

ABSTRACT

Optimizing Web Virtual Reality

by

Rabimba Karanjai

Performance has always been a key factor in any virtual and augmented reality

experience. Since Virtual Reality was conceived, performance has always been the

factor that has often slowed down, or at times even halted the adoption of Virtual

Reality related technologies. More recently, the hardware advancements have caught

up with the development so that virtual reality experiences can be rendered satisfac-

torily. The performance gains, however, still depend a lot on both the hardware and

the software platform that we use. With mobile phones becoming one of the primary

devices to consume media, it is critical to pay attention to how these applications

perform on portable devices. With help of the Web Graphics Library (WebGL), it

is now possible to create Web Virtual Reality capable experiences that can directly

be executed on supported web browsers. However, that raises new challenges like

making these JavaScript-based web applications run with near-native performances

for the user. Immersive reality applications, like those built for WebVR, assume that

performance will always be satisfactory to avoid both screen latencies and physical

side e�ects such as nausea. This thesis presents a collection of optimizations targeted

speci�cally at WebGL and the library, Three.js � on top of which most Web Vir-

tual Reality applications are built including the Mozilla aframe library � though the

principles behind our optimizations can be applied to other frameworks as well. Our

approach identi�es certain aspects and pain-points in the present framework includ-

ing object loading, texture rendering and stereoscopic image production. We propose,

implement and test our approach to optimize these aspects, and show that a visible

performance gain is observed on both desktop and mobile web browsers. Further, we

show that some of our approaches let the virtual and augmented reality applications

utilize parallelism in a way that allows them to handle more complex scenarios than

what is available with state-of-the-art solutions in production devices. Since Three.js

and webgl are not only used by WebVR/AR/MR applications but also by a large

number of games and graphic rendering applications, our improvements can impact

all applications that utilize these frameworks. Experiments on both desktop and mo-

bile browsers a�rm our hypothesis. We also designed a new set of benchmarks and

techniques to measure WebVR performance, since there is no pre-existing benchmark

suite that could be used to capture VR performance on browsers.

iv

Acknowledgement

First and foremost, I would like to thank my advisor Dr. Vivek Sarkar for his constant

guidance and suggestion that made this work possible. Dr. Sarkar has been very

patient, encouraging and supporting towards me at times when things did not seem

to go well with my research. Thank you for all your support and time whenever I

needed them.

Thank you, Dr. Ray Simar and Dr. Lin Zhong, for agreeing to be a part of my

thesis committee. We are very fortunate to have professors like you in our department.

I would also like to extend my thanks and heartfelt gratitude towards the Mozilla

Research Mixed Reality Team, especially my manager Dr. Lars Bergstrom, my mentor

Fernando Serrano García, and Dr. Blair MacIntyre, who also heads the Augmented

Environments Lab at Georgia Institute of Technology, for letting me pick their brains,

guiding me and giving me an opportunity to work with the Mozilla Mixed Reality

research team. The feedback and suggestions from members of the Mixed Reality

team, including Kip, Trevor, Casey, Diego, and Emily, have been invaluable to my

thesis work. I am thankful to Havi Ho�man, Jason Weathersby, Michael Ellis from

the Mozilla Developer Outreach team and for their support throughout my journey

with Mozilla and also Dietrich Ayala from the same team, who was one of the very

�rst people who encouraged my code contribution towards Mozilla.

I would like to thank all the members of our "Habanero Extreme Scale Software

Research" group for all their help and suggestions throughout the journey. Thank

you Bumjin, Jaeho, Daniel, Rima, Sushovan, my wonderful o�ce-mates, for your

stimulating discussions and encouragements when I was at my lowest. I wish to

thank all my friends at Rice, who have always been there for me when I needed them,

v

especially Arkabandhu, Rohan, Sourav, Hamim, Ankush, Arghya, Bitan, Sriparna,

Sagnak, Sagnik for all the fun-�lled meetups and Ankan, Avisha, Mitropam for bearing

with me at times when I was at my most unbearable stage.

Finally, I would like to take the opportunity to thank my parents Malay and

Manjari for their never-ending support and belief in me.

Contents

Abstract ii

List of Illustrations viii

1 Introduction 1

1.1 Motivation . 3

1.2 The Scope of the Thesis . 5

1.3 Previous Work . 5

1.4 Thesis Overview . 9

2 Background 10

2.1 Web Virtual Reality . 10

2.1.1 Three.js . 12

2.1.2 A-Frame . 13

2.2 Web Mixed Reality . 14

2.3 Case Study: Augmented Reality Demonstration in Web 16

2.3.1 A-Painter in WebXR . 18

2.3.2 AR Furniture Suggestion App 19

3 Optimizing the Object Loader 24

3.1 Creating an E�cient Object Loader 24

3.1.1 Our Approach . 28

3.1.2 Reason for Separation . 32

3.1.3 Directing The Synchronization 33

3.1.4 Parser Design Choices . 33

vii

3.2 Implementation Overview . 34

3.2.1 OBJLoader2 . 34

3.3 Web Worker Support . 35

3.4 Solution . 35

3.4.1 OBJLoader2: . 36

4 Web Virtual Reality: Other Optimizations 38

4.1 Multiple Viewpoints in Camera . 38

4.1.1 Our approach . 40

4.1.2 Modi�ed Algorithm . 40

4.1.3 Multiview in Servo . 41

4.1.4 Implementation Code . 41

4.1.5 Performance Gains . 45

4.2 Handling Incremental texture Loading 46

4.2.1 Our Approach . 47

4.2.2 Implementation . 47

5 Experiments and Validation 49

5.1 Experiment Setup . 49

5.2 Object Loader Performance . 50

5.3 Web Worker Performance Benchmarks 51

5.3.1 Adaptive Threshold . 52

6 Conclusion and Future Work 55

Bibliography 60

Illustrations

1.1 Human - Virtual Environment Interaction Loop 6

1.2 Performance impact comparison with and without using web worker

in BananaBread . 8

2.1 Hero: First WebVR enabled browser prototype 13

2.2 Virtual Reality . 16

2.3 Mixed Augmented Reality . 16

2.4 Arriving at Virtual Reality from Augmented Reality 17

2.5 Arriving at Mixed Reality from Augmented Reality 18

2.6 WebAR: Painting . 21

2.7 WebAR: Furnitures Demo . 22

2.8 WebAR: Object Position Retention 23

3.1 Performance Impact of loading big gITF model into GPU 27

3.2 Compariosn for reduction of blocker rendering on the thread using

createImageBitmap . 28

4.1 Multiview Implementation architecture in Servo 42

4.2 Comparison of render time and improvements of using multiview in

servo . 45

5.1 Improvements in rendering using Web Workers and optimal worker . 51

ix

5.2 Impact of Web Worker in loading large number of objects in Three.js

scene . 52

5.3 Imporvement in Video Threshold detection using Web Worker 53

6.1 Imporvement in Video Threshold detection using WebAssembly . . . 57

6.2 Using Web Assembly for integer multiplication compared to using

javascript . 58

1

Chapter 1

Introduction

The concept of virtual reality is not a new one. Ivan Sutherland [5] introduced the idea

of a head-mounted display which would work as a display capable of putting the user

into a virtual space. The fundamental idea behind the three-dimensional display was

to create the illusion that the user is observing a three-dimensional object. The image

projected by the display had to synchronize with what the user would have seen in real

life with his head movements taken into consideration. They built special-purpose

digital matrix multiplier and clipping divider hardware to compute the appropriate

perspective image dynamically because no available general-purpose computer was

fast enough to provide a �icker-free dynamic picture. These experiments encouraged

further exploration of Virtual Reality. Sutherland's paper [5] noted the hardware lim-

itations on performance, especially for rendering stereoscopic images, which in turn

ignited a lot of follow-on work. A technical report by Cohen et al. [6] proposed math-

ematical solutions to a number of problems which directly a�ect, and later became

crucial for, building real-time scene rendering and graphics. In the mid-1970's, sci-

entists at Bell Laboratories created a dynamically recon�gurable keyboard in which

computer-generated labels are optically superimposed onto a two-dimensional array

of pushbuttons that rapidly changed as the task required [7]. Later, this concept

was extended at MIT to a limited three-dimensional virtual workspace in which a

user could manipulate 3D graphical objects that are spatially correspondent with

hand positions [8]. A key concept in each of these projects was the use of interactive

2

computer graphics to create a virtual workstation environment.

At a similar time-frame in the 1970's, researchers at MIT developed a prototype

room-sized human-machine interface environment with wall-sized display and stereo-

phonic sound surrounding the user [9]. The emphasis was on creating a highly visual

and personalized interface environment where information access and manipulation is

facilitated by discrete spatial organization and natural interaction [10]. Researchers

at the University of Utah developed a binocular head-mounted display that superim-

poses computer-generated virtual objects into the real environment of the user [5].

Later at NASA Ames Research Center, Fisher et al. [11] envisioned the �rst vir-

tual environment display system which closely resembles what we have today as a

head-mounted display.

Almost all the prior work exhibited heavy investment towards special-purpose

hardware for head-mounted display improvements. The advances in commodity hard-

ware has �nally caught up with the computational requirements of this problem do-

main. A mandatory requirement for a virtual reality scene to be properly immersive

is to deliver a consistent throughout of 90 frames per second (fps) when viewing the

scene [12] [13]. This creates some strict criteria for the devices that aim to run Virtual

Reality content. The devices capable of running virtual reality range from capable

and costly devices like HTC Vive [14] and Oculus Rift HMD [15] to mobile solutions

like Daydream from Google and GearVR from Samsung. All of them have di�erent

platform and operating system support. DayDream and GearVR work exclusively on

Android, and HTC Vive and Rift utilize Windows systems. Google Daydream also

supports Web Virtual Reality in these headsets.

On another front, we have advances in the development of web augmented real-

ity and mixed reality experiences being built. These are built sometimes using very

3

specialized hardware like Microsoft Hololens [16]. Chen et al. at Microsoft have also

explored the case of using these Augmented Reality experiences to create connected

experiences [17]. The nature of these experiences require a real-time rendering capa-

bility. With Apple ARKit [18] and Google ARCore [19] available in mobile devices,

many of these Augmented and Mixed reality experiences have started to be used in

similar frameworks such as Virtual Reality.

1.1 Motivation

Performance is and always has been the key to creating an immersive virtual reality

experience. With Augmented and Mixed reality applications using similar technology

stacks to create their respective experiences, it is more important than ever to create

an optimized pipeline which can render graphics intensive applications easily even on

mobile devices.

