
Optimized Two-Level Parallelization
for GPU Accelerators using the

Polyhedral Model

CC 2017 - Austin, Texas
February 5th, 2017

Jun Shirako, Akihiro Hayashi, Vivek Sarkar

GPU Computing

2

• Graphics Processing Units (GPUs)
• Significant performance and energy efficiency
• Large burden on programmers due to low-level programming

(e.g., CUDA and OpenCL)
• Efficient parallelization for thousands of clustered cores
• Explicit managements of data transfer and shared/local memories
• Device-specific, low performance portability & productivity

• High-level abstractions for GPU programming
• Users: programming in simple & platform-independent manner
• Compilers: optimize/customize code for specific target systems

Compiler Optimizations for GPUs using Polyhedral Model

3

• Polyhedral model
• Algebraic framework for affine program optimizations

• Unified view that captures arbitrary loop structures
• Generalized loop transformations as form of affine transform

• Significant advancements over traditional AST-based transformations
• Polyhedral compilation for GPUs (focus area for this work)

• End-to-end frameworks
• C-to-CUDA [M. Baskaran, et al., CC 2010]
• R-Stream [A. Leung, et al., GPGPU 2010]
• PPCG [S. Verdoolaege, et al., TACO 2013]

• Input: sequential C. Output: optimized CUDA/OpenCL.

CUDA Thread Execution & Memory Model

4

shared memory

block 0

Grid

global memory

threads with sync

shared memory

block 1

threads with sync ...
shared memory

block N-1

threads with sync

No synchronization supported among blocks

• Two-level GPU parallelism
• Blocks : No/limited inter-block synchronization
• Threads : Inter-thread barrier supported within a block

• Coalesced memory accesses — i.e., contiguous threads to access
contiguous elements — are critical to performance

• Memory hierarchy management
• Explicit data transfers between global and shared (local) memories

5

// Input (variant of Jacobi-2d)
for (t = 0; t < T; t++) {
 for (i = 1; i < N-1; i++)
 for (j = 1; j < N-1; j++)
 B[i][j] = (A[i][j] + A[i][j-1]
 + A[i][j+1]) / 3.0;
 for (i = 1; i < N-1; i++)
 for (j = 1; j < N-1; j++)
 A[i][j] = B[i][j];
}

• i-loop
• synchronization-free forall

• j-loop
• cross-iteration dependence
• accessing inner array dimension

// Output of PPCG (CUDA kernel)
b0 = blockIdx.x; // i-tile (block-x)
t0 = threadIdx.x; // i (thread-x)
for (c1 = 0; c1 <= T-1; c1+=32)
 for (c2 = 2 * c1; c2 <= ...; c2+=32) {
 if (...)
 for (c4 = ...; c4 <= ...; c4+=1)
 for (c5 = ...; c5 <= ...; c5+=1) {
 if (N + 2 * c1 + 2 * c4 >= c2 + c5 + 2)
 B[32*b0+t0][-2*c1+c2-2*c4+c5] = ...;
 if (g7+c3 >= 2*g5+2*c2+2)
 A[32*b0+t0][-2*g5+g7-2*c2+c3-1] = ...;
 }
 }

mapped to blocks & threads

sequentially executed;
absence of memory coalescing

// Output of PPCG (CUDA kernel)
b0 = blockIdx.x; // i-tile (block-x)
t0 = threadIdx.x; // i (thread-x)
for (c1 = 0; c1 <= T-1; c1+=32) // t-tile
 for (c2 = 2 * c1; c2 <= ...; c2+=32) { // j-tile
 if (...)
 for (c4 = ...; c4 <= ...; c4+=1) // t
 for (c5 = ...; c5 <= ...; c5+=1) { // j
 if (N + 2 * c1 + 2 * c4 >= c2 + c5 + 2)
 B[32*b0+t0][-2*c1+c2-2*c4+c5] = ...;
 if (g7+c3 >= 2*g5+2*c2+2)
 A[32*b0+t0][-2*g5+g7-2*c2+c3-1] = ...;
 }
 }

Past work: PPCG Polyhedral Optimizer
• Coarse-grained parallelization policy [TACO 2013]

• Compute schedule — i.e., transformations — based on PLuTo algorithm
• Map the outermost parallelism in schedule to both blocks & threads

