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Abstract
Existing dynamic race detectors suffer from at least one of the
following three limitations:

(i) space overhead per memory location grows linearly with the
number of parallel threads [13], severely limiting the parallelism
that the algorithm can handle.

(ii) sequentialization: the parallel program must be processed in
a sequential order, usually depth-first [12, 24]. This prevents the
analysis from scaling with available hardware parallelism, inher-
ently limiting its performance.

(iii) inefficiency: even though race detectors with good theoret-
ical complexity exist, they do not admit efficient implementations
and are unsuitable for practical use [4, 18].

We present a new precise dynamic race detector that leverages
structured parallelism in order to address these limitations. Our
algorithm requires constant space per memory location, works in
parallel, and is efficient in practice. We implemented and evaluated
our algorithm on a set of 15 benchmarks. Our experimental results
indicate an average (geometric mean) slowdown of 2.78× on a 16-
core SMP system.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—reliability, validation; D.2.5
[Software Engineering]: Testing and Debugging—monitors, testing
tools; D.3.4 [Programming Languages]: Processors—debuggers;
F.3.2 [Logics and Meanings of Programs]: Semantics of Program-
ming Languages—program analysis

General Terms Algorithms, Languages, Verification

Keywords Parallelism, Program Analysis, Data Races

1. Introduction
Data races are a major source of errors in parallel programs. Com-
plicating matters, data races may occur only in few of the possible
schedules of a parallel program, thereby making them extremely
hard to detect and reproduce. The importance of detecting races
has motivated significant work in the area. We briefly summarize
existing race detectors and the main contributions of our approach
below.

Existing Race Detectors FastTrack is a state-of-the art parallel
race detection algorithm which handles classic unstructured fork-
join programs with locks [13]. While versatile, a key drawback
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of FastTrack is its worst-case space overhead of O(n) per instru-
mented memory location, where n is the number of threads in the
program. This space overhead implies that the algorithm can typi-
cally only be used with a small number of parallel threads. Increas-
ing the number of threads can quickly cause space overheads and
slowdowns that render the algorithm impractical. FastTrack applies
some optimizations to reduce the overhead, but even for locations
that are read shared, the algorithm maintains O(n) space. Unfor-
tunately, in domains where structured parallelism dominates, pro-
grams typically use a massive number of lightweight tasks (e.g.
consider a parallel-for loop on a GPU) and often the parallel tasks
share read-only data.

There have been various proposals for race detectors targeting
structured parallel languages, notably SP-bags [12] and All-Sets [8]
for Cilk and its extension ESP-bags [24] for subsets of X10 [7] and
Habanero-Java (HJ) [6]. The SP-bags, All-Sets, and ESP-bags algo-
rithms only needO(1) space per instrumented memory location but
are limited in that they must always process the parallel program
in a depth-first sequential manner. This means that the algorithms
cannot utilize and scale with the available hardware parallelism.
The SP-hybrid algorithm for Cilk [4] is an attempt to address the
sequentialization limitation of the SP-bags algorithm. However, de-
spite its good theoretical bounds, the SP-hybrid algorithm is very
complex and incurs significant inefficiencies in practice. The orig-
inal paper on SP-hybrid [4] provides no evaluation and subsequent
evaluation of an incomplete implementation of SP-hybrid [18] was
done only for a small number of processors; a complete empirical
study for SP-hybrid has never been done. However, the inefficiency
is clear from the fact that the CilkScreen race detector used in Intel
Cilk++ [1] has chosen to use the sequential All-Sets algorithm over
the parallel but inefficient SP-hybrid. Further, the SP-hybrid algo-
rithm depends on a particular scheduling technique (i.e. a work-
stealing scheduler).

Collectively, these three limitations raise the following ques-
tion: Is there a precise dynamic race detector that works in par-
allel, uses O(1) space per memory location, and is suitable for
practical use? In this paper we introduce such dynamic race de-
tector targeting structured parallel languages such as Cilk [5],
OpenMP 3.0 [23], X10 [7], and Habanero Java (HJ) [6]. Our al-
gorithm runs in parallel, uses O(1) space per memory location, and
performs well in practice.

Structured Parallelism Structured parallel programming simpli-
fies the task of writing correct and efficient parallel programs in two
ways. First, a wide range of parallel programs can be succinctly



expressed with a few well-chosen and powerful structured paral-
lel constructs. Second, the structure of the parallel program can
be exploited to provide better performance, for instance, via bet-
ter scheduling algorithms. Third, structured parallelism often pro-
vides guarantees of deadlock-freedom. Examples of languages and
frameworks with structured parallelism include Cilk [5], X10 [7],
and Habanero Java (HJ) [3].

Our Approach A key idea is to leverage the structured paral-
lelism to efficiently determine whether conflicting memory ac-
cesses can execute in parallel. Towards that end, we present a new
data structure called the Dynamic Program Structure Tree (DPST).
With our algorithm, the time overhead for every monitoring op-
eration is independent of the number of tasks and worker threads
executing the program. Similarly to FastTrack, SP-bags and ESP-
bags, our algorithm is sound and precise for a given input: if the
algorithm does not report a race for a given execution, it means that
no execution with the same input can trigger a race (i.e. there are
no false negatives). Conversely, if a race is reported, then the race
really exists (i.e. there are no false positives). These properties are
particularly attractive when testing parallel programs as it implies
that for a given input, we can study an arbitrary program schedule
to reason about races that may occur in other schedules. As we will
demonstrate later, our algorithm is efficient in practice and signifi-
cantly outperforms existing algorithms.

Main Contributions The main contributions of this paper are:

• A dynamic data race detection algorithm for structured paral-
lelism with the following properties:

works in parallel.

uses only constant space per monitored memory location.

is sound and precise for a given input.
• A data structure called the Dynamic Program Structure Tree

(DPST) that keeps track of relationships between tasks and can
be accessed and modified concurrently.

• An efficient implementation of the algorithm together with a
set of static optimizations used to reduce the overhead of the
implementation.

• An evaluation on a suite of 15 benchmarks indicating an aver-
age (geometric mean) slowdown of 2.78× on a 16-core SMP
system.

The rest of the paper is organized as follows: Section 2 discusses
the structured parallel setting, Section 3 presents the dynamic pro-
gram structure tree (DPST), Section 4 introduces our new race de-
tection algorithm, Section 6 presents the details of the implementa-
tion of our algorithm and the optimizations that we used to reduce
the overhead, Section 7 discusses our experimental results, Sec-
tion 8 discusses related work and Section 9 concludes the paper.

2. Background
In this section, we give a brief overview of the structured par-
allel model targeted by this paper. We focus on the async/finish
structured parallelism constructs used in X10 [7] and Habanero
Java (HJ) [6]. The async/finish constructs generalize the traditional
spawn/sync constructs used in the Cilk programming system [5]
since they can express a broader set of computation graphs than
those expressible with the spawn/sync constructs used in Cilk [15].

While X10 and HJ include other synchronization techniques
such as futures, clocks/phasers, and Cilk even includes locks, the
core task creation and termination primitives in these languages
are fundamentally based on the async/finish and spawn/sync con-
structs. The underlying complexity of a dynamic analysis algorithm

is determined by these core constructs. Once a dynamic analysis al-
gorithm for the core constructs is developed, subsequent extensions
can be built on top of the core algorithm. To underscore the impor-
tance of studying the core portions of these languages, a calculus
called Featherweight X10 (FX10) was proposed [20]. Also, the SP-
bags algorithm [12] for Cilk was presented for the core spawn/sync
constructs (the algorithm was later extended to handle accumula-
tors and locks [8]).

The algorithm presented in this paper is applicable to async/fin-
ish constructs (which means it also handles spawn/sync constructs).
The algorithm is independent of the sequential portions of the lan-
guage, meaning that one can apply it to any language where the
parallelism is expressed using the async/finish constructs. For ex-
ample, the sequential portion of the language can be based on the
sequential portions of Java as in HJ or C/C++ as in Cilk [15],
Cilk++ [1], OpenMP 3.0 [23], and Habanero-C [9]. Next, we in-
formally describe the semantics of the core async/finish constructs.
A formal operational semantics can be found in [20].

Informal Semantics The statement async { s } causes the
parent task to create a new child task to execute s asynchronously
(i.e., before, after, or in parallel) with the remainder of the parent
task. The statement finish { s } causes the parent task to ex-
ecute s and then wait until all async tasks created within s have
completed, including the transitively spawned tasks. Each dynamic
instance TA of an async task has a unique Immediately Enclosing
Finish (IEF) instance F of a finish statement during program execu-
tion, where F is the innermost dynamic finish scope containing
TA. There is an implicit finish scope surrounding the body of
main() so program execution will only end after all async tasks
have completed.

The finish statement is a restricted join: while in the general
unstructured fork-join case, a task can join with any other task,
with the finish statement, a task can only join on tasks that are
created in the enclosed statement. This is a fundamental difference
between arbitrary unstructured fork-join and the async/finish (or
spawn/sync) constructs. It is such restrictions on the join that make
it possible to prove the absence of deadlocks for any program
in the language [20], and provide an opportunity for discovering
analysis algorithms that are more efficient than those for the general
unstructured fork-join case.

