecidab But, our extensions
to the polyhedral model focus on the partial orders arisingdm the textually aligned
barriers (subset of X10 clocks) in an SPMD program, and compag two statement

instances with the MHP relations from the barriers turned otuto be decidable.

Secondly, our prior works41, 68|, addressed the problem of analyzing and trans-
forming programs with explicit parallelism (doall, task paallelism in OpenMP 4.0,
and doacross parallelism i OpenMP 5.0) that satisfy the serial-elision property.
The work starts by enabling a conservative dependence ansily of a given region
of code, which may contain non-a ne constructs. Next, it ideti es happens-before
relations from the explicitly-parallel constructs, such atasks and parallel loops, and
intersects them with the conservative dependences. Finalthe resulting set of depen-
dences is passed on to a polyhedral optimizer, such as PLuZ@,[23] Or PolyAST [24],
to enable the transformation of explicitly-parallel progams with unanalyzable data
accesses. However, the approach] 68] does not apply to general SPMD parallel
programs with barriers because they don't satisfgerial-elision property in general

and the approach doesn't consider barriers in the analysis.

Thirdly, PENCIL [79, a platform-neutral compute intermediate language, ainte
at facilitating automatic parallelization and optimization on multi-threaded SIMD

hardware for domain speci c languages. The language allowsers to supply informa-

45

tion about dependences and memory access patterns to endiddter optimizations.
PENCIL provides directives such asndependent, reductiongo remove data depen-

dences on the loop, but doesn't have support to enable anaby$or barriers.

Lastly, Pop and Cohen have presented a preliminary approadh increase op-
timization opportunities for parallel programs by extracing the semantics of the
parallel annotations BQ. This extracted information is brought into compiler's in
termediate representation and leverage existing polyhedrframeworks for optimiza-
tions. They also planned to consider streaming OpenMP extsions carrying explicit

dependence information, to enhance the accuracy of data @plence analyses.

46

Chapter 4

PolyOMP: A Polyhedral Framework for
Debugging and Optimizations of SPMD Programs

High achievement always takes place in the

framework of high expectation.

Charles Kettering

In this chapter, we introduce PolyOMPa framework extending the polyhedral
model to enable analysis for debugging and optimization oP$ID programs which
are expressed through OpenMP. The summary of tHeolyOMPframework is shown

in Figure 4.1

Our tool: PolyOMP

SPMD-style
program o | 1) Polyhedral representation
1 + Extensions

N

2) Debugging 3) Optimization
(Race detection) (Redundant barriers)

v v

&

/

Data races Optimized code

Figure 4.1 : Summary of the PolyOMPa polyhedral framework for debugging and
optimizations of SPMD programs

47

On a high-level,PolyOMRXxtracts partial execution orders from SPMD programs,
and represents them in the polyhedral model as MHP relationgXplained in Chap-
ter 3). Then, PolyOMRises these MHP relations to enable debugging (i.e., statictda
race detection inChapter 5 and optimizations (i.e., static redundant barrier remova
in Chapter 6) of the SPMD programs.

4.1 Overall Work ow

In this section, we brie y explain overall work ow of the PolyOMPwhich is imple-
mented as an extension to the Polyhedral Extraction Tool (PE, version: pet-0.08-
30-g77689da)d], and consists of the following components (Séégure 4.2:

1. Clang OMP Parsef Conversion from input OpenMP-C program (with sup-
port for omp parallel, for, parallel for, barrier, single, master di-
rectives and nested parallel regions) to Clang AST with the f of Clang-omp

(version: 3.5) B1] and LLVM [8Z](version: 3.5.svn)
2. PET AST Builder{ Conversion from Clang AST to PET AST (de ned in [2])

3. Polyhedral SCoP Extractor { Extract components of the polyhedral repre-
sentation (SeeSection 2.3 such as iteration domain, access relations, and sched-

ules of the statements from the PET AST.

The rst three components, i.e.,Clang OMP Parser, PET AST Builderand
Polyhedral SCoP Extractor are part of the Polyhedral Extraction Tool (PET,
version: pet-0.08-30-g77689da).

4. Space Mapping Builder { Build space mappings of the statements from the
PET AST (See Section 3.2.

5. Phase Mapping Builder { Build phase mappings of the statements from the

components of polyhedral representation especially sclues of both regular

48

Figure 4.2 : Overview of the PolyOMPsystem built on top of the Polyhedral Extrac-
tion Tool (PET version: pet-0.08-30-g77689da][

statements and barriers (Se&ection 3.3.

6. MHP Builder { Build May-happen-in-parallel (MHP) relations from the space

and phase mappings of the statements (S&=ction 3.3.

7. Debugger - Data Race Detector { Identify data races present among the

statements at compile-time with the help of the MHP relationgSeeChapter 5).

8. Optimizer - Redundant Barrier Remover { Identify and remove redundant
barriers in the input program at compile-time by using the rae detector and

the phase mapping builder (SeeChapter 6).

49

In the rest of this thesis, we discuss how the proposed exters and the MHP
relations can be used to enable debugging (i.e., static datece detection inChapter 5)
and optimizations (i.e., static redundant barrier removain Chapter 6) of the SPMD

programs.

50

Chapter 5

Debugging Of SPMD Programs { Static Data
Race Detection

Debugging is twice as hard as writing the code in

the rst place.

Brian Kernighan

Data races are the dominant cause of semantic errors in mullireaded programs.
A data race happens when two or more logically parallel threa perform con ict-
ing accesses (such that at least one access is a write) to aredamemory location
without any synchronization. Complicating the matter, dat races may occur for a
certain input or may happen only in certain executions of a pallel program, thereby
making the races notoriously hard to detect and reproduce. Hee, data race detec-
tion remains a challenging and hard problem, nevertheleshe signi cant progress
on the restricted subsets of fork-join and SPMD programs$38, 84, 72], as well as for
higher-level programming models8b, 75, 86, 87]. In this chapter, we propose and
evaluate an approach to identify data races in SPMD progranma compile-time with
our extensions (introduced inChapter 3) to the polyhedral intermediate representa-

tion.

5.1 Motivation

To motivate our approach for detection of data races at comig-time, we use an

SPMD program (Jacobi03 benchmark from the OmpSCBenchmark suite 8§)) as

51

an illustrative example. The excerpt shown irFigure 5.1is a 2-dimensionalJacobi

1#pragma omp parallel private(resid, i)

o f

3 while (k <= maxit & error > tol) f //S1

4 /[copy new solution into old /

s#pragma omp for

6 for (j=0; j<m j++)

7 for (i=0; i<n; i++)

8 uold [i + mj] = u[i + mj];

10 /[compute stencil, residual and update /
u#pragma omp for reduction(+: error)

12 for (j=1; j<m 1; j++) f

13 for (i=1; i<n 1; i++) f

14 resid =(ax (uold[i 1+mj] + uold[i+l+m |])
15 + ay (uold [i+m (j 1)] + uold [i+m (j +1)])
16 + b uold [i+m |] fli+mj]) / b;
18 /| update solution /

19 ufi + mj] = uold[i + mj] omega resid ;
21 / accumulate residual error /

22 error =error + resid resid ;

23 g

24 g

26 /| error check /

7 #pragma omp master

28 f

29 k++; //S2

30 error = sqrt (error) /(n m; //S3

31 g

32 g/ while /
sg / end parallel /

Figure 5.1 : Data races in the Jacobi benchmark frol@mpSCbienchmark suite

stencil computation from the OmpSCbienchmark suite 88. The computation is par-
allelized using OpenMPparallel construct with worksharing directives (at lines 5,

11) and synchronization directives (implicit barriers fron worksharing loops at lines

52

5, 11). The rst for-loop is parallelized (at line 5) to prodice values of the arrayuold .
Likewise, the second for-loop is parallelized (at line 119 tonsume values of the array
uold. The reduced error (from the reduction clause at line 11) is updated by only
the master thread in the region (lines 28-31). Finally, the entire compation in lines
5{31 is repeated until it reaches the maximum number of iteteons (or) the error is
less than a threshold value. This pattern is very common in mg stencil programs,
often with multidimensional loops and multidimensional arays [89. Although the
worksharing parallel loops have implicit barriers, the prgrammer who contributed
this code to the OmpSCsuite likely overlooked the fact that amaster region does
not include a barrier. As a result, data races are possible ihis example since state-
ment S1's (at line 3) read access of variablés error by a non-master thread can
execute in parallel with an update of the same variables perimed in statements S2
(at line 29) and S3 (at line 30) by the master thread. These ras can be xed by
inserting another barrier immediately after themaster region or converting it to a

single region.

We observe that existing static race detection tools (e.g[84, 85]) are unable
to identify such races since they don't model barriers inseddof imperfectly nested
sequential loops in the SPMD regions. We also observe that gtxng dynamic race
detection tools such as Intel Inspector XE (2015 Update 1) indtdefault mode miss
this true race P0] and hybrid race detection tools such as ARCHER incurred signi
cant runtime overhead to detect this true raceq7]. Furthermore, these techniques are
also known to be input dependent and only guaranteed for a @ input. In contrast,
our proposed approach using the extended polyhedral modeincidentify such races
at compile-time by e ectively capturing execution phases®dm barrier directives via

static analysis of SPMD regions.

53

5.2 Our Approach

In this section, we begin by computing May-Happen-in-Paral (MHP) relations with
our extensions (introduced inChapter 3) to the polyhedral model. Subsequently, we

explain our approach to identify data races using the MHP retens.

5.2.1 An Algorithm to Identify Data Races

Detecting read-write and write-write data races become stightforward with the
availability of MHP information. A data race happens when twoor more logically
parallel threads perform con icting accesses (such that dast one access is a write)
to a shared memory location without any synchronization. Té race condition can be
formulated as follows with the MHP information and access rations (de ned in Sec-
tion 2.3).

De nition 5.2.1. Race condition . A race exists between statement instancesigf
and T(i7) on a memory location if and only if MHP(S(E), T(i7)) is true, and access
relations of S{s) and T(iT) have the same memory location in common and at-least

one of them is a write relation.

Race(S(i5): T(17)) = True . ((MHP(S(Ts); T(i)) = True)

~(A(S(s) = A(T(7)))) (5.1)

For example, data races are possible Figure 5.1since statement S1's (at line 3) read
access of variablek, error by a non-master thread can execute in parallel with an
update of the same variables performed in statements S2 (atd 29) and S3 (at line

30) by the master thread.