But this is not just about rendering it on the device. These applications are

now being built on the web using JavaScript to program behavior and WebGL to

render the animations. Having WebGL support within browsers has enabled web

applications to access the graphical processing unit of the machines [20]. As hardware

evolved, animations went from two-dimensional renderings into the realms of the third

dimension. Although two-dimensional rendering could be done through the use of the

Canvas application programming interface (API), it wasn't until the Web Graphics

Library (WebGL) debuted that the graphics hardware was actually exposed to a lower

level within the context of the browser. This API has now been implemented by every

major browser vendor, making it possible to create a fully three-dimensional game

without relying on a plug-in [21].

Even though WebGl is extensively used in animations, game development, and VR

4

scene creation, it is still fairly hard to learn and use. That prompted the creation of

frameworks that abstracted away some portions of the API and provided developers

with an easy way to access the functionalities [22]. One such framework is Three.js

[23], which has received added help from many contributors, and its user base has

grown to a large size. Three.js provides several di�erent draw modes and can fall back

to the 2D rendering context, if WebGL is not supported. Three.js is a well-designed

library and fairly intuitive to use. Default settings reduce the amount of initial or

�boilerplate� work needed. Default settings can be overridden as parameters passed

in upon object construction or by calling the appropriate object methods afterwards.

Since Three.js is easy to learn and use [24], it was a natural choice for the developers of

Web Virtual Reality applications. However, Three.js was never designed with virtual

reality's real-time requirements in mind. This creates performance drawbacks when

creating virtual reality scenes.

Our approach in this thesis will be to identify the speci�c shortcomings of Three.js

and to optimize them using our methods. Most of the shortcomings stem from the

way head-mounted displays handle data, how the scenes render and understand the

data, and how quickly these functionalities can be performed. For a scene to feel

immersive at a level that does not induce any side-e�ects for the user like nausea,

we will need a persistent and constant throughput of 90 frames per second on the

display. A lower throughput will cause the user to experience nausea, and to start

noticing anomalies in the created scene. The computation is also dependent on the

browser executing JavaScript, which is sequential in nature. We will explore some

parallelization techniques to speed up the application execution. In addition, an

animated virtual scene might have animated models in it, which are generally texture

�les of considerable sizes. One challenge we will have to address is how to load

5

and render them in near real-time while the user is traversing a scene. It becomes a

challenge because the GPU upload function for textures becomes a blocking operation

for browsers. Addressing these challenges would lead to a much better experience and

performance for WebVR applications, especially on mobile devices where processing

power is at a premium but rendering expectations are still the same as for desktop

systems.

1.2 The Scope of the Thesis

The contributions of this thesis will be demonstrated in the context of the WebGL 1.0

library, Three.js, and Aframe which is based on Three.js. Exploring other frameworks

is beyond the scope of this thesis. The application benchmarks in this thesis will be

evaluated on a Daydream capable mobile device, primarily a Pixel XL, and on an

Oculus Rift headset. In addition, our evaluation will use some slight modi�cation to

Firefox DevTools and Chrome DevTools.

1.3 Previous Work

The majority of the previous work in the �eld has been to improve the performance

and tracking capabilities of head-mounted displays. Bowman et al. [1] argued that

immersive virtual reality works well, so long as the crucial components shown in

Figure 1.1 are optimized for high performance so as to produce a compelling and

immersive virtual reality experience. Parameters that impact performance include the

size of the visual �eld (in degrees of visual angle) that can be viewed instantaneously,

or Field Of View (FOV), �eld of regard (FOR) � the total size of the visual �eld

(in degrees of visual angle) surrounding the user, display size, display resolution,

stereoscopy � the display of di�erent images to each eye to provide an additional depth

6

cue, head-based rendering � the display of images based on the physical position and

orientation of the user's head (produced by head tracking), realism of lighting, frame

rate, and refresh rate.

Figure 1.1 : The human-VE interaction loop, including parts of the loop that Bowman

et al. [1] considered to be important components for immersion. Figure from [1]

Each of these problems have been worked on using di�erent approaches. Schwartz

et al. [21] proposed a WebGL framework through which they were able to generate

highly accurate virtual persona with complex re�ectance behavior. It also included

visual hints about manufacturing techniques and signs of wear. They used a compres-

sion mechanism called Singular Value Decomposition to make it easier to stream. By

7

streaming the individual components obtained by the Singular Value Decomposition

(SVD) based compression of the Bidirectional texture function (BTF) along with a

wavelet-based image compression, they managed to present high-quality previews of

the Bidirectional texture function (BTF) after a delay of only a couple of seconds.

They also use a progressive approach to lazily load the remaining data. Watson et al.

[25] studied how system responsiveness varies for Virtual Environments and the cor-

relation between better responsiveness and having a better frame-rate. Lee et al.[26]

found out in their Walking Interaction based Immersive Virtual Reality experience

that a minimum of 75 FPS must be maintained to avoid motion sickness for VR

scenes in their case. Di�erent approaches have been taken to combat VR induced

motion sickness if FPS cannot be improved. Fernandes et al. [27] utilized a way

of limiting the �eld of view to decrease VR motion sickness, but that also reduces

the sensory perception. Rendering stereoscopic images e�ciently using WebGL is an

open problem in the WebVR speci�cations [28]. Another aspect of the problem is

loading large animated models and textures e�ciently in WebGL in browser so as not

to block the o�oading of the textures to the GPU and ensure a responsive system

for WebVR interactions. As David Hrachov noted in his thesis [29], loading a large

texture in di�erent WebGL frameworks produces very inconsistent results across the

board. As a common theme, it is clear that increasing the size of the texture model

leads to signi�cant increases in the time needed to load and process the model. We see

one potential solution by Kang et al. [30], where they try to lazily load a big texture

using tile loading techniques. Another approach for dealing with how WebGL renders

scenes is by trying to parallelize the calls using the Web Worker framework. Since

web worker does not have access to the Document Object Model (DOM) directly,

this method relies instead on utilizing message passing [31]. Though this is not the

8

optimal solution, it still gives us some performance boost. By using WebGL Worker

[31] on BananaBread*, a javascript benchmark game created by Mozilla, we still get

notable performance boost. Figure 1.2 shows the frame per second render output for

increasing number of bots in a scene [32].

Figure 1.2 : The chart shows frames per second (higher numbers are better) on the

BananaBread demo using Firefox without webworker, Firefox with webworker , Google

Chrome without webworker , Google Chrome with web worker

But this still doesn't help in loading if the texture is big, as, in such a case, it

will not block the loading but will also not show the user anything while inside the

virtual scene, and will show a blank scene, in fact. Also, the proxying method is not

suited for mobile browsers. Chrome's slowdown for worker arises due to the overhead

of creating more proxies for the worker.

*BananaBread Benchmark: https://kripken.github.io/misc-js-benchmarks/banana/index.html

9

Moreover, in virtual reality applications often the aim is to provide real-time

objects that can render at a high refresh rate.

1.4 Thesis Overview

The rest of the thesis follows the following format

� Chapter 2 begins with a little bit of background on Web Virtual Reality and

Web Mixed Reality, the existing frameworks and their limitations

� Chapter 3 talks about speci�c bottlenecks and discusses one of them � loading

textures and objects into VR scene. The limitations it poses today, the blocker

issues and our approach on solving it exploiting parallelism granted by Web

Workers is taken into consideration as well

� Chapter 4 illustrates other performance bottlenecks including the de-duplication

of computation in stereoscopic image rendering for both eyes and the lack of

incremental image loading in VR scene, ending with our approach to both of

the problems

� Chapter 5 talks about our experimental setup and validates our approaches

� Chapter 6 touches upon the future improvements that can be done and related

future works

10

Chapter 2

Background

2.1 Web Virtual Reality

Virtual Reality is a technology which allows users to manipulate, explore and

immerse in computer generated interactive environments in real-time citesher-

man2002understanding. It has often been de�ned as an "interactive immersive

experience generated by a computer" [33], and it facilitates a natural, intuitive way

to interact with a computer. The concept of VR is based on the assumptions that we

can fool our brains by mimicking the external stimuli we normally receive through

our senses by utilizing electronic external stimuli, �If a computer application can

send the same external stimuli that the brain can interpret, then the simulated reality

is potentially indistinguishable from reality� [34].

When we navigate the world wide web, we mostly do it in a two-dimensional

context. We click through pages and create bookmarks and tap as if we are handling

physical books. Not all digital web content is meant to be experienced as �at two-

dimensional pages, and lose impact or important informations due to the 3D-to-2D

conversion. The Oculus Rift is a head-mounted device that enables a user to interact

with 3D virtual environments in a natural way, and is for this reason suitable for

experiencing virtual reality contents inside a suitable web browser.

At the heart of any Virtual Reality system, we have a computer-generated model

that generally utilizes three-dimensional modeling techniques, similar to what a

11

CAD/CAM software does. All the geometry present in the model must be represented

as polygons. This helps in the faster rendering time needed for real-time graphics

generation. If any object is created using Conservative Solid Geometry, then it is

�rst required to be converted into a boundary representation [35]. If the boundaries

are curved surfaces then a polygon estimation can be derived using a tessellation

algorithm * that replaces the surface by a mesh of polygons. To view and to do

meaningful interactions with this geometry, the system needs information describing

the appearances of the object like color, texture, characteristics, re�ection, lighting

environment, interaction, possible animation, sound and behavior functionality. This

can be referred as the "virtual model". Once the virtual model is created, it can be

used with any VR system. Di�erent data formats and the absence of standards make

the reuse of these assets a painful proposition. However a potential standardized

solution is to use web-based VR.

The concept �rst started in 1994 by Mark Pesce and Tony Parisi as Virtual Reality

Markup Language or VRML [36]. This took the concept of the Placeholder Virtual

Reality Project [37] which allowed interaction with others, seen as avatars, and tele-

portation to worlds outside of the originating machines to the open web. VRML

marked the beginning of WebVR, even though it did not take o� due to the hardware

limitations of creating Virtual Reality experiences. This all changed with the release

of the Web Graphics Library (WebGL) [20]. WebGL evolved out of the Canvas 3D

experiments started by Vladimir Vuki¢evi¢ at Mozilla. Vuki¢evi¢ �rst demonstrated

a Canvas 3D prototype in 2006. By the end of 2007, both Mozilla [38] and Opera [39]

had made their own separate implementations. WebGL opened the path to creating

high-performance graphics application on the web. WebGL leverages the power of

*Polygon Estimation: https://gyires.inf.unideb.hu/KMITT/a52/ch10s03.html

12

OpenGL [40] to present accelerated 3D graphics on a webpage.

