Optimized Two-Level Parallelization for GPU Accelerators using the Polyhedral Model

CC 2017 - Austin, Texas
February 5th, 2017
Jun Shirako, Akihiro Hayashi, Vivek Sarkar
GPU Computing

- **Graphics Processing Units (GPUs)**
 - Significant performance and energy efficiency
 - Large burden on programmers due to low-level programming (e.g., CUDA and OpenCL)
 - Efficient parallelization for thousands of clustered cores
 - Explicit managements of data transfer and shared/local memories
 - Device-specific, low performance portability & productivity
- **High-level abstractions for GPU programming**
 - Users: programming in simple & platform-independent manner
 - Compilers: optimize/customize code for specific target systems
Polyhedral model

- Algebraic framework for affine program optimizations
 - Unified view that captures arbitrary loop structures
 - Generalized loop transformations as form of affine transform
 - Significant advancements over traditional AST-based transformations

Polyhedral compilation for GPUs (focus area for this work)

- End-to-end frameworks
 - C-to-CUDA [M. Baskaran, et al., CC 2010]
 - R-Stream [A. Leung, et al., GPGPU 2010]
 - PPCG [S. Verdoolaege, et al., TACO 2013]
- Input: sequential C. Output: optimized CUDA/OpenCL.
• **Two-level GPU parallelism**
 - Blocks: No/limited inter-block synchronization
 - Threads: Inter-thread barrier supported within a block
 - Coalesced memory accesses — i.e., contiguous threads to access contiguous elements — are critical to performance

• **Memory hierarchy management**
 - Explicit data transfers between global and shared (local) memories
Past work: PPCG Polyhedral Optimizer

- Coarse-grained parallelization policy [TACO 2013]
 - Compute **schedule — i.e., transformations** — based on PLuTo algorithm
 - Map the outermost parallelism in schedule to both blocks & threads
 - Fundamentally same parallelization for blocks & threads

```c
// Input (variant of Jacobi-2d)
for (t = 0; t < T; t++) {
    for (i = 1; i < N-1; i++)
        for (j = 1; j < N-1; j++)
    for (i = 1; i < N-1; i++)
        for (j = 1; j < N-1; j++)
            A[i][j] = B[i][j];
}
```

- **i-loop**
 - synchronization-free forall
- **j-loop**
 - cross-iteration dependence
 - accessing inner array dimension

```c
// Output of PPCG (CUDA kernel)
for (c1 = 0; c1 <= T-1; c1+=32) // t-tile
    for (c2 = 2 * c1; c2 <= ...; c2+=32) {
        if (...)
            for (c4 = ...; c4 <= ...; c4+=1) // t
                for (c5 = ...; c5 <= ...; c5+=1) {
                    if (N + 2 * c1 + 2 * c4 >= c2 + c5 + 2)
                        B[32*b0+t0][-2*c1+c2-2*c4+c5] = ...;
                    if (g7+c3 >= 2*g5+2*c2+2)
                        A[32*b0+t0][-2*g5+g7-2*c2+c3-1] = ...;
                }
    }
```

mapped to blocks & threads

sequentially executed; absence of memory coalescing
• Existing polyhedral approaches to GPUs
 • Compute *schedule — i.e., transformations* — based on PLuTo algorithm
 • Map the outermost parallelism in schedule to blocks & threads
 • Fundamentally same optimizations between block and thread
 • Block-level: synchronization-free parallelism is mandatory
 • Thread-level: can include barriers, important to coalesce memory accesses

• Our approach: two-level parallelization for GPUs
 • Compute *two schedules* with different optimization policies
 • Block-level: outermost synchronization-free parallelism
 • Thread-level: *parallelism with good coalescing + inter-thread synchronizations*
 • *Superposition* to integrate block-level and thread-level schedules
 • *DL memory cost model* to maximize coalesced memory access for threads
Outline

• Introduction
• Background
 • Overview of polyhedral model
 • Polyhedral transformations and parallelization
• Optimization framework
 • Overview of optimization flow
 • Superposition for GPU two-level parallelizations
 • GPU memory cost model for thread-level transformations
• Experimental results
• Conclusions
• Polyhedral model
 • Algebraic framework for affine program representations & transformations
 • Unified view that captures arbitrary loop structures
 • Generalize loop transformations as form of affine transform
 • Polyhedral representations (SCoP format)
 • Domain D^Si : set of statement instances for statement Si
 • Access A^Si : mapping an instance to array element(s) to be accessed
 • Schedule Θ^Si : mapping an instance to lexicographical time stamp
for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 $C[i][j] = 0.0$;

for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < K; k++)