The major idea in our approach (shown imAlgorithm 3) is to construct race

constraints for all possible pairs of the regular statemesit(excluding barriers) and

54

solve for the existence of solutionsAlgorithm 3 identi es read-write and write-write

Algorithm 3: An approach to compute a set of data races in an SPMD program

1 begin

10

[* Extract all regular statements (excluding barriers) */

S := Set of all regular statements

/* Build MEP igformation for every pair of statements

MHP = MHP(S,,SJ)
Si2S S;2S

/* Union of read access relations from all statements
S jRea@ inS;
R = Afed(s)
Si2s j=1

/* Union of write (including may writes) access relations fr
all statements
S jWrite§j in S)
W= AJerte (Sl)
Si2s j=1

/* Build a map from read access relations to write access

relations such that they access same memory location

RI W — (w) !
Samelocation - R W

/* Build a map from write access relations to write access
relations such that they access same memory location

Wi w — (w) !t
SameLocation - W W

/* Build Read-Write races by intersecting the MHP relations
and RW maps
R!' W

RWRaces = MHP \ SamelLocation

/* Build Write-Write races by intersecting the MHP relation
and WW maps

— \ w! W
WWRaces -— MHP

Samelocation

end

*/

*/

om
*/

*/

*/

*/

*/

55

data races in the SPMD programs by beginning with computing MP information
(at line 3) for every pair of regular statements (excluding d&rriers) with Algorithm 2.
Then, the algorithm aggregates all possible reads, writega¢luding may-writes arising
from unanalyzable data accesses and control ow) present in the regular statemts
(lines 4-5). Thanks to the PET framework 2] for handling non-a ne constructs
(in both data subscripts and control ow) elegantly in the fam of may-write access
relations. Next, the algorithm identi es pairs of read and wite access relations that
touch the same memory location (at line 6), and likewise, itlso computes pairs of
write and write access relations that access same memoryl ¢at line 7). Finally, the
MHP relations and read-write relations are intersected to eopute read-write races
(at line 8). Similarly, the MHP relations are also intersectd with write-write relations

to compute write-write races (at line 9).

5.3 Experimental Evaluation

In this section, we evaluate our approach for race detecticst compile-time using
the extensions to the polyhedral model. Firstly, we brie y dscribe our experimental
setup and benchmark suites used for the evaluation. Then, yweesent our discussion

on the obtained results for each of the benchmark suites.

5.3.1 Experimental Setup

Since the race detection part of our tooPolyOMPis developed to help OpenMP pro-
grammers in debugging, the experiments have been perfornwda local development
machine having quad cores (each core is a core-i7 with 2.2GHzck frequency) with

16 GB of main memory. In the evaluation, we compare the follomg three race de-

tection tools: 1) ARCHER, a recently developed race detection tool employing both

We had challenges in installing ARCHER on our local machine. Hence, we congped with
ARCHER only on the OmpSC#suite, for which ARCHER published races in B7].

56

static and dynamic analysis§7], 2) Intel Inspector XEa dynamic memory and thread-
ing error checking tool from Intel PQ], 3) Our tool PolyOMP using the proposed race

detection approach inAlgorithm 3.

5.3.2 OpenMP Source Code Repository

OmpSCRn OpenMP Source Code Repositong§], consists of OpenMP applications
written in C, C++ and Fortran. This repository includes a wide spectrum of ap-
plications including stencils, LU decomposition, molecat dynamics, FFT, pi com-
putation, quick sort among others. There are 18 OpenMP-C behmarks in this
repository, 6 of which useC structs and pointer arithmetic. Since we defer support
for C structs and pointer arithmetic in our current toolchain for future work, our
results focus on the remaining 12 OpenMP-C benchmarks @mpSCRhich are listed
in Table 5.1

Discussion. This benchmark suite contains known races, as reported inipr work
on hybrid data race detection in the ARCHER tool 87]. Our evaluation shows
that PolyOMPis able to detect all of the documented races in the followingpplica-
tions: JacobiO3, LoopA.bad, LoopB.badl, LoopB.bad2. All reported races (col-
umn Reported) were manually veri ed. (Note: each reported data race corsponds
to a static pair of con icting accesses). Thd~alse +ves column shows the number
of reported races that actually are false positives. In adithn, we compared our re-
ported races with those reported by the ARCHER As mentioned in B7], the data
race inJacobi03 benchmark highly in uenced the execution time of the benchark,
varying it by a factor of 1000 from run to run. In contrast, our ol PolyOMPis able
to detect the races present indacobi03 benchmark in less than two seconds during

the compilation time.

YARCHER is known to not have any false positives or false negatives for a giveinput, but may
have false negatives for inputs that it has not seen.

57

ARCHER Intel Inspector XE PolyOMP (Static)
Benchmark | (Static + Dynamic) (Dynamic) Reported | False +ve | Detection time
Reported races Reported races races races (seconds)
JacobiOl 0 0 2 2 1.38
Jacobi02 0 0 2 2 3.91
Jacobi03 2 0 4 2 1.54
Lud 0 1 0 0 0.30
LoopA.bad 1 2 1 0 0.20
LoopA.soll 0 2 0 0 0.44
LoopA.sol2 0 0 7 7 1.21
LoopA.sol3 0 0 7 7 1.19
LoopB.bad1l 1 2 1 0 0.20
LoopB.bad2 1 2 1 0 0.21
LoopB.pipe 0 0 7 7 2.40
C_pi 0 0 0 0 0.05
Total (12) 5 9 30 25 13.03 (seconds)

Table 5.1 : Race detection analysis over the subset @mpSCRenchmark suite.
PolyOMP- Detection time / Reported / False +ves : Total time taken to detect races
by PolyOMP, Number of reported races, Number of false positiseamong reported.
ARCHER / Intel Inspector XE: Number of races reported.

Even though Intel Inspector XE (2015 update 1 withdefault mode) was able
to identify the true races in LoopA.bad, LoopB.badland LoopB.bad? it failed to
detect the races inJacobi0O3 (explained in Section5.1) even after multiple runs.
Furthermore, it reported additional false races (accordmto OpenMP speci cations)
on the iterators of parallel loops for benchmarkdéud, LoopA.bad, LoopA.soll,

LoopB.badl, LoopB.bad2and Cpi.

Our tool PolyOMPcomputes races conservatively when unanalyzable contraw

or data accesses are present and result in false positiveasc

58

This is evident in benchmarksJacobiOl1, Jacobi02, JacobiO3, LoopA.sol2,
LoopA.sol3 and LoopB.pipe since they contain linearized array subscripts, thereby
yielding 27 false positives which could have been avoidedhva delinearization pass
before detecting races. However, when the parallel regionlyusatis es all the as-
sumptions of standard polyhedral frameworks (e.g., all aay accesses and branch
conditions must be a ne functions of the loop variables, andas well as no known

relations between parameters) then all reported races armeié races.

5.3.3 PolyBench/ACC OpenMP Suite

We also use PolyBench/ACC OpenMP suiteq1], another benchmark suite partially
derived from the standard PolyBench benchmark suiteBf]. This suite consists of
benchmark codes for linear algebra, linear algebra solvetgata-mining, and stencils,
all with static control parts. There are 32 OpenMP-C benchmks in this suite, for

which we were unable to compile ten benchmarks due to incocteisage of OpenMP
directives in those codes. This benchmark suite is relatiyenew and is perhaps still
in development compared to other benchmark suites. Thus, ouesults focus on
the remaining 22 OpenMP-C benchmarks in PolyBench/ACC. Wedd challenges in
installing ARCHER on our local machine. Hence, we compared rd&suof our tool

PolyOMPonly with Intel Inspector XE for this benchmark suite.

Discussion. All of the benchmarks in this suite have statically analyzald control
ow, a ne subscripts and completely t the assumptions of the polyhedral model
without any conservative estimates. We manually veri ed te reported races and
found the races to be real. Moreover, our static analysis do@aot need to resort to
conservative estimations for these benchmarks, as they medl the standard a ne
requirements. It also veri es our claim that our approach igguaranteed to be exact
(with neither false positives nor false negatives) if the put program satis es all the

standard preconditions of the polyhedral model (without ay non-a ne constructs,

59

Intel Inspector XE PolyOMP (Static)
Benchmark (Dynamic) Reported | False +ve | Detection time
Reported races races races (seconds)

Correlation H 0 0 2.30
Covariance H 0 0 1.04
2mm 0 0 0 0.64
3mm 0 0 0 1.13
Atax 2 2 0 0.37
Bicg 2 2 0 0.43
Cholesky 8 28 0 0.49
Doitgen 0 0 0 0.54
Gemm 0 0 0 0.34
Gemver 0 0 0 0.75
Gesummv 0 0 0 0.52
Mvt 0 0 0 0.32
Symm 5 5 0 0.64
Syrk 0 0 0 0.39
Syr2k 0 0 0 0.52
Trmm 1 1 0 0.28
Durbin 0 6 0 0.73
Gramschmidt 8 12 0 0.36
Lu 5 5 0 0.33
Convolution-2 0 0 0 0.25
Convolution-3 A 0 0 0.42
Fdtd-ampl 0 0 0 1.62

Total (22) 31 61 0 14.41 (seconds)

Table 5.2 : Race detection analysis over the subset of Polyif/ACC OpenMP

benchmark suite. PolyOMP- Detection time / Reported / False +ves : Total time

taken to detect races by PolyOMP, Number of reported races, Nurer of false pos-
itives among reported. Intel Inspector XE: Number of races repted, Hang up (H)

and Application exception (A).

60

and aware of any known relations between parameters).

Currently, we are not aware of any prior work reporting dataaces in this bench-
mark suite. Hence, we compared our reported races with thossported by the Intel
Inspector XE tool (2015 update 1 withdefault mode), which (unlike ARCHER) is
known to have false negatives even for a given input. Overablur tool reported a
total of 61 races whereas Intel Inspector XE could only nd 3laces. The details
are presented in Tables.2 A table entry marked with the letter \H" indicates that
the Intel Inspector XE tool would get into a hang mode for that lenchmark, while
a table entry marked with the letter \A" indicates that the Int el Inspector XE tool

encountered an Application exception for that benchmark.
Majority of the data races in the PolyBench/ACC OpenMP suitearises from:

The PolyBench/ACC OpenMP suite developer might have simplyorgotten to
declare certain variables as private, although they were ed in this way. The
default sharing attribute rules of OpenMP speci cation wil make the variable
shared in this case, and resulting in data races on those variableglso, this
particular mistake is mentioned as one of the important soue of errors in
OpenMP programming P2]. As can be seen fronfrigure 5.2 the variable x in
Cholesky benchmark and the variablenrmin Gramschmidtof PolyBench/ACC
suite can be privatized to avoid races on those variables. Buch scenarios,
privatization can be realized either by moving the declarain of those variables
into the parallel region or inserting the variables intoprivate data sharing
attribute list or adding default(none) tothe OpenMP directive to get compiler

errors on these variables.