But as Leung et al. [41] argued that even though WebGL is a very powerful API

which provides JavaScript bindings to OpenGL ES functions, it still is very low-level

and requires very good understanding of 3D geometry and mathematics to create

compelling applications. During 2014 -2015, over the course of two years, the Mozilla

Virtual Reality team explored various approaches to presenting and navigating the

web in virtual reality. Multiple functional prototypes of VR browsers were created

with di�erent technologies and design approaches, each enabling users to browse

the web from inside a headset, moving from site-to-site or scene-to-scene seamlessly

with new interfaces and input devices. The �rst of those prototypes, viz. "Hiro"

[42] Figure 2.1 was created and demonstrated in the Game Developers Conference

(GDG). Hiro solely usedWebGL to render stereoscopic images. By June 2015, another

prototype, dubbed "Horizon", was released which combined WebGL with Cascading

Style Sheet (CSS) VR, and this rendered Document Object Model (DOM) elements in

stereoscopic form using CSS 3D transforms. This was the stepping stone to creating

a high-level WebVR framework.

2.1.1 Three.js

Three.js [23] was a library initially built to render DOM, SVG and Canvas. Canvas

rendering allowed us to do 3D animations on the web by just using JavaScript so

that the library could handle the rest [43]. Later, the WebGL renderer was added

to the library. This vastly improved the creation of Web-based 3D content creation

utilizing WebGL without using low-level API's and reduced the barrier of entry for

Web Developers. Three.js laid out the foundation for creating A-Frame. Three.js is

primarily based on WebGL 1.0.

13

Figure 2.1 : This is how the �rst WebVR-enabled view looked like in the "Hiro"

browser prototype. This is a stereoscopic image and, when seen through Head Mounted

Displays or WebVR capable browsers in mobile devices, it will show a 3D immersive

view. From [2]

2.1.2 A-Frame

A-Frame[44] is an open-source web framework built on top of Three.js to rapidly

prototype virtual reality applications. Developers can create 3D and WebVR scenes

using HTML in A-Frame by using its entity component system. The bene�t it pro-

vides over traditional WebGL or Three.js is gained by giving a way to control the

objects and models from HTML. That makes creating virtual reality content and

models much easier and faster, compared to creating directly in WebGL. Aframe

is an open-source Domain Speci�c Language (DSL) for generating in-browser VR

content. HTML tags are used to declaratively place built-in primitive artifacts in a

virtual 3D space, and HTML attributes add di�erent artifact properties, like color,

14

size, location, and animation. Under the hood, A-Frame is a Three.js framework that

brings the entity-component-system (ECS) pattern to the DOM. A-Frame is built

as an abstraction layer on top of Three.js and is extensible enough to do just about

anything that Three.js can do [45].

Entity Component System (ECS) is a pattern commonly used in game develop-

ment that favors composability over inheritance. Since A-Frame aims to bring highly

interactive 3D experiences to the Web, it adopts existing patterns from the game

industry. In ECS, every object in the scene is an entity, which is a general-purpose

container that, by itself, does nothing. Components are reusable modules that are

then plugged into an entity in order to attach appearance, behavior, and/or function-

ality.

The ecosystem also bene�ted a lot from 3D model creation utilities like sketchfab

and Google Poly which act as a repository for 3D models. But e�ciently loading

massive models into real-time WebVR scenes is also part of the challenge that we

face and need to solve.

2.2 Web Mixed Reality

The concept of Augmented Reality (AR) is almost as old as Virtual Reality. Since

Ivan Sutherland showed his ultimate display [46], the idea has captivated researchers

around the world to create hybrid immersive displays. In virtual reality, the user

is completely immersed in a synthetic world. While immersed, the user cannot see

the real world around him. S/he only interacts with the virtual objects created for

her/him inside the scene. In contrast, Augmented Reality allows the user to see the

real world with virtual objects superimposed on top of them. AR supplements the

real world rather than replacing it. And hence it is more important to have a single

15

connected platform for creating AR experiences.

The idea of single AR environment has been proposed quite a few times over the

last few decades [47], [48], [49], [50], [51] and is the motivation behind Augmented

Reality web browsers, which are web browsers designed speci�cally to render custom

Augmented Reality scenes while having the bene�t of accessing and rendering web

pages. Many of these browsers have achieved a good position as augmented reality

viewing devices, like the Argon [52] AR browser from Macintyre et al. Argon utilizes

an extension on KML (the markup language used in Google Maps and earth) called

KARML to support AR functions on the browser. KARML allows the developers to

encode the extra meta information to create AR applications on top of standard web

technologies.

However, most of these AR browsers lack the bene�t of having a uni�ed platform.

Every user needs to have that speci�c browser installed, and the developers need to use

their platform or special techniques to create Augmented Reality applications. Which

raises the question: why can we not enable WebAR on browsers as has been done

for WebVR. To explore on that idea, �rst we need to de�ne WebAR. Ron Azuma

clari�ed in his survey paper "A survey of augmented reality" [3] what Augmented

Reality is, as we see in Figure 2.2 and 2.3.

With the perspective of Figure 2.2 and 2.3 can de�ne Virtual Reality as a subset

of Augmented Reality, as shown in Figure 2.4.

And if we reiterate this concept further enough, we get Figure 2.5, which essentially

is possible if we know what external informations are available to us and how well we

can align real-world video feeds with virtual objects.

Essentially, we can use the same pipeline of creating virtual objects from WebVR

and use camera feeds to get external video to recreate AR. However, Augmented

16

Figure 2.2 : Virtual Reality Figure 2.3 : Mixed Augmented Reality

Ron Azuma in "A survey of augmented reality" [3]

Reality is more than just overlaying images; positional tracking is also very impor-

tant to create meaningful experiences. ARkit [18] and ARCore [19] provide us those

capabilities in mobile devices today, making it possible to create proper Mixed Re-

ality experiences in the web browser. The WebXR [53] API � proposed by Mozilla

enables us to do that today in both iOS and Android applications. We can access the

APIs and tracking capabilities right from the browser and build experiences today

like Figure 2.6, Figure 2.6 and Figure 2.8.

2.3 Case Study: Augmented Reality Demonstration in Web

Here we will be talking about two Web Augmented reality applications created using

the WebXR [53] speci�cation capable of running both in Android and iOS inside a

supported browser. They expose and demonstrate some of the capabilities of Web

Augmented Reality and use cases where low latency, high performance web apps are

necessary.

Both of these two demo applications are running from a experimental We-

�WebXR Experimental API: https://github.com/mozilla/webxr-api

17

VR!

How we can arrive at VR from Augmented Reality

Figure 2.4 : Arriving at Virtual Reality from Augmented Reality de�ned by Azuma

et al. [3]

bARonARCore browser �. As can be seen from Figure 2.6, Figure 2.7 and Figure 2.8,

object tracking is satisfactory despite challenging lighting conditions, making us

believe that Web Mixed Reality is realizable in today's mobile phones. However

since Augmented Reality is even more dependent upon real time rendering, reduction

of latency, and rendering artifacts play a crucial role in how �uid they will be.

Fortunately since WebXR api builds on top of some of the same technologies,

some of the optimization techniques we discuss in this thesis bene�ts the WebXR

speci�cation too, as long as it utilizes Aframe [44], i. e.

�WebARonARCore Repo: https://github.com/google-ar/WebARonARCore

18

What information can

we gather about the

World

How accurately can we align graphics and real world?

Figure 2.5 : Aligning Virtual Objects with Real World objects to create Mixed Reality

from Figure 2.3

2.3.1 A-Painter in WebXR

A-Painter [54] is a web application which replicates a VR painting Application from

Google called Tilt Brush �. Tilt Brush is a native application available to be used

with HTC Vive and Oculus Rift through their respective stores in Windows only.

A-Painter ¶ aims to recreate the same experience completely on the web with web

technologies running just from a browser utilizing WebVR and Aframe at the same

time being open source.

�Tilt Brush: https://www.tiltbrush.com/

¶A-Painter: https://aframe.io/a-painter/

19

This application is a port built on top of A-Painter which eliminates the need of

room-scale VR devices like Vive to utilize the Visual Inertial Odometry available to

us through ARkit [18] and ARCore [19] to create 6 Degree of Freedom for the user

where they can create paintings in the real world with positional tracking. This is

still an unreleased app by Mozilla Mixed Reality team, actively being worked on for

performance improvements.

2.3.2 AR Furniture Suggestion App

This application was demonstrated as an entry to the Hackathon organized by the

University Of Houston, called CodeRed. This is also a Web Application utilizing

WebXR api's. This let the user de�ne a room by drawing a perimeter and then place

di�erent furnitures throughout said prede�ned room. It can create those virtual furni-

tures, walls, and doors to give you a feel of how it will be after you are done furnishing

a room in real life. The positional tracking ensures that the placed furnitures retain

their position even when the user is moving around with his mobile. That allows the

user to walk towards di�erent furnitures to see how they look from di�erent angles,

to change their placements, textures etc. It uses Archilogic � to query for di�erent

furniture models. An overview of how the application looks like while being used is

available as a demo here ** and here ��.

The application can be accessed from the webpage* and more details are available

in the hackathon webpage�.

�Archilogic API: https://docs.archilogic.com/en/api/reference/requestmodel

**DecorateAR Hands-on: https://www.youtube.com/watch?v=nQstlsZOymg

��DecorateAR Demo: https://www.youtube.com/watch?v=OVo68GKXHlc

*DecorateAr: https://decoretear.org/

�CodeRed DecorateAr:https://cdred2017demork.surge.sh/

20

These demo applications were created for testing the AR aspect and bottlenecks of

the browser. Figure 2.8 shows a Augmented Reality furniture suggestion app initially

created for the University of Houston Hackathon submission �, and Figure 2.6 is an

AR port of a A-Painter � , a WebVR painting application by Mozilla Mixed Reality

team, but not yet released to the public due to the ongoing performance improvements

of it being worked upon.

Both of these showcase the need for low latency, high quality rendering on the web

fro virtual object creation and texture loading in real-time scenarios. We can see, for

the augmented reality furniture demo, the time that the user has to wait for while

the furnitures are being loaded and rendered. While a portion of that is de�nitely

dependent upon network latency, another portion is also dependent upon loading the

furniture models through ObjectLoader and rendering those.

�DecorateAr: https://devpost.com/software/decoratear

�A-Painter: https://blog.mozvr.com/a-painter/

21

Figure 2.6 : Web Augmented Reality Painting The yellow and the blue marks

are actually painting brush strokes which retain their physical location even when you

move around with the mobile

22

Figure 2.7 : Augmented Reality Furnitures The chair and the table are virtual

object. Though they retain heir position in real physical world. The background and

the �oor is real.

