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Abstract. Partitioned Global Address Space (PGAS) programming models com-
bine shared and distributed memory features, and provide a foundation for high-
productivity parallel programming using lightweight one-sided communications.
The OpenSHMEM programming interface has recently begun gaining popular-
ity as a lightweight library-based approach for developing PGAS applications, in
part through its use of a symmetric heap to realize more efficient implementations
of global pointers than in other PGAS systems. However, current approaches to
hybrid inter-node and intra-node parallel programming in OpenSHMEM rely on
the use of multithreaded programming models (e.g., pthreads, OpenMP) that har-
ness intra-node parallelism but are opaque to the OpenSHMEM runtime. This
OpenSHMEM+X approach can encounter performance challenges such as bot-
tlenecks on shared resources, long pause times due to load imbalances, and poor
data locality. Furthermore, OpenSHMEM+X requires the expertise of hero-level
programmers, compared to the use of just OpenSHMEM. All of these are hard
challenges to mitigate with incremental changes. This situation will worsen as
computing nodes increase their use of accelerators and heterogeneous memories.
In this paper, we introduce the AsyncSHMEM PGAS library which supports a
tighter integration of shared and distributed memory parallelism than past Open-
SHMEM implementations. AsyncSHMEM integrates the existing OpenSHMEM
reference implementation with a thread-pool-based, intra-node, work-stealing
runtime. It aims to prepare OpenSHMEM for future generations of HPC systems
by enabling the use of asynchronous computation to hide data transfer latencies,
supporting tight interoperability of OpenSHMEM with task parallel program-
ming, improving load balance (both of communication and computation), and
enhancing locality. In this paper we present the design of AsyncSHMEM, and
demonstrate the performance of our initial AsyncSHMEM implementation by
performing a scalability analysis of two benchmarks on the Titan supercomputer.
These early results are promising, and demonstrate that AsyncSHMEM is more
programmable than the OpenSHMEM+OpenMP model, while delivering com-
parable performance for a regular benchmark (ISx) and superior performance for
an irregular benchmark (UTS).

1 Introduction

Computing systems are rapidly moving toward exascale, requiring highly pro-
grammable means of specifying the communication and computation to be carried out
by the machine. Because of the complexity of these systems, existing communication



models for High Performance Computing (HPC) often run into performance and pro-
grammability limitations, as they can make it difficult to identify and exploit oppor-
tunities for computation-communication overlap. Existing communication models also
lack tight integration with multi-threaded programming models, often requiring overly
coarse or error-prone synchronization between the communication and multi-threaded
components of applications.

Distributed memory systems with large amounts of parallelism available per node
are notoriously difficult to program. Prevailing distributed memory approaches, such as
MPI [23]], UPC [11], or OpenSHMEM [7|], are designed for scalability and communica-
tion. For certain applications they may not be well suited as a programming model for
exploiting intra-node parallelism. On the other hand, prevailing programming models
for exploiting intra-node parallelism, such as OpenMP [9], Cilk [12], and TBB [21] are
not well suited for use in a distributed memory environment as the parallel program-
ming paradigms used (tasks or groups of tasks, parallel loops, task synchronization) do
not translate well or easily to a distributed memory environment.

The dominant solution to this problem so far has been to combine the distributed-
memory and shared-memory programming models into ”"X+Y”, e.g., MPI+OpenMP or
OpenSHMEM-+OpenMP. While such approaches to hybrid inter-node and intra-node
parallel programming are attractive as they require no changes to either programming
model, they also come with several challenges. First, the programming concepts for
inter- and intra-node parallelism are often incompatible. For example, MPI communi-
cation and synchronization within OpenMP parallel regions may have undefined behav-
ior. This forces some restrictions on how constructs can be used (for example, forcing
all MPI communication to be done outside of the OpenMP parallel regions). Second,
the fact that each runtime is unaware of the other can lead to performance or correctness
problems (e.g. overly coarse-grain synchronization or deadlock) when using them to-
gether. Third, in-depth expertise in either distributed memory programming models or
shared-memory programming models is rare, and expertise in both even more so. Fewer
and fewer application developers are able to effectively program these hybrid software
systems as they become more complex.

