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ABSTRACT

Optimized Runtime Systems for MapReduce Applications in Multi-core Clusters

by

Yunming Zhang

This thesis proposes a novel runtime system, Habanero Hadoop, to address the

ine�cient utilization of memory on multi-core machines by the Hadoop MapReduce

runtime system. The Hadoop runtime duplicates large in-memory data structures on

each node, reducing the available memory for the application. This memory ine�-

ciency leads to a scalability bottleneck in problems such as data clustering and clas-

sification. The Habanero Hadoop system integrates a shared memory model into the

fully distributed memory model of the Hadoop MapReduce system, eliminating du-

plication of in-memory data structures. Previous work optimizing multi-core perfor-

mance for MapReduce runtimes focused on maximizing CPU utilization rather than

memory e�ciency. This thesis explores multiple approaches to improving the mem-

ory e�ciency of the Hadoop MapReduce runtime. The resulting Habanero Hadoop

runtime can increase the throughput and maximum input size for widely-used data

analytics applications such as KMeans and hash join by two times.
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Chapter 1

Introduction

Big data computing has become an essential part of web scale companies and scientific

communities. For example, when indexing the web, Google stores and processes

uncompressed webpages it gathers to create the inverted index data, which is needed

to provide web search services. The uncompressed web pages and the inverted index

consist of tens of terabytes of data [1]. Scientists also need to find ways to process

petabytes of data produced by instruments such as the Large Hadron Collider or

astrophysical observations. Many data analytics problems center around clustering

together similar data, classifying unknown data based on classified data and joining

di↵erent data sets. An e�cient and scalable big data computing software framework

can not only save scientists and programmers thousands of hours and millions of

dollars every year, but also allow them to tackle larger problems.

Many of these data intensive applications are trivially parallel and can scale to

hundreds and thousands of machines in data centers. MapReduce [2] is a popular soft-

ware framework that enables programmers to write data parallel programs that can

run on thousands of machines with support for automatic concurrency management,

locality-aware scheduling and fault tolerance. The Apache Hadoop implementation

of MapReduce has been widely adopted due to its scalability, reliability and support

from the open source community [3]. Hadoop runtime executes large scale data ana-

lytics applications using commodity class computer clusters at a fraction of the cost

of expensive supercomputers or high-end servers [1].
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The current Hadoop MapReduce implementation uses multi-core systems by de-

composing a MapReduce job into multiple map/reduce tasks that can execute in

parallel. Each map/reduce task is executed in a separate JVM instance. The num-

ber of JVMs created in a single node (machine) can have a significant impact on

performance due to their aggregate e↵ects on CPU and memory utilization.

For memory-intensive applications, Hadoop MapReduce’s design for exploiting

multi-core resources can lead to a performance and scalability bottleneck. Some read-

only in-memory data structures used by the MapReduce applications are duplicated

across JVMs. Additionally, creating a large number of map tasks incurs non-trivial

aggregated memory overhead. As the applications try to solve larger problems, the

size of the in-memory data structures increases. When the memory usage of map/re-

duce tasks starts approaching the memory limit allocated per JVM, the frequency of

garbage collection calls increases significantly, leading to a decrease in the system’s

throughput. For example, a typical hash join application requires each map task to

store a copy of the lookup table in memory [4]. To make su�cient memory available

to each map task, memory intensive applications are often forced to restrict the num-

ber of map task JVMs created to be smaller than the number of cores in a node at the

expense of reducing CPU utilization. This e↵ect is shown in Figure 1.1. Throughput

drops quickly when there is insu�cient memory for the increasingly larger lookup

table.

The fundamental reason for the memory ine�ciency in Hadoop MapReduce model

is that it adopts a fully distributed memory model. Each task on the same machine

executes in its own memory space and can only take advantage of a single core e�-

ciently.

The Habanero Hadoop system eliminates the duplication of data structures be-
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Figure 1.1 : Memory Wall for hash join Application

tween tasks on the same node through enabling intra-task parallelism and creating a

shared-memory space between map tasks running on the same compute node. With

reduced duplication of data structures, the optimized runtime increases the memory

available to each map task and pushes back the memory wall significantly.

1.1 Thesis Statement

The performance of MapReduce runtimes for large-scale data analytics applications

can be significantly improved by better utilization of the memory resources in multi-

core systems.

1.2 Contributions

This thesis makes the following contributions:

• It provides a detailed study of the memory wall performance bottleneck in pop-
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ular memory-intensive data analytics applications, such as KMeans, K Nearest

Neighbors (KNN) and hash join running on the Hadoop MapReduce runtime.

• It describes an implementation of the Habanero Hadoop runtime that improves

the memory e�ciency of the Hadoop MapReduce runtime and breaks the mem-

ory wall for the applications by enabling e�cient intra-map-task parallelism and

creating shared-memory space across map tasks running on the same compute

node.

• It presents an evaluation of the performance benefits using the optimized Ha-

banero Hadoop runtime system for KMeans, KNN and hash join.

1.3 Thesis Roadmap

This thesis consists of the following chapters

Chapter 2 provides some background about the implementation of the Hadoop

MapReduce runtime. Specifically, the chapter analyzes the current design for utilizing

multi-core systems in Hadoop MapReduce and identify the source of the ine�cient

memory utilization.

Chapter 3 describes the design and implementation of hash join, KMeans and

KNN applications on MapReduce systems.

Chapter 4 introduces novel runtime improvements implemented in the Habanero

Hadoop system to improve the memory resource utilization in multi-core nodes in the

cluster, including Parallel Mapper, Compute Server and Hyrbid approaches.

Chapter 5 evaluates the throughput, memory footprint and CPU utilization of

three di↵erent applications running on the Habanero Hadoop runtime system.

Chapter 6 discusses related work on applying the MapReduce programming model
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on clusters and shared-memory multi-core systems. In addition, the chapter also

examines previous work that uses MapReduce for machine learning and hash join

applications.

Chapter 7 summarizes the thesis and identifies opportunities for possible future

work.
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Chapter 2

Background

This chapter explains the MapReduce programming model and examines the imple-

mentation of the Hadoop MapReduce runtime. Specifically, we focus on the impact

on memory e�ciency of running multiple map tasks in parallel. In Hadoop MapRe-

duce runtime, large in-memory data structures used by the popular data analytics

applications are duplicated across di↵erent map tasks.

2.1 MapReduce Programming Model

The MapReduce programming model divides computation into map, shu✏e and re-

duce phases as shown in Figure 2.1.

Figure 2.1 : The MapReduce Programming Model
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The map phase partitions input data into many input splits and automatically

stores them across a number of machines in the cluster. Once input data are dis-

tributed across the cluster, the runtime creates a large number of map tasks that

execute in parallel to process the input data. The map tasks read in a series of

key-value pairs as input and produce one or more intermediate key-value pairs. A

key-value pair is the basic unit of input to the map task.

We use the WordCount application, which counts the number of occurrences of

each word in a series of text documents, as an example. In the case of processing

text documents, a key-value pair can be a line in a text document. The user can

customize the definition of a key-value pair. The most important part for the users

is to specify what to do with each key-value pair. They do so by extending a Mapper

class and implementing a map() function within it, as shown in Figure 2.2. A map

task is a process that executing the map function. The map tasks read in a series of

key-value pairs as input and produce one or more intermediate key-value pairs. In

the WordCount application, the user defines the function that processes each line of

text input in the map phase. The user specified map function goes through each word

and creates an intermediate key-value pair for each word in the line. The key-value

pair consists of the word and a number, one, showing that it has been seen once in

the line.

The intermediate key-value pairs are shu✏ed, grouped together and sorted by key.

In WordCount, the key-value pairs that have the same key (the word) are grouped

together to form a new key-value pair.

Once the intermediate key-value pairs are grouped and sorted, they are assigned to

specific reduce tasks. The reduce stage then takes the grouped intermediate key-value

pairs and processes each key-value pair to produce the final output pairs. Again, the
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user specifies the function processing each input key-value pair to the reduce task. To

do this, one extends a Reducer class and implements a reduce() function, as shown in

Figure 2.3. In WordCount, the reduce function counts the occurrences for each word

by summing up the set of ones produced each time the word was seen.

public class MyMapper extends

Mapper <LongWritable,Text,

Text, LongWritable> {

public void map(LongWritable key,

Text value,

Contextcontext) {

...

}

}

Figure 2.2 : User implemented Mapper Class

public class MyReducer extends

Reducer <LongWritable,Text,

Text, LongWritable> {

public void reduce(LongWritable key,

Text value,

Contextcontext) {

...

}

}

Figure 2.3 : User implemented Reducer Class
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2.2 Hadoop MapReduce Runtime

MapReduce runtime is an open source implementation of the MapReduce model first

proposed by Google [2]. It automatically handles task distribution, fault tolerance

and other aspects of distributed computing, making it much easier for programmers

to write data parallel programs. It also enables Google to exploit a large number

of commodity computers to achieve high performance at a fraction of the cost of a

system built from fewer but more expensive high-end servers [1]. MapReduce scales

performance by scheduling parallel tasks on nodes that store the task inputs. Each

node executes the tasks with loose communication with other nodes.

Hadoop [3] is an open source implementation of MapReduce. To use the Hadoop

MapReduce framework, the user first writes a MapReduce application using the pro-

gramming model we described in the previous section. The user then submits the

MapReduce job to a jobtracker, which is a Java application that runs in its own

dedicated JVM. The jobtracker is responsible for coordinating the job run. It splits

the job into a number of map/reduce tasks and schedules the execution of the tasks

across a large number of machines.

