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Past decade has seen more

heterogeneous supercomputers
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Majority of Top10 Peak and Achieved GFlop/s has
come from heterogeneous machines since 2013
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We as a community are very bad at programming

heterogeneous supercomputers (even for LINPACK).
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How Do We Define Heterogeneity?

For the past decade, “heterogeneous

computing” == “GPUs”

* Dealing with GPUs has taught us a
lot about software heterogeneity

But heterogeneity is on the rise

everywhere in HPC:

 Hardware: memory, networks,
storage, cores

* Software: networking libraries,
compute libraries, managed
runtimes, domain libraries, storage
APIs

Interconnect A

Interconnect B

High Performance Local Storage

High-Bandwidth Memory

Latency- Latency- Latency- Latency-
Optimized Optimized Optimized Optimized
Throughput- Throughput-
Optimized Optimized

Depiction of the abstract platform motivating this work.




Heterogeneous Programming in Practice

OpenMP
pthreads

#"%| OpenACC

OpenCL

OpenMP
@9@@5 cuDNN




Heterogeneous Programming in Research

Legion: Hide all heterogeneity from user, rely on runtime to map problem to
hardware efficiently, implicit dependencies discovered by runtime.

Parsec, OCR: Explicit dataflow model.

HCMPI, HCUPC++, HC-CUDA, HPX: Task-based runtimes that create dedicated
proxy threads for managing some external resource (e.g. NIC, GPU).

HiPER: Generalize a task-based, locality-aware, work-stealing runtime/model to
support non-CPU resources.

* Retain the appearance of legacy APIs

 Composability, extensibility, compatibility are first-class citizens from the start.
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HiPER Execution & Platform Model
HiPER Use Cases

e  MPI Module

e Composing MPl and CUDA

Performance Evaluation

Conclusions & Future Work




HiPER Execution & Platform Model




HiPER’s Predecessors

Hierarchical Place Trees
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HiPER’s Predecessors

Hierarchical Place Trees
w/ GPU

.

Proxy Thread
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HiPER’s Predecessors
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Proxy Thread Proxy Thread

Hierarchical Place Trees
w/ GPU and OSHMEM
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HiPER’s Predecessors
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Proxy Thread Proxy Thread

Hierarchical Place Trees
w/ GPUs and OSHMEM
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HiPER’s Predecessors

sysmem OSHMEM

Proxy Thread Proxy Thread

Hierarchical Place Trees
w/ GPUs, OSHMEM, MPI
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HiPER’s Predecessors

sysmem OSHMEM

Proxy Thread Proxy Thread

Hierarchical Place Trees
w/ GPUs, OSHMEM, MPI

* Simple model makes it attractive for many past research efforts,
but...
* Not scalable software engineering
* Wasteful use of host resources
* Not easily extendable to new software/hardware capabilities
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HiPER Platform & Execution Model

HiPER Work-Stealing Thread Pool

0000




HiPER Platform & Execution Model

Pluggable
Modules

Modules expose
user-visible APIs
for work creation.

HiPER Work-Stealing Thread Pool

0000
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HiPER Platform & Execution Model

Pluggable
Modules

HiPER Platform Model

Platform model gives
modules somewhere
to place work, thread

pool somewhere to HiPER Work-Stealing Thread Pool
find work.

0000
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HiPER Platform & Execution Model

Pluggable
Modules

ossvtew | wp | cuo

Modules fill in platform
model, tell threads the

subset of the platform
they are responsible

for scheduling work on.

< HiPER Platform Model

CPU,

cpPU,| [cpu,| |cpu,| |cpu,

HiPER Work-Stealing Thread Pool

0000
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HiPER Platform & Execution Model

Pluggable
Modules
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Modules fill in platform
model, tell threads the

subset of the platform
they are responsible

for scheduling work on.

H.PEWrm Model
NIC

CPU,
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HiPER Work-Stealing Thread Pool
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HiPER Platform & Execution Model

Pluggable
Modules

HIPER Platform Model
gu NIC

cpPU,| [cpu,| |cpu,| [cpu,| |cpu,

HiPER Work-Stealing Thread Pool

0000
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HiPER Use Cases
e  MPI Module
e Composing MPl and CUDA
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Fundamental Task-Parallel API

The HiPER core exposes a fundamental C/C++ tasking API.

e Explanation

async([] { S1; }); Create an asynchronous task
finish([] { S2; }); Suspend calling task until nested tasks have
completed
async_at([] { S3; }, place); Create an async. task at a place in the platform
model

fut = async_future([] { S4; }); Geta future that is signaled when a task completes

async_await([] { S5; }, fut); Create an asynchronous task whose execution is
predicated on satisfaction of fut.