In this paper we propose AsyncSHMEM, a unified programming model that in-
tegrates Habanero tasking concepts [8] with the OpenSHMEM PGAS model. The Ha-
banero tasking model is especially suited for this kind of implementation, since its asyn-
chronous nature allows OpenSHMEM communication to be treated as tasks in a unified
runtime system. AsyncSHMEM allows programmers to write code that exploits intra-
node parallelism using Habanero tasks and distributed execution/communication using
OpenSHMEM. AsyncSHMEM includes extensions to the OpenSHMEM specification
for asynchronous task creation, extensions for tying together OpenSHMEM commu-
nication and Habanero tasking, and a runtime implementation that performs unified
computation and communication scheduling of AsyncSHMEM programs.

We have implemented and evaluated two different implementations of the Async-
SHMEM interface. The first is referred to as the Fork-Join approach and is a lightweight
integration of our task-based, multi-threaded runtime with the OpenSHMEM run-
time with constraints on the programmer similar to those imposed by an OpenSH-
MEM+OpenMP approach. The second is referred to as the Offload approach and offers



a tighter integration of the OpenSHMEM and tasking runtimes that permits OpenSH-
MEM calls to be performed from within parallel tasks. The runtime ensures that all
OpenSHMEM operations are offloaded to a single runtime thread before calling in to
the OpenSHMEM runtime. The Fork-Join approach offers small overheads but a more
complicated programming model and is more restrictive in the use of the OpenSHMEM
tasking API extensions. The Offload approach ensures that all OpenSHMEM operations
are issued from a single thread, removing the need for a thread-safe OpenSHMEM im-
plementation. We note that this communication thread is not dedicated exclusively to
OpenSHMEM operations, and is also used to execute user-created computational tasks
if needed. The advantage of the Offload approach is that it supports a more flexible and
intuitive programming model than the Fork-Join approach, and can also support higher
degrees of communication-computation overlap.
The main contributions of this paper are as follows:

— The definition of the AsyncSHMEM programming interface, with extensions to
OpenSHMEM to support asynchronous tasking.

— Two runtime implementations for AsyncSHMEM that perform unified computation
and communication scheduling of AsyncSHMEM programs.

— A preliminary performance evaluation and comparison of these two implementa-
tions with flat OpenSHMEM and OpenSHMEM+OpenMP models, using two dif-
ferent applications and scaling them up to 16K cores on the Titan supercomputer.

The rest of the paper is organized as follows. Section [2| provides background on
the Habanero tasking model that we use as inspiration for the proposed OpenSHMEM
tasking extensions, as well as the OpenSHMEM PGAS programming model. Section[3]
describes our extensions to the OpenSHMEM API specification and our two imple-
mentations of the AsyncSHMEM runtime in detail. Section ] explains our experimen-
tal methodology. Section [5] presents and discusses experimental results comparing the
performance of our two AsyncSHMEM implementations against OpenSHMEM and
OpenSHMEM+OpenMP implementations of two benchmarks, UTS and ISx. This is
followed by a discussion of related work in Section[6] Finally, Section[7] concludes the

paper.

2 Background

In this section we describe the programming concepts and existing implementations
that serve as the foundation for the hybrid AsyncSHMEM model: Habanero Tasking
and OpenSHMEM.

2.1 Habanero Tasking

The Habanero task-parallel programming model [S]] offers an async-finish API for
exploiting intra-node parallelism. The Habanero-C Library (HClib) is a native library-
based implementation of the Habanero programming model that offers C and C++ APIs.
Here we briefly describe relevant features of both the abstract Habanero programming
model and its HClib implementation. More details can be found in [22].



The Habanero async construct is used to create an asynchronous child task of the
current task executing some user-defined computation. The finish construct is used to
join all child async tasks (including any transitively spawned tasks) created inside of
a logical scope. The forasync construct offers a parallel loop implementation which
can be used to efficiently create many parallel tasks.

The Habanero model also supports defining dependencies between tasks using stan-
dard parallel programming constructs: promises and futures. A promise is a write-only
value container which is initially empty. In the Habanero model, a promise can be sat-
isfied once by having some value placed inside of it by any task. Every promise has a
future associated with it, which can be used to read the value stored in the promise. At
creation time tasks can be declared to be dependent on the satisfaction of a promise by
registering on its future. This ensures that a task will not execute until that promise has
been satisfied. In Habanero, the asyncAwait construct launches a task whose execu-
tion is predicated on a user-defined set of futures. User-created tasks can also explicitly
block on futures while executing.