On each machine, there is a tasktracker process that is responsible for scheduling

and executing map/reduce tasks on the machine. Essentially, the jobtracker assigns

map/reduce tasks to tasktrackers and tasktrackers assigns the tasks to di↵erent cores.

The tasktracker process also runs in its own separate JVM. The system is shown in

Figure 2.4.

This thesis largely focuses on improving the execution of the tasks on a single

compute node.
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Figure 2.4 : How Hadoop runs a MapReduce job

2.2.1 Hadoop MapReduce for Multi-core

Tasktrackers have a fixed number of slots for map tasks and for reduce tasks. Each slot

corresponds to a JVM executing a task. Each JVM only employs a single computation

thread. To utilize more than one core, the user needs to configure the number of

map/reduce slots based on the total number of cores and the amount of memory

available on each node.

The configuration can be set in the mapred-site.xml file. The relevant properties

are

mapred.tasktracker.map.tasks.maximum, mapred.tasktracker.reduce.tasks.maximum.
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The examples in Figure 2.5 shows how to set four map slots and two reduce slots

on each compute node. The setting can be used to express heterogeneity of the

machines in the cluster. This setting can be di↵erent for each compute node. The

reason is that di↵erent machines in the cluster can have a di↵erent number of cores

and di↵ering amounts of memory.

<property>

<name>mapred.tasktracker.map.tasks.maximum</name>

<value>4</value>

</property>

<property>

<name>mapred.tasktracker.reduce.tasks.maximum</name>

<value>2</value>

</property>

Figure 2.5 : Setting the map slot and reduce slot property in mapred-site.xml

The Hadoop MapReduce system first starts up using the user specified configura-

tions. Once the system has been started, the tasktracker picks up tasks assigned to

it by periodically making heartbeat method calls to the job tracker to see if there are

any task ready for execution.

After the tasktracker has been assigned a task, it starts to execute the task. The

first step is to copy user’s application code packed in a JAR file to the local node’s

filesystem and unpack it into a local working directory. Then a taskrunner instance is

created by the tasktracker to run the task. To prevent bugs in the user-defined map

and reduce functions from crashing the tasktracker process, a new JVM is launched

by the tasktracker to execute the map/reduce task. As a result, each map/reduce

task is executed in a separate JVM instance. The number of JVMs created in a single
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node (machine) can have a significant impact on performance due to their aggregate

e↵ects on CPU and memory utilization.

There is a tendency to spawn a large number of tasks, and thus JVMs, to improve

CPU utilization in multi-core systems. For example, it is not uncommon to create

24 map tasks on an 8-core machine. However, this approach is only e↵ective for non-

memory-intensive applications because if each task takes up a significant amount of

memory, it is di�cult to create a large number of tasks on each compute node.

Since each JVM is isolated in its own memory space, each Map task running in

its own JVM shares no memory with other map tasks on the same node. As a result,

data structures used in map tasks are duplicated across JVMs, including in-memory,

read-only data structures needed by map/reduce applications. For memory-intensive

applications, Duplication of identical data structures can significantly reduce the total

amount of memory available to each map task because the duplicated in-memory,

read-only data structures needed by the application can take up a lot of memory

space, as shown in Figure 2.6.

For example, a typical hash join application requires each map task to store a

copy of the lookup table in memory [4]. Duplicating the lookup table will decrease

the amount of memory available to each map task.

To make su�cient memory available to each map task, memory intensive appli-

cations are often forced to restrict the number of JVMs created to be smaller than

the number of cores in a node at the expense of reducing CPU utilization. For ex-

ample, in a machine with four cores and 4 GB of RAM, the system needs to create

four map tasks to use the four cores. However, if 1 GB RAM is insu�cient for each

map task, the Hadoop MapReduce system can create only two map tasks with 2 GB

RAM available to each task. With two map tasks, the runtime system utilizes only
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Figure 2.6 : Hadoop MapReduce on a four cores system

two of the four available cores or 50 percent of the CPU resources. This is shown in

Figure 2.7.

In the next chapter, we will examine the design and implementation of three

popular memory-intensive data analytics applications.
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Figure 2.7 : Hadoop MapReduce increasing available memory for each map task on
a four cores system
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Chapter 3

Motivating Applications

The large memory footprint of read-only in-core data structures used by hash join,

KMeans and K Nearest Neighbors (KNN) limit the number of separate processes that

can run on a multi-core node. In this chapter, we describe the implementations of

three popular memory-intensive MapReduce applications: Hash join [5], KMeans [6,

7] and KNN. We characterize these applications according to their memory usage,

I/O and computation intensity.

3.1 Hash Join

Hash join is an important application for combining data from di↵erent sources. A

MapReduce implementation of hash join is essential for analyzing large data sets. For

example, hash join plays a crucial role in analyzing terabytes of unstructured logs [5].

It is also an fundamental part of distributed databases such as Pig [8] and Hive [9].

Hash join takes as input two tables, a data table S and a reference table R, and

performs an equi-join on a single column of the two tables, as shown below

S 1 R,with|S| � |R|.

It is often the case that the size of one table S is much larger than the other data

set R [4, 10, 5]. Since the larger data set S is too large to fit in one compute node,

the hash join application has to divide up the data set S to process it across compute

nodes in parallel. The smaller data set R is small enough that it can be loaded into
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Figure 3.1 : Hash join on multi-core system

the memory of a single compute node. The implementation only needs to use the

map phase of the MapReduce job.

The Hadoop MapReduce runtime splits up S into small pieces and uses them as

input to each map task. It broadcasts the smaller R to every map task and loads R

into a hash table, as shown in Figure 3.1.

Each map task reads in one key-value pair from the split of S at a time and

queries the hash table containing R to see if there is a match. If there is a match,

then the matching key-value pair is outputted. At the end of the map phase, the

output key-value forms the output table.

It is implemented as a broadcast join by Blanas et al [5], Fragmented Replicated

Join [4] in Pig [8] and MapSide join [10] in Hive [9]. We use a version that is a variant

of the broadcast join.
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Figure 3.2 : KMeans

The memory footprint of each map task is large because the hash table containing

R takes up a lot of memory [10]. Hash join is not a compute intensive application as

each query to the hashtable takes constant time. The overall time complexity of the

Hash join application is O(|S|).

3.2 KMeans

Clustering algorithms group together similar items. Many clustering algorithms are

widely used in data analytics applications, including KMeans, FuzzyKMeans and

LDA [6, 7]. KMeans is a representative clustering application that is often used to

genereate topics in databases of documents. It takes as input the parameter k, and

partitions a set of n sample objects into k clusters.

For example, one popular application of KMeans is finding topics in news articles.

The n sample objects are news articles that we want to cluster into topics. The k

centroids are the topics as shown in Figure 3.2.

The algorithm first chooses k random objects as centroids. Then, it assigns every

sample object to a cluster that it is most similar to. Once all the sample objects have
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been assigned to a cluster, the algorithm recalculates the centroid location of each

cluster. The process repeats until the centroid value stabilizes.

Since each sample object can be processed independently, the algorithm splits the

sample objects into subgroups and clusters samples in each subgroup separately in

parallel.

We use an implementation of KMeans following a widely adopted design [6, 7].

Each of the n objects is represented as a sample vector. The cluster centroids are

represented as a vector as well. In the Map phase, each map task first reads in a

file containing centroid data and creates an array containing all the cluster centroid

vectors. Next, each map task reads in a subgroup of the n sample vectors. A map

task calculates the similarity between each sample vector with all k centroids and

assigns the sample vector to the most similar cluster. We use Euclidean distance for

measuring the similarity of two vectors. At the end of each map task, the algorithm

creates a partial sum of the sample vectors and the number of sample vectors in each

cluster.

In the reduce phase, the algorithm adds up the partial sums of each cluster and

divides it by the number of samples in each cluster to calculate the new center coor-

dinates of the cluster.

Every MapReduce job recalculates the cluster centroids. Multiple MapReduce

jobs are chained together to iteratively improve the quality of the cluster centroids.

The algorithm terminates when the centroids have stabilized or when it reaches a

maximum number of iterations.

The KMeans application is very memory-intensive because each map task needs to

keep the cluster centroids data in memory. A map task performs only read operations

on the cluster centroids data. Since each map task is running in a separate JVM
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with no shared memory space among the JVMs, the read-only data are duplicated

multiple times as shown in figure 3.3. This duplication reduces the amount of memory

available to each map task, limiting the number of clusters KMeans can generate.

For many clustering applications, the number of clusters K can be very large.

Mahout [7] suggested the user to use 2000 clusters for a database of a million news

articles. The number is calculated based on the assumption that there are about 500

news articles published about every topic. We will need more clusters if we assume

fewer news articles are published about each topic or if we are working with a larger

database. In addition, scientific applications, including clustering astronomical data,

need to generate tens of thousands of clusters.

As a result, a memory e�cient runtime can allow scientists and programmers to

perform clustering operations with a large number of clusters without incurring any

penalty to the throughput.

The KMeans application is compute intensive. For n sample objects and k clusters,

you need to perform O(|n|⇥ |k|) similarity computations.