• Fundamentally same parallelization for blocks & threads

6

• Existing polyhedral approaches to GPUs
• Compute schedule — i.e., transformations — based on PLuTo algorithm
• Map the outermost parallelism in schedule to blocks & threads

• Fundamentally same optimizations between block and thread
• Block-level : synchronization-free parallelism is mandatory
• Thread-level : can include barriers, important to coalesce memory accesses

• Our approach: two-level parallelization for GPUs
• Compute two schedules with different optimization policies

• Block-level : outermost synchronization-free parallelism
• Thread-level : parallelism with good coalescing + inter-thread synchronizations

• Superposition to integrate block-level and thread-level schedules
• DL memory cost model to maximize coalesced memory access for threads

Our Work: Optimized Two-level Parallelization for GPUs

Outline

7

• Introduction
• Background

• Overview of polyhedral model

• Polyhedral transformations and parallelization

• Optimization framework
• Overview of optimization flow

• Superposition for GPU two-level parallelizations

• GPU memory cost model for thread-level transformations

• Experimental results
• Conclusions

Polyhedral Compilation Framework

8

• Polyhedral model

• Algebraic framework for affine program representations & transformations

• Unified view that captures arbitrary loop structures

• Generalize loop transformations as form of affine transform

• Polyhedral representations (SCoP format)

• Domain !Si : set of statement instances for statement Si

• Access "Si : mapping an instance to array element(s) to be accessed

• Schedule #Si : mapping an instance to lexicographical time stamp

Domain

9

 for (i = 0; i < M; i++)

 for (j = 0; j < N; j++)

S1: C[i][j] = 0.0;
 for (i = 0; i < M; i++)

 for (j = 0; j < N; j++)

 for (k = 0; k < K; k++)

S2: C[i][j] = C[i][j] + A[i][k] * B[k][j];

!S1 = { (i, j) : 0 ≤ i ≤ M-1, 0 ≤ j ≤ N-1 }
!S2 = { (i, j, k) : 0 ≤ i ≤ M-1, 0 ≤ j ≤ N-1, 0 ≤ k ≤ K-1 }

• Domain !Si : set of statement instances for statement Si

Schedule (time mapping)

10

 for (i = 0; i < M; i++)

 for (j = 0; j < N; j++)

S1: C[i][j] = 0.0;
 for (i = 0; i < M; i++)

 for (j = 0; j < N; j++)

 for (k = 0; k < K; k++)

S2: C[i][j] = C[i][j] + A[i][k] * B[k][j];

• Schedule #Si(i): mapping statement instance i to time stamp vector
• To capture the sequential execution order of a program
• Statement instances are executed in lexicographical order of schedules

#S1(i, j) = (0, i, j)
#S2(i, j, k) = (1, i, j, k)

 for (i = 0; i < M; i++)

 for (j = 0; j < N; j++)

S1: C[i][j] = 0.0;
 for (i = 0; i < M; i++)

 for (j = 0; j < N; j++)

 for (k = 0; k < K; k++)

S2: C[i][j] = C[i][j] + A[i][k] * B[k][j];

#S1(i, j) = (0, i, j)
#S2(i, j, k) = (1, i, j, k)

0:

1:

 for (i = 0; i < M; i++)

 for (j = 0; j < N; j++)

S1: C[i][j] = 0.0;
 for (i = 0; i < M; i++)

 for (j = 0; j < N; j++)

 for (k = 0; k < K; k++)

S2: C[i][j] = C[i][j] + A[i][k] * B[k][j];

#S1(i, j) = (0, i, j)
#S2(i, j, k) = (1, i, j, k)

i: for (i = 0; i < M; i++)

 for (j = 0; j < N; j++)

S1: C[i][j] = 0.0;
 for (i = 0; i < M; i++)

 for (j = 0; j < N; j++)

 for (k = 0; k < K; k++)

S2: C[i][j] = C[i][j] + A[i][k] * B[k][j];

#S1(i, j) = (0, i, j)
#S2(i, j, k) = (1, i, j, k)

j:
 for (i = 0; i < M; i++)

 for (j = 0; j < N; j++)

S1: C[i][j] = 0.0;
 for (i = 0; i < M; i++)

 for (j = 0; j < N; j++)

 for (k = 0; k < K; k++)