The benchmark developer might have incorrectly parallekd some of the lin-
ear algebra kernels (e.g., Symm and Trmm ifigure 5.3. These kernels are
extremely hard to be parallelized by novice OpenMP programens since these

kernels have complex dependence patterns and requires mioowledge to ex-

61

1+ DATA_TYPE ;X
2#fpragma omp parallel for private (j,k)

3 for (i = 0; i < _PB_N +i)

4 f

5 x = A[i][i 1;

6 for (j = 0; j <=1 1; +j)

7 x=x AL][I] Al
8 pli] = 1.0 / sqgrt (x);

9 for (j =1 +1;, j < PB_N +j)
10 f

1 x = ALl 1[j];

12 for (k = 0; k<= 1; +Kk)
13 x = x A[j][k] Al J[k];
14 Al I = x pli]

15 g

16 g

(a) Data races on the variablex in the Cholesky benchmark

1 DATA_TYPE nrm
2#fpragma omp parallel for private (i, j)

3 for (k = 0; k< _PB_NJ k++)

4 f

5 nrm= 0;

6 for (i = 0; i < _PB_NI; i++4)

7 nrm += A[i]1[K] Ali 1[k];

8 R[k][k] = sqrt (nrm);

9 for (i = 0; i < _PB_NI; i++)

10 Qli J[k] = Ali][k] / R[k][k];

1 for (j = k+ 1; j < PB_NJ j++

12 f

13 R{kI[i] = 0;

14 for (i = 0; i < _PB_NI; i++)

15 R{kI[i 1 += Q[i [Tkl ALl 1[j I;
16 for (i = 0; i < _PB_NI; i++)

17 ALVTLET = ALVILT QI 1Tkl RIKIL) 13
18 g

19 g

(b) Data races on the variablenrmin the Gramschmidt benchmark
Figure 5.2 : PolyBench/ACC OpenMP benchmark developer might have forgten to
mark certain variable as private variablesX in Cholesky, nrmin Gramschmidt), and
there by resulting races on such variables.

62

1#ipragma omp parallel

o f

3l C := alpha A B + beta C, A is symetric /[
«#pragma omp for private(j,acc,hk)

5 for (i = 0; i < _PB_NI; i++)

for (j = 0; j < _PB_NJ j++)

f

© o ~N o

acc = 0;
for (k = 0; k < j 1; k++) f
10 C[k][j] + alpha A[Kk][i] B[i][j];
1 acc += B[k][j] A[K][i];
12 g
13 Cli 1[j] = beta Cli1[j] + alpha Ali 1[0]
14 B[i [[i] + alpha acc;
15 g
16 0

(a) Data races on the arrayCin the Symm benchmark

1/ B := alpha A B, A triangular /
2#pragma omp parallel for private (j, k)

3 for (i = 1; i < _PB_NI; i++)

4 for (j = 0; j < _PB_NI; j++)

5 for (k = 0; k < i; k++)

6 B[i][[j] += alpha A[i][k] B[j][k];

(b) Data races on the arrayB in the Trmm benchmark

Figure 5.3 : PolyBench/ACC OpenMP benchmark developer have incorregtlparal-

lelized the linear algebra kernels (some of them are notangly hard to be parallelized
because of complex dependence patterns), and there by réaglraces on arraysCin

Symmand B in Trmnbenchmarks.

63

pose hidden parallelism in the benchmarks. In such scenaj@ur tool PolyOMP
can be of a great help in aiding the programmers while debuggi because our
tool can provide precise information (including precise @ration values) about

the races.

5.4 Strengths and Limitations of Our Approach

In this section, we present strengths and limitations of ourace detection approach

using our extensions to the polyhedral model.
Strengths:

The current implementation of race detection approach ifPolyOMPsupports
OpenMP constructs such asomp parallel for, parallel for, barrier,

single, master directives and nested parallel regions.

Our approach reports races in a program independent of inmuito the program,
unlike approaches based on dynamic analysis (e.g., Intelspector XE) which

report races guaranteed on a given input.

Our approach allows number of threads to be an unknown symlimbarameter
unlike other approachesd4, 72] which are applicable only to a xed number of

threads in a given program.

Our approach is guaranteed to be exact (with neither false piives nor false
negatives) if the input program satis es all the standard peconditions of the
polyhedral model (without any non-a ne constructs, and awae of any known
relations between parameters). This has been evident in easf the evaluation
on PolyBench/ACC OpenMP suite.

Our approach can identify challenging data races (e.g., darace on variable k

in jacobi03 benchmark inFigure 5.1) which can in uence the program execution

64

overhead in dynamic analysis techniques. Hence, we beliebattcoupling our
static approach with dynamic analysis techniques (e.g., tel Inspector XE,
ARCHER) can reduce overall program execution overhead in detang races in

larger OpenMP programs.
Limitations:

Our tool currently does not perform any pointer based analys However,
previous works on pointer analysis can be added as a pre-passour race

detection stage to enhance the race detection.

In our approach, we restrict our attention to textually aligned barriers, in which
all threads encounter the same textual sequence of barrier&ach dynamic
instance of the samebarrier operation must be encountered by all threads.
We plan to address textually unaligned barriers as part of # future work.
However, many software developers believe that textuallyighed barriers are

better from a software engineering perspective.

The support for analyzing SPMD programs with constructs thieenforce mutual

exclusion and task-based parallel constructs are part oftéuwe work.

5.5 Past Work on Race Detection

There is an extensive body of literature on identifying racein explicitly-parallel
programs (at compile-time 83, 84, 72, 85, 75, 86|, run-time [93], and hybrid combi-
nations [87]). We focus our discussion on past work that is most closelglated to
static analysis techniques for identifying data races in 9®D-style parallel programs.
Table 5.3lists the details of related static analysis tools for raceedection and their

limitations with respect to PolyOMP.

Among the static analysis techniques, symbolic approacheave received a lot of

attention in analyzing parallel programs, especially in t context of OpenMP. Yu et

65

Supported Constructs Approach Guarantees
Pathg OpenMP worksharing loops,
Thread automata Per no. of threads
(Yu et al.) barriers with depth 0, Atomic
OpenMP worksharing loops,
OAT
Barriers, locks, Atomic, Symbolic execution Per no. of threads
(Ma et al.)
single, master
ompVerify . i Dependence analysis
OpenMP “parallel for Per worksharing loop
(Basupalli et al.) using Polyhedral model
ARCHER (static) . Dependence analysis
OpenMP “parallel for' Per worksharing loop
(Atzeni et al.) using Polyhedral model
OpenMP worksharing loops,
PolyOMP MHP relations computed from the
Barriers in arbitrary nested loops, Per program
Our Approach extensions to the polyhedral mode|
Single, master

Table 5.3 : Closely related static approaches in race detewt

al. [84] presented a symbolic approach for checking the consistgrad multi-threaded
programs with OpenMP directives using extended thread auteata (with a tool called
Pathg). However, their race detection is only guaranteed f@a xed number of worker
threads. Ma et al. [/2] also use a symbolic execution-based approach (running the
program on symbolic inputs and xed number of threads) to dedct data races in
OpenMP codes, based on constraint solving using an SMT salveThe data races
reported from this toolkit (called OAT) are applicable onlyto a xed number of input

threads, unlike our approach which takes the number of threla as variable.

As part of static analysis techniques, polyhedral based apmches have also
gained signi cant interest in analyzing parallel programsecause these approaches
perform exact analysis if the input program ts into the polyhedral model (without
any non-a ne constructs). Basupalli et al. [85 presented an approach (ompVerify)
to detect data races inside a given worksharing loop using lgbedral dependence

analysis. However, this approach handled only a ne construs and limited to work-

66

sharing loops. Yuki et al. 5 presented an adaptation of array data- ow analysis
to X10 programs with nish/async parallelism. In this approah, the happens-before
relations are rst analyzed, and the data- ow is computed baed on the partial order
imposed by happen-before relations. This extended arraytdsow analysis is used to
certify determinacy in X10 nish/ async parallel programs by dentifying the possibil-
ity of multiple sources of write for a given read. Their exteded work [77] formulated
the happens-before relations with X10 clocks in a polyhedrebntext. This approach
provides the race-free guarantee of clocked X10 programs hbgptoving all possible
races. But, it doesn't provide races present in the input pgram since computing

happens-before relations involves polynomials in a genkecase.

Atzeni et al. [87] introduced a hybrid approach (ARCHER) to achieve high ac-
curacy, low overheads on large OpenMP applications to detedata races. The static
part of ARCHER tool still leverages the existing polyhedral deendence analyzer to
identify races in a given worksharing loop. Our static appich can be complemented
with the dynamic analysis of ARCHER tool to further reduce ovdreads as observed

for the benchmark in Figure 5.1

67

Chapter 6

Optimization Of SPMD Programs { Static
Redundant Barrier Detection

Optimization is detrimental to future success.

Erik Naggum

As we are evolving towards homogeneous and heterogeneous yyaore proces-
sors, and relying on SPMD model for the homogeneous and SIMTodel for heteroge-
neous cores, it is likely that redundant synchronization Wibecome more prevalent.
The performance of a parallel program is often determined hiys synchronization
behavior. Barriers are one of the popularly used synchroaitton construct in SPMD-
style parallel programs particularly with OpenMP and MPI, kut barriers introduce
execution overheads along with in uencing scalability of grallel programs. Techni-
cally, a barrier is a redundant barrier if no data races emaia after removing the
barrier. The goal of redundant barrier detection in an inputSPMD-style program is
to identify a set of barriers that can be eliminated without aecting the semantics
of the program. Complicating the matter, barriers may be ernased in imperfectly
nested sequential loops of an SPMD region, thereby makingast analysis harder
to reason. Henceforth, detecting redundant barriers has heeeceiving a fair at-
tention [94, 95, 96, 49 in the parallel programming. In this chapter, we propose
and evaluate our approach to identify redundant barriers ir6PMD-style programs
at compile-time with our extensions (introduced inChapter 3) to the polyhedral

intermediate representation.

68

6.1 Motivation

To motivate our approach for detection of redundant barries at compile-time, we

consider a SPMD-style program as an illustrative example. ie excerpt shown irfFig-

1#ipragma omp parallel private (j, k)

2 f

3 /| E:=AB |/

«#pragma omp for

for (i = 0; i < _PB_NI, i++) f

6 for (j = 0; j < PB_NJ j++ f

7 E[i 10] = 0;

8 for (k = 0; k < _PB_NK ++k)

9 E[i 1[j] += Al J[k] B[k][j];
10 g

11 g

13 / F.=CD |/

uH#pragma omp for

15 for (i = 0; i < PB_NJ i++ f

16 for (j = 0; j < _PB_NL j++) f

17 FLi T T = 0;

18 for (k = 0; k< _PB_NM ++k)

19 FLi Il 1 += C[i][k] DIk][j I;
20 g

21 g

23 / G =E F /

u#pragma omp for

25 for (i = 0; i < PB_NI, i++) f

26 for (j = 0; j < PB_NL j++ f

27 Gli I[j] = 0;

28 for (k = 0; k< _PB_NJ +k)

20 Gli I[j 1 += E[i J[k] F[k][j];
30 g

31 g

32 g

Figure 6.1 : Redundant barrier (implicit) at line 11 in the 3mmbenchmark from
PolyBench/ACCbenchmark suite

69

ure 6.1is a part of the 3mnbenchmark from thePolyBench/ACCOpenMP suite P1],
which computes a sequence of three matrix multiplications E A.B; F = C.D; G =
E.F. The excerpt contains a parallel region (lines 1-32) spamg three worksharing
loops having implicit barriers. As no dependences ow betwedhe rst two work-
sharing loops, the implicit barrier between them is redundd and conservative. This
pattern of over-conservative synchronization is quite comon especially while pro-
grammer trying to parallelize loops with worksharing diretives which have implicit
barriers by default. Such redundant barriers not only intrduce execution overheads
but also a ect the scalability of applications since they imolve system-wide commu-

nication and coordination.