23

(a) Augmented Furniture (b) Furnitures Retaining Position

Figure 2.8 : The Augmented Reality demo with Furnitures was done in a daylit cor-

ridor at the University of Houston for a hackathon [4], and the Drawing application

was done at a study room lit by �uorescent light while writing this thesis. The white

chair, the black standing light, the black table, and the white sofa are all virtual objects

anchored to a real-world �oor in speci�c positions and ran from within a browser to

consume the WebAR application

24

Chapter 3

Optimizing the Object Loader

Threejs was created to provide an easy-to-use, lightweight 3D library. The library

includes support for <canvas>, <svg>, CSS3D and WebGL renderer. Since Three.js

was not primarily designed with WebVR in mind, there is a lot of room for optimiza-

tions speci�c to WebVR applications, as indicated in the previous chapters. Among

the many frameworks available, Three.js at present is the most popular choice when

developing Web Virtual Reality applications. Mozilla uses it extensively as a foun-

dation for A-Frame. Hence any improvement in Three.js directly makes its way into

Aframe and bene�ts the rendering path, also making it a very good candidate for our

work.

One of the issues that is very critical apart from object creation in a virtual reality

scene is loading existing asset and models in the VR view.

3.1 Creating an E�cient Object Loader

The WebVR render path or, in general any non-VR render-path for Three.js has two

important elements in the path.

� One is polygon creation which we tackle in our de-duplication e�orts in Chapter

4.

� The other is loading complex texture and object models.

25

Simple object models can range from geometric shapes to complex animated mod-

els which are normally parsed by the ObJLoader in Three.js. But this operation is

blocking in nature and sequential. Hence it becomes a bottleneck when we have to

load large object �les to parse and to render. It has been a known problem for quite

some time [55]. However, in web virtual reality applications, if a user wants to change

a scene or to traverse to another scene, they essentially either change the web page

or load new objects. In either case, traversing the scene becomes unsuitable if the

new scene has a big enough object �le that takes time to be parsed and loaded by the

object loader. The resulting inactivity forces the browser to kill the non-responsive

script, in this case our objectloader, and kick the user out of the VR scene. This

behavior is not limited to VR only, but is critical for ensuring proper VR experience

on the web. In WebVR, every time there is a delay for the headset in getting the

frames from the computer, is in fact the number of times the user will get kicked out

of the Vive/Oculus lobby. So if the assets are loaded at runtime when the experi-

ence is already presenting in VR, the user will have a sub-par experience by jumping

in/out of their VR scene whenever a frame drop occurs. Link traversal in VR relies

on the onvrdisplayactivate event. It is �red on the window object on page load if

the precedent site was presenting content in the headset. To enter the VR mode for

the �rst time, the user is expected to explicitly trigger the VR mode with an action

like a mouse click or a keyboard shortcut to prevent sites from taking control of the

headset inadvertently. Once VR is engaged, subsequent page transitions can present

content in the headset without further user intervention. It's also important to notice

that, with Link traversal, this problem is also important at the loading time, because

when you enter a new website from a previously presenting WebVR page, the browser

will wait for a small period of time before you send the �rst frame, and if you don't

26

do it fast enough, the browser will stop presenting and will return to 2D mode, re-

questing user interaction again. The other aspect of this is when a scene requests to

load textures from within the scene. Dynamic loading of texture result in noticeable

frame-rate drops across the scene. And the more textures the scene loads, the worse

the e�ect becomes. This directly impacts the performance of Aframe as well, and is

an open issue therein [56]. To understand what is going on, we look at a scene with

object [57] and load a 13 mb model with 2048x2048 texture. When we look at the

performance from Firefox DevTools, the primary blocker here is the texture upload

to GPU Figure 3.1.

There are a couple of ways to tackle the problem. One of them is to try to o�oad

the asset parsing out of the main thread to web workers so that it can parse the assets

in parallel in a non-blocking way.

� An async-texture system can be added to the system which uses the Im-

ageBitmapLoader api to decode images after the user enters Virtual Reality.

This helps achieve lower frame drops during the texture upload. Google

Chrome already supports createImageBitmap in async manner, but that

support is not universal among all browser implementations.

� If createImageBitmap is used in a separate worker thread, the time wasted in

blocking mode should be signi�cantly reduced.

A benchmark using the Khronos Group sample gITF models [58] [59] shows the

improvement Figure 3.2.

In both of the charts in Figure 3.2, Green signi�es the loading duration (non-

blocking), and Red denotes the duration for �rst render (blocking operation). Results

were measured in Chrome.

27

Figure 3.1 : Here we load a gITF model of size 20mb and use Developer Tools to

notice the loading performance impact. If you look at the bottom pane which has the

activity name along with the time taken for them to load, you will notice that the

blocking behavior here is for o�oading the texture to gpu

Here we see that our approach has introduced a tax on the loading duration in

both the cases. This happens due to worker initialization for both of the experi-

ments compared to the previous implementation where we did not need any worker.

However, our approach reduces the blocking operation from the previous implemen-

28

Figure 3.2 : Performance: Load and upload time (ms)

Here we load two standard gITF models from the Khronos sample models by using

createImageBitmap in a separate worker to load the image

tation allowing us to load textures in a non-blocking way without making the user

wait while loading the scene. The rendering time, even though increased, does not

adversely a�ect the �rst render time; rather, it makes that faster, allowing us to use

workers to keep on loading the remaining texture o� the main thread even when the

user is inside the scene.

3.1.1 Our Approach

We have two possible ways to approach non-blocking the loading of OBJ �les. Ocu-

lus has taken one approach in their implementation of Oculus ReactVR waveform

OBJloader [60]. Their approach with the loader essentially makes it read lines using

29

small time-slots to prevent blocking the main thread by explicitly calling SetTimeout

[61]. This approach, although ensuring that the main thread is not blocked, intro-

duces some more overhead. The object loading becomes much slower as essentially

the loader is parsing some lines in each time slot and then waits for some speci�c

interval. The advantage is that once the parsing is complete, we have the objects

ready to use without any additional overhead. But since this creates a forced over-

head because of the hard-coded wait time, it does not solve our purpose very well.

The premise of ReactVR taking that approach was not to have an optimal loader but

to have a way to avoid sudden and unexpected frame outs when new components are

loading. For texture loading, one approach is to optionally load the textures incre-

mentally. That still brings up the question of how long the user will be able to wait

while meaningfully interacting with the texture. For gltf object parsing, an average

delay of 500ms was observed. For native OpenGL as well, the two blocking operations

are compiling shader and uploading image data. Our approach consisted of loading

the texture and gltf into web worker and parsing them inside worker. That allows

us to utilize the parallelism for parsing without blocking the main thread. While we

parse the texture on the worker, objects are created back on the main thread and

include an incremental loading on the renderer.

30

Listing 3.1 Object Loader Worker initialization

1 WorkerRunnerRefImpl.prototype.run = function (payload) {

2 if (payload.cmd === 'run') {

3 console.log('WorkerRunner: Starting Run... ');

4 var callbacks = {

5 callbackBuilder: function (payload) {

6 self.postMessage(payload);

7 },

8 callbackProgress: function (message) {

9 console.log('WorkerRunner: progress: ' + message);

10 }

11 };

12 // Parser is expected to be named as such

13 var parser = new Parser();

14 this.applyProperties(parser, payload.params);

15 this.applyProperties(parser, payload.materials);

16 this.applyProperties(parser, callbacks); parser.parse(

payload.buffers.input);

17 console.log('WorkerRunner: Run complete!');

18 callbacks.callbackBuilder({

19 cmd: 'complete ',

20 msg: 'WorkerRunner completed run.'

21 });

22 } else {

23 console.error('WorkerRunner: Received unknown command: ' +

payload.cmd);

24 }

25 };

In Listing 3.1 the web workers are able to con�gure any parser inside the worker via

parameters received by a message. WorkerSupport provides a reference worker runner

[github citation] that will be replaced by personal code if needed. The worker will

create and run the parser in the run method of the WorkerRunnerRefImpl. Parser is

available under worker scope. Message from OBJLoader2.parseAsync works as shown

in Listing 3.2

31

Listing 3.2 Passing Message from worker

1 this.workerSupport.run(

2 {

3 cmd: 'run',

4 params: {

5 debug: this.debug,

6 materialPerSmoothingGroup: this.materialPerSmoothingGroup

7 },

8 materials: {

9 materialNames: this.materialNames

10 },

11 buffers: {

12 input: content

13 }

14 },

15 [content.buffer]

16);

The message object is loader-dependent, but the con�guration of the parser in

the worker is generic. This provided the foundation of our work to implement worker

support for generic parsers and object loaders. The goal was to

� Separate the asynchronous mesh provision of the worker from OBJLoader. This

will allow us to exploit task parallelism in JavaScript in the context of object

loading.

� Provide a way to load large textures in an incremental and e�cient on-demand

basis to achieve consistent frame-rates within the application

� Provide a way to handle both object and texture �les loading without blocking

the gpu loading pipeline

32

Object Loader with Worker

The new Object Loader consists of three logical blocks. Two of them are private and

one public.

� OBJLoader2 (public): This is the only class the developer will interact with. It

is used for setting up any scene and for loading data from any given �le. It will

also forward the data to the parser.

� Parser(private): It is used by OBJLoader2 and the web worker enabled

WWOBJLoader2 to parse and transform the data into raw representation.

� MeshCreator (private): It builds the meshes that can be incorporated into the

scene.

3.1.2 Reason for Separation

The design decision to separate out the three blocks comes from the fact that the

loader should be easily accessible. The loader should be easily usable from within

a web worker, but each web worker has its own scope. Which ensures that any

imported code will have to be reloaded. The aim is to have to enclose the parser with

two di�erent wrappers

1. Standard direct usage

2. Embedded within a web worker

As Parser is not dependent on any other code piece of the Three.js [23] library,

the wrapper code will have to satisfy either of the two functions

� It will directly handle integration like OBJLoader2 with MeshCreator or

33

� With WWOBJLoader2 where WWOBJLoader2 serves as a control interface to

the web worker code. This is dynamically created when it initializes.

Here, WWOBJLoader2 functionally is equivalent to OBJLoader2 and MeshCre-

ator, but the parsing and mesh preparation is done by the web worker thus giving us

performance improvement.

3.1.3 Directing The Synchronization

We introduce WWOBJLoader2Director to make the use of WWOBJLoader2 more

easier. It can create con�gurable amount of loaders by getting parameters and using

object re�ection [62].

3.1.4 Parser Design Choices

� ArrayBu�er is used as input for the OBJLoader2 parser method. If it fails to

parse due to legacy code, the legacy parser takes over but is typically around

twenty percent slower.

� Parser now supports polygons with more than four vertices.

� All involved classes can now be re-used.

� Support for multi-material is now added. It gets invoked in an on-demand basis.