3.3 K Nearest Neighbors

Classification is another popular class of machine learning applications that use a

large in-memory data set [11]. One of the most widely used classification algorithm

is the K Nearest Neighbors algorithm (KNN).

KNN uses two data sets, a query set Q and a training set T. It classifies the

elements of Q into di↵erent categories by comparing every element with the already

classified training set T. It chooses the K closest elements in T, as shown in Figure 3.4.

The Hadoop MapReduce runtime splits up T into small pieces and uses them as

inputs to the map tasks. In the map phase, the algorithm first loads into memory
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Figure 3.3 : KMeans on multi-core system

the complete query set Q, as shown in Figure 3.5. Next, for each element in Q,

it calculates the distance to every element in the split of T. The application uses a

priority queue to store partial results containing only the top K most similar elements

in T. In the reduce phase, the reduce tasks aggregate all the partial top K elements

to compute the overall top K elements in T for each element in Q.

KNN is a memory intensive application because it keeps the query set Q in the

memory. KNN is a more compute intensive application than Hash join because it

performs distance calculations between every point in Q and every point in T, leading

to a time complexity of O(|Q|⇥ |T |).
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Figure 3.4 : K Nearest Neighbors

Figure 3.5 : KNN on multi-core system
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Chapter 4

Habanero Hadoop

This chapter describes the design, implementation and programming model of the

approaches that we explored in Habanero Hadoop. They are ParMapper, Compute

Server and Hybrid approaches. These approaches improves the memory e�ciency of

the multi-core system without incurring any penalty to the throughput of the system.

We focus on optimizing the map phase of the applications because the map phase

dominates the computation time for popular data analytics applications, including

KMeans, KNN and hash join. The optimizations we implemented should be easily

applied to the reduce phase as well.

We started with the ParMapper approach. The ParMapper approach is e↵ective

for compute intensive applications such as KMeans and KNN. However, the limited

I/O capability of ParMapper is inadequate for more I/O intensive applications such

as hash join.

To overcome the I/O bottleneck in ParMapper, we introduce the Compute Server

approach that runs multiple map tasks in the same JVM, allowing the map tasks

to perform I/O operations in parallel. The Compute Server also creates a shared

memory space across di↵erent map tasks to eliminate duplications of the identical

data structures.

Finally, we explore a hybrid approach that achieves a good balance between I/O,

CPU utilization and memory e�ciency.
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4.1 Parallel Mapper

4.1.1 Design and Implementation

Because each Hadoop map task can only utilize a single computational thread, the

tasktracker has to create a large number of map tasks to utilize multiple cores, re-

sulting in the duplications of data structures across map tasks. The ParMapper

subdivides a single map task into multiple sub tasks and executes the sub tasks in

parallel using multiple computational threads. This way, the tasktracker only needs

to create one parallel map task to fully utilize multiple cores. Running a single par-

allel map task on each compute node avoids the duplications across a large number

of map tasks on each node.

To explain the implementation of the ParMapper, we first describe the implemen-

tation of the original Hadoop Mapper. By default, mappers sequentially generate

key-value pairs from their input split. Every time a key-value pair is generated, the

map task immediately processes it using the user defined map function. This design

is inherently sequential as the map task has to finish processing one key-value pair

before moving on to process the next one. The sequential way of processing the input

key-value pairs is shown in Figure 4.1.

while (hasAvailableKeyValuePair){

map(currentKey, currentValue)

}

Figure 4.1 : Implementation of the original sequential Hadoop Mapper

The ParMapper improves upon the original Hadoop mapper by subdivide the

input key-value pairs to the map task into chunks and process di↵erent chunks in



24

parallel, as shown in Figure 4.2. The ParMapper also generates parallel tasks dy-

namically and overlaps I/O and computation .

while (hasAvailableChunkKeyValuePair){

async{

for( pair in Chunk)

map(currentKey, currentValue)

}

}

Figure 4.2 : Implementation of the ParMapper

To overlap I/O and computation, the ParMapper dedicates a single I/O thread to

prefetch key-value pairs into a bu↵er while other worker threads are executing map

tasks. To do this, the runtime allocates a new bu↵er for each async task.

To generate dynamic task parallelism, the I/O thread starts an asynchronous

task to process a bu↵er once it is full. The algorithm for choosing the bu↵er size is

described below. A separate bu↵er is used for each worker thread to allow the JVM

to free up bu↵ers in completed tasks.

To load balance across multiple cores, the ParMapper needs to choose a good task

granularity for each worker thread. The granularity of each task is decided by the

bu↵er size. Since the execution time for each call to a map function for each pair

is di↵erent from application to application, there is not a fixed bu↵er size that is

good for all applications. We need to adaptively select a bu↵er size that will achieve

good performance. To do this, the main thread first reads in a small number of input

key-value pairs as a sample chunk and records the time it took to process the sample

chunk. Based on an empirically chosen desired running time for each chunk, the

runtime calculates a good bu↵er size. The implementation of ParMapper is shown in
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Figure 4.3 : Parallel Mapper for multi-core systems

Figure 4.3.

The ParMapper also improves CPU utilization for some compute intensive tasks.

The runtime dynamically subdivides each map task so that the granularity of tasks

assigned to each core is smaller than the original map task. The improved granularity

contributes to better load balance across cores. The e↵ect is shown in Chapter 5 for

the K Nearest Neighbors application.

4.1.2 Programming Model

The programming model for using the ParMapper is very straightforward as well. We

created a ParMapper class that can be extended by the user, just like a regular Mapper

class. The ParMapper automatically handles decompositions and parallelization of

individual map tasks. The users simply need to extend the ParMapper class instead
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of the Hadoop Mapper class to take advantage of the intra-task parallelism. The

multi-threading is completely transparent to the user. The old programming model

using Hadoop Mapper is shown in Figure 4.4 and the new programming model is

shown in Figure 4.5.

public class MyMapper extends

Mapper<LongWritable,Text,

Text, LongWritable> {

public void map(LongWritable key,

Text value,

Contextcontext) {

...

}

}

Figure 4.4 : The original programming model extending the Mapper

public class MyMapper extends

ParMapper <LongWritable,Text,

Text, LongWritable> {

public void map(LongWritable key,

Text value,

Contextcontext) {

...

}

}

Figure 4.5 : The new programming model extending the ParMapper

The ParMapper requires user-provided map functions to be thread-safe, so that

multiple input key-value pairs can be processed in parallel. Many MapReduce appli-

cations, for example grep, wordcount satisfy this constraint, as they don’t share any
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state when processing di↵erent key-value pairs. For applications, including KMeans

and hash join, they share an in-memory data structure when processing di↵erent key-

value pairs. However, since the map function is only performing read operations on

the shared data structure, the map task can execute data-race free.

In the cases that there are write operations performed in the map function on

a local variable, the users would need to use some locking mechanism to make sure

there is no data race from parallel calls to the map function.

The ParMapper approach is e�cient for compute intensive applications such as

KMeans and KNN because a single I/O thread can generate enough tasks to saturate

multiple cores. However, the parallel mapper approach can not take full advantage

of the CPU resources for data analytics applications that are I/O intensive, such

as hash join. For the I/O intensive applications, a single I/O thread can become a

performance bottleneck.

We were unable to incorporate parallel I/O threads in the ParMapper approach

because the Hadoop Distributed File System enforces synchronization on the input

files to each map task. For example, each read access to the input file needs to update

the logs on how many bytes were read. The number of bytes read is in turn used for

tracking the progress of each map task. The additional synchronization prevents us

from building an e�cient parallel I/O implementation for each individual map task.

Another disadvantage to building parallel I/O suport for a single map task is the

possible bottleneck on reading files from disk. Since the input split to a map task is

likely to be a single file residing in the local file system. Multiple simultaneous seeks

to the same file in the disk will not speed up the reading of data from the file.
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4.2 Compute Server

4.2.1 Design and Implementation

The ParMapper uses a single map task to keep the system’s CPU and I/O resources

fully utilized. In the Compute Server appraoch, we try to exploit inter-task parallelism

by running multiple map tasks in parallel withint the same JVM.

Running multiple map tasks in parallel achieves good I/O and computation re-

source utilization. Multiple map tasks can read di↵erent input split files in parallel

without worrying about contention from reading the same input split file in the disk.

The aggregation of map tasks essentially achieves parallel I/O and deserialization

of key-value pairs without modifying HDFS. Furthermore, running multiple map tasks

at the same time can overlap I/O with computation. For instance, when one map

task is loading input key-value pairs, another map task can be processing the key-

value pairs, keeping the CPU busy. This overlap e↵ect is very evident when we later

analyze the CPU over time graphs for hash join in Chapter 5.

However, we need to create a shared memory space between di↵erent map tasks

running on the same compute node to improve the memory e�ciency of the system,

as shown in Figure 4.6. The need for an e�cient shared memory space across tasks

is noted by Gillick et al. [11]. The fundamental problem with creating this shared

memory space is that in the cluster MapReduce model, each map task is designed to

be stateless and isolated in its own process.

This led to the design of a persistent Compute Server that runs multiple map/re-

duce tasks in parallel in the same Compute Server JVM.

The actual implementation of the Compute Server requires deeper understanding

of how Hadoop MapReduce works. Figure 4.7 shows the current design and imple-
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Figure 4.6 : Compute Server for multi-core systems

mentation of Hadoop MapReduce on a compute node. The tasktracker is responsible

for scheduling and managing the map/reduce tasks running on the compute node.