S2: C[i][j] = C[i][j] + A[i][k] * B[k][j];

#S1(i, j) = (0, i, j)
#S2(i, j, k) = (1, i, j, k)

k:

i:
j:

11

Schedule (time mapping)
 for (i = 0; i < M; i++)

 for (j = 0; j < N; j++)

S1: C[i][j] = 0.0;
 for (i = 0; i < M; i++)

 for (j = 0; j < N; j++)

 for (k = 0; k < K; k++)

S2: C[i][j] = C[i][j]
 + A[i][k] * B[k][j];

#S1(i, j) = (0, i, j)
#S2(i, j, k) = (1, i, j, k)

#S1(i, j) = (0, i, j, 0)
#S2(i, j, k) = (0, i, j, 1, k)

transformation

 for (i = 0; i < M; i++) {

 for (j = 0; j < N; j++) {

S1: C[i][j] = 0.0;
 for (k = 0; k < K; k++)

S2: C[i][j] = C[i][j]
 + A[i][k] * B[k][j];

 } }

codegen

• Schedule #Si(i): mapping statement instance i to time stamp vector
• To capture the sequential execution order of a program
• Statement instances are executed in lexicographical order of schedules
• Transformation = find a new schedule under dependence constraints

Space-mapping

12

• Space-mapping #Si(i): mapping instance i to (logical) processor id
• Represent parallelism
• No sequential order among instances
• Annotated with subscripts x, y, and z to represent GPU thread/block dimensions

// high-level forall
 forall (i = 0; i < M; i++)

 forall (j = 0; j < N; j++)

S1: C[i][j] = 0.0;

// CUDA threads
 i = threadIdx.y;

 j = threadIdx.x;

S1: C[i][j] = 0.0;

#S1(i, j) = (iy, jx)

Composition of Time- and Space-mapping

13

• Scattering function
• In a multidimensional scattering function, some dimensions represent

schedule (time-mapping) while others are space-mapping
• Capture both sequential loop transformations and parallelization

#S1 = (t, 0, iy, jx)
#S2 = (t, 1, iy, jx)

// Jacobi-2d kernel (CUDA threads)
 for (t = 0; t < T; t++) {
 i = threadIdx.y + …;
 j = threadIdx.x + …;
S1: B[i][j] = (A[i][j] + A[i][j-1]
 + A[i][j+1]) / 3.0;
 __syncthreads();
 i = threadIdx.y + …;
 j = threadIdx.x + …;
S2: A[i][j] = B[i][j];
 __syncthreads();
 }

* Space-mapping dimension is annotated with subscripts

// Jacobi-2d kernel (high-level forall)
 for (t = 0; t < T; t++) {
 forall (i = …; i < …; i++)
 forall (j = …; j < …; j++)
S1: B[i][j] = (A[i][j] + A[i][j-1]
 + A[i][j+1]) / 3.0;
 barrier;
 forall (i = …; i < …; i++)
 forall (j = …; j < …; j++)
S2: A[i][j] = B[i][j];
 barrier;
 }

Outline

14

• Introduction
• Background

• Overview of polyhedral model

• Polyhedral transformations and parallelization

• Optimization framework
• Overview of optimization flow

• Superposition for GPU two-level parallelizations

• GPU memory cost model for thread-level transformations

• Experimental results
• Conclusions

Overall Flow

15

SCoP thread & block
transformations

shared memory
& register opt

Optimized
SCoP

• Transformations and parallelization
• Thread-level transformations

• Extended memory cost model (DL model) to GPU memory warps
• Detect loop parallelism with good coalesced memory access;

map to the innermost thread dimension
• Block-level transformations (independent of thread-level transformations)

• Detect & map sync-free parallelism to block dimensions
• Superposed into final scattering function

• Shared memory and register optimizations
1. Individual tiles are identified after superposition
2. Array elements to be used/modified within each tile are computed
3. Insert data transfers to/from shared memory or registers

Superposition

16

• Two scattering functions per statement

• Block-level scattering function, #Sout(i)

• Many-to-one function to assign multiple instances i to same value

• Must be fully permutable

• Thread-level scattering function, #S(i)

• One-to-one function to assign each instance i to a unique value

• Superposition as loop tiling
• Block-level: specify inter-tile schedule (individual tiles)