In the Habanero model, a place can be used to specify a hardware node within a
hierarchical, intra-node place tree [24]]. The asyncAt construct accepts a place argu-
ment, and creates a task that must be executed at that place.

HClib is a C/C++ library implementation that implements the abstract Habanero
programming model. HCIib sits on top of a multi-threaded, work-stealing, task-based
runtime. HClib uses lightweight, runtime-managed stacks from the Boost Fibers [16] li-
brary to support blocking tasks without blocking the underlying runtime worker threads.
Past work has shown HClib to be competitive in performance with industry-standard
multi-threaded runtimes for a variety of workloads [[13].

HClib serves as the foundation for the intra-node tasking implementation of Async-
SHMEM described in this paper.

2.2 OpenSHMEM

SHMEM is a communication library used for Partitioned Global Address Space
(PGAS) [20] style programming. The SHMEM communications library was originally
developed as a proprietary application interface by Cray for their T3D systems [[15].
Since then different vendors have come up with variations of the SHMEM library im-
plementation to match their individual requirements. These implementations have over
the years diverged because of the lack of a standard specification. OpenSHMEM [/] is
an open source community effort to unify all SHMEM library development effort.

3 AsyncSHMEM

In this section we present proposed API extensions to the OpenSHMEM specification,
as well as two runtime implementations of those extensions.

3.1 API Extensions

The existing OpenSHMEM specification focuses on performing communication to and
from processing elements (PEs) in a PGAS communication model. This work extends



the OpenSHMEM specification with APIs for both creating asynchronously executing
tasks as well as declaring dependencies between communication and computation. In
this section, we briefly cover the major API extensions. Due to space limitations, these
descriptions are not intended to be a comprehensive specification of these new APIs.

In general, the semantics of OpenSHMEM APIs in AsyncSHMEM are the same as
any specification-compliant OpenSHMEM runtime. For collective routines, we expect
that only a single call is made from each PE. The ordering of OpenSHMEM opera-
tions coming from independent tasks must be ensured using task-level synchronization
constructs. For example, if a programmer requires that a shmem_fence call is made
between two OpenSHMEM operations occurring in other tasks, it is their responsibil-
ity to ensure that the inter-task dependencies between those tasks ensure that ordering.
The atomicity of atomic OpenSHMEM operations is guaranteed relative to other PEs
as well as relative to all threads.

void shmem_task_nbi(void (xbody)(void %), void xuser_data);

shmem_task nbi creates an asynchronously executing task defined by the user
function body which is passed user_data when launched by the runtime.

void shmem_parallel_for_nbi(void (*body)(int, void x*),
void *user_data, int lower_bound, int upper-bound);

shmem_parallel for nbi provides a one-dimensional parallel loop construct
for AsyncSHMEM programs, where the bounds of the parallel loop are defined by
lower_bound and upper_bound. Each iteration of the parallel loop executes body and
is passed both its iteration index and user_data.

void shmem_task_scope_begin ();
void shmem_task_scope_end ();

A pair of shmem_task_scope_begin and shmem_task_scope_end calls are anal-
ogous to a finish scope in the Habanero task parallel programming model.
shmem_task_scope_end blocks until all transitively spawned child tasks since the last
shmem_task_scope_begin have completed.

void shmem_task_nbi_when(void (xbody)(void %), void xuser_data,
TYPE xivar, int cmp, TYPE cmp_value);

The existing OpenSHMEM Wait APIs allow an OpenSHMEM PE to block and wait
for a value in the symmetric heap to meet some condition. The shmem_task nbi_when
API is similar, but rather than blocking makes the execution of an asynchronous task
predicated on a condition. This is similar to the concept of promises and futures intro-
duced in Section 2l This API also allows remote communication to create local work
on a PE.

3.2 Fork-Join Implementation

The Fork-Join approach is an implementation of AsyncSHMEM that supports most of
the proposed extensions from Section It is open source and available at https:
//github.com/openshmem-org/openshmem-async,
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Fig. 1. Fork-Join asynchronous task programming model in OpenSHMEM. The intra-rank asyn-
chronous child tasks cannot make any communication calls.