� Flat smoothing is now supported and enabled by "s 0" or "s o�". Multi-Material

is created when one object equals both smoothing groups not equal and equal

to zero.

34

3.2 Implementation Overview

The following choice have been made for implementation.

� OBJLoader2 and WWOBJLoader2 are now merged. Asynchronous executions

which are supported by worker are now enabled using parseAsync, load with

useAsync �ag. For batch processing, run is used.

� The library now includes a package THREE.LoaderSupport located in

LoaderSupport.js which has all the common functionalities bundled together

� The Parser can now run independently or inside a worker thread

(THREE.LoaderSupport.WorkerSupport handles the building and execution)

� A common mesh builder function now uses the raw results.

3.2.1 OBJLoader2

These are some interesting point of interests:

� OBJLoader2.parseAsync now only accepts arraybuffer as input. Worker han-

dles the passed bu�er

� Face models with plygons consisting of more than four vertices are now support

supported

� setUseIndices is now used to enable Indexed Rendering.

� Every time OBJLoader2 is used it must now be re-instantiated, but the devel-

oper has option to cache the worker by using WorkerSupport, or LoaderDirector

is available

35

� 'v' and 'f' occurrences are now used for new mesh detection. 'o' and 'g' are

meta information, and are no longer needed for mesh detection.

3.3 Web Worker Support

� LoaderSupport is now used to serialize existing code into strings. It o�ers utility

functions which is used to build web worker.

� Loader which utilizes the web worker must provide an entry point to the function

which will have the parser code.

� WorkerSupport now is used as a wrapper code for the web worker. It is used

for instantiating and for communication within the workers.

A con�guration object is used additionally which con�gures the parser to act

similarly as a synchronous application would have.

3.4 Solution

This �nal approach 5 solves our initial goals of worker creation with a new version of

OBJLoader2 that fuses OBJLoader2 and WWOBJLoader2 into one, plus the proof-of-

concept MeshSpray example which is not a loader, but it uses all actors and provides

a worker-executable parser function.

The di�erent parts of the solution consists of:

� Validator : validator is a set of tools to check for null/unde�ned values and

default value assignment

� Commons (optional): It bundles common functions and parameters and acts as

a base class for loaders

36

� WorkerSupport + WorkerRunnerRefImpl : WorkerSuppport handles communi-

cation between workers and also acts as a helper function to create workers

from existing Parser. WorkerRunnerRefImpl creates the communication with

the front-end and con�gures and executes the parser inside the worker.

� Builder : Builder builds one or many THREE.Mesh from one raw set of Array-

bu�ers, materialGroup descriptions and further parameters.

� WorkerDirector : Uses WorkerSupport in automating the loaders using queued

run/PrepData instruction with con�gurable amount of workers. Primary func-

tion includes parser creation by using re�ection.

� Callbacks (onProgress, onMeshAlter, onLoad) + LoadedMeshUserOverride

(helpful): Primarily used for automation with PrepData.

3.4.1 OBJLoader2:

We have a number of design advantages over our initial solution. Those can be

summed up as follows:

� parse allows synchronous loading of arraybu�er or string data.

� parseAsync allows asynchronous loading of arraybu�er or string data.

� Both synchronous and asynchronous loading of an OBJ �le is supported now

using load

� Automated loading of MTL and OBJ �les according to instructions is now sup-

ported using run. It now includes sync/async, mesh-streaming, and callbacks.

37

� MTL loading using MTLLoader and provision of materials to OBJLoader2 is

now realized using loadMtl

� Generic WorkerSupport can now con�gure and run an internal parser which is

now fully serialized.

� OBJLoader2 now is automatically re-instantiated every time it is used. A pa-

rameter in run allows support for external WorkerSupport and cached parser

worker. A rebuilding is no longer necessary.

� setUseIndices now loads data into indexed Bu�eredGeometry. This is now fully

supported by OBJLoader2. Loading speed has decreased by one third than

before, but up to three quarters less vertices are created.

38

Chapter 4

Web Virtual Reality: Other Optimizations

Three.js initially was built as a 3D library. The improvements that we have discussed

till now deals with the overhead of loading large object �les or 3D models into a

three-dimensional scene. It is immensely useful, and it improved the performance of

the library, but it still is generic enough to be considered as an overall improvement

of the 3D library. However, since we are now looking at three.js solely from the

viewpoint of a WebVR developer. There are a number of VR speci�c enhancement

and optimizations possible to improve our VR scenes. We have already tackled the

issue of how we can load heavy texture �les in parallel without weighing down the

object loader pipeline. Below, we have two more issues in the rendering path, and

what we can do to optimize the render path of Three.Js a�ecting the rendering time

in webvr scenes.

4.1 Multiple Viewpoints in Camera

For Web Virtual Reality to render images in both eyes, we now use "VRE�ect [63]"

for stereo rendering. What VRE�fect essentially does is to create a VR scene for

each eye. When a VR capable headset or head mounted display is connected to a

computer, the Three.js rendering pipeline gets a value for vrDisplay. For a VR capable

display it will be 1, and for everything else it will get a 0 value. It gets a camera

value passed as a parameter, and then it gets duplicated and the scene is rendered

39

twice for each eye. The method of stereo rendering supported in WebGL is currently

achieved by rendering to the two eye bu�ers sequentially. This typically incurs double

the application and driver overhead, despite the fact that the command streams and

render states are almost identical.

One easy brute-force solution to this, as has been proposed by Oculus, is to use

multiple processor cores to render both eyes simultaneously [64]. However that is not

always possible when we use portable devices like mobile phones and tablets with

often only one low-powered GPU. This has been discussed in WebGL speci�cations,

but has not yet been implemented as part of the WebGL_multiview [65] extension.

The idea was to expose the stereo rendering methods in OpenGL so that WebVR can

use that same techniques.

Also this relates to how frustum culling works right now in WebVR scenes. If

we can do e�cient frustum culling, then that removes a lot of overhead from our

render-path for both eyes. E�ciently recognizing polygons that are visible from a dy-

namic viewpoint is a well-studied problem in computer graphics. Normally, visibility

determination is performed using the z-bu�er algorithm*. Since this algorithm must

examine every triangle in the scene, z-bu�ering can be very expensive for graphics

processing. One way to avoid needless processing of invisible portions of the scene is

to use an occlusion culling algorithm to discard invisible polygons early in the ren-

dering pipeline. That can be very useful in urban and architectural models as we

see from the work of Coorg et al. [66]. However, that technique doesn't prove to be

of much use in a VR scene where we have depth-of-�eld information. Techniques

such as exploiting frame-to-frame coherency to compare previous distance and rota-

tion has also been successfully used to optimize culling [67], but for a very limited

*Z-Bu�er Algorithm: https://www.cs.helsinki.�/group/goa/render/piilopinnat/z_bu�er.html

40

circumstances only.

4.1.1 Our approach

We try to tackle the problem of frustum culling and duplicate stereo rendering keeping

in mind our very limited scenario of VR. The proposed method utilizes the camera

to supply the renderer a generic "Culling Volume" rather than the renderer com-

puting the frustum from the camera each frame, and doing intersection test one of

those frames. This approach for a normal camera view would yield no performance

improvement. But to tackle the duplication we introduce a ArrayCamera which re-

ceives a list of camera view points. ArryCamera basically will extend Camera, and

will add an array of camera view points. StereoCamera extends ArrayCamera to pop-

ulate it with the info WebVR gives us form HMD. The primary renderer, which for

us is WebGLrendered.renderer(), checks isArrayCamera. It will still project using the

main Camera, but will render the scene using the cameras in the array, thus avoiding

duplication. Now if we use Culling Volume for just the Camera, it will return us

a Frustum object, which will have no e�ect on the performance. However, for an

ArrayCamera, it would return an object that tests against a Frustum for each camera

in the array and will return true if the object is in any of them.

4.1.2 Modi�ed Algorithm

1. We add getCullingVolume to Camera

2. Pass the value of projScreenMatrix to getCullingVolume

3. ArrayCamera is built using ArrayFrustum as its default cullingVolume

41

4. ArrayFrustum is an array with the frustums of each subcamera and it overrides

the frustum methods to test against each frustum in the array

4.1.3 Multiview in Servo

Another approach was to implement multiview renderer pipeline into the browser.

For Three.Js it was not possible for us to do anything so drastic, keeping in mind

the browser and WebVR 1.0 W3C speci�cation [68] standards. However, when im-

plementing the same methods in Servo [69], we had full freedom. The multiview

architecture in Servo essentially follows the below pipeline 4.1.

4.1.4 Implementation Code

For Servo, we directly open up the WebVR framebu�ers that we get from the headset

using the approach depicted in the WebGL Multiview�, utilizing the Opaque mul-

tiview framebu�ers. These are WebGLFramebu�er objects that act as if they have

multi-view attachments, but their attachments are not exposed as textures or ren-

derbu�ers and cannot be changed. Opaque multiview framebu�ers may have any

combination of color, depth and stencil attachments allowing us to use WebGL 1.0

with multiview. With the only requirement for the browser being capability to sup-

port GLSL 300 [70] version �.

The rendering pipeline in Servo provides much lower latency because it can render

straight to the headset and doesn't require the texture copy of a frame. There still was

�WebGL Multiview Draft: https://www.khronos.org/registry/

webgl/extensions/proposals/WEBGL_multiview/

�GLSL V3: https://www.khronos.org/registry/OpenGL/

specs/es/3.0/GLSL_ES_Speci�cation_3.00.pdf

42

WebGLThreads WebGLThreads<T>

VROutputHandler

WebVRRenderer

GLContext

WebGLSender<T>

WebGLReceiver<T>

WebGLCommand<T> WebVRCommand<T>

WebGLPipeline WebGLChan

WebGLMsgSender

WebGLRenderingContext WebGLBuffer WebGLExtension<T>

WebGLFrameBuffer VRDisplay WebGLTexture

Shared Memory

/ IPC Channel /

MPSC Channel

Shared textures

EGL Sync Objects

WebRender

Rust-webvr

Offscreen-gl-context

WebGLProcess/Thread

WebGL traits & Command buffer

DOM Uses

GPU renderer for the web content

Core traits & SDK

Platform specific GL backends

Renderer

Render Items

Display Lists

GoogleVR OculusVR

SnapdragonVR

VRManager

VRService Traits VRDevice Traits

EGL CGL GLX

WGL EAGL OSMesa

GLContext<T> GLAttributes GLLimits

VR Render

Commands

GL backend

commands

Rust Implementation in servo

Figure 4.1 : Multiview Implementation in Servo: The implementation is divided into

three separate blocks apart from the browser part. WebRender handles the texture

rendering part; o�screen-gl-context handles graphics library related computation o�

main thread; rust-webvr creates the VR stereoscopic image from WebVRRenderer

inputs

not a good way to expose this for WebVR in JavaScript with the present speci�cation.