Each tasktracker has a JVM Manager class inside that manages the tasks assigned to

the compute node. The JVM Manager uses a taskrunner to launch a Child process

(highlighted in orange) to execute a map/reduce task.

After the Child JVM has been launched from the JVMManager, the Child process

running inside is responsible for acquiring the task specific information from the

TaskTracker using a RPC ”umbilical” interface. The Child Process then uses the

task specific information to copy the files required by the tasks, including the input

split file for the task from HDFS to a local directory.

The first step towards building a Compute Server was to make the Child JVM

persistent. By default, each JVM is launched to execute a task but then quickly

shut down once the task has finished execution. This design makes sure that each
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Figure 4.7 : Hadoop MapReduce on a compute node

task can start from a clean environment, una↵ected by other long running processes.

However, this policy creates a significant overhead by starting one JVM for every

task. To alleviate this issue, Hadoop MapReduce has the option to set the number

of times a JVM can be reused in the configuration file. The values are set using the

following properties, as shown in Figure 4.8.

<property>

<name>mapred.job.reuse.jvm.num.tasks</name>

<value>4</value>

</property>

Figure 4.8 : Setting the reuse number of each JVM to four

By setting the value of mapred.job.reuse.jvm.num.tasks to four, it means that the
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ChildJVM will execute 4 tasks before it shuts down. If you set the value to -1, it will

reuse the JVM so long as there are tasks to execute. In order to make our Compute

Server persistent throughout the job, we set this option to -1 to enable unlimited

reuse.

Once we enabled unlimited reuse of the Child JVMs, we have the oppourtunity

to perform optimizations that enable reuse of read-only in-memory data structures

between tasks that execute in the same Child JVM sequentially. Since each map task

needs to load an in-memory data structure before it can begin the processing of the

key-value pairs, it is possible that we have the first task load the memory structure

once and use it for all later map tasks executing in the same Child JVM. To do this,

we simply declare the data structure as static. Before we load the data structure, we

check if the data structure is already loaded. If it is already loaded, then we no longer

need to spend time on deserializing data from the HDFS file and loading the data

structures into memory. This optimization can lead to a quite significant performance

improvement for memory-intensive but not very compute intensive applications. For

example, hash join takes more than one third of the time of each map task loading the

lookup table into memory. By using the optimization combining static data structure

and Child JVM reuse, we can improve hash join’s performance by one third. However,

this optimization doesn’t require the Compute Server and can be done in the original

Hadoop MapReduce as well.

Once we have a persistent ChildJVM, the second step is enabling multiple tasks

running in a Compute Server in parallel. The design of the Compute Server is shown in

Figure 4.9. The goal is to have multiple Child threads running in the Compute Server

JVM. To do this, we go back to JvmManager, where the ChildJVM is first launched.

Instead of launching a ChildJVM, we modified the JvmManager source code to launch
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Figure 4.9 : Design and Implementation of the Compute Server

a Compute Server. Once the Compute Server is launched, the JvmManager starts a

Child thread inside the Compute Server JVM through a socket connection. Currently,

we hard coded the port numbers to establish the socket connection for the Compute

Server. Di↵erent port numbers and JVMs are used for Map and Reduce tasks. The

Child threads (highlighted in orange) inside the Compute Server gets the JvmId from

the socket connection and uses it to fetch tasks through the original RPC ”umbilical”

interface the same way the original ChildJVM operates. As a result, we can isolate the

modifications to the level of ChildJVM and JvmManager because the tasktracker can

not tell the di↵erence between the Compute Server and the orignal multi ChildJVM

scheme.

To achieve this, we modified the JvmManager’s implementation when launching

a Child task. We also created a multi-threaded server implementation to handle the
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socket connection requests from JvmManager. In addition, the implementation of the

Child process has to be modified, including removing static global variables, so that

multiple Child processes can run in a single Compute Server.

With the Compute Server, we have multiple map tasks running in the same JVM

and the same memory space. To share the in-memory data structures across di↵erent

map tasks, we simply declare a data structure as static. In Java, static data structures

are shared across di↵erent instances of the same class. In our case, since all the

computation in the map tasks happen in the mapper class, the data structure can be

shared across map tasks after it is declared as a static variable in the user’s mapper

implementation.

The next step is creating a synchronization scheme to make sure that the appli-

cation the data structure required by the application is loaded into the memory only

once. Currently, we achieve this by setting up a critical section in the set up phase of

each map task using locks. Only the first thread to enter the critical section will load

the data structure into memory. All future set up phases will do nothing if a check

shows that the data structure is already loaded into the memory.

4.2.2 Programming Model

The Compute Server is largely a runtime level change. The existing code will work

unchanged. However, to take advantage of the memory e�ciency provided by the

Compute Server, the large in-memory read-only data structures need to be declared

as static in the user code. Furthermore, in the set up phase of each map task, a

critical section needs to be set up to make sure that a data structure is set up only

once.

Currently the runtime requires the users to modify their MapReduce application
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code to eliminate the duplication of data structures. However, we believe in the

near future, we can design a customized Mapper class that does the static variable

declaration and critical section implementation for the users. Figures 4.10 and 4.11

show the changes needed to use the Compute Server.

public class MyMapper extends

Mapper <LongWritable,Text,

Text, LongWritable> {

private DataStructure datastruct;

public void setup(Context context){

load the datastruct;

}

public void map(LongWritable key,

Text value,

Contextcontext) {

...

}

}

Figure 4.10 : The original programming model using the Hadoop Mapper

4.3 Hybrid Approach

4.3.1 Design and Implementation

The original Hadoop MapReduce design forced users to create a large number of

map/reduce tasks to create enough parallelism that can keep the multi-core systems’

I/O and CPU resources fully utilized.
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public class MyMapper extends

Mapper<LongWritable,Text,

Text, LongWritable> {

private static DataStructure datastruct;

public void setup(Context context){

lock.lock();

if (datastruct not loaded in memory){

load the datastruct;

}

lock.unlock()

}

public void map(LongWritable key,

Text value,

Contextcontext) {

...

}

}

Figure 4.11 : The new programming model using the Compute Server

In this chapter, we have described the alternative ParMapper and Compute Server

approaches to improve the memory e�ciency of the MapReduce runtime without

sacrificing the CPU utilization.

The ParMapper approach allows us to control the number of computational threads

used by a single map task. This approach works well for compute intensive appli-

cations. However, it can’t fully utilize the I/O resources for less compute-intensive

applications because each map task can only use a single I/O thread.

On the other hand, the Compute Server implementation enables multiple map

tasks to run in parallel without duplicating the in-memory read-only data structures.

Users can create a large number of map tasks to saturate the I/O and CPU resources.
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This approach is good for hash join, which is an I/O intensive application.

However, this is not the case for more compute-intensive applications. Despite

the fact that we have removed duplication of certain large in-memory read-only data

structures required by map tasks, creating a large number of map tasks can sometimes

still lead to a large memory footprint. Take KMeans for example, there are data

structures used by the applications that cannot be shared across map tasks such as

output cluster centroid partial sums. These data structures act as accumulators of

the outputs from map tasks.

Furthermore, our current implementation has trouble scaling the performance with

a large number of map tasks running in the Compute Server for compute intensive

applications. As we will show in the results section, running eight map tasks in

the Compute Server is a lot slower than running eight map tasks in eight separate

ChildJVMs. It could be due to synchronizations on writing intermediate key-value

pairs to disks. At this stage, we don’t know where the performance overhead is from.

To minimize the impact of map task overheads, we need to keep the number of

map tasks small to achieve the best memory e�ciency. By combining the ParMapper

and Compute Server approaches, we can achieve good CPU and I/O utilization for

compute intensive applications like KMeans using only a few map tasks. The hybrid

approach is shown in Figure 4.12. This approach is better than using a ChildJVM

with ParMapper because it uses less memory.

Essentially, the combination of the two approaches give us the ability to control

the number of I/O and computational threads used by the map tasks.



37

Figure 4.12 : Design and Implementation of the Hybrid Approach

4.3.2 Programming Model

The programming model of the hybrid approach is a combination of the ParMapper

and the Compute Server approach. The user extends the ParMapper class and makes

sure that there is only one initialization of the shared data structure in the setup

method, as shown in Figure 4.13.
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public class MyMapper extends

ParMapper<LongWritable,Text,

Text, LongWritable> {

private static DataStructure datastruct;

public void setup(Context context){

lock.lock();

if (datastruct not loaded in memory){

load the datastruct;

}

lock.unlock()

}

public void map(LongWritable key,

Text value,

Contextcontext) {

...

}

}

Figure 4.13 : Hybrid approach for multi-core systems
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Chapter 5

Results

This chapter presents our experimental evaluation of the Habanero Hadoop runtime.

We studied three widely used applications, KMeans, K Nearest Neighbors and hash

join described in Chapter 3. For each application, we demonstrate the improved

memory e�ciency and throughput running it on the Habanero Hadoop system.

5.1 Experimental Setup

We run our tests using a cluster of five nodes. This cluster consists of four compute

nodes and one jobtracker node. The jobtracker node is responsible for hosting the

client JVM and jobtracker. It does not execute any map/reduce tasks. Each compute

node has two quad-core 2.4 GHz Intel Xeon CPUs and 8 GB memory. We use

Java 1.8.0 and Hadoop 1.0.3 to conduct the experiments. All of the experiments are

conducted on top of the Hadoop Distributed File System (HDFS). The same 32 MB

block size is used for all applications to rule out the impact of block size. Di↵erent

nodes are connected using an Infiniband network switch.