This particular implementation of AsyncSHMEM integrates asynchronous task par-
allelism wihout making any changes to the core OpenSHMEM runtime. Changes are
limited to the user-level API’s in OpenSHMEM. The goal of the Fork-Join implemen-
tation was to study the impact of supporting basic asynchronous tasking in OpenSH-
MEM. In this approach, only the main thread (or process) is allowed to perform Open-
SHMEM communication operations (blocking puts and gets, collectives). The asyn-
chronous child tasks are not allowed to perform communication. The main thread
can create child tasks by calling shmem_task_nbi or shmem_parallel_for_nbi.
These child tasks can further create arbitrarily nested tasks. Synchronization
over these tasks can be achieved either by explicitly creating task synchroniza-
tion scopes by using shmem_task_scope_begin and shmem_task_scope_end,
or implicitly by calling shmem_barrier_all. The shmem_init call starts a top-
level synchronization scope by calling shmem_task_scope_begin internally. Each
shmem_barrier_all call includes an implicit sequence of shmem_task_scope_end
and shmem_task_scope_begin calls, i.e., it first closes the current synchroniza-
tion scope and then starts a new scope. The call to shmem_finalize internally
calls shmem_task_scope_end to close the top-level synchronization scope. The pro-
grammer is allowed to create arbitrarily nested task synchronization scopes using
shmem_task_scope_begin and shmem_task_scope_end. We call this implemen-
tation of AsyncSHMEM a Fork-Join approach because of the implicit task synchro-
nization scopes integrated inside the call to shmem_barrier_all, causing a join at
each barrier but allowing the forking of asynchronous tasks between barriers. A typical
usage of this implementation is shown in Figure [T} which closely mirrors an OpenSH-
MEM+OpenMP based hybrid programming model.

3.3 Offload Implementation

Similarly to the Fork-Join approach, the Offload approach does not require modi-
fications to any existing OpenSHMEM implementations but does support a tighter
integration of PGAS and task parallel programming with more flexible APIs. The
Offload implementation is open source and available at https://github.com/
habanero-rice/hclib/tree/resource_workers/modules/openshmem.

Similar to [[17] and [8], the Offload implementation ensures all OpenSHMEM oper-
ations are issued by a single worker thread in the multi-threaded, work-stealing runtime.
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However, the Offload approach differs in that no worker thread is dedicated exclusively
to performing communication. Instead, the communication worker thread is free to ex-
ecute user-written computation tasks if no communication work can be found.

To better illustrate the Offload approach, we will walk through the execution of a
shmem_int_put operation in the Offload approach’s runtime:

1. An arbitrary task in a given PE calls the OpenSHMEM shmem_int_put API as
usual, but using the AsyncSHMEM library. Under the covers, this call results in
the creation of a task that wraps a call to the shmem_int_put API of an Open-
SHMEM implementation. That task is placed on the work-stealing deque of the
communication worker. No threads are allowed to steal communication tasks from
the communication worker.

2. Because shmem_int_put is a blocking operation, the stack of the currently execut-
ing task is saved as a continuation and its execution is predicated on the completion
of the created shmem_int_put task. The worker thread that performed this Open-
SHMEM operation is then able to continue executing useful work even while the
shmem_int_put operation is incomplete.

3. At some point in the future, the communication worker thread discovers an Open-
SHMEM operation has been placed in its work-stealing deque, picks it up, and
performs the actual shmem_int_put operation using an available OpenSHMEM
implementation. If the communication worker thread has no communication to per-
form, it behaves just as any other worker thread in the runtime system by executing
user-written computation tasks.

4. Once this communication task has completed on the communication worker thread,
the continuation task’s dependency is satisfied and it is made eligible for execution
again.

Unlike the Fork-Join approach, this approach places no limitations on where Open-
SHMEM calls can be made. This flexibility comes at the cost of increased runtime
complexity. For example, OpenSHMEM locks must be handled carefully. If two inde-
pendent tasks on the same node are locking the same OpenSHMEM lock, naive offload
of lock operations can easily lead to deadlock scenarios. Instead, lock operations target-
ing the same lock object are chained using futures to ensure only a single task in each
node tries to enter the lock at a time.

