A Pluggable Framework for Composable HPC Scheduling

Libraries

Max Grossmanl, Vivek Kumar?, Nick Vrvilol, Zoran Budimlicl, Vivek Sarkar?

'Habanero Extreme Scale Software Research Group, Rice University
2|1IT-Delhi

AsHES 2017 - May 29 2017




Past decade has seen more

heterogeneous supercomputers

12

=i Homogeneous
=i} Heterogeneous

o =] X} <t o~
-

01 doj ay3 ui s;a3ndwodsadng jo #

91-AON
9T-unf
9r-uef
SI-8ny
LI
v1-320
vI-AeN
€1-22Q
ET-INr
€1-994
Z1-dag
ZT-4dy
T1-AON
TT-unf
TT-uer
01-8ny
0T-1eN
60-320
60-Ae
80-22Q
8011
80-924
L0-das
L0-1dy
90-AON
90-unf

Date

o]0
—
o
o
o
[Tp]
(@]
O
+
2
3
3
~
3
0
(@]
=
<




Topl0

Majority of Top10 Peak and Achieved GFlop/s has
come from heterogeneous machines since 2013

1E+09

100000000

10000000

GFlop/s

== Homogeneous Peak Gflop/s
== Heterogeneous Peak Gflop/s

= Homogeneous Max Gflop/s
1000000 == =

s Heterogeneous Max Gflop/s

100000
W W WSS OWWOW D DD DO O O O ™M ™ ™ < NN NM®MMOM®S < < 1w wWnw o v
PRIFPYIPIYIPIIIFPYIIFH T A g g vl gt gl ot Al ol Qi gl ol ool sl o
C Qo 9 L ca ¥ s cab s ca s caY s caY s cooY s coof s ocoav s coav s coa
S @ 982 5 g 9 %2 5 g @ R 35 g ot 3 g o8 35 g9 9 B8 35 g @8 35 g o W 35 g e O 35 g @ O 3 g
S VOSSN0 SN0 TSN ZSTSAN0ODZTSNODZISNODZSNOZSVOZ SOz S
Date

https://www.top500.org




We as a community are very bad at programming

heterogeneous supercomputers (even for LINPACK).

R
o

===Homogeneous % Peak Achieved
=—=Heterogeneous % Peak Achieved

® ~ o ol < m ™
o o o o o o o

xe|Al Aq panaiydy yead jo afejuadiad

.
o

91-120
9t-unft
91-9°4
ST-30
stT-unr
ST-9°4
¥1-320
vi-unr
¥1-9°4
€130
€T-unr
€1-9°4
10
cr-unr
¢1-9°4
T1-390
TT-unr
T1-q°4
0T-320
otT-unr
01-9°4
60-320
60-unr
60-9°4
80-1°0
80-unr
80-994
£L0-30
LO-unr
£0-994
90-30
90-unr

Date

https://www.top500.org




How Do We Define Heterogeneity?

For the past decade, “heterogeneous

computing” == “GPUs”

* Dealing with GPUs has taught us a
lot about software heterogeneity

But heterogeneity is on the rise

everywhere in HPC:

 Hardware: memory, networks,
storage, cores

* Software: networking libraries,
compute libraries, managed
runtimes, domain libraries, storage
APIs

Interconnect A

Interconnect B

High Performance Local Storage

High-Bandwidth Memory

Latency- Latency- Latency- Latency-
Optimized Optimized Optimized Optimized
Throughput- Throughput-
Optimized Optimized

Depiction of the abstract platform motivating this work.




Heterogeneous Programming in Practice

OpenMP
pthreads

#"%| OpenACC

OpenCL

OpenMP
@9@@5 cuDNN




Heterogeneous Programming in Research

Legion: Hide all heterogeneity from user, rely on runtime to map problem to
hardware efficiently, implicit dependencies discovered by runtime.

Parsec, OCR: Explicit dataflow model.

HCMPI, HCUPC++, HC-CUDA, HPX: Task-based runtimes that create dedicated
proxy threads for managing some external resource (e.g. NIC, GPU).

HiPER: Generalize a task-based, locality-aware, work-stealing runtime/model to
support non-CPU resources.

* Retain the appearance of legacy APIs

 Composability, extensibility, compatibility are first-class citizens from the start.