The hash join application uses three compute nodes and the KMeans application

uses all four compute nodes. We believe the scalability of the cluster is not a big issue

here because the runtime optimizations will improve the performance of every single

compute node. As a result, the memory e�ciency and throughput improvement for

large-scale inputs should be able to scale as more compute nodes are added to the
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cluster.

For the baseline, we used the unmodified Hadoop MapReduce system. The first

baseline configuration uses eight map slots in Hadoop MapReduce to keep the CPU

fully utilized, since each compute node has eight cores. In this configuration, the

heap size limit was set to 1 GB for each Child JVM to simulate a commodity class

machine with 8 GB available RAM for eight cores. We also used another baseline

configuration that uses four map slots and 2 GB heap size for each Child JVM. The

second configuration sacrifices CPU utilization to make more memory available to

each map task.

For the Habanero Hadoop system, we evaluated the three approaches described

in Chapter 4. We tested di↵erent configurations using the sequential ChildJVM with

ParMapper, parallel Compute Server with Hadoop Mapper and parallel Compute

Server with ParMapper (Hybrid approach).

We evaluated the performance of the baseline and Habanero Hadoop system on

three applications KMeans, K Nearest Neighbors and hash join. For each application,

we first show a CPU utilization over time graph to demonstrate the compute and

I/O intensity of the application. Next, we show a throughput over the in-memory

data structure size graph to demonstrate the improved the memory e�ciency and

throughput of the Habanero Hadoop system. Finally, we have a third graph showing

the aggregated heap size of each configuration for di↵erent runs with increase in-

memory data structure size.

The details of the applications’s implementation is described in Chapter 3.
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5.2 Application Benchmarks

5.2.1 Hash Join

The first application is hash join. The implementation of the application is described

in Chapter 3.

We ran the hash join application with number of map slots set to di↵erent values

using the original Hadoop MapReduce runtime system. The number of map slots is

the maximum number of map tasks that can run on the compute node in parallel.

We performed a hash join operation on a 400 MB table with a smaller 200 MB table.

The 200 MB table is loaded into the memory of each map task.

Figure 5.1 shows the CPU utilization over time graph for hash join on a single

compute node with eight cores. The goal of the graph is to show that hash join is an

I/O intensive application. The hash join is a map-only MapReduce job. As a result,

the CPU utilization graph only shows the utilization over the map phase.

We first focus on the red line (a single Hadoop map slot) in Figure 5.1. The single

map task sees periodic bursts of high CPU utilization. At first, the lines shows a burst

to almost 400% CPU utilization. The first burst is because it is loading in a copy of the

in-memory data structure. We have data showing that as the CPU utilization reaches

its first peak around eight seconds, the memory footprint also increases steadily and

stabilizes after the CPU utilization drops. It goes beyond 100% CPU utilization

because the JVM is performing garbage collection in parallel. After the first peak,

the CPU utilization peaks to close to 100% intermittently because the system is only

processing the key-value pairs during the peak. The map task is waiting on I/O to

read input key-value pairs during the periods when the CPU utilization is close to

0%. As we can see, almost half of the time of the hash join application is spent on
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Figure 5.1 : CPU utilization for hash join on a single-node with eight cores

waiting for I/O operations. Thus, the CPU over time data shows that hash join is an

I/O-intensive operation and the performance bottleneck is the I/O of the multi-core

systems.

Next, we look at the green line which uses two Hadoop map task slots, capable

of running two map tasks in parallel. The green line utilizes I/O more e↵ectively

by overlapping communication and computation. The overlap is shown as the gaps

between peaks in CPU utilization are much shortened. However, the peak CPU

utilization after the initial burst is still capped around 100%. The overall running

time also shortened to almost half of the red line (using a single map task).

Using six Hadoop map slots (the purple line), the Hadoop MapReduce runtime is

able to achieve much better CPU utilization through improved I/O utilization. The

peak utilization goes to around 400% even after the initial burst. This runtime can
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Figure 5.2 : Breaking the memory wall for hash join using the Compute Server on a
three-node cluster

use multiple I/O threads in multiple parallel map tasks to saturate the I/O of the

multi-core system. The blue line shows that using eight map slots does not make too

much of a di↵erence in terms of the performance of the application compared to using

six map slots.

Figure 5.2 shows the Compute Server approach can break the memory wall. We

ran the experiment in a three compute node cluster with eight cores and 8 GB memory

on each node. The x axis represents the size of the lookup table and the y axis

represents the throughput of the system as the larger table is streamed through the

map tasks. The MB/second measure represents how many megabytes of the larger

table have completed the join operation with the smaller lookup table. The larger

table that we are using as the input is 800 MB.

When there is enough memory, the throughput of each configuration for hash

join should be relatively stable. The reason for the stable throughput is that we
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are streaming through a constant size table (800 MB) and for each element in the

big table, we are performing a search in the hash table constructed from the smaller

lookup table. The search operation is constant time regardless of the lookup table

size. The details are explained in Chapter 3.

We first examine the throughput of the baseline configurations. The first baseline

configuration (blue) has eight ChildJVMs with 1 map slot per ChildJVM. Since there

are a total of 8 GB memory available on a compute node, 1 GB memory is available to

each task. The second baseline configuration with four map slots configuration (red)

has four ChildJVMs with one map slot per ChildJVM. This configuration utilizes only

four of the eight cores but has 2 GB memory available to each task. The baseline

configuration with two map slots baseline configuration (green) has 4 GB memory

available to each map task.

Since hash join is an I/O intensive application, the throughput improves as we

increase the number of I/O threads, in this case, the number of map slots. Moving

from the top of the figure to the bottom of the figure, eight ChildJVMs with one map

slot per ChildJVM has better throughput than the other two baseline configurations

with four map slots and two map slots.

As the size of the lookup table increases, each map task consumes more heap

space to keep the lookup table data structure in memory. When the heap memory

available to each ChildJVM executing a map task is used up, the garbage collection

activity increases significantly. There are two types of garbage collections, a full

garbage collection (full GC) and a regular garbage collection (regular GC). A full

garbage collection usually takes much longer than a regular garbage collection call.

Furthermore, a full GC often stops the execution of the map task, whereas the regular

GC can sometimes be done in parallel with the map program. Thus, the full GCs
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hurt the performance much more than the regular GCs.

Next, we show that the throughput drop for baseline configuration with eight map

slots at around 300 MB is due to a significant increase in garbage collection activity.

Lookup Ta-

ble Size

2 Child-

JVM with

1 Map

Slot/Child-

JVM

4 Child-

JVMs with

1 Map

Slot/Child-

JVM

8 Child-

JVMs with

1 Map

Slot/Child-

JVM

1 Compute

Server with

8 Map Slot-

s/Compute

Server

50 0 0 0 0

100 0 0 24 0

150 0 0 74 0

200 0 12 152 0

250 0 29 675 0

300 0 36 14522 0

350 0 44 0

400 6 61 0

450 7 72 0

500 12 232 0

Table 5.1 : Number of total full garbage collections calls on each compute node for
hash join

Tables 5.1 and 5.2 show the number of full garbage collection calls and regular

garbage collection calls on one compute node in the cluster. We used the ”-verbose:gc”

flag to collect garbage collection information.

As highlighted in Tables 5.1 and 5.2, the number of full GC calls at 300 MB

increased by 20x, regular GC calls increased by 8x for eight ChildJVM with one

map slot per ChildJVM. Similarly, at 500 MB the number of full GC calls increased

by three times for four ChildJVM with one map slot per ChildJVM. The increase

in garbage collection activity corresponds to the drop in throughput for the two

configurations. When garbage collection activity takes up more than 99% of the

execution time, the JVM crashes and the task fails to finish.
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Lookup Ta-

ble Size

2 Child-

JVM with

1 Map

Slot/Child-

JVM

4 Child-

JVMs with

1 Map

Slot/Child-

JVM

8 Child-

JVMs with

1 Map

Slot/Child-

JVM

1 Compute

Server with

8 Map Slot-

s/Compute

Server

50 536 704 1009 843

100 540 719 1104 856

150 545 735 1257 853

200 552 780 1426 855

250 558 820 1782 859

300 563 846 14126 868

350 565 889 870

400 589 941 889

450 599 985 885

500 610 1023 892

Table 5.2 : Number of total regular garbage collections calls on each compute node
for hash join

On the other hand, the Compute Server approach experiences no significant drop

in throughput as the lookup table size increases. The Compute Server approach with

eight map slots per Compute Server uses all 8 GB memory without any duplicated

copies of the data. As a result, the Compute Server approach has much more memory

available to each map task than the baseline configurations. With the improved

memory e�ciency, the throughput of the Compute Server approach is relatively stable

as the lookup table size increases.

In Tables 5.1 and 5.2, we can see that the number of full garbage collection calls

stays at 0 and the number of regular garbage collection calls increases slowly from

800 but is capped at 900. These data show that the throughput is stable because

garbage collection activity is not a performance bottleneck for hash join using the

Compute Server approach for the lookup table sizes we tested.