4 Experimental Methodology

Before detailing our experimental results with AsyncSHMEM, we first explain our ex-
perimental methodology in this section.

4.1 Benchmarks

We have used the following two benchmarks for evaluation of AsyncSHMEM: a) Inte-
ger Sorting (ISx) [14], and b) Unbalanced Tree Search (UTS) [19].



ISx: ISx is a scalable integer sorting benchmark that was inspired by the NAS Paral-
lel Benchmark integer sort. It uses a parallel bucket sorting algorithm. The reference
implementation of ISx uses OpenSHMEM only. To ensure a fair comparison, we also
implement an OpenSHMEM+OpenMP version of ISx as part of this work. The Open-
SHMEM+OpenMP and AsyncSHMEM versions of ISx are identical and simply replace
OpenMP loop parallelism with shmem_parallel_for nbi. Our experiments use the
weak scaling version of ISx. In the OpenSHMEM version, the total number of sorting
keys per rank is 225 whereas in both multi-threaded versions it is Nx2%5 where N is
the total number of threads per rank. Hence, across all versions of ISx, the total number
of keys per node is 2%°.

UTS: The UTS benchmark performs the parallel traversal of a randomly generated
unbalanced tree. The reference UTS implementation only includes OpenSHMEM par-
allelism, so as part of this work we implement an AsyncSHMEM version, an Open-
SHMEM-+OpenMP version, and an OpenSHMEM+OpenMP Tasks version. The Open-
SHMEM+OpenMP Tasks and AsyncSHMEM versions are nearly identical in structure,
using tasking APIs to cleanly express the recursive, irregular parallelism of UTS. The
OpenSHMEM+OpenMP implementation is a heavily hand-optimized SPMD imple-
mentation, for which the development time was much greater than any other version.

4.2 Experimental Infrastructure and Measurements

We performed all experiments on the Titan supercomputer at the Oak Ridge National
Laboratory. This is a Cray XK7 system with each node containing an AMD Opteron
6274 CPU. There are two sockets per node (8 cores per socket) and an NVIDIA Tesla
K20X GPU. For ISx, we use the OpenSHMEM-only version of ISx as our baseline,
with one PE per core. For UTS, we use the OpenSHMEM+OpenMP version of UTS
as our baseline, with one PE per node and 16 threads per PE. In both AsyncSHMEM
and OpenMP versions we allocate one rank per socket with 8 threads per rank for ISx
and one rank per node with 16 threads for UTS. We do not make use of the GPUs in
these experiments, though our proposed changes do not affect the ability of OpenSH-
MEM to use GPU accelerators. Prior studies have found that on Cray supercomputers a
communication heavy job can vary in performance across different job launches due to
node allocation policies and other communication intensive jobs running in the neigh-
borhood [4]. To ensure fair comparison across different versions of benchmark, we run
each version as a part of a single job launch on a given set of nodes.

5 Results

5.1 ISx

In this section we perform weak scaling experiments (details in Section [ of all four
versions of ISx. The results of this experiment are shown in Figure 2] Figure[2(a)| shows
the total execution time (computation and communication) at each node count. Fig-
ure [2(b)| shows the time spent in ISx’s single all-to-all key exchange communication
call.
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Fig. 2. Weak scaling of ISx with total number of keys per node remaining constant in each version



From Figure [2} we can see that at large node counts (512 and 1024), the multi-
threaded versions of ISx (AsyncSHMEM and OpenMP) are relatively faster than the
reference flat OpenSHMEM version. However, at smaller node counts (32 and 64 nodes
in particular), the reference OpenSHMEM version shows better performance than the
threaded versions. These variations are due to NUMA effects as well as the time spend
in all-to-all communication. ISx is a memory intensive application. Both threaded ver-
sions running with § threads per rank (one rank per socket) use 8 X more memory per
rank than the single threaded reference version that uses 8 ranks per socket. Titan nodes
have NUMA architecture. We used local allocation policy that favors memory alloca-
tions on the NUMA domain the rank is executing. This is more beneficial for the single
threaded reference version, while in the threaded version the threads running on differ-
ent NUMA domain will contend for the same memory locations. Due to the relatively
fast key exchange time at 32 and 64 nodes (Figure 2(b)), memory access advantage
of the reference OpenSHMEM version outweights the communication reduction of the
threaded versions. With the increase in number of nodes, OpenSHMEM version of ISx
has a much higher number of ranks participating in the all-to-all communication than
the AsyncSHMEM and OpenMP versions, resulting in large communication cost.