As mentioned earlier, async/finish constructs can express a
broader set of computation graphs than Cilk’s spawn/sync con-
structs. The key relaxation in async/finish over spawn/sync is the
way a task is allowed to join with other tasks as well as dropping
the requirement that a parent task must wait for all of its child tasks
to terminate. With spawn/sync, at any given sync point in a task ex-
ecution, the task must join with all of its descendant tasks (and all
recursive descendant tasks, by transitivity) created in between the
start of the task and the join point. In contrast, with async/finish it
is possible for a task to join with some rather than all of its descen-
dant tasks: at the end of a finish block, the task only waits until the
descendant tasks created inside the finish scope have completed.
More details comparing spawn/sync and async/finish can be found
in [16].

Example Consider the example in Figure 1. For now, ignore the
tree on the right and the step annotations, both of which are dis-
cussed in the next section. Initially, the main task begins execution
with the main finish statement, labeled F1. It executes the first two
statements S1 and S2 and then forks a new task A1 using the async
statement. In turn, A1 executes statements S3, S4, S5 and forks task
A2 which executes statement S6. Note that statement S6 (in task
A2) and statements S7 and S8 in task A1 can execute in parallel.
After forking A1, the main task can proceed to execute statements
S9, S10 and S11 that follow A1. The main task then forks task A3



finish { // F1
  S1;
  S2;
  async { // A1
    S3;
    S4;
    S5;
    async { // A2
      S6;
    } // async A2
    S7;
    S8;
  } // async A1
  S9;
  S10; 
  S11;
  async { // A3
    S12;
    S13;
  } // async A3
} // finish F1

}

}

}

}
}

step 1

step 2

step 3

step 4

step 5

step 6

F1

step1 step5A1 A3

step2 step4A2 step6

step3

}

Figure 1. An example async/finish program and its final DPST.

which executes statements S12 and S13. Note that the statement
S11 (in the main task) and statements S12, S13 (in task A3) cannot
execute in parallel because the task A3 will be forked only after the
completion of S11. After forking A3, the main task has to wait un-
til A1, A2, and A3 have terminated. Only after all these descendant
tasks complete, the main task can exit past the end of finish F1.

3. Dynamic Program Structure Tree
Any dynamic data race detection algorithm needs to provide mech-
anisms that answer two questions: for any pair of memory accesses
(with at least one write): (i) determine whether the accesses can ex-
ecute in parallel, and (ii) determine whether they access the same
location. In this section, we introduce the Dynamic Program Struc-
ture Tree (DPST), a data structure which can be used to answer the
first question.

The DPST is an ordered rooted tree that is built at runtime to
capture parent-child relationships among async, finish, and step
(defined below) instances of a program. The internal nodes of a
DPST represent async and finish instances. The leaf nodes of a
DPST represent the steps of the program. The DPST can also be
used to support dynamic analysis of structured parallel programs
written in languages such as Cilk and OpenMP 3.0.

We assume standard operational semantics of async/finish con-
structs as defined in FX10 [20]. The semantics of statements and
expressions other than async/finish is standard [29]. That is, each
transition represents either a basic statement, an expression eval-
uation or the execution of an async or a finish statement. For our
purposes, given a trace, we assume that the execution of each state-
ment is uniquely identified (if a statement executes multiple times,
each dynamic instance is uniquely identified). We refer to an exe-
cution of a statement as a dynamic statement instance. We say that
a statement instance is an async instance if the statement performs
an async operation. Similarly for finish instances.

Definition 1 (Step). A step is a maximal sequence of statement
instances such that no statement instance in the sequence includes
an async or a finish operation.

Definition 2 (DPST). The Dynamic Program Structure Tree
(DPST) for a given execution is a tree in which all leaves are steps,
and all interior nodes are async and finish instances. The parent
relation is defined as follows:

• Async instance A is the parent of all async, finish, and step
instances directly executed within A.

• Finish instance F is the parent of all async, finish, and step
instances directly executed within F .

There is a left-to-right ordering of all DPST siblings that reflects the
left-to-right sequencing of computations belonging to their com-
mon parent task. Further, the tree has a single root that corresponds
to the implicit top-level finish construct in the main program.

3.1 Building a DPST
Next we discuss how to build the DPST during program execution.
When the main task begins, the DPST will contain a root finish
node F and a step node S that is the child of F . F corresponds
to the implicit finish enclosing the body of the main function in the
program and S represents the starting computation in the main task.

Task creation When a task T performs an async operation and
creates a new task Tchild:

1. An async node Achild is created for task Tchild. If the imme-
diately enclosing finish (IEF) F of Tchild exists within task T ,
then Achild is added as the rightmost child of F . Otherwise,
Achild is added as the rightmost child node of (the async) node
corresponding to task T .

2. A step node representing the starting computations in task
Tchild is added as the child of Achild.

3. A step node representing the computations that follow task
Tchild in task T is added as the right sibling of Achild.

Note that there is no explicit node in a DPST for the main task
because everything done by the main task will be within the implicit
finish in the main function of the program and hence all of the
corresponding nodes in a DPST will be under the root finish node.

Start Finish When a task T starts a finish instance F :

1. A finish node Fn is created for F . If the immediately enclosing
finish F ′ of F exists within task T (with corresponding finish
node F ′n in the DPST), then Fn is added as the rightmost child
of F ′n. Otherwise, Fn is added as the rightmost child of the
(async) node corresponding to task T .

2. A step node representing the starting computations in F is
added as the child of Fn.

End Finish When a task T ends a finish instance F , a step node
representing the computations that follow F in task T is added as
the right sibling of the node that represents F in the DPST.

Note that the DPST operations described thus far only take
O(1) time. Thus, the DPST for a given program run grows mono-
tonically as program execution progresses and new async, finish,
and step instances are added to the DPST. Note that since all data
accesses occur in steps, it follows that all tests for whether two ac-
cesses may happen in parallel will only take place between two
leaves in a DPST.

Example We can now return to the example program in Figure 1
and study its steps and final DPST. Note the way statement in-
stances are grouped into steps. When the main task starts executing
finish F1, a node corresponding to F1 is added as the root node of
the DPST, and a step node step1 is added as the child of F1; step1
represents the starting computations in F1, i.e., instances of state-
ments S1 and S2. When the main task forks the task A1, an async
node corresponding to A1 is added as the right-most child of F1
(since the immediately enclosing finish of A1 is F1 and it is within
the main task), a step node step2 is added as the child of A1, and a
step node step5 is added as the right sibling of A1. step2 represents
the starting computations in A1 (i.e., instance of statements S3, S4,
and S5) and step5 represents the computation that follows A1 in



LCA

A

S1

S2

...  ...

...

Figure 2. A part of a DPST. LCA is the Lowest Common Ancestor
of steps S1 and S2. A is the DPST ancestor of S1 which is the child
of LCA. S1 and S2 can execute in parallel if and only if A is an
async node.

the main task (i.e., instances of statements S9, S10, and S11). After
this point, the main task and the task A1 can execute in parallel.
Eventually, the DPST grows to the form shown in the figure.

3.2 Properties of a DPST
In this section, we briefly summarize some key properties of a
DPST.

• For a given input that leads to a data-race-free execution of
a given async-finish parallel program, all executions of that
program with the same input will result in the same DPST.

• Let F be the DPST root (finish) node. Each non-root node n0

is uniquely identified by a finite path from n0 to F :

n0
r0−→ n1

r1−→ n2
r2−→ . . .

rk−1−−−→ nk

where k ≥ 1, nk = F , and for each 0 ≤ i < k, ni is the rth
i

child of node ni+1. The path from n0 to F stays invariant as the
tree grows. For a given statement instance, its path to the root
is unique regardless of which execution is explored (as long as
the executions start with the same state). This property holds up
to the point that a data race (if any) is detected.

• The DPST is amenable to efficient implementations in which
nodes can be added to the DPST in parallel without any syn-
chronization in O(1) time. One such implementation is de-
scribed in Section 6.

Definition 3. A node A is said to be to the left of a node B in a
DPST if A appears before B in the depth first traversal of the tree.

As mentioned above, even though the DPST changes during
program execution, the path from a node to the root does not
change and the left-to-right ordering of siblings does not change.
Hence, even though the depth first traversal of the DPST is not
fully specified during program execution, the left relation between
any two nodes in the current DPST is well-defined.

Definition 4. Two steps, S1 and S2, in a DPST Γ that corresponds
to a program P with input ψ, may execute in parallel if and only if
there exists at least one schedule δ of P with input ψ in which S1

executes in parallel with S2.

The predicate DMHP(S1, S2) evaluates to true if steps S1 and
S2 can execute in parallel in at least one schedule of a program
and to false otherwise (DMHP stands for “Dynamic May Happen
in Parallel” to distinguish it from the MHP relation used by static
analyses). We now state a key theorem that will be important in
enabling our approach to data race detection.

Theorem 1. Consider two leaf nodes (steps) S1 and S2 in a DPST,
where S1 6= S2 and S1 is to the left of S2 as shown in Figure 2. Let
LCA be the node denoting the least common ancestor of S1 and
S2 in the DPST. Let node A be the ancestor of S1 that is a child
of LCA. Then, DMHP(S1, S2) = true if and only if A is an async
node.

