
Parallel Sparse Flow-Sensitive Points-to Analysis
Jisheng Zhao

Rice University

Houston, Texas, USA

jisheng.zhao@rice.edu

Michael G. Burke

Rice University

Houston, Texas, USA

mgb2@rice.edu

Vivek Sarkar

Georgia Institute of Technology

Atlanta, Georgia, USA

vsarkar@gatech.edu

Abstract
This paper aims to contribute to further advances in pointer

(or points-to) analysis algorithms along the combined dimen-

sions of precision, scalability, and performance. For precision,

we aim to support interprocedural flow-sensitive analysis.

For scalability, we aim to show that our approach scales to

large applications with reasonable memory requirements.

For performance, we aim to design a points-to analysis algo-

rithm that is amenable to parallel execution. The algorithm

introduced in this paper achieves all these goals. As an ex-

ample, our experimental results show that our algorithm

can analyze the 2.2MLOC Tizen OS framework with < 16GB

of memory while delivering an average analysis rate of >
10KLOC/second.

Our points-to analysis algorithm, PSEGPT, is based on

thePointer Sparse EvaluationGraph (PSEG) form, a new

analysis representation that combines both points-to and

heap def-use information. PSEGPT is a scalable interpro-

cedural flow-sensitive context-insensitive points-to analy-

sis that is amenable to efficient task-parallel implementa-

tions, even though points-to analysis is usually viewed as

a challenge problem for parallelization. Our experimental

results with 6 real-world applications on a 12-core machine

show an average parallel speedup of 4.45× and maximum

speedup of 7.35×. The evaluation also includes precision

results by demonstrating that our algorithm identifies sig-

nificantly more inlinable indirect calls (IICs) than SUPT [15]

and SS [9], two state of the art SSA-based points-to analyses

implemented in LLVM.

CCS Concepts • Software and its engineering → Au-
tomated static analysis;

Keywords Static Analysis, Pointer Analysis, Parallelism

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

CC’18, February 24–25, 2018, Vienna, Austria
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5644-2/18/02. . . $15.00

https://doi.org/10.1145/3178372.3179517

ACM Reference Format:
Jisheng Zhao, Michael G. Burke, and Vivek Sarkar. 2018. Parallel

Sparse Flow-Sensitive Points-to Analysis. In Proceedings of 27th In-
ternational Conference on Compiler Construction (CC’18). ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3178372.3179517

1 Introduction
Points-to analysis is a fundamental requirement for many

program analyses, optimizations, and debugging/verification

tools. It is used to determine if two pointer expressions may

refer to the same memory location. Static analysis and more

specifically, alias analysis, is in general undecidable [21].

Hence, a large number of approximation algorithms have

been published that balance the precision and the efficiency

of pointer analysis. These algorithms explore various di-

mensions to achieve this balance. However, finding an effec-

tive balance across precision, scalability, and performance

in points-to analysis remains a major challenge. Many flow-

sensitive algorithms achieve a desirable level of precision

but are impractical for use on large software. Likewise, many

flow-insensitive algorithms scale to large software, but do

so with major limitations in precision. Further, in light of

the recent multicore hardware trends, more attention needs

to be paid to the use of parallelism for improved perfor-

mance. Our focus in this paper is primarily on flow-sensitive

points-to analysis, which has been shown to be important

for a growing list of program analyses [7], including those

that check for security vulnerabilities [5, 8], and that ana-

lyze multi-threaded codes. A further goal of this paper is to

leverage sparseness and parallelism to achieve scalability, as

discussed below.

The traditional flow-sensitive approach [4, 14, 27] uses a

dense iterative dataflow analysis, which does not scale to

large programs. A frequently used method for optimizing a

flow-sensitive dataflow analysis is to perform a sparse analy-

sis, such as in the flow-sensitive points-to analysis of [2, 12],

which uses the Sparse Evaluation Graph (SEG) [3] to directly

connect variable definitions (defs) with their uses, allowing

data flow facts to be propagated only to those program lo-

cations that need the values. In general, sparse points-to

analysis can be challenging because of an inherent circular-

ity — pointer information is required to compute the def-use

information needed to enable a sparse points-to analysis.

Hardekopf and Lin [9] present a semi-sparse (SS) flow-
sensitive points-to analysis which exploits partial SSA form

to perform a sparse analysis on “top-level" (scalar) variables

59

https://doi.org/10.1145/3178372.3179517
https://doi.org/10.1145/3178372.3179517

CC’18, February 24–25, 2018, Vienna, Austria Jisheng Zhao, Michael G. Burke, and Vivek Sarkar

that do not have their address taken butmay point tomemory

locations, while using dense dataflow analysis on address-

taken memory locations. SS advanced the state of the art

by introducing a scalable context-sensitive, flow-sensitive

interprocedural points-to analysis that uses a combination of

semi-sparse analysis and binary decision diagrams (BDDs). It

also avoids the circularity faced by sparse algorithms, since it

only performs sparse analysis on top-level variables, which

can be converted to SSA def-use edges without using pointer

information.

