% RICE

Efficient Data Race Detection for
Async-Finish Parallelism

Raghavan Raman lJisheng Zhao Vivek Sarkar
Rice University

Martin Vechev Eran Yahav
IBM T. J. Watson Research Center

Structured Parallelism

* Many algorithms expressible in structured
parallel languages

— Renewed interest: Java fork-join, MIT’s Cilk, IBM’s
X10, DPJ (UIUC), TPL (Microsoft), HJ (Rice)

* Benefits of structured languages
— Eliminates certain kinds of deadlocks
— Enables simpler analysis of concurrency

— Amenable to schedulers with guaranteed space
and time bounds

% RICE

Structured Parallelism

* Programs contain a massive number of tasks
— Most tasks access disjoint memory locations

* Current data-race detection techniques

— Focus on unstructured lock-based concurrency
— Poor space complexity

 Size of a Vector Clock is proportional to number of threads

— Inefficient when applied to huge number of tasks

% RICE

Structured Parallelism: Cilk

* Cilk language constructs
— spawn
— sync

— Induces fully-strict computation graphs (also called Series-
Parallel Dags)

* SP-bags: Cilk data-race detection algorithm
— Key idea: Exploits structure for checking

— Good space complexity — O(1) per memory location,
independent of number of tasks

— Serial algorithm — runs on a single worker thread but
reports all possible data races for a given input

% RICE

SP-bags Revisited

e SP-bags: targets spawn-sync
— Limitation: Not directly applicable to other constructs

e async-finish
— More general set of computation graphs than spawn-
sync

— Used as a basis in research projects like IBM X10, Rice
HJ, UCLA FX10

* Can SP-bags be extended to async-finish ?

% RICE

Main Contributions

e ESP-bags algorithm: Extending SP-bags to async-finish
* Implementation in tool - TaskChecker

e Static compiler optimizations to reduce runtime
overhead

e Evaluation on 12 benchmarks

— Average slowdown is 3.05x (Geometric Mean)
* Average slowdown for SP-bags is 7.05x
* Average slowdown for FastTrack is 6.19x

% RICE

Task Parallel Extensions

* async <stmt>:

— Creates a new task that can execute <stmt> in parallel with
the parent task

* finish <stmt>:

— Blocks and waits for all tasks spawned inside finish scope
to complete

e jsolated <stmt>:

— Each task must perform an isolated statement in mutual
exclusion with any other isolated statements

— Also called as "atomic’ in X10

% RICE

Example — Parallel Depth-First Search
Spanning Tree

DFS
class V {
V [] neighbors;
V parent; compute

boolean tryLabeling(V n) {
isolated if (parent == null) parent = n;
return parent == n;

} // tryLabeling

compute

void compute() {
for (int i=0; i<neighbors.length; i++) {
V child = neighbors[i]; compute
if (child.tryLabeling(this))
async child.compute(); //escaping async
} —>
} // compute Async edge

 compute

void DFS() { // Compute a DFST with “this” as root
parent = this; // Only the root has parent = itself
finish compute();
} // DFS
} // class V

% RICE 65’

Finish edge

ESP-bags: Extended SP-bags

e Attach two ‘bags’, S and P, to every task instance

* Also attach a P-bag to every finish instance
— Different from SP-bags

* Each bag holds a set of task ids
— Task ids are created dynamically

e Attach meta-data to memory locations

— Each memory location has two fields:
* reader task id
e writer task id

— Can be restricted to two fields per object for object-based race-
detection

% RICE

ESP-bags: Basic Operation

* Aserial algorithm:

— Performs a sequential depth-first execution of the
parallel program on a single processor

* Invariant:
— A task id will always belong to at most one bag at a time

* Space Overhead:
— Bags represented using a disjoint-set data structure

% RICE

Contents of S and P bags

e When a statement S in task A is executed, ...

* S-bag of task A

— holds the task ids of descendent tasks (of A) that
always precede the statement Sin A

* P-bag of task A

— holds the task ids of descendent tasks (of A) that may
execute in parallel with the statement Sin A

11

% RICE

Example

S;;={T1} S, ={T1} Sy ={T1S}, ={T1, 315, ={T1, 72,73}
P ={} P, ={T2) Pr={TRAFKT2} Pr={}

-2 Continue
— = = => Fork
............. » Join

12

Updating the Bags

Creation of task A (async A)
— SA ={A}
— PA = { }

e Execution returns from task A to parent task/finish B
— P,=P,US,UP,
— SA = { }
— PA ={}

Start of finish block F
— PF = { }

End of finish block F by task B
— S;=S,UP,

— PF ={}

% RICE

Checks Performed When Accessing the
memory locations

* Read location L by task t
— If L.writer is in a P-bag, then Data Race
— If L.reader is in a S-bag, then L.reader =t
— Otherwise, do nothing

* Write Location L by Task t

— If L.writer or L.reader is in a P-bag, then Data Race
— L.writer =1t

% RICE

T
1 final int [] A, B;
2 ...
3 finish { F1
for (inti=0; i< size; i++) {

4
5

6 async{ T2
.