6 )



HiPER Execution & Platform Model
HiPER Use Cases

e  MPI Module

e Composing MPl and CUDA

Performance Evaluation

Conclusions & Future Work




HiPER Execution & Platform Model




HiPER’s Predecessors

Hierarchical Place Trees

10



HiPER’s Predecessors

Hierarchical Place Trees
w/ GPU

.

Proxy Thread

11



HiPER’s Predecessors

. @

Proxy Thread Proxy Thread

Hierarchical Place Trees
w/ GPU and OSHMEM

12



HiPER’s Predecessors

. @

Proxy Thread Proxy Thread

Hierarchical Place Trees
w/ GPUs and OSHMEM

13



HiPER’s Predecessors

sysmem OSHMEM

Proxy Thread Proxy Thread

Hierarchical Place Trees
w/ GPUs, OSHMEM, MPI

14



HiPER’s Predecessors

sysmem OSHMEM

Proxy Thread Proxy Thread

Hierarchical Place Trees
w/ GPUs, OSHMEM, MPI

* Simple model makes it attractive for many past research efforts,
but...
* Not scalable software engineering
* Wasteful use of host resources
* Not easily extendable to new software/hardware capabilities

15



HiPER Platform & Execution Model

HiPER Work-Stealing Thread Pool

0000




HiPER Platform & Execution Model

Pluggable
Modules

Modules expose
user-visible APIs
for work creation.

HiPER Work-Stealing Thread Pool

0000

17



HiPER Platform & Execution Model

Pluggable
Modules

HiPER Platform Model

Platform model gives
modules somewhere
to place work, thread

pool somewhere to HiPER Work-Stealing Thread Pool
find work.

0000

18



HiPER Platform & Execution Model

Pluggable
Modules

ossvtew | wp | cuo

Modules fill in platform
model, tell threads the

subset of the platform
they are responsible

for scheduling work on.

< HiPER Platform Model

CPU,

cpPU,| [cpu,| |cpu,| |cpu,

HiPER Work-Stealing Thread Pool

0000

19



HiPER Platform & Execution Model

Pluggable
Modules

ostuaew | i | cuon

Modules fill in platform
model, tell threads the

subset of the platform
they are responsible

for scheduling work on.

H.PEWrm Model
NIC

CPU,

cpy,| [cpu,| [cpu,| [cpu,

HiPER Work-Stealing Thread Pool

0000

20



HiPER Platform & Execution Model

Pluggable
Modules

HIPER Platform Model
gu NIC

cpPU,| [cpu,| |cpu,| [cpu,| |cpu,

HiPER Work-Stealing Thread Pool

0000

21



HiPER Use Cases
e  MPI Module
e Composing MPl and CUDA

22



Fundamental Task-Parallel API

The HiPER core exposes a fundamental C/C++ tasking API.

e Explanation

async([] { S1; }); Create an asynchronous task
finish([] { S2; }); Suspend calling task until nested tasks have
completed
async_at([] { S3; }, place); Create an async. task at a place in the platform
model

fut = async_future([] { S4; }); Geta future that is signaled when a task completes

async_await([] { S5; }, fut); Create an asynchronous task whose execution is
predicated on satisfaction of fut.

Summary of core tasking APls. The above list is not comprehensive.

6 !



MPI Module

Extends HiPER namespace with familiar MPI APIs

* Programmers can use the APIs they already know and love
e Built on 1) an MPI implementation, and 2) HiPER’s core tasking APIs.

Asynchronous APIs return futures rather than MPI_Requests, enabling
composability in programming layer with all other future-based APIs:

hiper::future_ t<void> *MPI Irecv/Isend(...);

Enables non-standard extensions, e.g.:

hiper::future_t<void> *MPI Isend await(...,
hiper::future_t<void> *await);

Start an asynchronous send
once await is satisfied.

hiper::future_t<void> *MPI Allreduce_ future(...);

Asynchronous collectives.