� WebVR 1.1�: Does not properly support multiview; rather supports side-by-

side rendered canvas objects

�WebVR 1.1 Specs: https://w3c.github.io/webvr/spec/1.1/

43

� WebVR 2.0¶: Provides multiview support, but is still under heavy modi�ca-

tion along with a "do not implement" status

To support multiview we implemented WebGLFramebuffer from WebVR 2.0 to

WebVR 1.1 using an ad hoc extension method vrDisplay.getViews().

¶WenbVR 2.0 Specs: https://w3c.github.io/webvr/spec/1.1/

44

Listing 4.1 The entry point to WebGLFramebu�er

1 function onAnimationFrame (t) {

2 vrDisplay.requestAnimationFrame (onAnimationFrame);

3 vrDisplay.getFrameData(frameData);

4 if (vrDisplay.isPresenting) {

5 var views = vrDisplay.getViews ? vrDisplay.getViews() : [];

6 for (var i = 0; i < views.length; ++i) {

7 var view = views[i];

8 var multiview = view.getAttributes().multiview;

9 var viewport = view.getViewport();

10 gl.bindFramebuffer(gl.FRAMEBUFFER, view.framebuffer);

11 gl.viewport(viewport.x, viewport.y, viewport.width,

viewport.height);

12 gl.scissor(viewport.x, viewport.y, viewport.width,

viewport.height);

13 gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

14 if (multiview) {

15 var projections = [frameData.leftProjectionMatrix ,

frameData.rightProjectionMatrix];

16 getStandingViewMatrix(viewMat,

frameData.leftViewMatrix);

17 getStandingViewMatrix(viewMat2,

frameData.rightViewMatrix);

18 var viewMats = [viewMat, viewMat2];

19 renderSceneView(projections, viewMats, frameData.pose,

/* multiview */ true);

20 break;

21 }

22 else {

23 // Direct render to VR framebuffer

24 getStandingViewMatrix(viewMat, i == 0 ?

frameData.leftViewMatrix :

frameData.rightViewMatrix);

25 renderSceneView(i == 0 ?

frameData.leftProjectionMatrix :

frameData.rightProjectionMatrix , viewMat,

frameData.pose);

26 }

27 }

28 }

The advantages of this approach is that when WebGL 2.0 will be implemented in

45

future, these improvements will still be reusable, and these are forward compatible

as long as the speci�cation does not change.

4.1.5 Performance Gains

We used published samples from webvr.info� to measure multiview impact in our

WebVR implementation. From our measurements, up to forty percent improvements

in CPU-bound webvr scenes have been noticed 4.2.

Figure 4.2 : Multiview Implementation in Servo: We used a scene to create an

increasing number of rotating cubes, and measured the rendering time of the scene

with the increase of objects (cubes) in the scene. This intentionally uses duplicated

draw-calls to simulate extreme test condition

�Samples from here: https://webvr.info/samples/

46

4.2 Handling Incremental texture Loading

To handle incremental texture loading inside a virtual reality scene, we need to use the

createImageBitmap [71] API. The API implementation in Firefox does not accept

an options argument. Our approach is to fetch and create ImageBitmap in a worker

by default, which enables us to incrementally load multiple portions of the texture in

parallel out of the main thread.

This can be used with any loader with a THREE.Loader.Handlers web hook

Listing 4.2 Web Hook to THREE.Loader.Handlers

1 class CustomTextureLoader {

2 constructor () {

3 this.loader = new THREE.ImageBitmapLoader();

4 }

6 load (url, onLoad, onProgress, onError) {

7 this.loader.load(url, (imageBitmap) => {

8 onLoad(new THREE.CanvasTexture(imageBitmap));

9 }, onProgress, onError);

10 }

11 }

12 THREE.Loader.Handlers.add(/ .(png|jpg|jpeg)$/, new

CustomTextureLoader());

Listing 4.2 gives us some very interesting results. The loading time for the textures

have increased to almost 2-3 times, but texture upload proves to be much faster. The

overall time to �rst render is only slightly slower (1.1x to 1.15x). But parsing glTF

does not typically block the main thread. The only signi�cant blocking happens

during texture upload. With the ImageBitmap, we spend 60-70 percent less time

uploading textures, and drop fewer frames as a result.

47

4.2.1 Our Approach

Updatable Texture

This is an extended THREE.Texture method which provides support for incre-

mental partial updates utilizing texSubImage2D. We create and expose a method

UpdatableTexture that lets users update only a part of a texture: it's useful for

incremental loads of large images for tiled resources.

However, this approach relies on a modi�ed version of Three.Js which is good for

benchmarking and for experimental support, but not good enough if we actually want

to pursue a stable production use.

Our approach here consists of the following steps

� Image decoding should be o� the thread and in a non-blocking manner so that

new textures don't block the thread

� Utilize Web Worker to distribute image decoding

� Have a poll of web workers where we can delegate the loaded data

� A-Frame [44] would enable this version once it detects there is an asset loading

while it is in VR mode.

4.2.2 Implementation

The implementation uses createImageBitmap** to decode image o� the main thread.

But the API implementation for Chrome only works for binary data blobs��. How-

**https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/createImageBitmap

��https://www.chromestatus.com/features/5637156160667648

48

ever, when the source is ImageElement or SVGElement, we utilize the workerpool to

delegate the work.

For that, our approach is to create and utilize WorkerDirector. Im-

ageBitmapLoader now uses WorkerSupport. WorkerDirector creates parallel

workers to handle the image on loading and depending on the image size chunks it

and creates new parallel workers. The workers are created once and then re-used.

This showed us that common, instruction-based and repeatable worker usage can be

applied to this class of problems.

49

Chapter 5

Experiments and Validation

5.1 Experiment Setup

The majority of the experiments were conducted in a desktop machine with WebVR-

enabled browsers and some of them were replicated in handheld mobile devices to

measure the performance impacts. The following hardware and software have been

used to capture the benchmark numbers reported in this thesis.

Hardware Speci�cation

Processor 2.9 GHz Intel Core i7 Processor

Memory 16GB

Graphics Intel HD 530 + Radeon Pro 460 4GB

Table 5.1 : Hardware Setup for the benchmark

Software Speci�cation

Operating System OSX High Sierra & Windows 10 in Bootcamp

Browser Firefox Nightly 59.0a1 and Chromium Experimental Build (expiry date: Jan 1, 2018)

Head Mounted Display Oculus Rift

Table 5.2 : Software Setup for the benchmark

50

Worker Count Time Taken to Render (ms)

1 13.8

4 9.17

8 8.54

12 10.42

16 10.82

Table 5.3 : Object Loader with 128 Objects in Parallel

For the mobile device, we used a Google Pixel XL running android 8.0 Oreo along

with Firefox Nightly and Google Daydream.

5.2 Object Loader Performance

The experimental scene loads a threejs scene in a VR-enabled browser with web

worker support. Since without worker the scene essentially will block the loading we

test the performance impact of parallelizing the scene using worker with a di�erent

worker count. We test it with variable worker counts having a �xed queueLength and

measure the loading time. To rule out any network related latency, the tests were run

from local machine and multiple times to compensate for network-based latencies,

if any. The models used were standard obj �les. We can see the result in 5.1 that

the most e�cient rendering is possible with around 8 web workers loading the scene.

The graph is drawn from the data collected in 5.3. The experiment was performed in

Firefox Nightly.

The experimental scene used to measure the worker performance is shown in

Figure 5.2.

51

Figure 5.1 : We load 128 object from a queue with varying numbers of Web Workers

enabled. The graph shows a lowest rendering time of 8.54 ms when 8 web workers

are running

5.3 Web Worker Performance Benchmarks

Our hypothesis was that using worker to exploit parallelism we will be able to achieve

better graphics performance in virtual reality and mixed reality scenes, and not only

in computations. To test that we made a benchmark suite to test our hypothesis to

validate web worker enabled objloader creation.

52

Figure 5.2 : The threejs scene used to test out web worker performance. It allows us

to dynamically change worker and object queue to test loading time

5.3.1 Adaptive Threshold

This demo implements the approach proposed by Bradley et al.[72] in their paper

utilizing illumination change. This demo takes a video as an input with an Aug-

mented Reality marker on it and uses the techniques proposed in the paper to

detect the pattern. As we can see in the �gure 5.3 and from the data in table

5.4, the Web Worker version is almost 1.7x faster than the vanilla javascript ver-

sion while running the algorithm in real-time in Firefox Nightly within ThreeJS.

The benchmark suite is available at https://svn.rice.edu/r/parsoft/projects/

Rabimba-Karanjai-Research-Project/WebWorker_benchmark/*

*Web Worker vs JavaScript benchmark: https://svn.rice.edu/r/parsoft/projects/Rabimba-

Karanjai-Research-Project/WebWorker_benchmark/

https://svn.rice.edu/r/parsoft/projects/Rabimba-Karanjai-Research-Project/WebWorker_benchmark/
https://svn.rice.edu/r/parsoft/projects/Rabimba-Karanjai-Research-Project/WebWorker_benchmark/

53

Figure 5.3 : Using Video Threshold detection in threejs using webworker and without

using webworker

54

JavaScript Implementation runtime (ms) WebWorker implementation runtime (ms)

3.6802 2.1293

Table 5.4 : Runtime comparison for each iteration of pattern detection for Adaptive

Thresholding on the video for vanilla javascript and with webworker

55

Chapter 6

Conclusion and Future Work

The optimization of Web Virtual Reality and Web Mixed reality applications are an

important and time-critical problem. In this thesis, I explore three of the existing

challenges in this area and propose three solutions to address them. The use of

parallelization with the help of Web Workers enables us to parse and load objects

in a non-blocking manner. Using tiling methods and o�oading to worker threads

helped us to incrementally load large objects and textures into the webview without

blocking the browser, thereby avoiding frame skips. The use of shared arraybu�er

to de-duplicate stereoscopic rendering for VR view lets us make rendering pipelines

faster. And since all of the three solutions are implemented in the Three.js framework,

any library utilizing Three.js automatically bene�ts from these including Aframe [44],

which is used to create Web Virtual Reality scenes and WebXR [53] with Aframe,

which is used to create Web Mixed Reality applications.

There are many opportunities for future research and exploration into optimiza-

tion and improvement of the framework. The problems initially were explored with

WebVR in mind. Especially dealing with multi-user scenarios for social VR, which

can include virtual classrooms, meeting rooms, training rooms etc. All of these require

realtime low latency, high quality renders as well as synchronization. Till now, most

of the environments deal with local objects; with multi-user scenarios we will have

shared objects and minimal new latency requirements related to ensuring that all the

users are in sync, thereby opening up new avenues for performance improvements.