8

B[i] +=1i;

9 }// async
10 finish { F2
11 async{ T3
12 B[i] = Alil;
13 } I/ async
14
15 } /1 finish
16}/ for
17 } I/ finish

Example

1

10

11

Tl
S

{T1}
{T1}
{T1}
{T1}
{T1}
{T1}

{T1}

{}

{} {12}

{} {12}
{12} {}
{12} {}
{12} {}

{}
{}

Reduced version of the example in Figure 2 in the paper

15

{13}

T2 T3 B[0]
S S Writer

T2

T2

T2

T2

Example

T

| inalint 4.5 HEEHEEEE
2 S S S Writer
3 finish { F1 1 {11} - - - - -
4 for(inti=0;i<size; i++) { 3 {T1} 0
5

6 T1 T2
6 async{ T2 . i Y
7 B[i] +=1i; 7 {T1} {} {12} - - T2
8 9 {T1} {T2} {} - - T2
9 } // async _
10 finish { F2 10 {11} {12} {} {} T2
1 async{ T3 11 {T1} (T2})) {T3} T2
12 B[i] = A[i]; 12 {T1} {T2} {} {} {T3} T3
13 } I/ async
14
15 } /1 finish
16}/ for
17 } I/ finish

Reduced version of the example in Figure 2 in the paper ~ D2ta Race

16]

Performance Optimizations

e ESP-bags Algorithm:
— Instrument every memory access
— Some checks are redundant and can be removed

* Read/Write Check Optimization

async {
ReadCheck (p.x);
. = PX;

WriteCheck (p.x);
P.X=..;

)
% RICE

More Performance Optimizations

* Check Elimination in Sequential Code Regions

* Read-only Check Elimination in Parallel Regions
* Eliminating Checks on Task-local Objects

* Loop Invariant Check Optimization

% RICE

Experimental Setup

e 16-way (4x4) Intel Xeon 2.4GHz system
— 30 GB memory
— Red Hat Linux (RHEL 5)

* Sun Hotspot JDK 1.6

e All benchmarks written in HJ using only Finish/Async/Isolated
constructs
— JGF benchmarks used with their highest input size
* Except MolDyn for which size A was used
— http://habanero.rice.edu/hj

 ESP-bags algorithm — implemented in a tool called TaskChecker,
along with the optimizations

% RICE

Slowdown of ESP-bags Algorithm

Benchmark Number of Original Time (s) ESP-bags Slowdown Factor
Tasks w/o Opts w/ Opts

Crypt 1.3e7 15.24 7.63 7.29
LUFact 1.6e6 15.19 12.45 10.08
MolDyn 5.1e5 45.88 10.57 3.93
MonteCarlo 3.0e5 19.55 1.99 1.57
RayTracer 5.0e2 38.85 11.89 9.48
Series 1.0e6 1395.81 1.01 1.00
SOR 2.0e5 3.03 14.99 9.05
SparseMatMult 6.4el 13.59 12.79 2.73
Fannkuch 1.0e6 7.71 1.49 1.38
Fasta 4.0e0 1.39 3.88 3.73
Mandelbrot 1.6el 11.89 1.02 1.02
Matmul 1.0e3 19.59 6.43 1.16
Geometric Mean 4.86 3.05

N RICE ” i

Comparison with Other Race Detectors

Language

Number of Test Programs
Minimum Slowdown
Maximum Slowdown

Average Slowdown
(Geometric Mean)

Space Overhead
Serial/Parallel
Guarantees

Schedule Dependent?

Cilk

8
2.41
11.09

7.05

0O(1)
Serial
Per-Input

No

21

X10/HJ
12

1

10.08

3.05

O(1)
Serial
Per-Input

No

Java
12
0.9
14.8

6.19

O(n)
Parallel
Per-Execution

Yes

Breakdown of Optimizations

£ No Opt & Read-only Opt © Escape Opt & LICMOpt ©“RWOpt © Full Opt

18.00

16.00

14.00 i

12.00 BN

10.00 1 s i | —

8.00 -

6.00 -

Slowdown Factor

4.00 -
2.00 -

0.00 -

S RICE

Extensions for Isolated

e Need to check that isolated and non-isolated
accesses that may execute in parallel do not
conflict

 Two additional fields

— Can be restricted to memory locations accessed in
isolated blocks

* Refer to the paper for more details

% RICE

Determinism vs. Data Races

* Important for structured parallel algorithms
— Intended to be deterministic

e Data-race freedom implies determinism in
some cases (only with async-finish)

— Implies temporal and spatial disjointness

e Algorithm dynamically checks for determinism
— Guarantees per-input, not just per-execution

% RICE

Conclusions

* ESP-bags algorithm: Extending SP-bags to enable
Data-race and Determinism Analysis for async-
finish

* Implementation in tool - TaskChecker
e Static Compiler Optimizations reduce overhead

* Average slowdown of 3.05x on a suite of 12
benchmarks

% RICE

Future Work

* Extend ESP-bags to support more constructs:
— HJ: futures, phasers
— X10: futures, clocks, conditional atomics
— Java: thread fork/join, Java Concurrency Utilities

e Parallelize ESP-bags

 Combine with static determinism verification:
Automatic Verification of Determinism for Structured Parallel Programs
(SAS’10)

% RICE

Rice Habanero Multicore Software Project:
Enabling Technologies for Extreme Scale

(Parallel Applications)

Two-level programming model
Declarative Coordination

Portable execution model
1) Lightweight asynchronous tasks and

Habanero
Programming

data transfers Languages Language for Domain Experts,

= async, finish, asyncMemcpy CnC (Intel Concurrent Collections)
2) Locality control for task and data . +

distribution Halgzrr:]e;ﬁe?tgtlc Task-Parallel Languages for

= hierarchical place tree P Parallelism-aware Developers,
i arallel
3) Mutual exclusion I : Habanero-Java (from X10 v1.5)
, . . ntermediate
= ownership-based isolation : and Habanero-C
: : : Representation
4) Collective, point-to-point, stream
synchronization

- phasers Habanero Mainstream
- Runtime and Parallelism-Oblivious
- (Joe) D
- evelopers
- Tools
< e
Includes TaskChecker tool! L

(Extreme Scale Platforms D

27 http://habanero.rice.edu ﬁ