Summary of core tasking APls. The above list is not comprehensive.
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MPI Module

Extends HiPER namespace with familiar MPI APIs

* Programmers can use the APIs they already know and love
e Built on 1) an MPI implementation, and 2) HiPER’s core tasking APIs.

Asynchronous APIs return futures rather than MPI_Requests, enabling
composability in programming layer with all other future-based APIs:

hiper::future_ t<void> *MPI Irecv/Isend(...);

Enables non-standard extensions, e.g.:

hiper::future_t<void> *MPI Isend await(...,
hiper::future_t<void> *await);

Start an asynchronous send
once await is satisfied.

hiper::future_t<void> *MPI Allreduce_ future(...);

Asynchronous collectives.
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Example APl Implementation

hiper::future t<void> *hiper::MPI_ Isend await(..., hiper::future_t<void> *await) {
// Create a promise to be satisfied on the completion of this operation
hiper::promise_t<void> *prom = new hiper::promise_t<void>();

// Taskify the actual MPI_Isend at the NIC, pending the satisfaction of await
hclib::async_nb_await at([=] {

// At MPI place, do the actual Isend

MPI Request req;

::MPI Isend(..., &req));

// Create a data structure to track the status of the pending Isend
pending mpi op *op = malloc(sizeof(*op));

hiper::append to pending(op, &pending, test mpi completion, nic);
}, fut, nic);

return prom->get future();

‘ ¥ Periodic polling function
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Composing System, MPI, CUDA Modules

// Asynchronously process ghost regions on this rank in parallel on CPU
ghost _fut = forasync_future([] (z) { ... });

// Asynchronously exchange ghost regions with neighbors
reqs[@] = MPI Isend await(..., ghost fut);

reqs[1] = MPI Isend await(..., ghost fut);

reqs[2] = MPI Irecv(...);

reqs[3] = MPI Irecv(...);

// Asynchronously process remainder of z values on this rank
kernel fut = forasync cuda(..., [] (z) { ... });

// Copy received ghost region to CUDA device
copy_fut = async _copy await(..., reqs[2], reqs[3], kernel fut);
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Performance Evaluation
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https://github.com/habanero-rice/tasking-micro-benchmark-suite

— o
[S] <
o

=] —
=

0.001

=]
=]
-

o
=
K
=
(
£
=
S
-
Q
oy
O
P =
-
=
i
")
(
=

o
Q
E
Q
o)
-2/
| -
Q
<
20
-
c
@)
-2
©
Ll
C
@)
o
L
o
I
@)
)
®)
Q
N
©
=
| -
@)
C
Q
(@)
C
(4°)
=
| -
@)
4
| -
(¢}
o
4
| -
(4°)
&
<
O
C
Q
2
@)
| -
O

qI|DH 0} Pazi|EWJON 3IUBWI0}IAd




Experimental Setup

Experiments shown here were run on Titan @ ORNL and Edison @ NERSC.

— Platform | Dataset ____| Modules Used Scaling_____

Titan 22° keys per node  OpenSHMEM Weak
HPGMG-FV Edison log2 box_dim=7 UPC++ Weak
boxes_per_rank=8
UTS Titan TIXXL OpenSHMEM Strong
Graph500  Titan 2%° nodes OpenSHMEM Strong

LBM Titan MPI, CUDA Weak
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HiPER Evaluation — Regular Applications

HIPER is low-overhead, no impact on
performance for regular applications
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HiPER Evaluation — Regular Applications

~2% performance improvement
through reduced synchronization
from futures-based programming.
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HiPER Evaluation — UTS

Total execution time (s)
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HIPER integration
improves
computation-
communication
overlap,
scalability, load
balance
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HiPER Evaluation — Graph500

HIiPER used for concurrent (not parallel)
programming in Graph500.

Rather than periodic polling, use novel
shmem_async_when APIs to trigger local
computation on incoming RDMA.

Reduces code complexity, hands
scheduling problem to the runtime.

Overhead (%)
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Conclusions & Future Work
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Working to generalize past work on improving the composability of HPC libraries
through tasking. Exploring both improvements at the runtime and API layer.

Drive system requirements using OpenSHMEM, but also currently support
composing CUDA, MPI, UPC++.

Future work:

* Continuing work on additional module support (integration with OpenSHMEM
contexts)

e Continue to iterate on existing benchmarks

 New application development (Fast Multipole Method)

https://github.com/habanero-rice/hclib/tree/resource workers
‘ https://github.com/habanero-rice/tasking-micro-benchmark-suite 35
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