$D^{S1} = \{(i, j) : 0 \leq i \leq M-1, 0 \leq j \leq N-1\}$

$D^{S2} = \{(i, j, k) : 0 \leq i \leq M-1, 0 \leq j \leq N-1, 0 \leq k \leq K-1\}$

- Domain D^{S_i}: set of statement instances for statement S_i
Schedule (time mapping)

for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 \(S1: \ C[i][j] = 0.0; \)
 i:
 for (i = 0; i < M; i++)
 j:
 for (j = 0; j < N; j++)
 k: for (k = 0; k < K; k++)
 \(S2: \ C[i][j] = C[i][j] + A[i][k] \ast B[k][j]; \)

\(\Theta^{S1}(i, j) = (0, i, j) \)
\(\Theta^{S2}(i, j, k) = (1, i, j, k) \)

- **Schedule \(\Theta^{Si}(i) \):** mapping statement instance \(i \) to time stamp vector
 - To capture the sequential execution order of a program
 - Statement instances are executed in lexicographical order of schedules
Schedule (time mapping)

for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 S1:
 C[i][j] = 0.0;
 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < K; k++)
 S2:
 C[i][j] = C[i][j] + A[i][k] * B[k][j];

θ^S1(i, j) = (0, i, j)
θ^S2(i, j, k) = (1, i, j, k)

for (i = 0; i < M; i++) {
 for (j = 0; j < N; j++) {
 S1:
 C[i][j] = 0.0;
 for (k = 0; k < K; k++)
 S2:
 C[i][j] = C[i][j] + A[i][k] * B[k][j];
 }
}

codegen

• Schedule θ^Si(i): mapping statement instance i to time stamp vector
 • To capture the sequential execution order of a program
 • Statement instances are executed in lexicographical order of schedules
 • Transformation = find a new schedule under dependence constraints

θ^S1(i, j) = (0, i, j, 0)
θ^S2(i, j, k) = (0, i, j, 1, k)
Space-mapping

// high-level forall
forall (i = 0; i < M; i++)
forall (j = 0; j < N; j++)
S1: C[i][j] = 0.0;

// CUDA threads
i = threadIdx.y;
j = threadIdx.x;
S1: C[i][j] = 0.0;

Θ₁(i, j) = (i_y, j_x)

- Space-mapping Θᵣᵢ: mapping instance i to (logical) processor id
 - Represent parallelism
 - No sequential order among instances
 - Annotated with subscripts x, y, and z to represent GPU thread/block dimensions
Composition of Time- and Space-mapping

- Scattering function
 - In a multidimensional scattering function, some dimensions represent schedule (time-mapping) while others are space-mapping
 - Capture both sequential loop transformations and parallelization

\[
\Theta^{S_1} = (t, 0, i_y, j_x) \\
\Theta^{S_2} = (t, 1, i_y, j_x)
\]

* Space-mapping dimension is annotated with subscripts
Outline

• Introduction
• Background
 • Overview of polyhedral model
 • Polyhedral transformations and parallelization
• Optimization framework
 • Overview of optimization flow
 • Superposition for GPU two-level parallelizations
 • GPU memory cost model for thread-level transformations
• Experimental results
• Conclusions
Overall Flow

- Transformations and parallelization
 - Thread-level transformations
 - Extended memory cost model (DL model) to GPU memory warps
 - Detect loop parallelism with good coalesced memory access; map to the innermost thread dimension
 - Block-level transformations (independent of thread-level transformations)
 - Detect & map sync-free parallelism to block dimensions
 - Superposed into final scattering function

- Shared memory and register optimizations
 1. Individual tiles are identified after superposition
 2. Array elements to be used/modified within each tile are computed
 3. Insert data transfers to/from shared memory or registers
Superposition

• Two scattering functions per statement
 • Block-level scattering function, $\Theta_{\text{Sout}}(i)$
 • Many-to-one function to assign multiple instances i to same value
 • Must be fully permutable
 • Thread-level scattering function, $\Theta_{S}(i)$
 • One-to-one function to assign each instance i to a unique value

• Superposition as loop tiling
 • Block-level: specify inter-tile schedule (individual tiles)
 • Thread-level: specify intra-tile schedule (iterations within a tile)
Superposition

Schedule for original code:
\[\Theta^{S_1} = (t, 0, i, j) \]
\[\Theta^{S_2} = (t, 1, i, j) \]

Block scattering function:
\[\Theta^{S_1\text{out}} = (i_x) \]
\[\Theta^{S_2\text{out}} = (i_x) \]

Thread scattering function:
\[\Theta^{S_1} = (t, 0, i_y, j_x) \]
\[\Theta^{S_2} = (t, 1, i_y, j_x) \]

Superposed scattering function:
\[\Theta^{S_1} = \left\lfloor \frac{i_x}{32} \right\rfloor, t, 0, i_y, j_x \]
\[\Theta^{S_2} = \left\lfloor \frac{i_x}{32} \right\rfloor, t, 1, i_y, j_x \]