Apart from pushing back the memory wall, Figure 5.2 also shows that the Compute

Server approach with eight map tasks has better throughput than the best available
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Figure 5.3 : Heap memory size on each compute node for hash join

baseline configuration for larger table sizes. For example, at 300 MB, the Compute

Server approach is 50% faster than four ChildJVMs with one map slot per ChildJVM

and at 500 MB, the Compute Server improved the throughput by about two times as

compared to two ChildJVM with one map slot per ChildJVM.

To show the impact of duplicating the in-memory data structures and the memory

savings of the Compute Server, we produced clustered bar charts for the aggregated

heap memory size on one compute node for the di↵erent configurations in Figure 5.3.

First, we notice that the aggregated heap size of all the configurations is linear in

the lookup table size because we load the content of the lookup table text data into
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a hash table.

Furthermore, the bar chart shows that duplicating the lookup table results in

large heap memory usage. The eight ChildJVMs with one map slot per ChildJVM

configuration uses close to two times heap memory more heap memory than the four

ChildJVMs with one map slot per ChildJVM because it has twice as many copies of

the lookup table stored in memory. Similarly, the heap size of the four ChildJVMs

with one map slot per ChildJVM configuration is much larger than that of the two

ChildJVMs with two map slots configuration.

The Compute Server approach (purple) has the least aggregated heap memory

footprint because di↵erent map tasks share only a single copy of the in-memory look

up table. This approach reduces the memory footprint of hash join by as much as six

times.

So far, we have shown that the Compute Server approach can push back the mem-

ory wall, achieve better throughput for large scale problems and improve the memory

utilization on each compute node for hash join. Next, we evaluate the performance

of ParMapper and the Compute Server with di↵erent values for the number of map

slots.

In Figure 5.4, we first evaluate the performance overhead of the Compute Server

over the original ChildJVM. To do this, we compare the performance of using a

ComputeServer with one ParMap slots per Compute Server and a ChildJVM with

one ParMap slots per ChildJVM. The throughputs for both configurations are very

similar, demonstrating that the Compute Server has little overhead compared to the

ChildJVM approach when executing with a single ParMap slot. The throughput of

the Compute Server with four ParMap slot per Compute Server (red) is similar to

that of four ChildJVMs with one map slot per ChildJVM (blue), showing that a
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Figure 5.4 : ParMapper and Compute Server’s impact on throughput in a three-node
cluster

single Compute Server has no significant overhead compare to multiple ChildJVMs

for hash join.

Additionally, the comparison between the Compute Server with four ParMap slots

per Compute Server (red) and the Compute Server with four Hadoop map slots

per Compute Server shows that ParMapper has no performance advantage over the

original sequential Hadoop Mapper for hash join. The ParMapper performs poorly

because a single I/O thread is unable to generate enough parallel tasks to saturate

multiple cores for I/O-intensive applications.

In summary, Figure 5.4 shows that the best configuration for hash join running

on eight-core nodes is using the Compute Server with eight map slots per Compute

Server. This configuration reduces the heap memory usage by as much as six times

and improves the throughput for large lookup table by two times.
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Figure 5.5 : CPU utilization on a single compute node with eight cores for KMeans

5.2.2 KMeans

We first analyze the CPU utilization over time graph in Figure 5.5 to show the

performance characteristics of the KMeans application.

The input document size is 55 MB and the cluster data size is 30 MB. The exper-

iment is conducted on a single compute node with eight cores and 8 GB of memory.

The KMeans application has a map phase and a reduce phase. In a single compute

node, the shu✏e phase is insignificant because there is no transfer of data across dif-

ferent nodes. The map phase has consistent full CPU utilization and the reduce phase

has fluctuating CPU utilization. The chart shows that the map phase dominated the

time of the execution.

We first focus on the one ChildJVM with one map slot configuration. It almost

consistently utilizes the CPU at 100% from 0 to 4700 seconds, because a single map

slot can only use a single computation thread. The consistent 100% utilization shows
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that the application is compute-intensive in the map phase and a single I/O thread

can keep a single core busy. There are a few periodic drops in the CPU utilization

due to the the gap between the end of one map task and the start of another map

task. From 4700 seconds to 5000 seconds, we can see the CPU utilization fluctuates

between 0% and 200% because the single Reduce task running on the core has invoked

a lot of parallel garbage collections and the reduce tasks are not as compute-intensive

as the map phase.

Then, we evaluate the scalability of the application using more I/O and compu-

tation threads. The Baseline two ChildJVMs with one map slot per ChildJVM keeps

the two cores busy by achieving a stable 200% CPU utilization. In the same way,

the map phase performance almost scales to eight cores. Around 5200 seconds, there

is a drop in CPU utilization for eight ChildJVMs and one map slot per ChildJVM

configuration because there are not eight map tasks left to keep the CPU fully utilized.

In summary, Figure 5.5 demonstrates that KMeans’ execution time is dominated

by the compute-intensive map phase. The performance scales as more computation

threads are used by the Hadoop MapReduce runtime.

Next we show that the Habanero Hadoop runtime can break the memory wall for

the KMeans application in Figure 5.6.

There are 200 MB of document vector data with about 4 KB per document vector.

The total number of documents is around 51200. The document vectors are generated

from the “20 newsgroups” data, ensuring that the document vectors are representative

of real news documents.

Since the application is streaming the documents through the cluster data, the

y axis is the throughput of the system represented by the number of documents

processed per second. At each iteration, all of the documents in the database are
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Figure 5.6 : Breaking the memory wall for KMeans on a four-node cluster

compared against topic centroids and assigned to di↵erent clusters. For each doc-

ument processed by the map function, we compare it against all of the clusters to

find the cluster that is most similar to the content of the document. As a result, the

throughput decreases as we increase the number of clusters because it takes longer

to calculate the similarities with all the clusters. As we described in Chapter 3, the

sequential computation complexity is O(|n|⇥|k|) where n is the number of documents

and k is the number of clusters. The x axis is the number of topics, which is linear

in the size of the in-memory data structure.

The memory wall can be observed in the baseline eight ChildJVMs with one map

slot per ChildJVM configuration. As shown in Figure 5.6, at 51200 clusters, the

throughput drops out of the inverse curve. In contrast, the baseline four ChildJVMs

with one map slot per ChildJVM stays on the inverse curve because more memory
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is available to each map task. The additional memory available extends the memory

wall for the baseline four ChildJVMs configuration.

The drop in throughput at 51200 clusters is due to increased garbage collection

activity. In Tables 5.3 and 5.4, we can see a 380 times increase in the number of full

GCs, two times increase in the number of regular GCs for eight ChildJVMs with one

map slot per ChildJVM configuration at 51200 clusters.

Number of

Clusters

1 Compute

Server with

2 ParMap

Slot/Compute

Server

2 ChildJVMs

with 1 ParMap

Slot/Child-

JVM

4 ChildJVMs

with 1 Map

Slot/Child-

JVM

8 ChildJVMs

with 1 Map

Slot/Child-

JVM

7680 0 0 3 26

15360 1 4 20 30

25600 3 11 24 219

38400 7 18 94 409

51200 13 27 211 155584

64000 15 41 312

76800 21 67 411

Table 5.3 : Number of total full garbage collections calls on each compute node for
KMeans

In contrast, we can see that the one Compute Server with two ParMap slots per

Compute Server and two ChildJVMs with one ParMap slot per ChildJVM config-

urations perform a relatively small number of full GC and regular GC calls. The

one Compute Server with two ParMap slots per Compute Server configuration per-

forms less than 21 full garbage collection calls. As a result, the throughput of the

two configurations are still on the inverse curve when processing large numbers of

clusters.

The ParMapper and Hybrid approaches can fully utilize the CPU resources with

better memory e�ciency. As a result, the blue and red lines stay on the inverse
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Number of

Clusters

1 Compute

Server with

2 ParMap

Slot/Compute

Server

2 ChildJVMs

with 1 ParMap

Slot/Child-

JVM

4 ChildJVMs

with 1 Map

Slot/Child-

JVM

8 ChildJVMs

with 1 Map

Slot/Child-

JVM

7680 6187 3923 41968 39836

15360 10372 6470 83911 67017

25600 17685 11019 47881 46534

38400 25573 17798 73443 72062

51200 31788 21086 50949 174138

64000 42773 25364 62120

76800 50551 32695 75824

Table 5.4 : Number of total garbage collections calls on each compute node for
KMeans

curve. At 51200 clusters, both the red and blue lines avoided the memory wall. The

performance of the two configurations scaled to 76800 clusters. For cluster sizes larger

than 51200, the Hybrid and ParMapper configurations improve the throughput of the

baseline with four ChildJVMs and one map slot per ChildJVM by two times.

For the most part, there is no significant performance di↵erence using two Child-

JVMs with one ParMap slot per ChildJVM and one Compute Server two ParMap

slots per Compute Server configurations. However, there is an unexpected through-

put improvement at around 64000 clusters for two ChildJVMs with one ParMap slot

per ChildJVM over one Compute Server and two ParMap slots per Compute Server

configuration.

Finally, we show the heap memory size in Figure 5.7 for the di↵erent configura-

tions. The heap size data are collected during the test runs shown in Figure 5.6. The

total memory is estimated by averaging the heap sizes at di↵erent times of the map

phase.

We first note that the configuration using eight ChildJVMs with eight Map Slots
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Figure 5.7 : aggregated heap memory size on each compute node for KMeans

uses the most heap memory. The large memory footprint is because there are eight

map tasks running in parallel, duplicating the cluster data eight times. In addition,

there are other in-memory data structures associated with each map task such as the

partial sum for calculating the new cluster data. As a result, running eight map tasks

in parallel results in a large memory footprint. Reducing the total number of map

slots for baseline configurations to four gives a good reduction in aggregated heap

memory usage, but reduces CPU utilization.