Our approach identi es such redundant barriers by buildingon our work on data
race detection as follows. First, our static analysis temparily elides all barriers in the
program and computes the resulting data races. Next, it mapseh barrier to a set of
data races which can potentially be xed with that barrier ard eventually it builds a
bipartite graph from the barriers to the data races. This maping information is then
used to compute sets of required barriers in the program thatan completely x all
the data races. Then, a set of redundant barriers is computdry subtracting the set
of required barriers from all the barriers in the program. Tallustrate the potential
performance impact of the optimization, we have performedperiments on 57-cores
Intel Knights Corner (Xeon Phi) system with four threads per ach core. As reported
in Table 6.3 there is 2.5% improvement by removing the redundant barnibetween
the rst two worksharing loops. Also, we have observed a perfbance improvement
from this optimization as high as 9% for themnibenchmark on Intel Xeon Phi from

PolyBench AC®penMP suite P1].

70

6.2 Our Approach

In this section, we present an approach (Seglgorithm 4) to identify redundant
barriers in SPMD programs. Removing a barrier from an SPMD pgram is valid
(keeping semantics preserved) as long as removing the barrioesn't introduce data
races in the input program. Henceforth, our approach ignoresput programs which

have data races.

6.2.1 An Algorithm to Identify Redundant Barriers

Algorithm 4 summarizes overall steps in identifying redundant barrierat compile-
time in an SPMD program and reports a warning (at lines 4-5) the input SPMD pro-

gram has data races. The following are the major steps invel in Algorithm 4.

1) Firstly, our approach temporarily elides all barriers in he input program (at lines
6-7) and computes data raceswith our race detection approach inAlgorithm 3.
For example, temporarily eliding all barriers in the3mnibenchmark (shown inFig-
ure 6.7) results in two races, i.e., race rl between statements ondi 9, 29 on the

array E, and another race r2 between statements on line 19, 29 on theay F.

2) Then, our approach constructs a bipartite graph with oneet being barriers and
another set being the data races from the previous step (lir). For the 3mm
benchmark, the barriers and the data races in the bipartite rgph are implicit

barriers b1, b2, b3 at lines 11, 21 31 iRigure 6.1 and races rl, r2 respectively.

3) Next, our approach maps each barrier in the bipartite graplo a set of data
races which can be avoided with that barrier. As can be seen iinoFigure 6.2
the implicit barrier b1l can potentially x the race rl, and the barrier b2 can x

both races rl1 and r2, whereas the barrier b3 xes neither of cas. The mappings

Note that any race detection tool can be used in place of our approach to recogrézraces.

71

Algorithm 4: An approach to compute a set of redundant barriers in an SPMD
program

Input : An SPMD program, P

Output: A set of redundant barriers (REDBARR) in the SPMD program
begin

2 B Set of barriers in the input SPMD programP

[N

[* Identify data races in the input SPMD program with our race
detection approach in Algorithm 3 */
3 R DataracesP)

4 if R6 then
Report a warning that the input SPMD program P has races, and our
approach ignores racy input SPMD programs; Return

[* Temporarily elide all barriers in the input program and

computes data races */
6 P! Elide the set B from the input SPMD programP
7 R! DataracesP?)

/* Return all barriers in original program as redundant

barriers if there are no races originating after eliding

the barriers */
8 if Rt=then
9 | Output B

[* If there are data races after eliding barriers, then

construct a bipartite graph (shown in Algorithm 5), from

the barriers to the data races, to identify a set of

redundant barriers */
10 G Build a bipartite graph (P, R?)

[* After building bipartite graph, compute a set of required
barriers, using a greedy approach (shown in Algorithm 6) to
cover all data races in the bipartite graph */

11 REQBARR Compute required barriers(G)

[* Compute redundant barriers by subtracting required barr iers
from all barriers in the SPMD program */

12 REDBARR B - REQBARR

13 Output REDBARR

14 end

72

Barriers (B)

RaceqR)

|

Figure 6.2 : Bipartite graph constructed by mapping each barrier iBmnbenchmark
to data races that can be avoided with the barrier

between the barriers and the data races are constructed ugiAlgorithm 5 and

the approach is summarized below.

For each barrier,

Our approach recomputes phase mappings of all statements time SPMD

program with only that barrier (line 4 in Algorithm 5).

Then for each identi ed data race in the bipartite graph, if he source and
target of the data race have di erent recomputed phase mappgs, then our
approach adds an edge between the barrier and the data race, ithe barrier
can potentially avoid the race, to the bipartite graph (at Ines 5-9 inAlgo-

rithm 5).

4) After constructing the bipartite graph, our approach uses greedy strategy (at
line 11) to compute a set of minimum number of required barnie to keep the
original semantics of the program, i.e., all data races in éhbipartite graph are
covered by the set of required barriers. For th8mnibenchmark, the barrier b2 is

su cient enough to cover both of the races rl and r2.

73

Algorithm 5: An approach to construct a bipartite graph from barriers to déa
races in an SPMD program

Input : An SPMD program (P), and a set of races (R)

Output: A bipartite graph (G) from barriers in P to race in R

begin

2 B Set of barriers in the input SPMD programP

[y

3 for barrier bin B do

[* Recompute phase mappings based on the barrier b for all
the statements in the SPMD program with our approach
in Algorithm 1 */
4 PL P[f by
P PhasesP?)

[* Loop through each data race to verify whether the data

race can be avoided by the barrier b */
6 for racer in R do
7 S, T := Source and target of the data race

[* If the phase mappings of S and T are different, then
add an edge between the barrier b and the data race r

to the bipartite graph */
8 if P(S)8 P(T) then
9 L G GJ[f(Mm! ng
10 | OuputG
11 end

5) Finally, our approach computes set of redundant barriersybeliminating the set of
required barriers from the barriers in the input SPMD progran (at line 12). The
set of redundant barriers in case of th8mnbenchmark are the implicit barriers b1l

and b3, and their removal doesn't in uence semantics of theriginal benchmark.

74

6.2.2 A Greedy Approach to Compute a Set of Required Barriers

In

this subsection, we present a greedy approach to computenanimum set of re-

quired barriers in an SPMD program, which needs to be retaidein the original

program to avoid data races. The greedy approach (shown Algorithm 6) takes a

bipartite graph from barriers to data races as an input and dputs a minimum set

of barriers, that can cover all the races in the bipartite gnahY. The entire approach

is summarized below.

1)

2)

Firstly, our greedy approach includes any barriers that @& the only barriers that
address particular races into a set of required barriers. €n, our approach removes
all the races that these barriers address, and also these itiars from the bipartite
graph (lines 3-8). For the bipartite graph inFigure 6.2 of the 3mnbenchmark,
our approach would rst consider the barrier b2 since it is te only barrier that
can address the race r2. Then, our approach would add the biamrb2 to a set of
required barriers, and then remove the barrier b2 from the partite graph. Also,
it removes both of the races rl1 and r2 from the bipartite graplsince the barrier

b2 can address both of them.

Then, our approach works by considering a barrier that canddress more races
from the remaining bipartite graph, i.e., keeping that barier can x more races.
Then, the approach adds that barrier to the set of required baers. Similarly
to the rst step, our approach then removes the barrier and <he races that it
can address from the bipartite graph (lines 9-13). After renving the barrier b2,
and races rl, r2 in the previous step on the bipartite graph ¢fie 3mnbenchmark,
there will be no races left in the bipartite graph that our appoach would need to

address.

YNote that this problem can be modeled as an instance of minimum set coveproblem, and the

proposed greedy approach (excluding the rst step) is equivalent tothe logn based approximation
algorithm for minimum set cover problem.

Algorithm 6: A greedy approach to compute a set of required barriers

10

11

12

13

14

begin

Input . Bipartite graph G from barriers (B) to races (R)
Output : A set of required barriers (RB) in B such that all races in R
are covered
/* RB indicates required barriers to retain semantics */
RB

[* Include any barriers that are the only barriers that
address particular races, and remove all the races these
barriers address */
for racer in R do
if In-degree(r) in G = 1 then

b Source of the edge to r

RB RBI[f by

S
R R- f race r s.t there is an edge from barrier b to iy
r2r

B B-fbg

/* Repeat until all races are covered without exhausting
barriers */
while R is not emptyand B is not empty do

[* Greedy choice */
b Pick up a barrier from G with highest outgoing degree

[* Add barrier b to required barriers */
RB RB|[f bg

1* Removg races from R that are connected to barrier b */

R R- f race r s.t there is an edge from barrier b to i

r2rR
[* Remove barrier b from B */
B B-fbg

end

76

3) Next, the second step is repeated until all the races are eved or no more bar-
riers left in the remaining bipartite graph. In case of the3mnbenchmark, our
greedy approach would nally return the barrier b2 as the regired barrier that

can address all the races in the input bipartite graph.

Since the proposed greedy approach may not nd an optimal stion in certain
scenarios, we defer the e cient approaches to nd the optimissolution to future work.
Also, our greedy approach has the following assumptions: 1)|Aarriers (regardless
of its depth) are treated uniformly in nding minimum number of required barriers,
and 2) all edges in the bipartite graph have equal weights wdli may be not true in

certain SPMD programs having barriers with higher depths.

6.3 Experimental Evaluation

In this section, we evaluate our approach by measuring perfsance improvement
of SPMD programs after removing redundant barriers idented from the approach.
Firstly, we brie y describe our experimental setup and benahark suites used for the
evaluation. Then, we present our discussion on the obtainedsults for each of the

benchmark suites.