5.2 UTS

Relative to ISx, UTS is a more irregular application which further stresses the intra-
node load balancing and inter-node communication-computation overlap of AsyncSH-
MEM. For these experiments, we investigate the strong scaling of UTS on the provided
T1XXL dataset to demonstrate the improvement in computation-communication over-
lap achievable using AsyncSHMEM. We only run these experiments using the Offload
runtime as our approach to UTS requires communication occurring inside of parallel
regions.

Figure [3] plots the overall performance of UTS using OpenSHMEM-+OpenMP,
OpenSHMEM-+OpenMP Tasks, and AsyncSHMEM.

Our optimized OpenSHMEM+OpenMP implementation performs similarly to
AsyncSHMEM, though shows worse scalability beyond 128 nodes. We also note that
it took significantly more development effort to build an efficient version of UTS using
SPMD-style OpenSHMEM+OpenMP.

Because of the lack of integration between OpenSHMEM and OpenMP, the Open-
SHMEM+OpenMP Tasks implementation also performs slowly as coarse-grain syn-
chronization is required to join all tasks before performing distributed load balancing
using OpenSHMEM.

As part of our UTS implementation, we explored using more complex techniques
for distributed load balancing, as this is one of the primary bottlenecks for UTS perfor-
mance. In particular, we experimented with using the proposed shmem_task_nbi_when
extension to allow PEs to alert other PEs when work was available to be stolen
in the hope that load balancing could occur in the background rather than in bulk-
synchronous fashion. The challenge with this approach appears to lie in designing a
shmem_task_nbi_when implementation that balances low latency between a symmet-
ric variable being modified and the dependent task being launched with overheads from
checking symmetric variable values. In our initial implementation of this API, we were
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unable to find an appropriate balance between these two and so UTS implementations
that took advantage of more novel APIs were not able to out-perform or out-scale more
conventional implementations.

6 Related Work

6.1 Combining Distributed Programming Models with Task-Parallel
Programming

The Partitioned Global Address Space (PGAS) programming model [235] strikes a bal-
ance between shared and distributed memory models. It combines the ease of pro-
gramming with a global address space with performance improvements from locality
awareness. PGAS languages include Co-Array Fortran [[18]], Titanium [26], UPC [11],
X10 [10] and Chapel [6]. These languages rely on compiler transformations to convert
user code to native code. Some of these languages, such as Titanium, X10 and Chapel,
use code transformations to provide dynamic tasking capabilities using a work-stealing
scheduler for load balancing of the dynamically spawned asynchronous tasks.

Another related piece of work is HCMPI [8]], a language-based implementation
which combines MPI communication with Habanero tasking using a dedicated com-
munication worker (similar to the Offload approach).

Language-based approaches to hybrid multi-node, multi-threaded programming
have some inherent disadvantages relative to library-based techniques. Users have to
first learn a new language, which often does not have mature debugging or performance
analysis tools. Language-based approaches are also associated with significant devel-
opment and maintenance costs. To avoid these shortcomings HabaneroUPC++ [17] in-
troduced a compiler-free PGAS library that supports integration of intra-node and inter-
node parallelism. It uses the UPC++ [27] library to provide PGAS communication and
function shipping, and the C++ interface of the HClib library to provide intra-rank task
scheduling. HabaneroUPC++ uses C++11 lambda-based user interfaces for launching
asynchronous tasks.

6.2 Thread-Safe OpenSHMEM Proposals

Recently, the OpenSHMEM Threading Committee has been exploring extensions to the
OpenSHMEM specification to support its use in multi-threaded environments on multi-
core systems. Discussions in the OpenSHMEM Threading Committee have focused on
three approaches to adding the concept of thread-safety to the OpenSHMEM specifi-
cation. While AsyncSHMEM is not a thread-safe extension to OpenSHMEM per se, it
has the same high-level goal as these thread-safety proposals: improving the usability
and performance of OpenSHMEM programs on multi-core platforms.