The ParMapper (red) and Hybrid (blue) approaches result in significantly less

heap memory usage. The Hybrid approach (blue) uses less heap memory than the

ParMapper approach (red) because the Compute Server eliminates duplicated in-

memory data structures. In addition, ParMapper uses more memory than the Hadoop

Mapper. This is because the key-value pairs are loaded into separate bu↵ers to enable

parallel execution, whereas the original Hadoop mapper reuses the memory bu↵er for
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Figure 5.8 : ParMapper and Compute Server’s impact on throughput on a four-node
cluster for KMeans

the current key-value pair to store the next key-value pair.

Figure 5.8 shows that a single ParMap slot can not keep the CPU fully utilized.

The Hybrid approach using one Compute Server with one ParMap slot per Compute

Server (purple) has significantly lower throughput than that of the Hybrid approach

with two ParMap slots per Compute Server. The Hybrid approach with two ParMap

slots per Compute Server can better overlap the computation of one map task with

the I/O activities of the other map tasks, achieving high CPU utilization.

Next, we analyze the impact on memory utilization of increasing the number of

ParMap and Map slots per Compute Server in Figure 5.9. The Compute Server

approach with eight map slots per Compute Server (blue) has the largest aggregated

heap memory usage. The Hybrid approach with two ParMap slots per Compute
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Figure 5.9 : Aggregated heap memory size on each compute node for KMeans

Server (green) has a larger memory footprint than the Hybrid approach with one

ParMap slots per Compute Server (purple). Figure 5.9 shows that the aggregated

heap memory usage increases as the number of ParMap/Map slots increases. The

increase in memory usage is because each ParMap/Map task has an in-memory local

partial sum data structure that is proportional to the number of clusters. As a result,

even with the Compute Server approach, more ParMap/Map tasks slots per Compute

Server leads to a larger memory footprint.

In summary, we show that the most e�cient Hybrid approach for KMeans runs

a small number of ParMap tasks that keeps all eight cores busy. In this case, two

ParMap slots can achieve full CPU utilization with the least amount of required

memory. The Hybrid approach with two ParMap slots is also the most e�cient

overall approach for running the KMeans application. The Hybrid approach running
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with our experimental set up can reduce the heap memory usage by two times and

improve the throughput by two times when generating a large number of clusters.

5.2.3 K Nearest Neighbors

The performance characteristics of K Nearest Neighbors (KNN) are very similar to

those of the KMeans application, as described in Chapter 3. The best approach for

KMeans with one Compute Server with two ParMap slots per Compute Server is also

the most e�cient approach for KNN.

In this section, we show that the one Compute Server with two ParMap slots per

Compute Server approach can push back the point at which we hit the memory wall

and reduce the memory footprint of the application.

In Figure 5.10, the baseline configuration running eight ChildJVMs with one map

slot per ChildJVM stays on the inverse curve up to 76800 documents. This curve

shows that the CPUs are e�ciently utilized up to 76800 documents. At 89600 docu-

ments, the throughput of the baseline configuration running 8 ChildJVMs drops out

of the inverse curve, showing that the memory wall for the configuration is around

89600 documents.

On the other hand, the Hybrid approach with two ParMap slots per Compute

Server and the ParMapper approach with two ChildJVMs with one map slot per

ChildJVM stays on the inverse curve even when processing 102400 documents. This

shows that the two configurations can push back the memory wall. Moreover, the

throughputs of the Hybrid and ParMapper approaches are actually better than the

Baseline with eight map slots before the memory wall because ParMapper can break

map tasks into smaller subtasks, improving the load balance across multiple cores.

Table 5.5 shows that at 89600 documents, the Baseline configuration with eight
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Figure 5.10 : Breaking the memory wall for KNN on a four-node cluster

ChildJVMs performs a 783 times more full GCs. The increase in full GC activity is

responsible for the drop in throughput of the configuration. In contrast, the numbers

of full GCs for either the Hybrid and ParMapper approach is very small.

Figure 5.11 shows that the Hybrid and ParMapper approaches reduce the memory

footprint of the KNN application on each compute node. The baseline with eight

ChildJVMs (purple) has the largest memory footprint because it duplicates the data

structures eight times. The baseline with four ChildJVMs configuration has less

aggregated heap memory usage because the in-memory data structure is duplicated
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Number of

Clusters

1 Compute

Server with

2 ParMap

Slot/Compute

Server

2 ChildJVMs

with 1 ParMap

Slot/Child-

JVM

4 ChildJVMs

with 1 Map

Slot/Child-

JVM

8 ChildJVMs

with 1 Map

Slot/Child-

JVM

7680 0 0 0 0

15360 0 0 1 23

25600 0 0 7 21

38400 1 1 25 178

51200 0 5 38 327

64000 2 8 43 360

76800 2 8 59 483

89600 4 10 87 378578

Table 5.5 : Number of total full garbage collections calls on each compute node for
KNN

only four times. The ParMapper approach (red) uses almost the same amount of

heap memory as the baseline with four ChildJVMs because ParMap tasks use more

memory than the regular Hadoop map tasks. The Hybrid approach (blue) keeps only

a single copy of the data structure in-memory, achieving the best memory e�ciency

in all four configurations.

Using our experimental set up with eight cores per node, the Hybrid approach

with two ParMap slots per Compute Server reduces the heap memory usage of KNN

by three times and improves the throughput for a large number of documents by two

times.

In the big data age, the performance of MapReduce runtimes for large-scale data

analytics applications largely depends on e�cient utilization of the memory resources

in multi-core systems. In this chapter, we show that the Habanero Hadoop system can

significantly improve the memory e�ciency and throughput of popular data analytics

applications.

Using our set up with eight-core nodes, the Compute Server approach reduces the
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Figure 5.11 : Aggregated heap memory size on each compute node for KNN

heap memory usage by as much as six times and improves the throughput by two

times for hash join. For KMeans, the Hybrid approach can reduce the heap memory

usage by two times and increase the throughput by two times when generating a large

number of clusters. For KNN, the Hybrid approach reduces the heap memory usage

of KNN by three times and improves the throughput for a large number of documents

by two times.

The results also show that the most e�cient approaches for I/O-intensive appli-

cations, such as hash join, and compute-intensive applications, such as KMeans, are

often di↵erent.
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Chapter 6

Related Work

6.1 MapReduce Runtime Systems

Parallel programming has always been a di�cult task for mainstream programmers

who want to take advantage of the parallell processing power in multi-core machines

and in clusters with thousands of machines. As a result, writing correct, e�cient and

scalable programs traditionally falls on the shoulders of a small group of experts.

To enable average programmers to harness the power of parallel and distributed

computing in a large cluster environment, Google proposed the MapReduce program-

ming model [12]. It allows users to make high level specifications about concurrency

and locality, and provides an e�cient runtime system that can automatically handle

task distribution, execution and fault tolerance. The MapReduce model is rooted in

the idea of using functional scan primitives or paralel prefix schemes as a tool for

writing parallel programs as first explored by Blelloch [13] and Ladner et al. [14].

The MapReduce model is a very restrictive model. It divides up task execution

into two phases, the Map and the Reduce phase. The computations are essentially

stateless and can be easily parallelized without much communication between tasks. It

is very suitable to a large number applications, such as Inverted Index and Grep, and

it can achieve scalable performance at a reasonable cost. To enable fault tolerance and

data locality, the runtime system is built on top of the Google File System (Ghemawat

et al. [15]).
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The success of the MapReduce model at Google has led to the open source project

Hadoop MapReduce [3]. The system is implemented using Java based on the idea

of Google’s MapReduce paper [2]. The system also provides an easy to use interface

with an e�cient, scalable and reliable run time system. The Hadoop MapReduce

system is built on top of its own distributed file system, the Hadoop File System [16].

The Google and Hadoop MapReduce model (cluster MapReduce model) both

employ process level parallelism by assigning each task to a process. For example,

Hadoop MapReduce spawns a separate JVM for each map and reduce task. Since

di↵erent processes have no shared memory space, the tasks are executed in a fully

distributed memory model. This thesis aims to integrate some shared memory space

across di↵erent tasks on the same compute node. In my optimized model, a process

can execute several tasks.

The popularity of the cluster MapReduce model has prompted others to try out

the MapReduce programming model in a shared memory multi-core system.

Phoenix [17] is the first attempt to build a MapReduce runtime system that allows

programmers to e�ciently utilize multi-core systems. Similar to my optimizations,

the Phoenix system uses threads to spawn parallel map/reduce tasks on the same

machine. It also used shared-memory bu↵ers for low overhead communication. The

runtime provides tolerance for task failures and is optimized for multi-core systems

by selecting the right task unit size. It showed that an optimized MapReduce runtime

could achieve scalable performance for a number of applications in a shared-memory

system.

The Phoenix system is built for a single machine. The design of the system was

not concerned with scaling the performance across a large number of machines. On

the other hand, the Habanero Hadoop system supports execution on a large number
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of machines.