Lhotak andChung [15] perform a SSA-based flow-sensitive

points-to analysis that leverages strong updates (SUPT). For
a more compact representation that contributes to increased

scalability, they maintain a single points-to-graph for the

whole program instead of one per program point. This re-

sults in a loss of flow-sensitive precision. In cases where this

representation identifies a singleton points-to set for the vari-

able of a store operation, they perform a strong update. For

input programs with frequent occurrences of strong updates,

their analysis provides an effective balance between preci-

sion and speed. However, the partial flow-insensitive nature

of their algorithm makes extensive use of shared points-to

sets, which in turn impedes parallelization.

Given the rapid development of multi-core systems in the

last decade, leveraging parallel computation for points-to

analysis can improve the scalability of compilation, verifica-

tion, and other software engineering tasks. As a result, there

have already been a few efforts to develop parallel points-to

analyses. Mendez-Lojo et al. [18] introduced a parallel points-

to analysis algorithm based on graph rewriting. Nagaraj and

Govindarajan [19] extended the graph rewriting approach

by adding rewrite rules to support flow sensitivity.

In this paper, we introduce a flow-sensitive points-to anal-

ysis algorithm based on the new Pointer SEG (PSEG) form,

which extends the SEG and treats memory store and load

operations as defs and uses of an aggregate “heap” that in-

cludes all address-taken variables. PSEG chains heap defs

in the same manner as SSA form’s def variables, and con-

nects each heap use with its immediately dominating heap

def. The sparse points-to analysis, PSEGPT, is performed

with respect to both scalar and address-taken variables. It

maintains a global points-to graph for scalar variables in

the same manner as SUPT and SS. For address-taken vari-

ables, PSEGPT only maintains points-to information for the

address-taken variables that are in the alias set associated

with a given program point. This results in significant mem-

ory savings in practice, when compared to maintaining a

whole program points-to graph at every point (as with SS),

although it does not reduce the worst case space complexity

in the absence of strong updates. In the presence of strong

updates, the worst case complexity of our analysis is reduced,

as discussed in Section 3.6.

The PSEGPT algorithm addresses the circularity of sparse

points-to analysis and def-use analysis by integrating them

into a single analysis. It builds precise def-use chains on de-

mand when performing the flow-sensitive points-to analysis.

The algorithm as presented is context insensitive, but it could

be extended to add context sensitivity using one of several

available techniques.

More specifically, the contributions of this paper are as

follows:

• A novel Pointer SEG (PSEG) program representation,

designed for scalable flow-sensitive points-to analysis.

• A novel interprocedural flow-sensitive, field-sensitive

and context-insensitive points-to analysis (PSEGPT)
based on PSEG form with 1) an integrated sparse

points-to and def-use analysis for all memory loca-

tions; 2) support for parallelization; and 3) support for

weakly typed languages.

• Sequential and parallel versions of the PSEGPT algo-

rithm.

• An evaluation of an implementation of the sequential

and the parallel versions of PSEGPT using LLVM and

a lightweight task parallelism library. The parallel ver-

sion achieves a parallel speedup of up to 7.35× on 12

processor cores, relative to the sequential version. Fur-

ther, the results show that our algorithm can analyze

a 2.2MLOC application (Tizen) while using < 16GB of

memory and delivering an average analysis rate of >
10KLOC/second.

The rest of this paper is organized as follows. Section 2

provides background on LLVM IR, flow-sensitive points-

to analysis, and Array SSA form. Section 3 introduces the

PSEG form and presents the PSEG-based points-to analysis

(PSEGPT). Section 4 describes a parallelization of PSEGPT,
that we call PPSEGPT, based on the use of fine-grain task

parallelism in processingworklist elements. Section 5 presents

an evaluation of an LLVM-based implementation of the al-

gorithm, both from the viewpoint of its scalability and from

a study of its effectiveness when applied to an analysis of

inlinable indirect calls. Section 6 compares related work to

our approach. Section 7 concludes the paper and discusses

future work.

2 Background
In this section, we briefly summarize terminology and con-

cepts from past work that will be used as building blocks in

the rest of the paper.

2.1 Memory Model and LLVM IR
For simplicity of presentation, we follow the LLVM [17]

convention of separating variables into two disjoint sets

of top-level and address-taken variables. The address of a

top-level variable is not exposed.