One proposal would make the entire OpenSHMEM runtime thread-safe by ensur-
ing any code blocks that share resources are mutually exclusive. While this proposal
is powerful in its simplicity and would have minimal impact on the existing Open-
SHMEM APIs, the overheads from full thread-safety could quickly become a perfor-
mance bottleneck for future multi-threaded OpenSHMEM applications. This proposal



is summarized in Issue #218 on the OpenSHMEM Redmine [2f]. Today, this proposal
is orthogonal to the work on AsyncSHMEM. Because AsyncSHMEM serializes all
OpenSHMEM communication through a single thread, any concurrent data structures
within the OpenSHMEM implementation itself would only add unnecessary overhead.
However, if in the future we were to explore multiple communication worker threads in
the Offload approach then this thread-safety proposal would be one way to enable that
work.

The second proposal would introduce the concept of thread registration to Open-
SHMEM, in which any thread that wishes to make OpenSHMEM calls would have
to register itself with the OpenSHMEM runtime. The runtime would be responsible
for managing any thread-private or shared resources among registered threads. This
proposal would also have minimal impact on the existing OpenSHMEM APIs, simply
requiring that programmers remember to register threads before making any OpenSH-
MEM calls. Explicit thread registration would enable better handling of multi-threaded
programs by the OpenSHMEM runtime, likely leading to improved performance than
the simple thread-safety proposal. This proposal was put forward by Cray, and is sum-
marized in [3]. Similar to the first simple thread safety proposal, this thread registration
proposal is orthogonal to AsyncSHMEM until we consider multiple communication
worker threads in the Offload approach.

The third proposal focuses on adding the idea of an OpenSHMEM context to the
OpenSHMEM specification. A context would encapsulate all of the resources neces-
sary to issue OpenSHMEM operations, and it would be the programmer’s responsi-
bility to ensure only a single thread operates on a context at a time. However, differ-
ent threads could use different contexts to issue OpenSHMEM operations in parallel.
This proposal would be the most disruptive to the existing OpenSHMEM specifica-
tion and requires the most programmer effort, but could also benefit both multi- and
single-threaded OpenSHMEM applications by enabling the creation of multiple inde-
pendent communication streams. This proposal was made by Intel, and is summarized
in [1f]. Unlike the previous two proposals, OpenSHMEM contexts could be useful in
conjuction with AsyncSHMEM. Contexts would enable AsyncSHMEM to keep multi-
ple streams of communication in-flight at once as long as no ordering constraints (e.g.
via shmem_fence) prevented that.

The main way in which AsyncSHMEM differentiates itself is by being a complete
extension to the OpenSHMEM specification, adding the concept of intra-node paral-
lelism to OpenSHMEM s existing inter-node parallelism. This integration enables a bet-
ter performing runtime implementation as well as the exploration of other novel APIs,
such as shmem_task_nbi_when. However, the three thread-safety proposals above are
more general in that they enable combining OpenSHMEM with any multi-threading
programming model (e.g. OpenMP, pthreads, Cilk).

7 Conclusion

In this paper we present work on integrating task-parallel, multi-threaded programming
models with the OpenSHMEM PGAS communication model. We present extensions
to the OpenSHMEM specification to enable the creation of asynchronous, intra-node



tasks and to allow local computation to be dependent on remote communication. We
describe and implement two different approaches to implementing these extensions:
the Fork-Join and Offload approaches. The Fork-Join approach is simple, but is similar
to existing OpenSHMEM+X approaches in its limitations on the use of computation
and communication APIs together. The Offload approach requires more complex run-
time support, but offers more flexibility in how tasks and communication can be used
together.

Our experimental evaluation shows that AsyncSHMEM performs similarly to ex-
isting OpenSHMEM+X approaches for regular applications and outperforms them for
more irregular workloads. In our experience, the flexibility of the Offload approach also
dramatically improves application programmability and maintainability.

There are many future directions for this work. We plan to focus development ef-
forts on the Offload implementation, as the programmability and flexibility benefits
it offers make it a better candidate for exploring more novel task-based extensions to
the OpenSHMEM specification. We will perform more in-depth analysis of the perfor-
mance characteristics of the ISx, UTS, and other benchmarks running on the Offload
implementation. This investigation will focus on both quantifying overheads introduced
by our implementation as well as pinpointing benefits.
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