Proof. if:A is an async node. Let us consider a schedule δ of P with
input ψ such that one worker executes the subtree under A and the
other worker executes all the subtrees under LCA that are to the
right of A. This is possible because, according to the semantics
of an async, A is not guaranteed to complete before any of its
peers on the right. A is guaranteed to complete only by the end
of its immediately enclosing finish F . Note that F may be the node
LCA or any of its ancestors. Now, in this schedule, δ, the subtree
under A will execute in parallel with the subtrees to the right of A
under LCA. Hence, S1 will execute in parallel with S2 in δ. Thus,
DMHP(S1, S2) = true.

only if: DMHP(S1, S2) = true. In general, node A can be an
async node, finish node or the same node as S1. Let A2 be the
ancestor of S2 which is the child of LCA.
Case 1: Assume A is a finish node. A2 must be disjoint from,

and to the right of A. According to the semantics of finish, the
subtree under A must complete before any peers to the right
of A (including A2) start execution. Hence, it is guaranteed in
all possible schedules of P with input ψ that S1 will complete
execution before S2 can start executing. This contradicts our
assumption that DMHP(S1, S2) = true.

Case 2: Assume A = S1. Due to the left-to-right sequencing of
computations within a task, step S1 must complete before any
peers to the right of S1 (including A2) start execution. Hence,
it is guaranteed in all possible schedules of P with input ψ that
S1 will complete execution before S2 can start executing. This
contradicts our assumption that DMHP(S1, S2) = true.

Thus A has to be an async node.

Example Let us now look at the DMHP relation for some pairs
of steps in the example program in Figure 1. First, let us consider
DMHP(step2, step5). Here step2 is to the left of step5, since step2
will appear before step5 in the depth first traversal of the DPST.
The lowest common ancestor of step2 and step5 is the node F1.
The node A1 is the ancestor of step2 (the left node) that is the child
of F1. Since A1 is an async node, DMHP(step2, step5) will evaluate
to true indicating that step2 and step5 can execute in parallel. This
is indeed true for this program: step2 is within A1, while step5
follows A1 and is within A1’s immediately enclosing finish.

Now, let us consider DMHP(step6, step5). Here step5 is to the
left of step6, since step5 will appear before step6 in the depth first
traversal of the DPST. Their lowest common ancestor is F1, and
the ancestor of step5 which is the child of F1 is step5 itself. Since
step5 is not an async instance, DMHP(step6, step5) evaluates to
false. This is consistent with the program because step6 is in task
A3 and A3 is created only after step5 completes.

4. Race Detection Algorithm
Our race detection algorithm involves executing the given program
with a given input and monitoring every dynamic memory access
in the program for potential data races. The algorithm maintains a
DPST as described in the previous section, as well as the relevant
access history for each shared memory location. The algorithm
performs two types of actions:

• Task actions: these involve updating the DPST with a new node
for each async, finish, and step instance.

• Memory actions: on every shared memory access, the algorithm
checks if the access conflicts with the access history for the
relevant memory location. If a conflict is detected, the algorithm
reports a race and halts. Otherwise, the memory location is
updated to include the memory access in its access history.



A key novelty of our algorithm is that it requires constant space
to store the access history of a memory location, while still guaran-
teeing that no data races are missed. We next describe the shadow
memory mechanism that supports this constant space guarantee.

4.1 Shadow Memory
Our algorithm maintains a shadow memory Ms for every moni-
tored memory location M . Ms is designed to store the relevant
parts of the access history to M . It contains the following three
fields, which are all initialized to null:

• w : a reference to a step that wrote M .
• r1 : a reference to a step that read M .
• r2 : a reference to another step that read M .

The following invariants are maintained throughout the execu-
tion of the program until the first data race is detected.

• Ms.w refers to the step that last wrote M .
• Ms.r1 &Ms.r2 refer to the steps that last readM . All the steps

(a1, a2, ..., ak) that have read M since the last synchronization
are in the subtree rooted at LCA(Ms.r1, Ms.r2).

The fields of the shadow memoryMs are updated atomically by
different tasks that access M .

4.2 Algorithm
The most important aspect of our algorithm is that it stores only
three fields for every monitored memory location irrespective of
the number of steps that access that memory location. The intuition
behind this is as follows: it is only necessary to store the last
write to a memory location because all the writes before the last
one must have completed at the end of the last synchronization.
This is assuming no data races have been observed yet during the
execution. Note that though synchronization due to finish may not
be global, two writes to a memory location have to be ordered by
some synchronization to avoid constituting a data race. Among
the reads to a memory location, (a1, a2, ..., ak), since the last
synchronization, it is only necessary to store two reads, ai, aj ,
such that the subtree under LCA(ai, aj) includes all the reads
(a1, a2, ..., ak). This is because every future read, an, which is in
parallel with any discarded step will also be in parallel with at least
one of ai or aj . Thus, the algorithm will not miss any data race by
discarding these steps.

Definition 5. In a DPST, a node n1 is dpst-greater than a node n2,
denoted by n1 >dpst n2, if n1 is an ancestor of n2 in the DPST.
Note that, in this case, n1 is higher in the DPST (closer to the root)
than n2.

Algorithm 1: Write Check
Input: Memory location M , Step S that writes to M

1 if DMHP(Ms.r1, S) then
2 Report a read-write race between Ms.r1 and S
3 end
4 if DMHP(Ms.r2, S) then
5 Report a read-write race between Ms.r2 and S
6 end
7 if DMHP(Ms.w, S) then
8 Report a write-write race between Ms.w and S
9 else

10 Ms.w ← S
11 end

Algorithms 1 and 2 show the checking that needs to be per-
formed on write and read accesses to monitored memory locations.
When a step S writes to a memory locationM , Algorithm 1 checks
if S may execute in parallel with the reader inMs.r1 by computing
DMHP(S,Ms.r1). If they can execute in parallel, the algorithm re-
ports a read-write data race between Ms.r1 and S. Similarly, the
algorithm reports a read-write data race between Ms.r2 and S if
these two steps can execute in parallel. Then, Algorithm 1 reports a
write-write data race between Ms.w and S, if these two steps can
execute in parallel. Finally, it updates the writer field, Ms.w, with
the current step S indicating the latest write to M . Note that this
happens only when the write toM by S does not result in data race
with any previous access to M .

Algorithm 2: Read Check
Input: Memory location M , Step S that reads M

1 if DMHP(Ms.w, S) then
2 Report a write-read data race between Ms.w and S
3 end
4 if ¬DMHP(Ms.r1, S) ∧ ¬DMHP(Ms.r2, S) then
5 Ms.r1 ← S
6 Ms.r2 ← null
7 else if DMHP(Ms.r1, S) ∧ DMHP(Ms.r2, S) then
8 lca12 ← LCA(Ms.r1, Ms.r2)
9 lca1s ← LCA(Ms.r1, S)

10 lca2s ← LCA(Ms.r2, S)
11 if lca1s >dpst lca12 ∨ lca2s >dpst lca12 then
12 Ms.r1 ← S
13 end
14 end

When a step S reads a memory locationM , Algorithm 2 reports
a write-read data race between Ms.w and S if these two steps can
execute in parallel. Then, it updates the reader fields of Ms as fol-
lows: if S can never execute in parallel with either of the two read-
ers, Ms.r1 and Ms.r2, then both these readers are discarded and
Ms.r1 is set to S. If S can execute in parallel with both the readers,
Ms.r1 and Ms.r2, then the algorithm stores two of the these three
steps, whose LCA is the highest in the DPST, i.e., if LCA(Ms.r1, S)
or LCA(Ms.r2, S) is dpst-greater than LCA(Ms.r1, Ms.r2), then
Ms.r1 is set to S. Note that in this case S is outside the subtree
under LCA(Ms.r1, Ms.r2) and hence, LCA(Ms.r1, S) will be the
same as LCA(Ms.r2, S).

If S can execute in parallel with one of the two readers and not
the other, then the algorithm does not update the readers because,
in that case, S is guaranteed to be within the subtree under the
LCA(Ms.r1, Ms.r2).

The DMHP(Ms.r2, S) can be computed from DMHP(Ms.r1,
S) in some cases. This can be used to further optimize Algorithms 1
and 2. We do not present the details of this optimization here.

Atomicity Requirements A memory action for an access to a
memory location M involves reading the fields of Ms, checking
the predicates, and possibly updating the fields of Ms. Every such
memory action has to execute atomically with respect to other
memory actions for accesses to the same memory location.

5. Correctness Proof for Race Detection
Algorithm

Definition 6. Consider two nodes, n1 and n2, n1 6= n2, in a DPST
Γ, such that neither node is an ancestor of the other in Γ. Then,
happens-before-defining-node of n1 and n2, denoted by HBDN(n1,
n2), is defined to be the node η, such that:



• if n1 is to the left of n2 in Γ, then η is the ancestor of n1 which is
the child of LCA(n1, n2). Note that, if n1 is a child of LCA(n1,
n2), then η is the node n1.

• if n2 is to the left of n1 in Γ, then η is the ancestor of n2 which is
the child of LCA(n1, n2). Note that, if n2 is a child of LCA(n1,
n2), then η is the node n2.