The Habanero Hadoop system developed for this thesis implemented several op-

timizations mentioned in the Phoenix paper such as key-value pair prefetching and

a dynamic framework that discovers the best input size for each task. Overall, the

Phoenix system focuses on maximizing the CPU resources of the shared memory sys-

tem whereas this work focused on e�cient utilization of the memory resources. The

Phoenix implementation is not concerned with duplicating in-memory data structures

across map tasks. But this work focuses on eliminating the duplicated data structures

Further attempts to improve shared memory MapReduce on large-scale NUMA

machines have been explored in Phoenix Rebirth systems [18]. The original Phoenix

system targeted 24 to 32 hardware threads, where the optimized Phoenix system

proposed in the paper can scale up to 256 hardware threads. However, this thesis

focused on commodity computers that are small scale multicore systems, whereas the

optimized Phoneix Rebirth system can scale up to 128 cores. As a result, many of

the optimizations outlined in the paper are not very useful for this thesis.

Other MapReduce runtime optimizations for multi-core has been explored by

Metis [19] and TiledMapReduce [20].

Metis [19] augmented the Phoenix work by focusing on designing e�cient data

structures to store intermediate key value pairs. The new proposed data structures

support an e�cient global, parallel sort/group-by function for the intermediate key

value pairs, which can speed up MapReduce applications. My optimization uses the

original shu✏e and sort mechanism in the Hadoop MapReduce system to maintain

the cluster scalability of the runtime.

Tiled Map Reduce (TMR) [20] is similar to this thesis because it also focused on

significantly reducing the memory footprint of the MapReduce applications. However
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it takes a di↵erent approach to achieving improved memory e�ciency by dividing up

a big MapReduce job into a number of independent sub-jobs and reusing the interme-

diate data structures among the sub-jobs. TMR optimizes MapReduce mainly at the

programming model level by limiting the data to be processed in each MapReduce

job. In contrast, this thesis reduces the memory footprint through improved runtime

system design.

Phoenix, Metis and TMR systems [17, 18, 20, 19] all looked into applying MapRe-

duce in a single multi-core machine. On the other hand, Habanero Hadoop focuses

on creating a shared memory space for Map tasks running on the same compute node

and at the same time maintains the ability to run the application on a large number

of machines.

All the optimizations implemented in the Habanero Hadoop system, including

creating a shared memory space between map tasks, reduce the memory footprint of

certain popular MapReduce data analytics applications.

In the next section, we look at previous work on optimizing data analytics appli-

cations in MapReduce runtimes. Some of the work motivates our optimizations.

6.2 Data Analytics Using MapReduce

A study of using MapReduce for popular data analytics applications has been done

by Chengtao Chu et al. [21]. This paper showed that popular machine learning ap-

plications, such as KMeans and Logistic Regression that fit the Statistical Query

model could be e�ciently implemented in the MapReduce model. This paper’s per-

formance results show that the parallel versions of these applications can achieve good

performance on a single multi-core system.

A natural extension of Chengtao Chu et al. [21]’s work would be to achieve
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good performance for the MapReduce machine learning applications across multi-

ple machines. Gillick et al. [11] used the distributed Hadoop MapReduce [3] in a 80

node cluster to perform some machine learning applications. They classified MapRe-

duce applications into a few categories: Single Pass Learning, Iterative Learning and

Query-based Learning with Distance Metrics. Our work improved the performance

of two applications from these categories, KMeans and K Nearest Neighbors. The

Gillick et al. paper [11] inspired the Apache Mahout [7] project, which manages a

collection of optimized Hadoop map reduce machine learning algorithms. Zhao et

al. [6] put together an implementation of KMeans that is widely used.

Our work improves the performance of the data analytics applications imple-

mented following the design described in Chengtao Chu et al. [21] and Gillick et

al. [11].

The findings in Gillick et al. [11] motivates our work. One major issue identified

by their study is that Hadoop MapReduce lacks the ability to support e�cient access

to the common data used in the machine learning applications. The common data

are usually model parameters or query examples. The paper noted explicitly that

because each map task runs in its own virtual machine, many read only common

data structures are duplicated. The duplication resulted in an overhead of e�cient

sharing of the data structures. The paper called for a shared memory model on each

compute node to eliminate the duplication. This is the exact problem that motivated

the Habanero Hadoop’s ParMapper and Compute Server approaches. ParMapper

exploits parallelism within a single map task and the Compute Server creates a shared

memory space among map tasks in the same compute node.

Several runtime systems have been proposed for improving iterative MapReduce

applications [22, 23, 24]. Spark [22] uses Resilient Distributed Datasets (RDDs) to
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keep intermediate data structures in memory for successive iterations of MapReduce

jobs. This approach avoids redundant disk I/O operations and provides good fault

tolerance guarantees. All of these systems focused on reducing the latency between

multiple iterations. However, this thesis focuses on optimizing the performance in a

single iteration.

6.3 Hash Join Using MapReduce Systems

Improved memory e�ciency can also benefit table join applications. The paper by

Blanas et al. [5] discussed various approaches to table joins using MapReduce. This

paper also evaluated the performance of repartition join, broadcast join, semi-join

and per-split Semi-Join. In many cases, the most e�cient MapReduce join performs

the join operations exlusively in the map phase. It is implemented as broadcast

join by Blanas et al. [5], Fragmented Replicated Join [4] in Pig [8] and MapSide

join [10] in Hive [9]. The optimized Habanero Hadoop runtime focuses on improving

the performance of the map side hash join.
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Chapter 7

Conclusions and Future Work

We are living in the age of Big Data. The amount of data that we can collect

and store explodes everyday with more gene sequence data available, more photos

uploaded and more news articles and blogs posted. It is apparent that we need new

software technologies to process these unprecedented amount of data.

To process these large amounts of data, the MapReduce model emerged as a widely

adopted programming model for performing computations in large scale clusters. The

MapReduce runtimes provide an easy to program interface and an e�cient, scalable

and fault tolerant runtime system.

However, when the size of the problem increases, sometimes it is not enough to

add more machines into a cluster. In many popular applications, the amount of

memory available to each node is an important factor in solving large scale problems.

For example, in hash join applications that join two tables, the lookup table is often

loaded into the memory of each map task. The more memory available to each map

task, the larger the lookup table can be. Another example is clustering algorithms,

such as KMeans, where the cluster data needs to be kept in memory. Lastly, for many

single pass learning applications such as K Nearest Neighbor, the query parameters

often need to be stored in the memory.

In this thesis, we first performed a detailed evaluation of the performance char-

acteristics of the above applications, including the computation intensity, memory

usage and scalability on the Hadoop MapReduce runtime. We identified the mem-
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ory bottlenecks and source of the ine�ciency in the Hadoop MapReduce applications.

Duplicated copies of data are kept in memory and a large number of map tasks create

large memory overhead.

This thesis introduced an optimized runtime that can significantly improve the

memory e�ciency of each compute node in the cluster, allowing bigger problems to

be solved. To do this, we explored two di↵erent approaches.

The first approach is creating an e�cient ParMapper that uses multi-threading

within a single map task with minimum modifications to the existing Hadoop MapRe-

duce programming model. The ParMapper reduces the number of map tasks needed

to utilize multiple cores by using a single I/O thread to feed input key-value pairs

to multiple computation threads. We have shown that the ParMapper approach can

significantly reduce the number of map tasks needed to utilize eight cores for com-

pute intensive applications such as KMeans and KNN. In this way, we reduce the

duplication of in-memory data structures and the overhead associated with a large

number of map tasks.

The experimental results on eight core nodes show that the ParMapper approach

can reduce the memory footprint of KMeans and KNN by as much as two times and

improve the applications’ throughput by two times for large cluster sizes. Di↵erent set

ups with di↵erent number of cores might achieve di↵erent performance improvements.

However, the ParMapper approach achieves no better performance than Hadoop

Mapper for I/O intensive applications such as hash join because the single I/O thread

is insu�cient to utilize the computation threads.

As a result, we developed the Compute Server approach that runs multiple map

tasks in the same JVM to create a shared memory space between di↵erent map tasks

running in the same JVM. The Compute Server can utilize multiple I/O threads from



70

multiple map tasks with minimum memory overhead.

Our results show that the Compute Server approach reduces the memory footprint

for hash join by six times and achieves two times throughput improvement for lookup

tables greater than 400 MB in a four-node cluster with the set up we described in

Chapter 5.

To further improve the memory e�ciency of KMeans and KNN, we explored

the Hybrid approach that runs ParMappers in the Compute Server. The Hybrid

approach can achieve good CPU utilization with minimum memory overhead for

compute-intensive applications.

7.1 Future Work

We observed that for di↵erent applications, the best approach to reduce memory

footprint without incurring any penalty to the CPU utilization is di↵erent. For hash

join, the best configuration uses one Compute Server with eight map tasks per Com-

pute Server to more fully utilize the I/O capability of the system. For KMeans, the

best configuration uses a Hybrid approach that runs two ParMap tasks in a Compute

Server.

The next step for this research is to automate the process of selecting the best

configuration. We need to set up performance counters to measure the I/O and

computation characteristics of the application at runtime. Using the information

collected, the runtime automatically chooses the best configuration.

Currently, we have to disable speculative execution when using the Compute

Server because the Compute Server can not handle a task being killed by tasktracker.

When the runtime kills a map task, it kills all the tasks executing in the Compute

Server by sending a KILL signal to the Compute Server JVM process. In the process,
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other map tasks that are not supposed to be killed are also purged. We need to

implement a design for the runtime to safely kill a task running in a Compute Server.
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