24



Example APl Implementation

hiper::future t<void> *hiper::MPI_ Isend await(..., hiper::future_t<void> *await) {
// Create a promise to be satisfied on the completion of this operation
hiper::promise_t<void> *prom = new hiper::promise_t<void>();

// Taskify the actual MPI_Isend at the NIC, pending the satisfaction of await
hclib::async_nb_await at([=] {

// At MPI place, do the actual Isend

MPI Request req;

::MPI Isend(..., &req));

// Create a data structure to track the status of the pending Isend
pending mpi op *op = malloc(sizeof(*op));

hiper::append to pending(op, &pending, test mpi completion, nic);
}, fut, nic);

return prom->get future();

‘ ¥ Periodic polling function

25




Composing System, MPI, CUDA Modules

// Asynchronously process ghost regions on this rank in parallel on CPU
ghost _fut = forasync_future([] (z) { ... });

// Asynchronously exchange ghost regions with neighbors
reqs[@] = MPI Isend await(..., ghost fut);

reqs[1] = MPI Isend await(..., ghost fut);

reqs[2] = MPI Irecv(...);

reqs[3] = MPI Irecv(...);

// Asynchronously process remainder of z values on this rank
kernel fut = forasync cuda(..., [] (z) { ... });

// Copy received ghost region to CUDA device
copy_fut = async _copy await(..., reqs[2], reqs[3], kernel fut);

26




Performance Evaluation

27




28

TBB W OCR © Realm

Edison

¥ |OMP ®GOMP

https://github.com/habanero-rice/tasking-micro-benchmark-suite

— o
[S] <
o

=] —
=

0.001

=]
=]
-

o
=
K
=
(
£
=
S
-
Q
oy
O
P =
-
=
i
")
(
=

o
Q
E
Q
o)
-2/
| -
Q
<
20
-
c
@)
-2
©
Ll
C
@)
o
L
o
I
@)
)
®)
Q
N
©
=
| -
@)
C
Q
(@)
C
(4°)
=
| -
@)
4
| -
(¢}
o
4
| -
(4°)
&
<
O
C
Q
2
@)
| -
O

qI|DH 0} Pazi|EWJON 3IUBWI0}IAd




Experimental Setup

Experiments shown here were run on Titan @ ORNL and Edison @ NERSC.

— Platform | Dataset ____| Modules Used Scaling_____

Titan 22° keys per node  OpenSHMEM Weak
HPGMG-FV Edison log2 box_dim=7 UPC++ Weak
boxes_per_rank=8
UTS Titan TIXXL OpenSHMEM Strong
Graph500  Titan 2%° nodes OpenSHMEM Strong

LBM Titan MPI, CUDA Weak

29




HiPER Evaluation — Regular Applications

HIPER is low-overhead, no impact on
performance for regular applications

O
[}
£
=
c
hel
=
=)
[&]
[0}
x
[}
©
-
(]
—

20

15

10

32 64 128 256 512 1024

Total nodes on Titan (16 cores per node)
I Flat OpenSHMEM [ HIPER

I OpenSHMEM+OpenMP

ISx

Total execution time (s)

0.8

0.6

0.4

0.2

64 128 256 512

Total nodes on Edison (2 processes/sockets per node, 12 cores per process)
I UPC++ + OpenMP I HIiPER

HPGMG Solve Step

30



HiPER Evaluation — Regular Applications

~2% performance improvement
through reduced synchronization
from futures-based programming.
10

8 -

6 -

Total execution time (s)

1 2 4 8 16 32

Total nodes on Titan (16 cores per node)
I MVPI+CUDA mmm HiPER

LBM

31



HiPER Evaluation — UTS

Total execution time (s)

100

80

60

40

HIPER integration
improves
computation-
communication
overlap,
scalability, load
balance

32 64 128 256 512 1024

Total nodes on Titan (16 cores per node)
B OpenSHMEM+OpenMilE HiPER

32




HiPER Evaluation — Graph500

HIiPER used for concurrent (not parallel)
programming in Graph500.

Rather than periodic polling, use novel
shmem_async_when APIs to trigger local
computation on incoming RDMA.

Reduces code complexity, hands
scheduling problem to the runtime.

Overhead (%)

33



Conclusions & Future Work

34



Working to generalize past work on improving the composability of HPC libraries
through tasking. Exploring both improvements at the runtime and API layer.

Drive system requirements using OpenSHMEM, but also currently support
composing CUDA, MPI, UPC++.

Future work:

* Continuing work on additional module support (integration with OpenSHMEM
contexts)

e Continue to iterate on existing benchmarks

 New application development (Fast Multipole Method)

https://github.com/habanero-rice/hclib/tree/resource workers
‘ https://github.com/habanero-rice/tasking-micro-benchmark-suite 35




Acknowledgements

A

» Los Alamos

NATIONAL LABORATORY
EST.1943

UNIVERSITY of \\\‘StonyBrook
University

HOUSTON

36