For any two steps, S1 and S2, in a DPST, it follows from
Theorem 1 that:

DMHP(S1, S2) = true⇔ HBDN(S1, S2) is an async.

The motivation behind the name happens-before-defining-node is
that the node HBDN(S1, S2) defines the happens-before relation
between S1 and S2, i.e. HBDN(S1, S2) defines whether S1 and S2

may execute in parallel.

Lemma 1. Consider two steps, S1 and S2, S1 6= S2, in a DPST Γ.
Let LCA(S1, S2) = λ. Every node Sk which may execute in parallel
with one of S1, S2 and not the other, will be in the subtree under λ.

Proof. For any node Sk that is outside the subtree under λ,
HBDN(S1, Sk) = HBDN(S2, Sk). Hence, DMHP(S1, Sk) =
DMHP(S2, Sk). So, it cannot be the case that Sk executes in par-
allel with one of S1, S2 and not the other. Thus, Sk has to be in the
subtree under λ.

Lemma 2. If a step S1 executes before a step S2 in an execution δ
of a program P with input ψ and DMHP(S1, S2) = false, then S1

will execute before S2 in all executions of P with ψ.

Proof. Consider the DPST Γ of the program P with input ψ. Let
HBDN(S1, S2) = η. Since DMHP(S1, S2) = false, η is not an async.
Since S1 executes before S2 in the execution δ, S1 has to be to
the left of S2 in Γ. We know that every execution of P with ψ
will result in the same DPST Γ. Since HBDN(S1, S2), η, is not an
async, S1 has to execute before S2 in all executions of P with input
ψ.

Lemma 3. Consider two steps, S1 and S2, S1 6= S2, in a DPST Γ
such that DMHP(S1, S2) = false. Then, for any step, Sk, in Γ that
may execute after S1 and S2:

DMHP(S1, Sk) = true⇒ DMHP(S2, Sk) = true

Proof. Let LCA(S1, S2) = λ. Let HBDN(S1, S2) = η. Since
DMHP(S1, S2) = false, η is not an async. Without loss of gen-
erality, let us assume that S1 executes first followed by S2. Since
DMHP(S1, S2) = false, it follows from Lemma 2 that S1 will exe-
cute before S2 in all executions of the given program with the given
input. Hence, η is an ancestor of S1 that is a child of λ.

Case 1: Sk is outside the subtree under λ.
HBDN(S1, Sk) = HBDN(S2, Sk). Hence DMHP(S1, Sk) =
DMHP(S2, Sk), i.e., DMHP(S1, Sk) = true⇒ DMHP(S2, Sk)
= true

Case 2: Sk is inside the subtree under λ and to the left of the
subtree under η.
Let HBDN(S1, Sk) = η′. If DMHP(S1, Sk) = true, η′ is an
async. Since Sk is to the left of the subtree under η and S2 is to
the right of the subtree under η, HBDN(S2, Sk) is η′. Since η′

is an async, DMHP(S2, Sk) = true.
Case 3: Sk is inside the subtree under λ and to the right of the

subtree under η.
HBDN(S1, Sk) = η. Since η is not an async, DMHP(S1, Sk) =
false. In this case, DMHP(S1, Sk) can never be true.

Case 4: Sk is inside the subtree under η.
Since η is not an async and S2 is to the right of the subtree
under η, Sk can never execute after S2. Hence, this case is not
possible.

Lemma 4. Consider two steps, S1 and S2, in a DPST Γ, such that
DMHP(S1, S2) = true. Let LCA(S1, S2) = λ. Let S3 denote a step
in the subtree under λ. Then, for any step, Sk, in Γ that may execute
after S1 and S2:

DMHP(Sk, S3) = true⇒ DMHP(Sk, S1) = true ||
DMHP(Sk, S2) = true

Proof. Without loss of generality, let us assume that S1 is to the left
of S2 in Γ. Let HBDN(S1, S2) = η. Since DMHP(S1, S2) = true, η
is an async.

Case 1: Sk is outside the subtree under λ.
Since Sk is outside the subtree under λ, HBDN(S1, Sk) =
HBDN(S2, Sk) = HBDN(S3, Sk). Hence, DMHP(S3, Sk) =
DMHP(S1, Sk) = DMHP(S2, Sk).

Case 2: Sk is within the subtree under λ.
Case 2a: Sk is within the subtree under η.

HBDN(S2, Sk) = η and η is an async. So, DMHP(S2, Sk)
= true.

Case 2b: Sk is outside the subtree under η and to the left of S1.
Let HBDN(S1, Sk) = ζ. If ζ is a finish or ζ = Sk, Sk can
never execute after S1 and S2, i.e., no execution of the given
program will have Sk executing after S1 and S2. Hence, ζ
must be an async and DMHP(Sk, S1) = true.

Case 2c: Sk is outside the subtree under η and to the right of
S1.
HBDN(S1, Sk) = η and η is an async. So, DMHP(S1, Sk)
= true.

Theorem 2. If Algorithms 1 and 2 do not report any data race in
some execution of a program P with input ψ, then no execution of
P with ψ will have a write-write data race on any memory location
M .

Proof. Consider an execution δ of a program P with input ψ in
which Algorithms 1 and 2 do not report any data race.

Suppose that a write-write data race, χ, occurs on a memory
location M in some execution δ′ of P with ψ. Let W1 and W2

denote the two steps that write to M resulting in the data race in
δ′, i.e, DMHP(W1,W2) = true. Note that the execution δ′ does not
have any data race until χ occurs. Without loss of generality, let us
assumeW1 writes to M first andW2 writes later in δ.

Case 1: There are no writes to M betweenW1 andW2 in δ.
When W1 occurs in δ′, Algorithm 1 checks if any of the pre-
vious readers and writers of M (in the three fields of Ms) can
execute in parallel withW1. Since χ is the first data race to oc-
cur in δ′, they can never execute in parallel withW1. Since the
DPST is same across all executions of P with ψ, this applies to
δ as well. Also, it follows from Lemma 2 that the previous read-
ers and writers of M will execute beforeW1 in δ. Hence, when
W1 occurs in δ, Algorithm 1 sets Ms.w to W1. Then, when
W2 occurs in δ, Algorithm 1 will see that W2 can execute in
parallel with W1 and signal a write-write race between them.
This is contradicting our assumption that both our algorithms
do not report any data race in δ.

Case 2: There are writes to M by stepsWi · · · Wj betweenW1

andW2 in δ.
The writes to M happen in this order in δ′:W1,Wi · · · Wj ,
W2. Since the data race χ betweenW1 andW2 is the first data
race in δ′, there must have been no races among the writesW1,
Wi · · · Wj . In other words, DMHP(W1, Wi) = false, · · · ,
DMHP(Wj−1,Wj) = false. Since the DPST is same across all
executions of P withψ, this applies to δ as well. Also, it follows
from Lemma 2 that these writes to M occur in the same order



in δ as well. Hence in δ, Algorithm 1 would set Ms.w field
to W1, Wi · · · Wj in order. When W2 occurs in δ, Ms.w
will containWj . It follows from Lemma 3 that if DMHP(W1,
W2) = true, then DMHP(Wj , W2) = true. Hence, when W2

occurs in δ, Algorithm 1 will see thatW2 can execute in parallel
with Wj and signal a write-write race between them. This is
contradicting our assumption that both our algorithms do not
report any data race in δ.

Theorem 3. If Algorithms 1 and 2 do not report any data race in
some execution of a program P with input ψ, then no execution of
P with ψ will have a read-write data race on any memory location
M .

Proof. Consider an execution δ of a program P with input ψ in
which Algorithms 1 and 2 do not report any data race.

Suppose that a read-write data race, χ, occurs on a memory
location M in some execution δ′ of P with ψ. Let R1 and W1

denote the steps that read and write M resulting in the data race in
δ′, i.e, DMHP(R1,W1) = true. Note that the execution δ′ does not
have any data race until χ occurs.

Case 1:R1 executes beforeW1 in δ.
When R1 occurs in δ, Algorithm 2 either updates one of the
readers of Ms with R1 or chooses not to update the readers
becauseR1 can execute in parallel with Ms.r1 and Ms.r2 and
is also within the subtree of LCA(Ms.r1, Ms.r2) (= λ).
Case 1.a: There are no reads of M betweenR1 andW1 in δ.

If Ms.r1 or Ms.r2 contains R1, whenW1 occurs in δ, Al-
gorithm 1 will find thatW1 can execute in parallel withR1

and report a read-write data race. This contradicts our as-
sumption that our algorithm does not report a data race in δ.
If Ms.r1 and Ms.r2 does not containR1, whenW1 occurs
in δ, Algorithm 1 will find that W1 can execute in paral-
lel with at least one of Ms.r1, Ms.r2. (This follows from
Lemma 4 and the fact that DMHP(R1,W1) = true.) Again,
Algorithm 1 will report a read-write data race which contra-
dicts our assumption.

Case 1.b: There are reads of M by steps Ri · · · Rj between
R1 andW1 in δ.
Case 1.b.1: ∀ Rk in [Ri · · · Rj] DMHP(R1,Rk) = true.