6.3.1 Experimental Setup

Our evaluation uses two di erent multi-way SMP multicore séups: an Intel Xeon
Phi and a IBM Power8 system.Table 6.1 lists their hardware speci cations. In the
evaluation, we compare two experimental variants: 1PpenMPto show the original
OpenMP parallel version running with all threads - i.e., 228n Intel KNC and 192 on
Power8, and 2)PolyOMPto show the transformed version by our framework running
with all threads. The improvement factor is de ned as the exmuition time of the

original version of the parallel program divided by the exetion time of the optimized

77

Intel Knights Corner (KNC) IBM Power 8E (Power 8)
Micro architecture Xeon Phi Power PC
Clock speed 1.10GHz 3.02GHz
Cores/socket 57 12
Total cores 57 24
Threads per core 4 8
Total threads 228 192
Compiler Intel ICC v15.0.0 IBM XLC v13.1.2
Compiler ags -03 (highest) -05 (highest)

Table 6.1 : Hardware speci cations of the experimental setufor evaluating our
approach to identify redundant barriers.

parallel version of the program by removing redundant barers.

6.3.2 OpenMP Source Code Repository

OpenMP Source Code Repository (OmpSCRB§| consists of 18 OpenMP-C bench-
marks, in which 6 useC structs and pointer arithmetic. We defer support forC
structs and pointer arithmetic in our current toolchain for future work, and hence we
ignore these six benchmarks. Hence, our results focus on teenaining 12 OpenMP-C

benchmarks, which are listed infable 6.2

Discussion. Our tool PolyOMPidenti ed absence of races (including false posi-
tives) in the three benchmarkd.ud, LoopA.soll, C _pi and applied theAlgorithm 4
to detect redundant barriers. But, the tool recognized thatll barriers are necessary
to respect program semantics and hence no elimination apgai to these benchmarks.
Since our toolPolyOMPenables redundant barrier optimization only for race-fre-

put programs, the tool refuses to optimize the remaining nen benchmarks having

78

Benchmark #Barriers in the #Barrier instances (dynamic count) #Eliminated in the
input program during the program execution input program

Lud 1 size -1 0
LoopA.soll 2 2 numiter 0
C pi 1 1 0
JacobiO1l 2 2 fi(k, error) I
Jacobi02 3 2 fyk,error)+1 I
LoopA.sol2 3 2 numiter +1 I
LoopA.sol3 2 2 numiter I
Jacobi03 3 2 f3(k, error) +1 I
LoopA.bad 1 numiter I
LoopB.badl 1 numiter I
LoopB.bad2 1 numiter I
LoopB.pipe 3 2 numiter +1 I

Table 6.2 : Redundant barrier detection analysis over the baet of OmpSCBench-
mark suite. Benchmarks labeled with (*) have no true races bwur race detection
algorithm reported false positives, and benchmarks with {j indeed have true races.
Our tool ignored (I) the benchmarks with labels (*, **) becawse of the presence of
races (including false positives)size, k, error, numiter are symbolic parameters
in the corresponding benchmarks. Note that we also count imgit barriers after the
omp parallel construct even though these implicit barriers cannot be reaved from
the source code.

data races (including false positives). But the benchmark3acobiO1, Jacobi02,
LoopA.sol2, LoopA.sol3 don't have true races, and still, our tool ignored them be-
cause of false positive races arising from the unanalyzedagr subscripts in those
benchmarks. However, the tool can be improved to enable rediant barrier opti-
mization for input programs, which have no true races but ourace detection algo-

rithm reported false positives, with programmer's support

79

6.3.3 PolyBench/ACC OpenMP Suite

The PolyBench/ACC OpenMP Suite P1] consists of OpenMP implementations of the
original PolyBench suite B9] to run on GPU's and accelerators. The suite contains
32 benchmarks, and for which our tool was unable to compilertdoenchmarks due to
the incorrect usage of OpenMP directives in those benchmarkccording to OpenMP
speci cations. Hence, our results focus on the remaining 22fchmarks. For each
benchmark among those 22 benchmark$able 6.3 shows the number of barriers in
the original benchmark, how many times barriers executedolv many barriers were
removed by our optimization, and the performance improvemeéfactor by the barrier
elimination on Intel KNC and Power 8. We have usedarge dataset as an input to
measure the performance improvement since the evaluation large dataset has less

standard deviation compared to other datasets.

Discussion. Our tool PolyOMPidenti ed a total of 19 redundant barriers from
11 benchmarks Correlation, Covariance, 2mm, 3mm, Doitgen, Gemm, Gemver,
Mvt, Syrk, Syr2k, Convolution-3d, fdtd-apml) among 22 benchmarks consid-
ered for the evaluation. The geometric mean of improvemenadtors after remov-
ing these 19 redundant barriers are 1.032x on Intel KNC and D®x on Power8.
Among these 19 redundant barriers, 12 redundant barriers @m Correlation, 3mm,
Gemver, Mvt, Syrk, Syr2k) are the implicit barriers between worksharing loops
which don't have data dependences owing between them, andiiotool removed
these redundant barriers by addinghowait clause to the worksharing loop. Since
these 12 redundant barriers are between worksharing loopsdathese worksharing
loops in the benchmarks have better load balance, the imprewent factors are not
signi cant after removing these redundant barriers. Howeve we believe that the
improvement may be signi cant in the case of benchmarks hawy 1) more dynamic
instances of redundant barriers during the program execuoin, 2) redundant barriers

between unbalanced worksharing loops. As shown Table 6.3 eliminating redun-

80

#Barriers #Barrier instances #Eliminated Mean improvement
Benchmark in the input (dynamic count) in the input (Standard deviation)
program during execution program Intel KNC Power 8
Correlation 5 5 2 1.008 (0.019)| 1.049 (0.146)
3mm 4 4 2 1.024 (0.018)| 1.006 (0.041)
Gemver 5 5 2 1.006 (0.010)| 1.004 (0.041)
Mvt 3 3 2 1.025 (0.012)| 0.971 (0.038)
Syrk 3 3 2 1.003 (0.030)| 0.999 (0.012)
Syr2k 3 3 2 0.994 (0.023)| 1.000 (0.010)
Covariance 4 4 1 1.008 (0.032)| 0.993 (0.020)
2mm 3 3 1 1.090 (0.022)| 0.985 (0.084)
Doitgen 2 2 1 1.091 (0.610)| 0.997 (0.010)
Gemm 2 2 1 1.011 (0.040)| 1.016 (0.059)
Gesummv 2 2 1 0.991 (0.034)| 0.998 (0.043)
Fdtd-apml 2 2 1 1.149 (0.510)| 1.068 (0.205)
Convolution-3 2 2 1 A A
Convolution-2 1 1 0 NR NR
Atax 3 3 I NR NR
Bicg 3 3 [NR NR
Cholesky 2 2 I NR NR
Symm 2 2 I NR NR
Trmm 2 2 | NR NR
Durbin 3 3 I NR NR
Gramschmidt 1 1 I NR NR
Lu 2 2 I NR NR

Table 6.3 : Redundant barrier detection analysis over the baet of PolyBench/ACC
OpenMP benchmark suite. Benchmarks labelled with (*) doe&nhave redundant
barriers, and we didn't run (NR) the benchmarks for performace evaluation. Bench-
marks labelled with (**) have true races, and our tool ignore (I) these benchmarks.
A - Application exception, i.e., Segmentation fault in the aginal program itself. Note

that we also count implicit barriers after theomp parallel

these implicit barriers cannot be removed from the source @e.

construct even though

81

dant barriers generally contributes to overall performarewhile small slowdown was
observed in some benchmarks (e.gsesummyv, Syr2lkbenchmarks). On Power8, the
IBM XL compiler supports e cient runtime barriers, which reduce the e ect of bar-
rier eliminations on the application performance, compadeto the ICC compiler on
Intel KNC. Remaining seven redundant barriers (fronCovariance, 2mm, Doitgen,
Gemm, Gesummyv, Convolution-3, fdtd-apm) out of 19 are the implicit barriers
from the worksharing loops which are immediately succeedey the end of the omp
parallel region construct. We believed that the existing capilers (Intel ICC, IBM
XLC) could identify and eliminate these seven redundant bakers as part of their
optimizations, but we could still observe these redundantdriers in the assembly
codes generated by these compilers. Hence, we believe thadiag this redundant
barrier optimization can help the existing compilers to impove the performance and

even enable more opportunities for further optimizations.

PolyOMPalso recognized the absence of redundant barriers in 1 bemehk, i.e.,
Convolution-2 out of the 22 benchmarks. Hence, we didn't evaluate this bendark
for performance improvement. AlsoPolyOMPidenti ed true races in the remaining
eight benchmarks Atax, Bicg, Cholesky, Symm, Trmm, Durbin, Gramschmidt,
Lu). Since our tool checks for absence of data races in the inpatogram before
identifying redundant barriers, these eight benchmarks we ignored by our tool and

no evaluation was performed on these benchmarks.

6.4 Strengths and Limitations of Our Approach

In this section, we present strengths and limitations of ouapproach to identify a

minimum set of required barriers in an SPMD program to presee its semantics.

Strengths:

Our approach can model barriers with higher depths, i.e., dply enclosed in

82

arbitrarily nested sequential loops in a SPMD program.

Also, our approach can compute phase mappings very preciseiylike other
approaches 95, 97] which computes phase information conservatively in casé o
barriers with higher depths. Such precise phase mappingsyr#lp in removing
more redundant barriers compared to95, 97], and enabling other transforma-
tions such as fusion of SPMD regions to enable more loop trémsnations across

SPMD regions.
Limitations:

Since the problem of nding the minimum set of required bargs can be modeled
as an instance of minimum set cover problem, our algorithm ilgorithm 4 can

be strengthened by replacing the greedy approach with an ILrmulation.

6.5 Past Work on Analysis of Barriers

There is an extensive research 94, 95 96, 49) done towards analyzing barriers
present in SPMD programs. In this section, we focus on clogaklated compile-
time approaches for analysis of the barriers and the summary presented inTa-

ble 6.4

In the beginning, Aiken et al. have developed an inference $9 that detects
the SPMD structure and veri es the correctness of global baer synchronization pP4].
In this work, single-valued expressions are introduced to evaluate to the same value
in all the processes, to ensure that all processes execute #ame number of barriers.
Kamil et al. [95] extended the work in P4] by constructing a concurrency graph from
a program written in the context of Titanium parallel programming language 49.
Then, MHP relations are computed by performing depth- rst taversals on the con-
currency graph. However, this approach results in conserva MHP relations in case

of programs with barriers enclosed in nested sequential fug unlike our approach

83

Style Key idea Limitations
Kamil et al Tree traversal on Conservative MHP in case of
SPMD
LCPC'05 concurrency graph barriers enclosed in loops
Tseng et al SPMD + | Communication analysis b/w Structure of loops
PPoPP'95 fork-join computation partitions enclosing barriers
Zhao et al SPMDization by Join (barrier) synchronization
fork-join
PACT'10 loop transformations from only for-all loops

Limited to nish construct

Surendran et al Dynamic programming on
fork-join but the nish placement
PLDI'14 scoped dynamic structure trees
algorithm is optimal
Precise MHP analysis with Can support barriers in

Our approach SPMD

extensions to Polyhedral mode arbitrarily nested loops

Table 6.4 : Closely related static approaches in barrier alysis

which computes MHP relations precisely in such scenarios.