A variable whose address may be taken can be a stack

variable, a global variable, or a dynamically allocated mem-

ory object, and is referred to as as an “address-taken variable”

60

Parallel Sparse Flow-Sensitive Points-to Analysis CC’18, February 24–25, 2018, Vienna, Austria

1:pa = & a;
2:pb = & b;
3:pc = & c;
4:* pc = pb;//H[pc]=pb
5:if (argc > 0)

6:*pa= pc;
 //H[pa]=pc
7:*pb= pc;
 //H[pb]=pc

8:*pa= pb;
 //H[pa]=pb
9:*pb= pa;
 //H[pb]=pa

10: p1=*pa;//use(H[pa])
11: p2=*p1;//use(H[p1])
12: *pb=p2;//H[pb]=p2
13: x=*p1;//use(H[p1])
(a) example code (scalar SSA with

heap access annotations)

(b) example code (Pointer SEG)

pa -> {a}
pb -> {b}
pc -> {c}
 c -> {b}

a->{c}

b->{c}

a->{b}

b->{a}

a ->{b,c} b->{a,c}
 p1->{b,c}
 p2->{a,b,c}
 b->{a,b,c}
 x->{a,b,c}

1:pa = & a;
2:pb = & b;
3:pc = & c;
4:* pc = pb;

5:if (argc > 0)
H1=dφ(pc,H0)

H0=init()

6:*pa= pc;

7:*pb= pc;
H2=dφ(pa, H1)

H3=dφ(pb, H2)

8:*pa= pb;

9:*pb= pa;
H4=dφ(pa, H1)

H5=dφ(pb, H4)

10:p1=*pa;

11:p2=*p1;

12:*pb=p2;

13:x=*p1;

use2(p1, H6)

use3(p1, H7)

 H7=dφ(pb,H6)

H6=cφ(H3,H5)

use1(pa, H6)

H0

H2 use1

H4

H6H1

H3

H5

H7

use2

use3

(c) Pointer SEG edges

Figure 1. Code example for C language and PSEG form.

in this paper. Thus, an address-taken variable represents a

memory location that can be the target of a load or a store

instruction in a program. We also refer to the collection of

all address-taken variables as a “heap”, and each renamed

instance of the heap is called a “heap variable” in our Pointer

SEG (PSEG) form.

For simplicity, Figure 1(a) shows an example control flow

graph with C statements rather than LLVM IR instructions.

Variables pa , pb , pc , p1, p2 and x are top-level variables.

Variables a, b and c are address-taken variables (e.g., they

may be global variables).

The LLVM IR is based on SSA form,which provides def-use

chains for top-level variables. For address-taken variables,

there is no explicit def-use information, since the read/write

operations of address-taken variables are based on load/store

instructions that take top-level pointer variables as argu-

ments. This paper will assume the use of the LLVM IR, which

implies that any named variable is a top-level variable and

not an address-taken variable. We also use the terms scalar
SSA for the LLVM IR and scalar variable for a top-level vari-
able.

2.2 Semi-Sparse Flow-sensitive Pointer Analysis
Flow-sensitive pointer analysis is based on a program’s con-

trol flow and can compute distinct points-to solutions at

different program points. A standard way of representing

the output of flow-sensitive pointer analysis is via separate

points-to graphs at each such program point, an approach

that is expensive with respect to memory.

SS is a semi-sparse flow-sensitive pointer analysis which

exploits a partial SSA form that provides def-use information

for top-level variables but not for address-taken variables. SS

performs a sparse analysis on scalar variables, using a single

global points-to graph for all top-level variables. An iterative

dataflow analysis is required to propagate information for

address-taken variables along paths in a SEG. The SEG used

by SS is an optimized version of the control-flow graph that

elides nodes that neither define nor use pointer information.

Since address-taken variables can be modified at any pro-

gram point without renaming, some flow-sensitive pointer

analyses also introduce a labeling flag [9] li at each program

point i . In the example shown in Figure 1(a), a has distinct
points-to address-taken variables c and b at Line 6 and 8,

where the points-to information is represented as a[l6]→
c (for line 6) and a[l8]→ b (for line 8). Since the top-level

variables are in SSA form, each top-level variable necessarily

has the same pointer information over the entire program.

The analysis can then avoid storing and propagating pointer

information for top-level variables among CFG nodes. Lo-

cal points-to graphs, i.e., separate IN and OUT graphs for

each CFG node, are still needed for LOAD and STORE state-

ments, and these graphs only hold pointer information for

address-taken variables.