After Rj completes in δ, Ms.r1 and Ms.r2 will be up-
dated such that Rj is in the subtree under LCA(Ms.r1,
Ms.r2) (= λ). Since DMHP(R1, Rj) = true, R1 must
also be in the subtree under λ. From Lemma 4 it follows
that either DMHP(Ms.r1,W1) = true or DMHP(Ms.r2,
W1) = true. Hence, Algorithm 1 should have reported a
read-write data race in δ. A contradiction.

Case 1.b.2: ∃ Rk in [Ri · · · Rj] such that DMHP(R1,
Rk) = false.
Since DMHP(R1,W1) = true, DMHP(Rk,W1) = true
from Lemman 3. Hence, Algorithm 1 should have re-
ported a read-write data race in δ. A contradiction.

Case 2:W1 executes beforeR1 in δ.
Case 2.a: There are no writes to M betweenW1 andR1 in δ.

When W1 occurs in δ, Algorithm 1 will update Ms.w
to W1. When R1 occurs in δ, Algorithm 2 will see that
DMHP(W1, R1) = true and should have reported a write-
read data race in δ. A contradiction.

Case 2.b: There are writes to M by stepsWi · · · Wj between
W1 andR1 in δ.
If any Wk in [Wi · · · Wj] can execute in parallel with
W1, i.e. DMHP(W1, Wk) = true, Algorithm 1 should
have reported a write-write data race in δ. So, ∀ Wk in
[Wi · · · Wj] DMHP(W1, Wk) = false. Hence, when Wj

executes in δ, Algorithm 1 will update Ms.w toWj . From
Lemma 3, DMHP(W1, R1) = true ⇒ DMHP(Wj , R1) =
true. Hence, Algorithm 2 should have report a write-read
data race in δ. A contradiction.

Theorem 4. If Algorithms 1 and 2 do not report any data race in
some execution of a program P with input ψ, then no execution of
P with ψ will have a write-read data race on any memory location
M .

Proof. Consider an execution δ of a program P with input ψ in
which Algorithms 1 and 2 do not report any data race.

Suppose that a write-read data race, χ, occurs on a memory
location M in some execution δ′ of P with ψ. Let W1 and R1

denote the steps that write and read M resulting in the data race in
δ′, i.e, DMHP(W1,R1) = true. Note that the execution δ′ does not
have any data race until χ occurs.

Case 1:W1 executes beforeR1 in δ.
Same as Case 2 in Theorem 3.

Case 2:R1 executes beforeW1 in δ.
Same as Case 1 in Theorem 3.

Theorem 5. If Algorithm 1 reports a write-write race on a memory
location M during an execution of a program P with input ψ, then
there exists at least one execution of P with ψ in which this race
exists.

Proof. Since Algorithm 1 reports a write-write race on M , there
must be two steps,W1 andW2, that writeM such that DMHP(W1,
W2) = true. From the definition of DMHP, it follows that there is
a schedule δ of P with ψ in whichW1 andW2 execute in parallel.
Hence, the write-write data race exists in δ.

Theorem 6. If Algorithm 1 reports a read-write race on a memory
location M during an execution of a program P with input ψ, then
there exists at least one execution of P with ψ in which this race
exists.

Proof. Since Algorithm 1 reports a read-write race on M , there
must be two steps,R1 andW1, that read and write M respectively
such that DMHP(R1,W1) = true. From the definition of DMHP, it
follows that there is a schedule δ of P with ψ in whichR1 andW1

execute in parallel. Hence, the read-write data race exists in δ.

Theorem 7. If Algorithm 2 reports a write-read race on a memory
location M during an execution of a program P with input ψ, then
there exists at least one execution of P with ψ in which this race
exists.

Proof. Since Algorithm 2 reports a write-read race on M , there
must be two steps,W1 andR1, that write and read M respectively
such that DMHP(W1,R1) = true. From the definition of DMHP, it
follows that there is a schedule δ of P with ψ in whichW1 andR1

execute in parallel. Hence, the write-read data race exists in δ.

Theorem 8. The race detection algorithm, described by Algo-
rithms 1 and 2, is sound and precise for a given input.

Proof. From Theorems 2, 3, and 4 it follows that if our race de-
tection algorithm does not report any data race in some execution
of a program P with input ψ, then no execution of P with ψ will
have a data race on any memory location M . Hence the algorithm
is sound for a given input.

From Theorems 5, 6, and 7 it follows that if our race detection
algorithm reports a data race for a program P with input ψ, then
there exists at least one execution of P with ψ in which the race
will occur. Hence the algorithm is precise for a given input.



6. Implementation and Optimizations
This section describes the implementation of the different parts of
our race detection algorithm.

6.1 DPST
The DPST of the program being executed is built to maintain
the parent-child relationship of asyncs, finishes and steps in the
program. Every node in the DPST consists of the following 4 fields:

• parent: the DPST node which is the parent of this node.
• depth: an integer that stores the depth of this node. The root

node of the DPST has depth 0. Every other node in the DPST
has depth one greater than its parent. This field is immutable.

• num children: number of children of this node currently in the
DPST. This field is initialized to 0 and incremented when child
nodes are added.

• seq no: an integer that stores the ordering of this node among
the children of its parent, i.e., among its siblings. Every node’s
children are ordered from left to right. They are assigned se-
quence numbers starting from 1 to indicate this order. This field
is also immutable.

The use of depth for nodes in the DPST leads to a lowest
common ancestor (LCA) algorithm with better complexity (than
if we had not used this field). The use of sequence numbers to
maintain the ordering of a node’s children makes it easier to check
for may happen in parallel given two steps in the program.

Note that all the fields of a node in the DPST can be initial-
ized/updated without any synchronization: the parent field initial-
ization is trivial because there are no competing writes to that field;
the depth field of a node is written only on initialization, is never
updated, and is read only after the node is created; the num children
field is incremented whenever a child node is added, but for a given
node, its children are always added sequentially in order from left
to right; the seq no field is written only on initialization, is never
updated, and is read only after the node is created.

6.2 Computing DMHP
A large part of the data race detection algorithm involves checking
DMHP for two steps in the program. This requires computing the
Lowest Common Ancestor (LCA) of two nodes in a tree. The
function LCA(Γ, S1, S2) returns the lowest common ancestor of
the nodes S1 and S2 in the DPST Γ. This is implemented by starting
from the node with the greater depth (say S1) and traversing up Γ
until a node with the depth same as S2 is reached. From that point,
Γ is traversed along both the paths until a common node is reached.
This common node is the lowest common ancestor of S1 and S2.
The time overhead of this algorithm is linear in the length of the
longer of the two paths, S1 → L and S2 → L.

Algorithm 3 computes DMHP relation between two steps S1

and S2. Algorithm 3 returns true if the given two steps S1 and S2

may happen in parallel and false otherwise. This algorithm first
computes the lowest common ancestor L of the given two steps
using the LCA function. If the step S1 is to the left of S2, then the
algorithm returns true if the ancestor of S1 (which is the child of
L) is an async and false otherwise. If the step S2 is to the left of
S1, then the algorithm returns true if the ancestor of S2 which is
the child of L is an async and false otherwise. The time overhead
of this algorithm is same as that of the LCA function, since it only
takes constant time to find the node which is the ancestor of the left
step that is the child of LCA node and then check if that node is an
async.

Algorithm 3: Dynamic May Happen in Parallel (DMHP)
Input: DPST Γ, Step S1, Step S2

Output: true/false
1 Nlca = LCA(Γ, S1, S2)
2 A1 = Ancestor of S1 in Γ which is the child of Nlca

3 A2 = Ancestor of S2 in Γ which is the child of Nlca

4 if A1 is to the left of A2 in Γ then
5 if A1 is an Async then
6 return true
7 else
8 return false // S1 happens before S2

9 end
10 else
11 if A2 is an Async then
12 return true
13 else
14 return false // S2 happens before S1

15 end
16 end

6.3 Space and Time Overhead
The size of the DPST will be O(n), where n is the number of tasks
in the program. More precisely, the total number of nodes in the
DPST will be 3 ∗ (a + f) − 1, where a is the number of async
instances and f is the number of finish instances in the program.
This is because a program with just one finish node will have just
one step node inside the finish of its DPST. When an async or a
finish node is subsequently added to the DPST, it will result in
adding 2 steps nodes, one as the child of the new node and the
other as its sibling. The space overhead for every memory location
is O(1), since we only need to store a writer step and two reader
steps in the shadow memory of every memory location.

The time overhead at task boundaries is O(1), which is the time
needed to add/update a node in the DPST. The worst case time
overhead on every memory access is same as that of Algorithm 3.

Note that the time overhead is not proportional to the number
of processors (underlying worker threads) that the program runs
on. Hence, the overhead is not expected to scale as we increase the
number of processors on which the program executes. This is an
important property as future hardware will likely have many cores.

6.4 Relaxing the Atomicity Requirement
A memory action for an access to a memory location M involves
reading the fields of its shadow memory location Ms, computing
the necessary DMHP information and checking appropriate predi-
cates, and possibly updating the fields of Ms. Let us refer to these
three stages as read, compute, and update of a memory action.