• Thread-level: specify intra-tile schedule (iterations within a tile)

Superposition

17

Schedule for original code:
#S1 = (t, 0, i, j)
#S2 = (t, 1, i, j)

// Input (variant of Jacobi-2d)
for (t = 0; t < T; t++) {
 for (i = 1; i < N-1; i++)
 for (j = 1; j < N-1; j++)
S1: B[i][j] = (A[i][j] + A[i][j-1]
 + A[i][j+1]) / 3.0;
 for (i = 1; i < N-1; i++)
 for (j = 1; j < N-1; j++)
S2: A[i][j] = B[i][j];
}

Block scattering function:
#S1 out = (ix)
#S2 out = (ix)

Thread scattering function:
#S1 = (t, 0, iy, jx)
#S2 = (t, 1, iy, jx)

Superposed scattering function:
#S1 = (⎣ix / 32⎦, t, 0, iy, jx)
#S2 = (⎣ix / 32⎦, t, 1, iy, jx)

* Tile size 32 is used

superposition

// Superposed (final code)
c1 = blockIdx.x; // i-tile (blk-x)
for (c5 = 0; c5 <= T-1; c5++) { // t
 c3 = 32 * c1 + threadIdx.y; // i (thrd-y)
 if (c3 >= 1 && c3 <= N-2) {
 for (c7 = 0; c7 <= …; c7++) { // j-tile
 c9 = 32 * c7 + threadIdx.x; // j (thrd-x)
 if (c9 >= 1 && c9 <= N-2)
S1: B[c3][c9] = …
 }}
 __syncthreads();
 c3 = 32 * c1 + threadIdx.y; // i (thrd-y)
 if (c3 >= 1 && c3 <= N-2) {
 for (c7 = 0; c7 <= …; c7++) { // j-tile
 c9 = 32 * c7 + threadIdx.x; // j (thrd-x)
 if (c9 >= 1 && c9 <= 1998)
S2: A[c3][c9] = B[c3][c9];
 }}
 __syncthreads();
}}}

codegen

Analytical Model for Coalescing Memory Access

18

• DL model for CPU memory cost analysis
• Originally proposed for cache (and TLB)
• Assumption: loop tiling is applied

• All data per tile fits within target cache
• DL = estimation of # distinct cache lines per tile

• Function of tile sizes, T1, T2, ..., Td
• DL(T1, T2, ..., Td) ≤ total cache miss count per tile

• Extensions to GPU memory warp
• Additional assumption: shared memory transfer

• per-tile data is optimally prefetched & kept on shared/cache memory
• Extended DL = estimation of # memory transactions per tile

• DL(T1, T2, ..., Td) ≤ total memory transaction count per tile

Analytical Model for Coalescing Memory Access

19

// Sequential
for ti = 0, N-1, T1
 for tj = 0, M-1, T2
 for tk = 0, K-1, T3

 for i = ti, ti+T1-1
 for j = tj, tj+T2-1
 for k = tk, tk+T3-1
 A[i][j] += B[k][i];

A[T1][T2] B[T3][T1]

T2

T1 T3

T1

DL(T1, T2, T3) = DLA(T1, T2, T3) + DLB (T1, T2, T3) = T1 ×⎡T2 / L⎤ + T3 ×⎡T1 / L⎤

L : warp size (e.g., 32 for NVIDIA GPUs),

• Extended DL = estimation of # optimal memory transactions per-tile
• Per-tile data is optimally prefetched & kept on shared/cache memory

// Mapped to CUDA
int ti = blockIdx.y * T1;
 int tj = blockIdx.x * T2;
 for tk = 0, K-1, T3
 … // prefetch A/B to shared mem
 int i = ti + threadIdx.z;
 int j = tj + threadIdx.y;
 int k = tk, threadIdx.x;
 s_A[i][j] += s_B[k][i]; j

i

i

k

mem_cost(T1, T2, ..., Td) =
Costtrans × DL(T1, T2, ..., Td)

T1 × T2 × ... × Td

Costtrans : cost of single memory transaction

• Memory cost = total memory transaction count (normalized as per-iteration)

Profitability Analysis via DL Memory Cost

20

• Loop with best memory coalescing
• Partial derivative of memory cost w.r.t. Tk :