* Tile size 32 is used
Analytical Model for Coalescing Memory Access

- DL model for CPU memory cost analysis
 - Originally proposed for cache (and TLB)
 - Assumption: loop tiling is applied
 - All data per tile fits within target cache
 - DL = estimation of # distinct cache lines per tile
 - Function of tile sizes, T_1, T_2, \ldots, T_d
 - $DL(T_1, T_2, \ldots, T_d) \leq$ total cache miss count per tile
- Extensions to GPU memory warp
 - Additional assumption: shared memory transfer
 - per-tile data is optimally prefetched & kept on shared/cache memory
 - Extended DL = estimation of # memory transactions per tile
 - $DL(T_1, T_2, \ldots, T_d) \leq$ total memory transaction count per tile
Analytical Model for Coalescing Memory Access

\[
\text{DL}(T_1, T_2, T_3) = \text{DL}_A(T_1, T_2, T_3) + \text{DL}_B(T_1, T_2, T_3) = T_1 \times \left\lceil \frac{T_2}{L} \right\rceil + T_3 \times \left\lceil \frac{T_1}{L} \right\rceil
\]

\[
\text{mem_cost}(T_1, T_2, \ldots, T_d) = \frac{\text{Cost}_{\text{trans}} \times \text{DL}(T_1, T_2, \ldots, T_d)}{T_1 \times T_2 \times \ldots \times T_d}
\]

L: warp size (e.g., 32 for NVIDIA GPUs), \(\text{Cost}_{\text{trans}} \): cost of single memory transaction

- Extended DL = estimation of # optimal memory transactions per-tile
 - Per-tile data is optimally prefetched & kept on shared/cache memory
 - Memory cost = total memory transaction count (normalized as per-iteration)
Profitability Analysis via DL Memory Cost

• Loop with best memory coalescing
 • Partial derivative of memory cost w.r.t. T_k:
 $$\frac{\partial \text{mem_cost}(T_1, T_2, ..., T_d)}{\partial T_k}$$
 • Reduction rate of memory cost when increasing T_k
 • Parallel loop with most negative value
 \rightarrow most profitable loop for memory cost minimization
 \rightarrow mapped to innermost thread dimension

• Profitability of loop fusion
 • Comparing $\text{mem_cost}(T_1, T_2, ..., T_d)$ before and after fusion
 • Memory cost decreased \rightarrow fusion is profitable
 • Other criteria, e.g., loss of parallelism, are also considered
Experimental Setting

• **Platforms**
 - Intel Xeon X5660 + NVIDIA Tesla M2050 GPU (Fermi)
 - 13SM x 32-core, total 448 CUDA Cores
 - IBM POWER8 + NVIDIA Tesla K80 GPU (Kepler)
 - 14SMX x 192-core, total 2496 CUDA Cores

• **Benchmarks**
 - PolyBench-C 3.2
 - SPEC Accel : 314.omriq and 357.sp (two kernels from x_solve)

• **Experimental variants**
 - Sequential : gcc -O3 on CPU
 - PPCG : Polyhedral Parallel Code Generator from INRIA
 - PolyAST+GPU : Two-level parallelization for GPUs (proposed)
• block-level: PolyAST+GPU has same schedule as PPCG
• thread-level: different schedules due to superposition and coalescing policy
• PPCG has more efficient code generation method (e.g., # threads can be ≤ block size)
• Geometric mean speedup: 44.8× by PPCG and 85.9× by PolyAST+GPU
• Relative improvement of our work over PPCG ~ 1.8x
block-level: PolyAST+GPU has same schedule as PPCG
thread-level: different schedules due to superposition and coalescing policy
PPCG has more efficient code generation method (e.g., # threads can be ≤ block size)
Geometric mean speedup: 45.6× by PPCG and 95.5× by PolyAST+GPU
Relative improvement of our work over PPCG ~ 2.1x
Conclusions

• **Graphics Processing Units (GPUs)**
 - Massively parallel architecture consisting of thousands of cores
 - Large burdens upon programmers, comparing with SMP programming
 - Automatic C-to-CUDA transformations for productive GPU computing

• **Existing polyhedral approaches to GPUs**
 - Focus on sync-free parallelism; less attention to generating threads with barriers
 - Use same schedule for both blocks and threads

• **Two-level parallelizations for GPUs**
 - Allows block-level and thread-level schedules with different optimization policies
 - Superposition to integrate block-level and thread-level schedules
 - An analytical memory cost model for GPU memory warp analysis
 - $1.8 \times$ and $2.1 \times$ geometric mean improvements on NVIDIA Fermi and Kepler over PPCG