In our algorithm, every memory action on a shadow memory
Ms has to execute atomically relative to other memory actions
on Ms. When there are parallel reads to a memory location, this
atomicity requirement effectively serializes the memory actions
due to these reads. Hence this atomicity requirement induces a
bottleneck in our algorithm when the program is executed on a
large number of threads. Note that the atomicity requirement does
not result in a bottleneck in the case of writes to a memory location
because the memory actions due to writes have no contention in
data race free programs. (In a data race free program, there is a
happens-before ordering between a write and every other access to
a memory location.)

We now present our implementation strategy to overcome this
atomicity requirement without sacrificing the correctness of our
algorithm. This implementation strategy is based on the solution
to the reader-writer problem proposed by Leslie Lamport in [19].



Our implementation allows multiple memory actions on the same
shadow memory to proceed in parallel. This is done by adding
two atomic integers to every shadow memory, i.e., Ms contains
the following two additional fields:

• startVersion: an atomic integer that denotes the version number
of Ms

• endVersion: an atomic integer that denotes the version number
of Ms.

Both startVersion and endVersion are initialized to zero. Ev-
ery time any of the fields Ms.w, Ms.r1, or Ms.r2 is updated,
Ms.startVersion and Ms.endVersion are incremented by one. The
following invariant is maintained on every shadow memory Ms

during the execution of our algorithm: any consistent snapshot of
Ms will have the same version number in both startVersion and
endVersion. Now, we show how the read, compute, and update
stages of a memory action on Ms are performed. Note that these
rules use a CompareAndSet (CAS) primitive which is atomic rela-
tive to every operation on the same memory location.

Read:
• Read the version number in Ms.startVersion into a local

variable, X .
• Read the fields Ms.w, Ms.r1, and Ms.r2 into local vari-

ables, W , R1, and R2.
• Perform a fence to ensure that all operations above are

complete.
• Read the version number in Ms.endVersion into a local

variable, Y .
• If X is not the same as Y , restart the read stage.

Compute:
• Perform the computation on the local variables,W ,R1, and
R2.

Update:
• Do the following steps if an update to any of the fields
Ms.w, Ms.r1, or Ms.r2 is necessary.

• Perform a CAS on the version number in Ms.endVersion
looking for the value X and updating it with an increment
of one.

• If the above CAS fails, restart the memory action from the
beginning of read stage.

• Write to the required fields of Ms.
• Write the incremented version number to Ms.startVersion.

When a memory action on Ms completes the read stage, the
above rules ensure that a consistent snapshot of Ms was captured.
This is because the read stage completes only when the same ver-
sion number is seen in both Ms.startVersion and Ms.endVersion.

The CAS in the update stage of the memory action on Ms

succeeds only when Ms.endVersion has the version number that
was found in the read stage earlier. The update stage completes by
writing to the reader and writer fields of Ms as necessary, followed
by incrementing the version number in Ms.startVersion. When the
update stage completes, both Ms.startVersion and Ms.endVersion
will have the same version number and thus, the fields of Ms are
retained in a consistent state.

The CAS in the update stage of a memory action α on Ms also
ensures that the fields of Ms are updated only if it has not already
been updated by any memory action onMs, since the read stage of
α. If this CAS fails, then there has been some update to Ms since
the read stage and hence, the computations are discarded and the

memory action is restarted from the beginning of the read stage.
Thus, the memory actions are guaranteed to be atomic relative to
other memory actions on the same memory location.

The main advantage of this implementation is that it allows mul-
tiple memory actions on the same shadow memory Ms to proceed
in parallel. But if more than one of them needs to update the fields
of Ms, then only one of them is guaranteed to succeed while the
others repeat the action. This is especially beneficial when there
are multiple parallel accesses to M whose memory actions do not
update the fields ofMs. In our algorithm, this occurs when there are
reads by step S such that S is in the subtree rooted at LCA(Ms.r1,
Ms.r2). These cases occur frequently in practice thereby empha-
sizing the importance of relaxing the atomicity requirement.

Our algorithm is implemented in Java and we use the AtomicIn-
teger from Java Concurrency Utilities for the version numbers. The
CAS on Atomic Integer is guaranteed to execute atomically with re-
spect to other operations on the same location. Also, the CAS acts
as a barrier for the memory effects of the instructions on its either
side, i.e., all the instructions above it are guaranteed to complete
before it executes and no instructions below it will execute before
it completes. This is the same as the memory effects of the fence
that is used in the read stage. The read of an AtomicInteger has the
memory effects of the read of a volatile in Java. Hence, it does not
allow any instruction after it to execute until it completes. Simi-
larly, the write to an AtomicInteger has the memory effects of the
write to a volatile in Java. Hence, it does not execute until all the
instructions before it complete.

6.5 Optimizations
In the implementation of our algorithm, we also include the static
optimizations that were described in [24]. These optimizations
eliminate redundant updates to the shadow memory location due to
redundant reads and writes to the corresponding memory location
with a single step. These are static optimizations that perform data
flow analysis on the input program to identify redundant shadow
memory updates. The optimizations include: main-task check elim-
ination, read-only check elimination, escape analysis to eliminate
task-local checks, loop-invariant check optimizations, and read-
/write check elimination. We note that these optimizations can be
used to improve the performance of any race detection algorithm.
We have also identified a number of dynamic optimizations that
can reduce the space and time overhead of the DMHP algorithm
even further. We leave those as future work.

7. Experimental Results
In this section, we present experimental results for our algorithm,
which for convenience we refer to as SPD3 (Scalable Precise Dy-
namic Datarace Detection). The algorithm was implemented as
a Java library for detecting data races in HJ programs contain-
ing async and finish constructs [6]. Shadow locations were imple-
mented by extending the hj.lang.Object class with shadow
fields, and by using array views [6, 24] as anchors for shadow
arrays. Programs were instrumented for race detection during a
bytecode-level transformation pass implemented on HJ’s Parallel
Intermediate Representation (PIR) [30]. The PIR is an intermedi-
ate representation that extends Soot’s Jimple IR [28] with parallel
constructs such as async and finish. The instrumentation pass adds
the necessary calls to our race detector library at async and finish
boundaries and on reads and writes to shared memory locations.

We also compare SPD3 with some race detectors from past
work, namely Eraser [25], FastTrack [13], and ESP-bags [24]. For
Eraser and FastTrack, we use the implementations included in the
RoadRunner tool [14]. Since the performance of the FastTrack im-
plementation available in the public RoadRunner download yielded
worse results than those described in [13], we communicated with
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Figure 3. Relative slowdown of SPD3 for all benchmarks on 1, 2, 4, 8, and 16 threads. Relative slowdown on n threads refers to the slowdown
of the SPD3 version on n threads compared to the HJ-Base version on n threads.

Table 1. List of Benchmarks Evaluated
Source Benchmark Description

JGF
Series (C) Fourier coefficient analysis
LUFact (C) LU Factorisation
SOR (C) Successive over-relaxation

(Section 2) Crypt (C) IDEA encryption
Sparse (C) Sparse Matrix multiplication

JGF MolDyn (B) Molecular Dynamics simulation

(Section 3) MonteCarlo (B) Monte Carlo simulation
RayTracer (B) 3D Ray Tracer

Bots

FFT (large) Fast Fourier Transformation
Health (large) Simulates a country health system
NQueens (14) N Queens problem
Strassen (large) Matrix Multiply with Strassen’s method

Shootout Fannkuch (10M) Indexed-access to tiny integer-sequence
Mandelbrot (8000) Generate Mandelbrot set portable bitmap

EC2 Matmul (1000ˆ2) Matrix Multiplication (Iterative)

the implementers and received an improved implementation of
FastTrack which was used to obtain the results reported in this pa-
per. For ESP-bags, we used the same implementation that was used
in [24].

Our experiments were conducted on a 16-core (quad-socket,
quad-core per socket) Intel Xeon 2.4GHz system with 30 GB mem-
ory, running Red Hat Linux (RHEL 5), and Sun Hotspot JDK 1.6.
To reduce the impact of JIT compilation, garbage collection and
other JVM services, we report the smallest time measured in 3 runs
repeated in the same JVM instance for each data point. HJ tasks
are scheduled on a fixed number of worker threads using a work-
stealing scheduler with an adaptive policy [17]

7.1 Evaluation of SPD3
We evaluated SPD3 on a suite of 15 task-parallel benchmarks
listed in Table 1. It includes eight Java Grande Forum bench-
marks (JGF) [27], four Barcelona OpenMP Task Suites bench-
marks (BOTS) [11], two Shootout benchmarks [2], and one EC2
challenge benchmark.

All benchmarks were written using only finish and async con-
structs for parallelism, with fine grained one-async-per-iteration
parallelism for parallel loops. As discussed later, the original ver-
sion of the JGF benchmarks contained “chunked” parallel loops

with programmer-specified decomposition into coarse grained one-
chunk-per-thread parallelism. The fine grained task-parallel ver-
sions of the JGF benchmarks used for the evaluation in this section
were obtained by rewriting the chunked loops into “unchunked”
parallel loops. In addition, barrier operations in the JGF bench-
marks were replaced by appropriate finish constructs.

HJ-Base refers to the uninstrumented baseline version of each
of these benchmarks. All the JGF benchmarks were configured to
run with the largest available input size. All input sizes are shown
in Table 1.