• Reduction rate of memory cost when increasing Tk
• Parallel loop with most negative value

 → most profitable loop for memory cost minimization
 → mapped to innermost thread dimension

• Profitability of loop fusion
• Comparing mem_cost(T1, T2, ..., Td) before and after fusion

• Memory cost decreased → fusion is profitable
• Other criteria, e.g., loss of parallelism, are also considered

∂mem_cost(T1, T2, ..., Td)

∂Tk

Experimental Setting

21

• Platforms
• Intel Xeon X5660 + NVIDIA Tesla M2050 GPU (Fermi)

• 13SM x 32-core, total 448 CUDA Cores

• IBM POWER8 + NVIDIA Tesla K80 GPU (Kepler)
• 14SMX x 192-core, total 2496 CUDA Cores

• Benchmarks
• PolyBench-C 3.2
• SPEC Accel : 314.omriq and 357.sp (two kernels from x_solve)

• Experimental variants
• Sequential : gcc -O3 on CPU
• PPCG : Polyhedral Parallel Code Generator from INRIA
• PolyAST+GPU : Two-level parallelization for GPUs (proposed)

Speedup vs. CPU sequential GCC (Fermi 448-core)

22

Sp
ee

du
p

vs
. g

cc
 -O

3
se

qu
en

tia
l (

lo
g

sc
al

e)

1

10

100

1000

2mm 3mm atax bicg covariance doitgen gemm gemver gesummv jacobi-2d jacobi-2d-alt mvt symm syr2k omriq sp-xsolve-1 sp-xsolve-3 GEOMEAN

85.9

30.5
20.6

546.7

47.0

555.8

129.7

55.2

8.4

16.5

103.8

631.9

124.0126.7

15.212.2

684.6643.4

48.8

9.18.3

477.0

51.1

325.0

101.5

22.2

9.77.6

73.3

745.9

218.4

12.19.7

789.1757.5

PPCG (state-of-the-art) PolyAST+GPU (this paper)

0.6

• block-level : PolyAST+GPU has same schedule as PPCG
• thread-level : different schedules due to superposition and coalescing policy
• PPCG has more efficient code generation method (e.g., # threads can be ≤ block size)
• Geometric mean speedup : 44.8× by PPCG and 85.9× by PolyAST+GPU

• Relative improvement of our work over PPCG ~ 1.8x

Speedup vs. CPU sequential GCC (Kepler 2496-core)

23

Sp
ee

du
p

vs
. g

cc
 -O

3
se

qu
en

tia
l (

lo
g

sc
al

e)

1

10

100

1000

2mm 3mm atax bicg covariance doitgen gemm gemver gesummv jacobi-2d jacobi-2d-alt mvt symm syr2k omriq sp-xsolve-1 sp-xsolve-3 GEOMEAN

95.5

8.7

2.0

1411.2

183.7

1993.1

235.9

5.86.4

28.8

177.1

932.7

76.1

246.4

25.229.1

932.8967.6

45.6

2.1

435.3

190.9

1327.2

196.4

1.8

6.5

16.5

147.3

915.3

257.0

20.924.2

953.9837.5

PPCG (state-of-the-art) PolyAST+GPU (this paper)

0.3 0.5

• block-level : PolyAST+GPU has same schedule as PPCG
• thread-level : different schedules due to superposition and coalescing policy
• PPCG has more efficient code generation method (e.g., # threads can be ≤ block size)
• Geometric mean speedup : 45.6× by PPCG and 95.5× by PolyAST+GPU

• Relative improvement of our work over PPCG ~ 2.1x

Conclusions

24

• Graphics Processing Units (GPUs)
• Massively parallel architecture consisting of thousands of cores

• Large burdens upon programmers, comparing with SMP programming

• Automatic C-to-CUDA transformations for productive GPU computing

• Existing polyhedral approaches to GPUs
• Focus on sync-free parallelism; less attention to generating threads with barriers

• Use same schedule for both blocks and threads

• Two-level parallelizations for GPUs
• Allows block-level and thread-level schedules with different optimization policies

• Superposition to integrate block-level and thread-level schedules

• An analytical memory cost model for GPU memory warp analysis

• 1.8× and 2.1× geometric mean improvements on NVIDIA Fermi and Kepler over PPCG