Tseng P7, 98] proposed a greedy approach that combines array data depende
analysis and communication analysis over threads for reddant barrier elimination in
a hybrid programming model employing fork-join and SPMD tdmiques. In particu-
lar, the communication analysis is performed by construetg a system of inequalities
and solving it with the Fourier-Motzkin elimination proces, an early polyhedral tech-
nique. However, if a loop contains one or more required bamse this approach is not
always able to detect the barrier at the end of the loop body, kich may be redun-
dant and can be eliminated. But, our approach can identify s redundant barriers

if they exist in the input program.

Zhao et al.[L4] addressed the problem of barrier elimination of explicittparallel
programs by SPMDization of region code in the fork-join modie They proposed a

compiler based approach to SPDMize the code so as to reduce tlumber of spawned

84

tasks, thereby reducing the number of required synchronizans. Their work leverages
typical transformations such as loop interchange and intduces novel ones such as
redundant next-single elimination. However, this approacls limited to barriers (as
part of join synchronization) arising from onlyforall construct. But, our approach
can handle not only barriers fromforall construct but also barriers enclosed in

arbitrarily nested sequential loops.

Surendran et al. P9 addressed the problem of insertinginish synchroniza-
tion construct in X10 parallel programs, where parallelismsiexpressed usingsync
construct. Their approach starts with a program having dataaces and then deter-
mines where additional synchronization constructs shoulde inserted to guarantee
correctness (absence of data races), with the goal of maxang parallelism. But,
our approach ignores an input program if it has data races, dnalso our approach
doesn't insert any additional synchronization constructgbarriers) to eliminate data
races. Instead, our approach checks for the redundant symehization already present

in the input program.

85

Chapter 7

Conclusions & Future Work

A story really isn't truly a story until it reaches

its climax and conclusion.

Ted Naifeh

This work is motivated by the observation that software withexplicit parallelism
is on the rise, and that SPMD parallelism is a common model faxplicit paral-
lelism as evidenced by the popularity of OpenMP, OpenCL, an@UDA. As with
other imperative parallel programming models, data racesr& a pernicious source
of bugs in the SPMD model and may occur only in few of the possebschedules
of a parallel program, thereby making them extremely hard to etect dynamically.
However, e ective approaches to static data race detectio®mains an open problem,
despite signi cant progress in recent years. Further, in atition to debugging parallel
programs, it is important to extend classical code optimizeon techniques (such as
partial/total redundancy elimination) to operations suchas synchronization barriers

that incur large overheads in current parallel programmingnodels.

In this work, we formalized May-happen-in-parallel (MHP) réations to capture
partial execution orders in SPMD program by extending the gghedral model with
\space" and \phase" mappings. We demonstrate the value of #se extensions and
formalized MHP relations by its use in two applications to hg developers of SPMD
programs | identi cation of data races, as well as identi cation and removal of

redundant barriers. We evaluate our approaches on the 34 QP programs from

86

the OmpSCahd PolyBench/ACCbhenchmark suites.

In summary, the contributions of this thesis include the fabwing: 1) It describes
our extensions to the polyhedral compilation model to repsent partial execution
order present in SPMD programs. 2) It formalizes the partiabrder as May-Happen-
in-Parallel (MHP) information using our extensions to the ptyhedral model. 3) It
presents an approach for compile-time detection of data resin SPMD programs44).
4) It presents an approach for identi cation and removal of edundant barriers at
compile-time in SPMD programs. 5) It demonstrates the e edteness of the ap-
proaches on 34 OpenMP programs from tt@mpSCitd the PolyBench/ACCOpenMP

benchmark suites.

As part of future work, 1) We plan to use the proposed extensisnfor further
static applications such as detecting false sharing issyesd identifying deadlocks in
input parallel programs. 2) We also plan to enhance existingybrid race detection
tools [87, 100, by either adding our race detection approach in the statianalysis of
the hybrid approaches or help the dynamic analysis (e.g., [@01]) with the MHP in-
formation from our extensions. 3) We also plan to extend theavk on race detection
to enable program repair by automatically inserting barriesynchronization to elimi-
nate the data races that were detected, as has been done witlish synchronization
for Habanero-Java 99). 4) Also, we are interested in extending our work on redundan
barrier detection to replace non-redundant barriers with ne-grained synchronization
constructs P7, 98], in both user-written code and in the output of automatic pogram
repair. 5) Finally, we plan to enable classic scalar optimizians (code motion) on
concurrency constructs in SPMD programs with our proposedcnsions to the poly-
hedral model, as has been done in optimizing remote accessdastributed memory

machines using the Split-C language as a global address laj&6|.

87

Reasoning draws a conclusion, but does not make
the conclusion certain, unless the mind discovers

it by the path of experience.

Roger Bacon

88

Bibliography

[1] T. Grosser, \islplot." https://github.com/tobig/islplot , 2014,

[2] S. Verdoolaege and T. Grosser, \Polyhedral Extraction dol,” in Second
Int. Workshop on Polyhedral Compilation Techniques (IMPACT'12) (Paris,
France), Jan. 2012.

[3] V. Sarkar, W. Harrod, and A. E. Snavely, \Software Challengdaa Extreme Scale
Systems," Journal of Physics: Conference Seriesvol. 180, no. 1, p. 012045,
20009.

[4] F. Darema, D. George, V. Norton, and G. P ster, \A single-prgram-multiple-
data computational model for EPEX/FORTRAN," Parallel Computing vol. 7,
no. 1, pp. 11 { 24, 1988.

[5] L. Nyman and M. Laakso, \Notes on the History of Fork and Join,"IEEE
Annals of the History of Computing vol. 38, no. 3, pp. 84{87, 2016.

[6] L. Dagum and R. Menon, \OpenMP: An Industry-Standard API fa Shared-
Memory Programming,” IEEE Comput. Sci. Eng, vol. 5, pp. 46{55, Jan. 1998.

[7] J. Nickolls, I. Buck, M. Garland, and K. Skadron, \Scalable Brallel Program-
ming with CUDA," Queue vol. 6, pp. 40{53, Mar. 2008.

[8] J. E. Stone, D. Gohara, and G. Shi, \OpenCL: A Parallel Proggimming Stan-
dard for Heterogeneous Computing SystemslEEE Des. Test, vol. 12, pp. 66{
73, May 2010.

[9] Anon, \MPI: A Message Passing Interface,” irProceedings of the Supercomput-

89

ing Conference pp. 878{883, 1993.

[10] B. Chamberlain, D. Callahan, and H. Zima, \Parallel Progammability and
the Chapel Language,'International Journal of High Performance Computing

Applications, vol. 21, no. 3, pp. 291{312, 2007.

[11] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. LeisersoK, H. Randall, and
Y. Zhou, \Cilk: An E cient Multithreaded Runtime System," in Proceedings
of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPOPP '95, (New York, NY, USA), pp. 207{216, ACM, 1995.

[12] P. Charles, C. Grotho, V. Saraswat, C. Donawa, A. Kielsta, K. Ebcioglu,
C. von Praun, and V. Sarkar, \X10: An Object-oriented Approach toNon-
uniform Cluster Computing,” in Proceedings of the 20th Annual ACM SIG-
PLAN Conference on Object-oriented Programming, Systems, Languages, and

Applications, OOPSLA '05, (New York, NY, USA), pp. 519{538, ACM, 2005.

[13] R. Cytron, J. Lipkis, and E. Schonberg, \A Compiler-assted Approach to
SPMD Execution," in Proceedings of the 1990 ACM/IEEE Conference on Su-
percomputing Supercomputing '90, (Los Alamitos, CA, USA), pp. 398{406,
IEEE Computer Society Press, 1990.

[14] J. Zhao, J. Shirako, V. K. Nandivada, and V. Sarkar, \Reducingask Creation
and Termination Overhead in Explicitly Parallel Programs| in Proceedings of
the 19th International Conference on Parallel Architectures and Compilation
Techniques PACT '10, (New York, NY, USA), pp. 169{180, ACM, 2010.

[15] V. K. Nandivada, J. Shirako, J. Zhao, and V. Sarkar, \A Transfamation Frame-
work for Optimizing Task-Parallel Programs,” ACM Trans. Program. Lang.
Syst, vol. 35, pp. 3:1{3:48, Apr. 2013.

[16] M. Gupta, S. Midki, E. Schonberg, P. Sweeney, K. Y. Wangand M. Burke,

\PTRAN Il - A Compiler for High Performance Fortran,” in 4th International

90

Workshop on Compilers for Parallel Computersl993.

[17] \The Next Generation of Compilers," in Proceedings of the 7th Annual
IEEE/ACM International Symposium on Code Generation and Optimization

CGO '09, (Washington, DC, USA), IEEE Computer Society, 2009.

[18] M. Hall, D. Padua, and K. Pingali, \Compiler Research: Tle Next 50 Years,"
Commun. ACM, vol. 52, pp. 60{67, Feb. 2009.

[19] V. Sarkar, \Parallel Functional Languages and Compilat” ch. PTRAN{the
IBM Parallel Translation System, pp. 309{391, New York, NY, USA:ACM,
1991.

[20] R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Andersor§. Tjiang,
S. Liao, C. Tseng, M. Hall, M. Lam, and J. Hennessy, \The SUIF Com(ar
System: A Parallelizing and Optimizing Research Compilértech. rep., Stan-
ford, CA, USA, 1994.

[21] B. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoe inger, D Padua, P. Pe-
tersen, B. Pottenger, L. Rauchwerger, P. Tu, and S. Weathefd, \Polaris:
The Next Generation in Parallelizing Compilers,” inProceedings of the In-
ternational Workshop on Languages and Compilers for Parallel Computing

Springer-Verlag, Berlin/Heidelberg, 1994.

[22] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramangam, A. Roun-
tev, and P. Sadayappan, \Automatic Transformations for Comruanication-
minimized Parallelization and Locality Optimization in the Polyhedral Model,"
in Proceedings of the Joint European Conferences on Theory and Prac-
tice of Software 17th International Conference on Compiler Construction
CC'0O8/ETAPS'08, (Berlin, Heidelberg), pp. 132{146, SpringeVerlag, 2008.

[23] U. Bondhugula, A. Hartono, J. Ramanujam, and P. SadayappaibA Practical

Automatic Polyhedral Parallelizer and Locality Optimizer," in Proceedings of

91

the 29th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI '08, (New York, NY, USA), pp. 101{113, ACM, 2008.

[24] J. Shirako, L.-N. Pouchet, and V. Sarkar, \Oil and Water CanMix: An Inte-
gration of Polyhedral and AST-based Transformations,” irProceedings of the
International Conference for High Performance Computing, Networking, Stor-
age and Analysis SC '14, (Piscataway, NJ, USA), pp. 287{298, IEEE Press,
2014.