No data race was expected in these 15 programs, and SPD3
found only one data race which turned out to be a benign race.
This was due to repeated parallel assignments of the same value
to the same location in the async-finish version of the MonteCarlo
benchmark, which was corrected by removing the redundant as-
signments. After that, all the benchmarks used in this section were
observed to be data-race-free for the inputs used.

Figure 3 shows the relative slowdown of SPD3 for all bench-
marks when executed with 1, 2, 4, 8, and 16 worker threads. (Recall
that these benchmarks create many more async tasks than the num-
ber of worker threads.) The relative slowdown on n threads refer to
the slowdown of the SPD3 instrumented version of the benchmark
executing on n threads compared with the HJ-Base version execut-
ing on n threads. Ideally, a scalable race detector should have a con-
stant relative slowdown as the number of worker threads increases.
As evident from Figure 3, the slowdown for many of the bench-
marks decrease as the number of worker threads increases from 1
to 16. The geometric mean of the slowdowns for all the benchmarks
on 16 threads is 2.78×.

Though the geometric mean is below 3×, four of the 15 bench-
marks (Crypt, LUFact, RayTracer, and FFT) exhibited a slowdown
around 10× for worker threads from 1 to 16. This is because these
benchmarks contain larger numbers of shared locations that need
to be monitored for race detection. As discussed later, other race
detection algorithms exhibit much larger slowdowns for these ex-
amples than SPD3. Note that even in these cases the slowdowns are
similar across 1 to 16 threads. This clearly shows that SPD3 scales
well.

The slowdown for 1-thread is higher than that for all other
threads in many benchmarks. This is because our implementation
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Figure 4. Slowdown of ESP-bags and SPD3 relative to 16-thread HJ-Base version for all benchmarks. Note that the ESP-bags version runs
on 1-thread while the SPD3 version runs on 16-threads.

uses compareAndSet operations on atomic variables. These oper-
ations are not optimized for the no contention scenario as with
1-thread. Instead, if we use a lock that is optimized for no con-
tention scenario, the slowdown for 1-thread cases would have been
a lot lower. But that implementation does not scale well for larger
numbers of threads. For example, the lock based implementation
is 1.8× slower (on average) than the compareAndSet implementa-
tion when running on 16-threads. While the two implementations
are close for many benchmarks (within a factor of 2), there is a
difference of upto 7× for some benchmarks, when running on 16-
threads. The compareAndSet implementation is always faster than
the lock based implementation for larger numbers of threads. Since
our aim was to make the algorithm scalable, we chose the compare-
AndSet approach.

7.2 Comparison with ESP-bags algorithm
In this section, we compare the performance of SPD3 with ESP-
bags [24]. Figure 4 shows the slowdown of ESP-bags and SPD3 for
all the benchmarks, relative to the execution time of the 16-thread
HJ-Base version. Note that the ESP-bags version runs on 1-thread
(because it is a sequential algorithm) while the SPD3 version runs
on 16-threads.

This comparison underscores the fact that the slowdown for
a sequential approach to datarace detection can be significantly
larger than that of parallel approaches, when running on a parallel
machine. For example, the slowdown is reduced by more than a
15× factor when moving from ESP-bags to SPD3 for Series and
MatMul benchmarks and by more than a 5× factor for benchmarks
like MolDyn and SparseMatMult that scale well. On the other hand,
the slowdown for Crypt is similar for ESP-bags and SPD3 because
the uninstrumented async-finish version of Crypt does not scale
well. On average, SPD3 is 3.2× faster than ESP-bags on our 16-
way system. This gap is expected to further increase on systems
with larger numbers of cores.

7.3 Comparison with Eraser and FastTrack
We only use the JGF benchmarks for comparisons with other algo-
rithms since those are the only common benchmarks with past work
on Eraser and FastTrack. However, since Eraser and FastTrack
work on multithreaded Java programs rather than task-parallel vari-
ants like HJ, they used the original coarse-grained one-chunk-per-

thread approach to loop parallelism in the JGF benchmarks with
one thread per core. Converting these programs to fine-grained
parallel versions using Java threads was not feasible since creat-
ing large numbers of threads quickly leads to OutOfMemoryEr-
ror’s. Further, it would also make the size of the vector clocks pro-
hibitively large in the program in order to provide the same sound-
ness and completeness guarantees as SPD3.

So, to enable an apples-to-apples comparison in this section,
we created coarse-grained async-finish versions of the JGF bench-
marks with chunked loops for the HJ versions. Since Eraser and
FastTrack were implemented in RoadRunner, we used the execu-
tion of the Java versions of these benchmarks on RoadRunner with-
out instrumentation (RR-Base) as the baseline for calculating the
slowdowns for Eraser and FastTrack. The differences between RR-
Base and HJ-Base arise from the use of array views in the HJ ver-
sion, and from the use of finish operations instead of barriers as
discussed below.

Our first observation when running SPD3 on the coarse grained
HJ versions of the eight JGF benchmarks was that data races were
reported for four of the benchmarks: LUFact, MolDyn, RayTracer,
and SOR. The data race reports pointed to races in shared arrays
that were used by the programmer to implement custom barriers.
However, all the custom barrier implementations were incorrect be-
cause they involved unsynchronized spin loops on shared array el-
ements. Even though the programmer declared the array references
as volatile, the volatile declaration does not apply to the elements of
the array. (In all fairness to the programmer, the JGF benchmarks
were written in the late 1990’s when many Java practitioners were
unaware of the implications of the Java memory model.)

Our second observation is that the default Eraser and FastTrack
tools in the RoadRunner implementation did not report most of
these data races. The only race reported was by FastTrack for SOR.
After communication with the implementers of RoadRunner, we
recently learned that RoadRunner recognizes a number of common
barrier class implementations by default and generates special Bar-
rier Enter and Barrier Exit events for them which in turn enables
Eraser and FastTrack to take the barriers into account for race de-
tection (even though the barriers are technically buggy). Further a
“-nobarrier” option can be used to suppress this barrier detection.
We confirmed that all races were reported with the “-nobarrier”
option. However, all RoadRunner performance measurements re-



ported in this paper were obtained with default settings i.e., without
the “-nobarrier” option.

Our third observation is that Eraser reported false data races for
many benchmarks. This is not surprising since Eraser is known to
not be a precise datarace detection algorithm.

To undertake a performance comparison, we converted the four
benchmarks to race-free HJ programs by replacing the buggy bar-
riers by finish operations. In some cases, this caused the HJ-base
version to be slower than the RR-base version as a result (since RR-
base measures the performance of the unmodified JGF benchmarks
with custom barriers). Before we present the comparison, it is also
worth noting that the implementation of Eraser and FastTrack in
RoadRunner include some optimizations that are orthogonal to the
race detection algorithm used [14]. Similarly, the static optimiza-
tions from [24] included in our implementation of SPD3 are also
orthogonal to the race detection algorithm. Both these sets of op-
timizations could be performed on any race detection algorithm to
improve its performance.

Table 2. Relative slowdown of Eraser, FastTrack and SPD3 for
JGF benchmarks on 16 threads. The slowdown of Eraser and Fast-
Track was calculated over their baseline RR-Base while the slow-
down of SPD3 was calculated over its baseline HJ-Base. For bench-
marks marked with *, race-free versions were used for SPD3 but
the original versions were used for Eraser and FastTrack.

Benchmark RR-Base Eraser FastTrack HJ-Base SPD3
Time(s) Slowdown Time(s) Slowdown

Crypt 0.362 122.40 133.24 0.585 1.84
LUFact* 1.47 17.95 26.41 5.411 1.08

MolDyn* 16.185 8.39 9.59 3.750 13.56
MonteCarlo 2.878 10.95 13.54 5.605 1.86
RayTracer* 2.186 20.23 17.45 19.974 5.84

Series 112.515 1.00 1.00 88.768 1.00
SOR* 0.914 4.26 8.36 2.604 4.53
Sparse 2.746 14.29 20.59 4.607 1.72

GeoMean - 11.21 13.87 - 2.63

Table 2 shows the slowdowns of Eraser, FastTrack, and SPD3
for all the JGF benchmarks on 16 threads. Note that the slowdown
of Eraser and FastTrack were calculated relative to RR-Base (with
16 threads), and the slowdown of SPD3 was calculated over HJ-
Base (with 16 threads). For benchmarks marked with *, race-free
versions were used for SPD3 but the original versions were used for
Eraser and FastTrack; this accounts for differences in the execution
times of RR-Base and HJ-Base for some benchmarks since the
async-finish versions include more synchronization to correct the
bugs in the original Java versions.

Table 2 shows that the relative slowdowns for Eraser and Fast-
Track are much larger than those for SPD3. On average (geometric
mean), the slowdown for SPD3 relative to HJ-base is 2.70× while
that for Eraser and FastTrack are 11.21× and 13.87× respectively
relative to RR-base. There is also a large variation. While the slow-
downs are within a factor of 2 for SOR, there is more than a 60×
gap in slowdowns for Crypt and quite a significant difference for
LUFact, MonteCarlo, and SparseMatMult as well. The slowdown
for SPD3 on MolDyn is larger than the slowdowns for Eraser and
FastTrack because the baseline for SPD3 is more than 4× faster
than the baseline for Eraser and FastTrack. For FastTrack, these
slowdowns are consistent with the fact that certain data access pat-
terns (notably, shared reads) can lead to large overheads because
they prevent the use of optimized versions of vector clocks.