56

There are also many di�erent directions that be pursued for improving the

performance. Regarding the existing frameworks, there still are a lot of avenues

that can be explored further. In this thesis, we mostly looked into using web

workers. But another avenue to o� load complex computations is Web Assembly *.

WebAssembly is a low-level assembly-like language with a compact binary format

that runs with near-native performance and provides languages such as C/C++

with a compilation target so that they can run on the web �. It is supported by

Chrome, Edge, Firefox, and WebKit, making it universal enough to be run in most

machines. In our initial explorations, it was noticed that the call back times from

JavaScript eventually produced an overhead to even o� the performance improvement

bene�ts it gave. As we can see, If we implement the same Adaptive Thresholding

from 5, a comparison with WebAssembly implementation and JavaScript gives

us worse performance for WebAssembly in Figure 6.1. The benchmark code is

available at https://svn.rice.edu/r/parsoft/projects/Rabimba-Karanjai-Research-

Project/WASM_benchmark/ �

However, if we look at mathematical operations like integer multiplications, web

assembly gives us almost 4.5x speedup on the operations as we see from Figure 6.2.

It would be quite interesting to have a way or tool to automatically analyze a code

snippet and advise the developer as to what kind of optimization is most bene�cial for

her/his WebVR app. Eventually, we want to have WebVR and WebMR applications

that perform consistently on par with native applications on any platform including

*WebAssembly: http://webassembly.org/

�WebAssembly Specs: https://developer.mozilla.org/en-US/docs/WebAssembly

�WASM Benchmark: https://svn.rice.edu/r/parsoft/projects/Rabimba-Karanjai-Research-

Project/WASM_benchmark/

57

Figure 6.1 : Using Video Threshold detection in threejs using WebAssembly and with

JavaScript

58

Figure 6.2 : Using Web Assembly for integer multiplication compared to using

javascript

59

the mobile.

60

Bibliography

[1] D. A. Bowman and R. P. McMahan, �Virtual reality: How much immersion is

enough?� Computer, vol. 40, no. 7, pp. 36�43, July 2007.

[2] �Mozvr "hiro" leap-enabled,� https://www.youtube.com/watch?v=

KlZnKW2qVZ8, (Accessed on 12/10/2017).

[3] R. T. Azuma, �A survey of augmented reality,� Presence: Teleoperators and

virtual environments, vol. 6, no. 4, pp. 355�385, 1997.

[4] �Decoratear | devpost,� https://devpost.com/software/decoratear, (Accessed on

12/10/2017).

[5] I. E. Sutherland, �A head-mounted three dimensional display,� in Proceedings of

the December 9-11, 1968, fall joint computer conference, part I. ACM, 1968,

pp. 757�764.

[6] D. Cohen, �Incremental methods for computer graphics,� HARVARD UNIV

CAMBRIDGE MA DIV OF ENGINEERING AND APPLIED PHYSICS, Tech.

Rep., 1969.

[7] K. C. Knowlton, �Computer displays optically superimposed on input devices,�

The Bell System Technical Journal, vol. 56, no. 3, pp. 367�383, March 1977.

[8] C. Schmandt, �Spatial input/display correspondence in a stereoscopic computer

graphic work station,� SIGGRAPH Comput. Graph., vol. 17, no. 3, pp. 253�261,

https://www.youtube.com/watch?v=KlZnKW2qVZ8
https://www.youtube.com/watch?v=KlZnKW2qVZ8
https://devpost.com/software/decoratear

61

Jul. 1983. [Online]. Available: http://doi.acm.org/10.1145/964967.801156

[9] N. Negroponte, �Media room,� Proc of the Society for Information Display,

vol. 22, p. 2, 1981.

[10] C. F. Herot, �Spatial management of data,� ACM Trans. Database

Syst., vol. 5, no. 4, pp. 493�513, Dec. 1980. [Online]. Available: http:

//doi.acm.org/10.1145/320610.320648

[11] S. S. Fisher, M. McGreevy, J. Humphries, and W. Robinett, �Virtual

environment display system,� in Proceedings of the 1986 Workshop on

Interactive 3D Graphics, ser. I3D '86. New York, NY, USA: ACM, 1987, pp.

77�87. [Online]. Available: http://doi.acm.org/10.1145/319120.319127

[12] M. K. Elden, �Implementation and initial assessment of vr for scienti�c visual-

isation: Extending unreal engine 4 to visualise scienti�c data on the htc vive,�

Master's thesis, 2017.

[13] �The technical challenges of virtual reality,� https://iq.intel.com/

the-technical-challenges-of-virtual-reality/, (Accessed on 12/10/2017).

[14] C. Zellweger, B. Barberis, C. Kim, C. Conlee, and B. Robertson, �Head

mounted display,� Jul. 12 2016, uS Patent D761,258. [Online]. Available:

https://www.google.com/patents/USD761258

[15] P. R. Desai, P. N. Desai, K. D. Ajmera, and K. Mehta, �A review paper on

oculus rift-a virtual reality headset,� CoRR, vol. abs/1408.1173, 2014. [Online].

Available: http://arxiv.org/abs/1408.1173

http://doi.acm.org/10.1145/964967.801156
http://doi.acm.org/10.1145/320610.320648
http://doi.acm.org/10.1145/320610.320648
http://doi.acm.org/10.1145/319120.319127
https://iq.intel.com/the-technical-challenges-of-virtual-reality/
https://iq.intel.com/the-technical-challenges-of-virtual-reality/
https://www.google.com/patents/USD761258
http://arxiv.org/abs/1408.1173

62

[16] Microsoft, �Microsoft hololens: a new way to see your world,� 2015. [Online].

Available: https://www.microsoft.com/microsoft-hololens/en-us/hardware

[17] H. Chen, A. S. Lee, M. Swift, and J. C. Tang, �3d collaboration

method over hololens�and skype�end points,� in Proceedings of the 3rd

International Workshop on Immersive Media Experiences, ser. ImmersiveME

'15. New York, NY, USA: ACM, 2015, pp. 27�30. [Online]. Available:

http://doi.acm.org/10.1145/2814347.2814350

[18] Apple, �Arkit,� 2017. [Online]. Available: https://developer.apple.com/

documentation/arkit

[19] Google, �Arcore: Augmented reality at android scale,�

2017. [Online]. Available: https://www.blog.google/products/google-vr/

arcore-augmented-reality-android-scale/

[20] C. Leung and A. Salga, �Enabling webgl,� in Proceedings of the 19th

International Conference on World Wide Web, ser. WWW '10. New

York, NY, USA: ACM, 2010, pp. 1369�1370. [Online]. Available: http:

//doi.acm.org/10.1145/1772690.1772933

[21] C. McAnlis, P. Lubbers, B. Jones, D. Tebbs, A. Manzur, S. Bennett, F. d'Erfurth,

B. Garcia, S. Lin, I. Popelyshev, J. Gauci, J. Howard, I. Ballantyne, J. Freeman,

T. Kihira, T. Smith, D. Olmstead, J. McCutchan, C. Austin, and A. Pagella,

Optimizing WebGL Usage. Berkeley, CA: Apress, 2014, pp. 147�162. [Online].

Available: https://doi.org/10.1007/978-1-4302-6698-3_9

[22] B. Danchilla, Three.js Framework. Berkeley, CA: Apress, 2012, pp. 173�203.

[Online]. Available: https://doi.org/10.1007/978-1-4302-3997-0_7

https://www.microsoft.com/microsoft-hololens/en- us/hardware
http://doi.acm.org/10.1145/2814347.2814350
https://developer.apple.com/documentation/arkit
https://developer.apple.com/documentation/arkit
https://www.blog.google/products/google-vr/arcore-augmented-reality-android-scale/
https://www.blog.google/products/google-vr/arcore-augmented-reality-android-scale/
http://doi.acm.org/10.1145/1772690.1772933
http://doi.acm.org/10.1145/1772690.1772933
https://doi.org/10.1007/978-1-4302-6698-3_9
https://doi.org/10.1007/978-1-4302-3997-0_7

63

[23] R. Cabello et al., �Three. js,� URL: https://github. com/mrdoob/three. js, 2010.

[24] Y. Liu, H. Liu, Y. Zhao, and R. Song, �Teaching of advanced computer graphics

with three. js,� in Proceedings of International Conference on Education and New

Developments, 2016, pp. 13�17.

[25] B. Watson, N. Walker, W. Ribarsky, and V. Spaulding, �E�ects of variation

in system responsiveness on user performance in virtual environments,� Human

Factors, vol. 40, no. 3, pp. 403�414, 1998.

[26] J. Lee, M. Kim, and J. Kim, �A study on immersion and vr sickness in walking

interaction for immersive virtual reality applications,� Symmetry, vol. 9, no. 5,

p. 78, 2017.

[27] A. S. Fernandes and S. K. Feiner, �Combating vr sickness through subtle dy-

namic �eld-of-view modi�cation,� in 3D User Interfaces (3DUI), 2016 IEEE

Symposium on. IEEE, 2016, pp. 201�210.

[28] W. W. S. Group, �Fast stereo rendering for vr,� 2016. [Online]. Available:

https://github.com/w3c/webvr/issues/101

[29] D. HRACHOVÝ, �Faster webgl graphics,� Ph.D. dissertation, Masarykova uni-

verzita, Fakulta informatiky, 2012.

[30] S. Kang and J. Lee, �Developing a tile-based rendering method to improve ren-

dering speed of 3d geospatial data with html5 and webgl,� Journal of Sensors,

vol. 2017, 2017.

[31] �kripken/webgl-worker,� https://github.com/kripken/webgl-worker, (Accessed

on 12/10/2017).

https://github.com/w3c/webvr/issues/101
https://github.com/kripken/webgl-worker

64

[32] �Webgl in web workers, today - and faster than expected!

- mozilla research,� https://research.mozilla.org/2014/07/22/

webgl-in-web-workers-today-and-faster-than-expected/, (Accessed on

12/10/2017).

[33] K. Pimentel and K. Teixeira, �Virtual reality through the new looking glass,�

1993.

[34] A. Akins, �Virtual reality and the physically disabled: Speculations of the fu-

ture,� in Proceedings of Virtual Reality and Persons with Disabilities Conference,

Northridge, CA, 1992.

[35] M. Pilz and H. A. Kamel, �Creation and boundary evaluation of csg-models,�

Engineering with computers, vol. 5, no. 2, pp. 105�118, 1989.