[25] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gméz Tenllado, and
F. Catthoor, \Polyhedral Parallel Code Generation for CUDA," ACM Trans.
Archit. Code Optim., vol. 9, pp. 54:1{54:23, Jan. 2013.

[26] P. Feautrier, \Parametric integer programming,"RAIRO - Operations Research
- Recherche Oprationnellgvol. 22, no. 3, pp. 243{268, 1988.

[27] P. Feautrier, \Data ow Analysis of Array and Scalar Refeences,"International

Journal of Parallel Programming vol. 20, 1991.

[28] P. Feautrier, \Some E cient Solutions to the A ne Scheduling Problem: I.
One-dimensional Time,"Int. J. Parallel Program., vol. 21, pp. 313{348, Oct.
1992.

[29] P. Feautrier, \Some E cient Solutions to the A ne Scheduling Problem. Part
[l. Multidimensional Time," International journal of parallel programming
vol. 21, no. 6, pp. 389{420, 1992.

[30] J. Shirako, A. Hayashi, and V. Sarkar, \Optimized Two-leveParallelization
for GPU Accelerators Using the Polyhedral Model," inProceedings of the 26th
International Conference on Compiler ConstructionCC 2017, (New York, NY,
USA), pp. 22{33, ACM, 2017.

[31] L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong, \Pdigdral-based

Data Reuse Optimization for Con gurable Computing,” in Proceedings of the

92

ACM/SIGDA International Symposium on Field Programmable Gate Arrays
FPGA '13, (New York, NY, USA), pp. 29{38, ACM, 2013.

[32] U. Bondhugula, \Compiling A ne Loop Nests for Distributed-memory Parallel
Architectures,” in Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and AnalysiSC '13, (New York, NY,
USA), pp. 33:1{33:12, ACM, 2013.

[33] G. Martinovic, Z. Krpic, and S. Rimac-drlje, \Paralleization Programming
Techniques: Bene ts and Drawbacks," irProceedings of the First International

Conference on Cloud Computing, GRIDs, and Virtualization2010.

[34] M. Frumkin, M. Hribar, H. Jin, A. Waheed, and J. Yan, \A Comparison of
Automatic Parallelization Tools/Compilers on the SGI Origh 2000," in Pro-
ceedings of the 1998 ACM/IEEE Conference on SupercomputirgC '98, (Wash-
ington, DC, USA), pp. 1{22, IEEE Computer Society, 1998.

[35] V. Sarkar, \Analysis and Optimization of Explicitly Parallel Programs Using
the Parallel Program Graph Representation,” inProceedings of the 10th Inter-
national Workshop on Languages and Compilers for Parallel ComputingCPC
'97, (London, UK, UK), pp. 94{113, Springer-Verlag, 1998.

[36] A. Krishnamurthy and K. Yelick, \Optimizing Parallel P rograms with Explicit
Synchronization," in Proceedings of the ACM SIGPLAN 1995 Conference on
Programming Language Design and ImplementatipRLDI '95, (New York, NY,
USA), pp. 196{204, ACM, 1995.

[37] D. Novillo, Compiler Analysis and Optimization Techniques for Explicitly Par-
allel Programs PhD thesis, University of Alberta, 2000.

[38] J. Ferrante, D. Grunwald, and H. Srinivasan, \Compile-tine Analysis and Opti-
mization of Explicitly Parallel Programs,"” Parallel Algorithms and Applications

vol. 12, no. 1-3, pp. 21{56, 1997.

93

[39] J. Collard, \Array SSA for Explicitly Parallel Programs,” in Euro-Par '99 Par-
allel Processing, 5th International Euro-Par Conference, Toulouse, France, Au-
gust 31 - September 3, 1999, Proceedinggp. 383{390, 1999.

[40] J. Collard and M. Griebl, \Array Data ow Analysis for Expli citly Parallel Pro-
grams,"” Parallel Processing Lettersvol. 7, no. 2, pp. 117{131, 1997.

[41] P. Chatarasi, J. Shirako, and V. Sarkar, \Polyhedral Optnizations of Explicitly
Parallel Programs,” in Proceedings of the 2015 International Conference on
Parallel Architecture and Compilation (PACT), PACT '15, (Washington, DC,
USA), pp. 213{226, IEEE Computer Society, 2015.

[42] T. B. Schardl, W. S. Moses, and C. E. Leiserson, \Tapir: Ebedding Fork-
Join Parallelism into LLVM's Intermediate Representation,”in Proceedings of
the 22Nd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming PPoPP '17, (New York, NY, USA), pp. 249{265, ACM, 2017.

[43] S. Agarwal, R. Barik, V. Sarkar, and R. K. Shyamasundar, \My-happen-in-
parallel Analysis of X10 Programs," inProceedings of the 12th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming?PoPP '07,
(New York, NY, USA), pp. 183{193, ACM, 2007.

[44] P. Chatarasi, J. Shirako, M. Kong, and V. Sarkar, \An Exten@d Polyhedral
Model for SPMD Programs and Its Use in Static Data Race Detean," in Lan-
guages and Compilers for Parallel Computing - 29th International Workshop,
LCPC 2016, Rochester, NY, USA, September 28-30, 2016, Revised Papers
pp. 106{120, 2016.

[45] U. K. R. Bondhugula, E ective Automatic Parallelization and Locality Opti-
mization Using the Polyhedral Model PhD thesis, Department of Computer
Science and Engineering at Ohio State University, OH, USA, 2008.

[46] T. Grosser, A Decoupled Approach to High-level Loop Optimization : Tile

94

Shapes, Polyhedral Building Blocks and Low-level Compilefiheses, Universie
Pierre et Marie Curie - Paris VI, Oct. 2014.

[47] M. R. Kong, Enabling Task Parallelism on Hardware/Software Layers using the
Polyhedral Model PhD thesis, Department of Computer Science and Engineer-

ing at Ohio State University, OH, USA, 2016.

[48] F. Darema, D. A. George, V. A. Norton, and G. F. P ster, \A singleprogram-
multiple-data computational model for EPEX/FORTRAN.," Parallel Comput-
ing, vol. 7, no. 1, pp. 11{24, 1988.

[49] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblif A. Krishnamurthy,
P. Hil nger, S. Graham, D. Gay, P. Colella, and A. Aiken, \Titanium: A
High-Performance Java Dialect,"Concurrency Practice and Experiencevol. 10,

pp. 825{836, 9 1998.

[50] M. Frigo, C. E. Leiserson, and K. H. Randall, \The Implemstation of the
Cilk-5 Multithreaded Language,” in Proceedings of the ACM SIGPLAN 1998
Conference on Programming Language Design and Implementatid?LDI '98,

(New York, NY, USA), pp. 212{223, ACM, 1998.
[51] A. Mani, \OSS-Based Grid Computing,"CoRR, vol. abs/cs/0608122, 2006.

[52] M. Feng and C. E. Leiserson, \E cient Detection of Deteminacy Races in Cilk
Programs," in Proceedings of the Ninth Annual ACM Symposium on Parallel
Algorithms and Architectures SPAA '97, (New York, NY, USA), pp. 1{11,
ACM, 1997.

[53] \OpenMP Application Program Interface, Version 4.0."
http://'www.openmp.org/wp-content/uploads/OpenMP4.0. 0.pdf, July 2013.

[54] S. Verdoolaegeisl: An Integer Set Library for the Polyhedral Modelpp. 299{
302. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.

95

[55] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Baal, \The Poly-
hedral Model is More Widely Applicable Than You Think," in Proceedings of
the 19th Joint European Conference on Theory and Practice of Software, In-

ternational Conference on Compiler ConstructionCC'10/ETAPS'10, (Berlin,
Heidelberg), pp. 283{303, Springer-Verlag, 2010.
[56] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. ParelloM. Sigler, and

O. Temam, \Semi-automatic Composition of Loop Transformabns for Deep

Parallelism and Memory Hierarchies," Int. J. Parallel Program., vol. 34,

pp. 261{317, June 2006.
[57] M. Griebl, C. Lengauer, and S. Wetzel, \Code Generatiom the Polytope

Model,” in Proceedings of the 1998 International Conference on Parallel Ar-

chitectures and Compilation TechniquesPACT '98, (Washington, DC, USA),
IEEE Computer Society, 1998.

[58] C. Bastoul, \Code Generation in the Polyhedral Model I€asier Than You

Think," Proceedings of the 22nd International Conference on Parallel Architec-
tures and Compilation Techniquesvol. 0, pp. 7{16, 2004.

[59] T. Grosser, S. Verdoolaege, and A. Cohen, \Polyhedral ASGeneration Is
More Than Scanning Polyhedra,"”ACM Trans. Program. Lang. Syst, vol. 37,
pp. 12:1{12:50, July 2015.

[60] J.-F. Collard, D. Barthou, and P. Feautrier, \Fuzzy Array Data ow Analysis,"
in Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming PPOPP '95, (New York, NY, USA), pp. 92{101,

ACM, 1995.
[61] B. Creusillet and F. Irigoin, \Interprocedural Array Regon Analyses," Int. J.

Parallel Program., vol. 24, pp. 513{546, Dec. 1996.

[62] B. Creusillet and F. Irigoin, \Exact Versus Approximate Aray Region Anal-

96

yses," in Proceedings of the 9th International Workshop on Languages and
Compilers for Parallel Computing LCPC '96, (London, UK, UK), pp. 86{100,
Springer-Verlag, 1997.

[63] C. Bastoul, \A Speci cation and a Library for Data Exchange in Polyhedral
Compilation Tools Edition 1.0, for Openscop Speci cation .0 and Openscop
Library 0.8.4," 2012.

[64] P. Feautrier and C. Lengauer, \Polyhedron Model," irEncyclopedia of Parallel
Computing (D. A. Padua, ed.), pp. 1581{1592, Springer, 2011.

[65] D. G. Wonnacott, Constraint-based Array Dependence AnalysisPhD thesis,
University of Maryland at College Park, MD, USA, 1995.

[66] F. Quillee, S. Rajopadhye, and D. Wilde, \Generation ok cient Nested Loops
from Polyhedra," Int. J. Parallel Program., vol. 28, pp. 469{498, Oct. 2000.

[67] D. Barthou et al., \Fuzzy Array Data ow Analysis,” J. Parallel Distrib. Com-
put., vol. 40, no. 2, pp. 210{226, 1997.

[68] P. Chatarasi, J. Shirako, and V. Sarkar, \Polyhedral Trasformations of Ex-
plicitly Parallel Programs," in 5th International Workshop on Polyhedral Com-
pilation Techniques (IMPACT), (Amsterdam, Netherlands), Jan. 2015.

[69] S. Verdoolaege, S. Guelton, T. Grosser, and A. Cohen, ke&dule Trees," in
Proceedings of the 4th International Workshop on Polyhedral Compilation Tech-
niques (S. Rajopadhye and S. Verdoolaege, eds.), (Vienna, Austria)anuary
2014.