For the case with the largest gap in Table 2 (Crypt), Figure 5
shows the slowdown (scaled execution time) of RR-Base, Eraser,
FastTrack, HJ-Base, and SPD3 for the chunked version of the
Crypt benchmark on 1-16 threads relative to the 16-thread RR-
Base execution time. In this benchmark, RR-Base is the fastest for
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Figure 5. Slowdown (relative to 16-threads RR-Base) of RR-Base,
Eraser, FastTrack, HJ-Base, and SPD3 for Crypt benchmark (chun-
ked version) on 1-16 threads

16 threads as expected. The execution time of HJ-Base is 1.9×
slower than RR-Base in the 1-thread case and 1.6× slower than
RR-Base in the 16-thread case. Similarly, the execution time of
SPD3 version is also very close; it is 4.2× slower in the 1-thread
case and 3× slower in the 16-thread case. The execution time
of Eraser and FastTrack are 13.7× and 16.6× slower than RR-
Base in the 1-thread case but they increase to more than 100×
for 8-threads and 16-threads. This example shows that for some
programs the performance overheads for Eraser and FastTrack can
increase dramatically with the number of threads (cores).

7.4 Memory Overhead
We now compare the memory overheads of the Eraser, FastTrack
and SPD3 algorithms on the coarse-grained JGF benchmarks.
Again, the baseline for Eraser and FastTrack was RR-Base and
the baseline for SPD3 was HJ-Base. To obtain a coarse estima-
tion of the memory used, we used the -verbose:gc option in the
JVM and picked the maximum heap memory used over all the GC
executions in a single JVM instance. All three instrumented ver-
sions trigger GC frequently, so this is a reasonable estimate of the
memory overhead.

Table 3. Peak heap memory usage of RR-Base, Eraser, FastTrack,
HJ-Base, and SPD3 for JGF benchmarks on 16 threads. For bench-
marks marked with *, race-free versions were used for SPD3 but
the original versions were used for Eraser and FastTrack.

Benchmark Memory (in MB)
RR-Base Eraser FastTrack HJ-Base SPD3

Crypt 209 8539 8535 149 6009
LUFact* 80 1790 2455 47 203

MolDyn* 382 1048 1040 9 35
MonteCarlo 1771 9316 9292 557 584
RayTracer* 1106 4475 4466 43 88

Series 80 1067 1062 162 177
SOR* 81 1161 1551 47 202
Sparse 225 2120 2171 88 714

Table 3 shows the estimated memory usage of these three algo-
rithms and their baselines for JGF benchmarks on 16 threads. The
table shows that the memory usage of HJ-Base is lower than that
of RR-Base in all the benchmarks except Series. In all cases, the
memory usage is lower for SPD3, compared to Eraser and Fast-
Track with significant variation in the gaps. The memory usage of
Crypt with SPD3 is quite high because the benchmark has arrays
of size 20 million and our algorithm maintains shadow locations
for all elements of these arrays. But the memory used by SPD3
for Crypt is still less than that of Eraser and FastTrack. The high
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Figure 6. Estimated heap memory usage (in MB) of RR-Base,
Eraser, FastTrack, HJ-Base, and SPD3 for LUFact benchmark

memory usage for Eraser and FastTrack is not surprising because
Eraser has to maintain all the locks held while accessing a particu-
lar location, and FastTrack’s vector clocks may grow linearly in the
number of threads in the worst case.

For one of the benchmarks in Table 3 (LUFact), Figure 6 shows
the estimated memory usage of the three algorithms and their base-
lines as a function of the number of threads/cores used. Note that
both the baselines (RR-Base and HJ-Base) are very close. While
the estimated heap usage of RR-Base remains constant at 80M ,
the estimated usage of HJ-Base varies from 33M to 47M as we go
from 1 thread to 16 threads. The estimated heap usage of SPD3 is
about 6× larger than HJ-Base: it varies between 192M and 203M
across 16 threads. The estimated heap usage of Eraser increases
from 833M for 1 thread to 1790M for 16 threads (2.1× increase).
Similarly, the estimated heap usage of FastTrack increases from
825M for 1 thread to 2455M for 16 threads (3× increase). This
clearly shows the increase in the memory usage for Eraser and Fast-
Track as we increase the number of threads for this benchmark.

8. Related Work
In the introduction, we outlined the key differences between our al-
gorithm and FastTrack. In summary, on one hand, our algorithm
uses O(1) space per memory location, while in the worst-case,
FastTrack uses O(n). On the other, FastTrack handles more gen-
eral computation graphs than those supported by our model. The
time overhead of our algorithm is characteristic of the application,
since it depends on the height of the LCA nodes in the DPST. It is
independent of the number of threads (processors) the program ex-
ecutes on. On the other hand, FastTrack’s worst-case time overhead
is linear in the number of threads, which can grow very large with
increasing numbers of cores.

Schonberg [26] presented one of the earliest dynamic data race
detection algorithm for nested fork-join and synchronization oper-
ations. In this algorithm, a shared variable set is associated with
each sequential block in every task. There is also a concurrency list
associated with each shared variable set which keeps track of the
concurrent shared variable sets that will complete at a later time.
The algorithm detects anomalies by comparing complete concur-
rent shared variable sets at each time step. This algorithm applies
only to a single execution instance of a program, as mentioned
in [26]. The space required to store read information in the shared
variable sets is bounded by V ×N , where V is the number of vari-
ables being monitored and N is the number of execution threads 1.

1 If N refers to the maximum number of threads possible in all executions
of a program for a given input, then this algorithm can guarantee data race
freedom for all executions of the program for that input. If not, then this
guarantee will not hold.

This space requirement increases with an increase in the number of
threads the program is executed on, whereas our algorithm’s space
requirement is independent of the number of threads the program is
executed on. A limitation of this work is that since access anoma-
lies are detected at synchronization points, it does not identify the
actual read and write operations involved in the data races.

Offset-Span (OS) labeling [21] is an optimized version of the
English-Hebrew (EH) labeling technique [10] for detecting data
races. The idea behind both these techniques is to attach a label
to every thread in the program and use these labels to check if
two threads can execute concurrently. They also maintain the ac-
cess history for every shared variable that is monitored which is
then used to check for conflicts. The length of the labels associ-
ated with each thread can grow arbitrarily long in EH labeling2,
whereas the length of the labels in OS labeling is bounded by the
maximum nesting depth of fork-join in the program. While the EH
labeling technique needs an access history of size equal to the num-
ber of threads for every monitored variable in the program, the OS
labeling technique only needs constant size to store access his-
tory. While OS labeling algorithm supports only nested fork-join
constructs, our algorithm supports a more general set of dynamic
graphs. Further, though the OS labeling algorithm can execute the
input program in parallel, it has been evaluated in a sequential set-
ting only [22]. The effectiveness of this algorithm in a parallel im-
plementation is not clear.

A related work on data race detection for structured parallel pro-
grams was done as part of the Cilk project [4]. This work gives
an algorithm called SP-hybrid, which detects races in the pro-
gram with a constant space and time overhead. Their algorithm
has the best possible theoretical overheads for both space and time.
However, despite its good theoretical bounds, the SP-hybrid algo-
rithm is very complex and incurs significant inefficiencies in prac-
tice. The original paper on SP-hybrid [4] provides no evaluation
and subsequent evaluation of an incomplete implementation of SP-
hybrid [18] was done only for a small number of processors. One
indicator of the inefficiency of SP-hybrid can be seen in the fact
that the CilkScreen race detector used in Intel Cilk++ [1] uses the
sequential All-Sets algorithm [8] rather than the parallel SP-hybrid
algorithm. Another drawback of their algorithm is that it is tightly
coupled with Cilk’s work-stealing scheduler. Hence, their algo-
rithm cannot be applied directly to other schedulers. In contrast,
our algorithm is amenable to an efficient implementation, performs
very well in practice, supports a more general set of computation
graphs than Cilk’s spawn/sync and is also independent of the un-
derlying scheduler.

There has also been work on data race detection algorithms for
spawn/sync [12] and async/finish models [24]. While they require
only O(1) space overhead per memory location, these algorithms
must process the program in a sequential depth-first manner, fun-
damentally limiting the scalability of these approaches. In contrast,
the algorithm presented in this work can process the program dur-
ing parallel execution, while still requiring only O(1) space per
memory location.

9. Conclusion and Future Work
In this work, we presented a new dynamic data race detection algo-
rithm for structured parallel programs. The algorithm can process
the program in parallel, uses O(1) space per memory location and
admits an efficient implementation. The algorithm tracks what can
happen in parallel via a new data structure called the dynamic pro-
gram structure tree (DPST), and maintains two readers and a writer

2 Note that the length of the labels is bounded by the maximum nesting
level of fork-join in EH labeling in the presence of an effective heuristic as
reported in [10]



for each shared memory location in order to track potential con-
flicts between different tasks. We implemented the algorithm and
demonstrated its effectiveness on a range of benchmarks. In future,
it could be interesting to extend the algorithm to other structured
parallel constructs such as HJ’s phaser construct [6].
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