[36] G. Bell, A. Parisi, and M. Pesce, �The virtual reality modeling language: ver-

sion 1.0 speci�cation,� URL: http://vrml. wired. com/vrml. tech/vrml10-3. html,

1995.

[37] B. Laurel, R. Strickland, and R. Tow, �Placeholder: Landscape and narrative in

virtual environments,� ACM SIGGRAPH Computer Graphics, vol. 28, no. 2, pp.

118�126, 1994.

[38] �Canvas 3d gl.� [Online]. Available: https://web.

archive.org/web/20110717224855/http://blog.vlad1.com/2007/11/26/

canvas-3d-gl-power-web-style/

[39] �Opera webgl.� [Online]. Available: https://web.archive.org/

web/20071117170113/http://my.opera.com/timjoh/blog/2007/11/13/

taking-the-canvas-to-another-dimension

https://research.mozilla.org/2014/07/22/webgl-in-web-workers-today-and-faster-than-expected/
https://research.mozilla.org/2014/07/22/webgl-in-web-workers-today-and-faster-than-expected/
https://web.archive.org/web/20110717224855/http://blog.vlad1.com/2007/11/26/canvas-3d-gl-power-web-style/
https://web.archive.org/web/20110717224855/http://blog.vlad1.com/2007/11/26/canvas-3d-gl-power-web-style/
https://web.archive.org/web/20110717224855/http://blog.vlad1.com/2007/11/26/canvas-3d-gl-power-web-style/
https://web.archive.org/web/20071117170113/http://my.opera.com/timjoh/blog/2007/11/13/taking-the-canvas-to-another-dimension
https://web.archive.org/web/20071117170113/http://my.opera.com/timjoh/blog/2007/11/13/taking-the-canvas-to-another-dimension
https://web.archive.org/web/20071117170113/http://my.opera.com/timjoh/blog/2007/11/13/taking-the-canvas-to-another-dimension

65

[40] M. Woo, J. Neider, T. Davis, and D. Shreiner, OpenGL programming guide:

the o�cial guide to learning OpenGL, version 1.2. Addison-Wesley Longman

Publishing Co., Inc., 1999.

[41] C. Leung and A. Salga, �Enabling webgl,� in Proceedings of the 19th international

conference on World wide web. ACM, 2010, pp. 1369�1370.

[42] �Hero.� [Online]. Available: http://www.joshcarpenter.ca/

vr-browsing-explorations/

[43] �Three.js.� [Online]. Available: https://github.com/mrdoob/three.js/issues/1960

[44] �A-frame.� [Online]. Available: https://github.com/aframevr/aframe

[45] A. Gill, �Aframe: A domain speci�c language for virtual reality,� in Proceedings

of the 2nd International Workshop on Real World Domain Speci�c Languages.

ACM, 2017, p. 4.

[46] I. E. Sutherland, �The ultimate display,� Multimedia: From Wagner to virtual

reality, 1965.

[47] R. Kooper and B. MacIntyre, �Browsing the real-world wide web: Maintain-

ing awareness of virtual information in an ar information space,� International

Journal of Human-Computer Interaction, vol. 16, no. 3, pp. 425�446, 2003.

[48] W. Piekarski, �3d modeling with the tinmith mobile outdoor augmented reality

system,� IEEE Computer Graphics and Applications, vol. 26, no. 1, pp. 14�17,

2006.

[49] D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Szalavári, L. M. Encarnaçao,

M. Gervautz, and W. Purgathofer, �The studierstube augmented reality project,�

http://www.joshcarpenter.ca/vr-browsing-explorations/
http://www.joshcarpenter.ca/vr-browsing-explorations/
https://github.com/mrdoob/three.js/issues/1960
https://github.com/aframevr/aframe

66

Presence: Teleoperators and Virtual Environments, vol. 11, no. 1, pp. 33�54,

2002.

[50] D. Schmalstieg, T. Langlotz, and M. Billinghurst, �Augmented reality 2.0,� in

Virtual realities. Springer, 2011, pp. 13�37.

[51] J. C. Spohrer, �Information in places,� IBM Systems Journal, vol. 38, no. 4, pp.

602�628, 1999.

[52] B. MacIntyre, A. Hill, H. Rouzati, M. Gandy, and B. Davidson, �The argon ar

web browser and standards-based ar application environment,� in Mixed and

Augmented Reality (ISMAR), 2011 10th IEEE International Symposium on.

IEEE, 2011, pp. 65�74.

[53] �mozilla/webxr-api: A proposal for webxr, based on the webvr extension,� https:

//github.com/mozilla/webxr-api, (Accessed on 12/07/2017).

[54] �A-painter: Paint in vr in your browser,� https://blog.mozvr.com/a-painter/,

(Accessed on 12/10/2017).

[55] �Incremental loading and non-blocking parsing and rendering · issue,� https:

//github.com/mrdoob/three.js/issues/4397, (Accessed on 11/28/2017).

[56] �Api to automatically force preload all material uploads to gpu · issue,� https:

//github.com/aframevr/aframe/issues/3135, (Accessed on 11/28/2017).

[57] �three.js webgl - gltf 2.0,� https://threejs.org/examples/webgl_loader_gltf.html,

(Accessed on 11/28/2017).

[58] �gltf-sample-models/2.0/boombox at master · khronosgroup/gltf-sample-

models,� https://github.com/KhronosGroup/glTF-Sample-Models/tree/

https://github.com/mozilla/webxr-api
https://github.com/mozilla/webxr-api
https://blog.mozvr.com/a-painter/
https://github.com/mrdoob/three.js/issues/4397
https://github.com/mrdoob/three.js/issues/4397
https://github.com/aframevr/aframe/issues/3135
https://github.com/aframevr/aframe/issues/3135
https://threejs.org/examples/webgl_loader_gltf.html
https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/BoomBox

67

master/2.0/BoomBox, (Accessed on 11/28/2017).

[59] �gltf-sample-models/2.0/damagedhelmet at master · khronosgroup/gltf-sample-

models,� https://github.com/KhronosGroup/glTF-Sample-Models/tree/

master/2.0/DamagedHelmet, (Accessed on 11/28/2017).

[60] �react-vr: Wavefrontobj,� https://github.com/facebook/react-vr/tree/master/

ReactVR/js/Loaders/WavefrontOBJ, (Accessed on 11/28/2017).

[61] �react-vr:objparser.js,� https://github.com/facebook/react-vr/blob/master/

ReactVR/js/Loaders/WavefrontOBJ/OBJParser.js#L281-L298, (Accessed on

11/28/2017).

[62] �Re�ect - javascript | mdn,� https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Global_Objects/Re�ect, (Accessed on 12/03/2017).

[63] �Vre�ect,� https://github.com/mrdoob/three.js/blob/dev/examples/js/e�ects/

VRE�ect.js, (Accessed on 11/28/2017).

[64] Advanced vr rendering performance gdc. [Online]. Avail-

able: https://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_

Rendering_Performance_GDC2016.pdf

[65] K. Group, �Webgl multiview extension proposed speci�cation,� https://

www.khronos.org/registry/webgl/extensions/proposals/WEBGL_multiview/,

(Accessed on 11/28/2017).

[66] S. Coorg and S. Teller, �Real-time occlusion culling for models with large occlud-

ers,� in Proceedings of the 1997 symposium on Interactive 3D graphics. ACM,

1997, pp. 83��.

https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/BoomBox
https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/BoomBox
https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/DamagedHelmet
https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/DamagedHelmet
https://github.com/facebook/react-vr/tree/master/ReactVR/js/Loaders/WavefrontOBJ
https://github.com/facebook/react-vr/tree/master/ReactVR/js/Loaders/WavefrontOBJ
https://github.com/facebook/react-vr/blob/master/ReactVR/js/Loaders/WavefrontOBJ/OBJParser.js#L281-L298
https://github.com/facebook/react-vr/blob/master/ReactVR/js/Loaders/WavefrontOBJ/OBJParser.js#L281-L298
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Reflect
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Reflect
https://github.com/mrdoob/three.js/blob/dev/examples/js/effects/VREffect.js
https://github.com/mrdoob/three.js/blob/dev/examples/js/effects/VREffect.js
https://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_Performance_GDC2016.pdf
https://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_Performance_GDC2016.pdf
https://www.khronos.org/registry/webgl/extensions/proposals/WEBGL_multiview/
https://www.khronos.org/registry/webgl/extensions/proposals/WEBGL_multiview/

68

[67] U. Assarsson and T. Moller, �Optimized view frustum culling algorithms for

bounding boxes,� Journal of graphics tools, vol. 5, no. 1, pp. 9�22, 2000.

[68] �Webvr,� https://w3c.github.io/webvr/spec/1.1/, (Accessed on 11/28/2017).

[69] B. Anderson, L. Bergstrom, M. Goregaokar, J. Matthews, K. McAllister, J. Mof-

�tt, and S. Sapin, �Engineering the servo web browser engine using rust,� in

Proceedings of the 38th International Conference on Software Engineering Com-

panion. ACM, 2016, pp. 81�89.

[70] J. Simpson, �The opengl es® shading language language version: 3.10 document

revision: 3,� 2014.

[71] �self.createimagebitmap() - web apis | mdn,� https://developer.mozilla.org/

en-US/docs/Web/API/WindowOrWorkerGlobalScope/createImageBitmap,

(Accessed on 12/04/2017).

[72] D. Bradley and G. Roth, �Adaptive thresholding using the integral image,� Jour-

nal of Graphics Tools, vol. 12, no. 2, pp. 13�21, 2007.

https://w3c.github.io/webvr/spec/1.1/
https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/createImageBitmap
https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/createImageBitmap

	Signed1stPage
	thesis_main
	List of Illustrations
	Introduction
	Motivation
	The Scope of the Thesis
	Previous Work
	Thesis Overview

	Background
	Web Virtual Reality
	Three.js
	A-Frame

	Web Mixed Reality
	Case Study: Augmented Reality Demonstration in Web
	A-Painter in WebXR
	AR Furniture Suggestion App

	Optimizing the Object Loader
	Creating an Efficient Object Loader
	Our Approach
	Reason for Separation
	Directing The Synchronization
	Parser Design Choices

	Implementation Overview
	OBJLoader2

	Web Worker Support
	Solution
	OBJLoader2:

	Web Virtual Reality: Other Optimizations
	Multiple Viewpoints in Camera
	Our approach
	Modified Algorithm
	Multiview in Servo
	Implementation Code
	Performance Gains

	Handling Incremental texture Loading
	Our Approach
	Implementation

	Experiments and Validation
	Experiment Setup
	Object Loader Performance
	Web Worker Performance Benchmarks
	Adaptive Threshold

	Conclusion and Future Work
	Bibliography