[70] Y. Zhang, E. Duesterwald, and G. Gao, \Concurrency Anasts for Shared Mem-
ory Programs with Textually Unaligned Barriers," in Languages and Compilers
for Parallel Computing (V. Adve, M. Garzarn, and P. Petersen, eds.), vol. 5234
of Lecture Notes in Computer Sciengepp. 95{109, Springer Berlin Heidelberg,
2008.

97

[71] M. Griebl, Automatic Parallelization of Loop Programs for Distributed Memory

Architectures. University of Passau, 2004. Habilitation thesis.

[72] H. Ma, S. R. Diersen, L. Wang, C. Liao, D. Quinlan, and Z. Y&y, \Symbolic
Analysis of Concurrency Errors in OpenMP Programs,” irProceedings of the
2013 42Nd International Conference on Parallel ProcessintCPP '13, (Wash-
ington, DC, USA), pp. 510{516, IEEE Computer Society, 2013.

[73] S.Che, M. Boyer, J. Meng, D. Tarjan, J. W. Shea er, S.-H. Leand K. Skadron,
\Rodinia: A Benchmark Suite for Heterogeneous Computing,”ni Proceed-
ings of the 2009 IEEE International Symposium on Workload Characterization
(ISWC), IISWC '09, (Washington, DC, USA), pp. 44{54, IEEE Computer
Society, 2009.

[74] A. Darte, A. lIsoard, and T. Yuki, \Liveness Analysis in Expicitly-
Parallel Programs,” Research Report RR-8839, CNRS ; Inria ;
ENS Lyon, Jan. 2016. Corresponding publication at IMPACT'16
(http://impact.gforge.inria.fr/impact2016).

[75] T. Yuki, P. Feautrier, S. Rajopadhye, and V. Saraswat, \Aray Data ow Anal-
ysis for Polyhedral X10 Programs," inProceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming?PoPP '07,
2013.

[76] A. Cohen, A. Darte, and P. Feautrier, \Static Analysis of Opn-
Stream Programs,” Research Report RR-8764, CNRS ; Inria ;
ENS Lyon, Jan. 2016. Corresponding publication at IMPACT'16

(http://impact.gforge.inria.fr/impact2016).

[77] T. Yuki, P. Feautrier, S. V. Rajopadhye, and V. Saraswat, €hecking Race
Freedom of Clocked X10 Programs,CoRR, vol. abs/1311.4305, 2013.

[78] J.-F. Collard and M. Griebl, \Array Data ow Analysis for Exp licitly Parallel

[79]

[80]

[81]

[82]

[83]

[84]

98

Programs," in Proceedings of the Second International Euro-Par Conference on

Parallel Processing Euro-Par '96, 1996.

R. Baghdadi, U. Beaugnon, A. Cohen, T. Grosser, M. Krus€, Reddy, S. Ver-
doolaege, A. Betts, A. F. Donaldson, J. Ketema, J. Absar, S. v. Haast,
A. Kravets, A. Lokhmotov, R. David, and E. Hajiyev, \PENCIL: A Pla tform-
Neutral Compute Intermediate Language for Accelerator Progmming,” in
Proceedings of the 2015 International Conference on Parallel Architecture and
Compilation (PACT), PACT '15, (Washington, DC, USA), pp. 138{149, IEEE
Computer Society, 2015.

A. Pop and A. Cohen, \Preserving high-level semantics oapallel programming
annotations through the compilation ow of optimizing complers," in Proceed-
ings of the 15th Workshop on Compilers for Parallel Computers (CPC'10)
2010.

\CLANG OMP: CLANG Support for OpenMP 3.1." https://clang-
omp.github.io.

C. Lattner and V. Adve, \LLVM: A Compilation Framework for L ifelong Pro-
gram Analysis & Transformation," in Proceedings of the International Sympo-
sium on Code Generation and Optimization: Feedback-directed and Runtime
Optimization, CGO '04, (Washington, DC, USA), IEEE Computer Society,
2004.

J. Mellor-Crummey, \Compile-time Support for E cient Data Race Detection
in Shared-memory Parallel Programs," ilProceedings of the 1993 ACM/ONR
Workshop on Parallel and Distributed Debugging?’ADD '93, (New York, NY,
USA), pp. 129{139, ACM, 1993.

F. Yu, S.-C. Yang, F. Wang, G.-C. Chen, and C.-C. Chan, \Sybolic Con-
sistency Checking of OpenMp Parallel Programs,” ifProceedings of the 13th

99

ACM SIGPLAN/SIGBED International Conference on Languages, Compilers,
Tools and Theory for Embedded SystemsCTES '12, (New York, NY, USA),
pp. 139{148, ACM, 2012.

[85] V. Basupalli, T. Yuki, S. Rajopadhye, A. Morvan, S. Derrig, P. Quinton, and
D. Wonnacott, \ompVerify: Polyhedral Analysis for the OpenMP Program-
mer," in Proceedings of the 7th International Conference on OpenMP in the
Petascale Era IWOMP'11, (Berlin, Heidelberg), pp. 37{53, Springer-Verhg,
2011.

[86] A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. ThomsoYGPUVerify:
A Verier for GPU Kernels," in Proceedings of the ACM International Con-
ference on Object Oriented Programming Systems Languages and Applicatjons
OOPSLA '12, (New York, NY, USA), pp. 113{132, ACM, 2012.

[87] S. Atzeni, G. Gopalakrishnan, Z. Rakamarc, D. H. Ahn, l.Laguna, M. Schulz,
G. L. Lee, J. Protze, and M. S. Muller, \Archer: E ectively Spotting Data Races
in Large OpenMP Applications," in Proceedings of the 30th IEEE International
Parallel and Distributed Processing Symposium (IPDPS), Chicag@016.

[88] A. J. Dorta, C. Rodriguez, F. d. Sande, and A. Gonzalez-Esoano, \The
OpenMP Source Code Repository,” inProceedings of the 13th Euromicro
Conference on Parallel, Distributed and Network-Based ProcessjnigDP '05,

(Washington, DC, USA), pp. 244{250, IEEE Computer Society, ATb.
[89] L.-N. Pouchet and T. Yuki, \PolyBench/C 3.2," 2012.
[90] \Intel Inspector XE." http://software.intel.com/en- us/intel-inspector-xe, 2015.

[91] S. Grauer-gray, L. Xu, R. Searles, S. Ayalasomayajula,&d. Cavazos, \Auto-
tuning a High-Level Language Targeted to GPU Codes," iln Innovative Par-
allel Computing Conference. IEEE2012.

[92] M. Ss and C. Leopold, \Common Mistakes in OpenMP and Howto Avoid

100

Them: A Collection of Best Practices," inProceedings of the 2005 and 2006
International Conference on OpenMP Shared Memory Parallel Programming
IWOMP'05/IWOMP'06, (Berlin, Heidelberg), pp. 312{323, Springer-Verlag,
2008.

[93] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav, \Scalble and Precise
Dynamic Data Race Detection for Structured Parallelism," n Proceedings of
the 33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI '12, (New York, NY, USA), pp. 531{542, ACM, 2012.

[94] A. Aiken and D. Gay, \Barrier Inference," in Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
POPL '98, (New York, NY, USA), pp. 342{354, ACM, 1998.

[95] A. Kamil and K. Yelick, \Concurrency Analysis for Parallé Programs with
Textually Aligned Barriers," in Proceedings of the 18th International Confer-
ence on Languages and Compilers for Parallel ComputingCPC'05, (Berlin,

Heidelberg), pp. 185{199, Springer-Verlag, 2006.

[96] Y. Zhang and E. Duesterwald, \Barrier Matching for Progams with Textually
Unaligned Barriers," in Proceedings of the 12th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming PPoPP '07, (New York, NY,
USA), pp. 194{204, ACM, 2007.

[97] C.-W. Tseng, \Compiler Optimizations for Eliminating Barrier Synchroniza-
tion,” in Proceedings of the Fifth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming PPOPP '95, (New York, NY, USA),
pp. 144{155, ACM, 1995.

[98] H. Han, C.-W. Tseng, and P. Keleher, \Eliminating BarrierSynchronization
for Compiler-Parallelized Codes on Software DSMs|ht. J. Parallel Program.,

vol. 26, pp. 591{612, Oct. 1998.

101

[99] R. Surendran, R. Raman, S. Chaudhuri, J. Mellor-Crummeyand V. Sarkar,
\Test-driven Repair of Data Races in Structured Parallel Pograms," in Proceed-
ings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation PLDI '14, (New York, NY, USA), pp. 15{25, ACM, 2014.

[100] R. O'Callahan and J.-D. Choi, \Hybrid Dynamic Data Race [@tection," in Pro-
ceedings of the Ninth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming PPoPP '03, (New York, NY, USA), pp. 167{178, ACM,
2003.

[101] C.-S. Park, K. Sen, P. Hargrove, and C. lancu, \E cient Data Race Detection
for Distributed Memory Parallel Programs,” in Proceedings of 2011 Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis, SC '11, (New York, NY, USA), pp. 51:1{51:12, ACM, 2011.

	Abstract
	Acknowledgments
	List of Illustrations
	List of Tables
	Introduction
	Thesis Statement
	Contributions
	Outline

	Background
	Explicitly-Parallel Programs
	SPMD-style Parallelism
	Serial-elision Property

	Mathematical Foundations for the Polyhedral Model
	Polyhedral Model
	Polyhedral Representation of Programs
	Dependence Analysis
	Affine Program Transformations
	Code Generation

	Limitations of the Polyhedral Model

	Extensions to the Polyhedral Model for SPMD Programs
	Important Concepts in an SPMD Execution
	Space Mapping
	Phase Mapping
	May-Happen-in-Parallel (MHP) Analysis
	Past Work in Extending Polyhedral Model for Explicitly-Parallel Programs

	PolyOMP: A Polyhedral Framework for Debugging and Optimizations of SPMD Programs
	Overall Workflow

	Debugging Of SPMD Programs – Static Data Race Detection
	Motivation
	Our Approach
	An Algorithm to Identify Data Races

	Experimental Evaluation
	Experimental Setup
	OpenMP Source Code Repository
	PolyBench/ACC OpenMP Suite

	Strengths and Limitations of Our Approach
	Past Work on Race Detection

	Optimization Of SPMD Programs – Static Redundant Barrier Detection
	Motivation
	Our Approach
	An Algorithm to Identify Redundant Barriers
	A Greedy Approach to Compute a Set of Required Barriers

	Experimental Evaluation
	Experimental Setup
	OpenMP Source Code Repository
	PolyBench/ACC OpenMP Suite

	Strengths and Limitations of Our Approach
	Past Work on Analysis of Barriers

	 Conclusions & Future Work