2.3 Array SSA and Heap SSA Forms
Array SSA form [13] extends scalar SSA form by capturing

precise element-level data flow information for arrays. A

dϕ operator is inserted immediately after each preserving

definition of an array variable, i.e., a definition that does not

kill all the values in the array. The dϕ merges the values

of the element(s) modified in the definition with the values

available immediately prior to the definition. As with scalar

SSA, Array SSA form also includes a merge ϕ function that

merges values computed along distinct control paths. Further,

a requirement on the placement of both dϕ and ϕ operations

is that they enable each use to refer to a single def that

dominates the use. Due to its more precise handling of array

variables compared to scalar SSA form, Array SSA form was

shown to contribute to enhanced parallelization [13] and

improved precision for program analyses such as constant

propagation [23].

Subsequently, a Heap SSA form was introduced as an ex-

tension of Array SSA form to enable analysis of object refer-

ences in strongly typed languages like Java [6] by modeling

each field as a distinct logical “heap array”. It adds use-ϕ (uϕ)
operators to create a new name whenever a statement reads

a heap array element. The uϕ operator links together load

instructions for the same heap array in control flow order.

Like the other ϕ operators, the uϕ operator creates a new

SSA variable name, with which a sparse data flow analysis

can associate a lattice value. However, neither Array SSA

form nor Heap SSA form can be applied to pointer analysis

of weakly typed languages like C.

In this paper, we introduce a Pointer SEG representation

that overcomes the limitations of Array SSA form and Heap

SSA form for pointer analysis of C programs. A notable fea-

ture of the Pointer SEG representation is that it enables a

61

CC’18, February 24–25, 2018, Vienna, Austria Jisheng Zhao, Michael G. Burke, and Vivek Sarkar

Backtrace function, which implements an on-demand con-

struction of def-use edges, thereby integrating def-use analy-

sis with points-to analysis in a scalable and efficient manner.

As we will see, the Pointer SEG algorithm constructs def-

use edges by leveraging pointer alias analysis information,

unlike Array SSA form and Heap SSA form, for which the

def-use edges are fixed from the start and are conservative

with respect to pointer aliasing.

3 PSEG-based Pointer Analysis
This section introduces a sequential PSEG-based points-to

analysis algorithm (PSEGPT), which takes scalar SSA and

the PSEG form as input and computes interprocedural flow-

sensitive points-to information and def-use connections be-

tween heap variables in a single integrated analysis.

Section 3.1 introduces Pointer SEG form, which is the

input form for our pointer analysis algorithm. Section 3.2

introduces heap uses, Value Flow Edges (which serve as

def-use edges for heap variables), and SSA merge nodes

for heap definitions. Section 3.3 formally presents the con-

straints that must be satisfied by the PSEGPT analysis al-

gorithm. Section 3.4 describes the intraprocedural compo-

nent of PSEGPT, where a single function is input to it in

PSEG form. Section 3.5 describes the full interprocedural al-

gorithm. Section 3.6 discusses the monotonicity and fixpoint

convergence properties of the PSEGPT algorithm, and its

worst-case time and space complexity.

3.1 Pointer SEG Form
Pointer SEG (PSEG) form introduces def-use information

for heap variables. Due to pointer aliasing in C/C++, def-

use connections have to be built conservatively. Since PSEG
needs to assume that all operations on heap variables may

potentially be aliased, memory store instructions are mod-

eled in PSEG as definitions of a single “heap” that contains

all address-taken variables chained with renaming (as with

SSA) to obtain distinct heap variables named H0, H1, etc.

To build the connections between store instructions and re-

named heap variables, PSEG employs a dϕ function that

returns a heap Hi to represent the renamed heap variable at

each store instruction. A dϕ takes two arguments: the store

address and the previous heap variable. Figure 1(b) gives the

PSEG version of the example program shown in (a). Similar

to SSA form, PSEG employs cϕ nodes to handle the merge

of control flow edges (e.g., H6).

For read operations on heap variables, PSEG employs

a use operator that has two parameters: the load address

and the reaching def heap variable. Use operators are also
renamed to represent read operations at different program

points. PSEG chains heap defs in the same manner as SSA

form’s def variables, and connects each heap use (whether in

a dϕ, cϕ, or use operator) with its immediately dominating

heap def.

Based on the definition given above, a PSEG edge rep-

resents a directed connection between a definition (single

assignment) of a heap variable and a reference to that heap

variable. Figure 1(c) shows the PSEG edges for the example

program in 1(a). Further, we refer to the immediate dom-

inator and immediate postdominator of PSEG node x as

ImmDom(x) and ImmPDom(x) respectively.
The PSEGPT analysis is run on the dataflow graph that is

composed of scalar SSA and the PSEG (details in Section 3.3).

3.2 Value Flow Edges for Address-taken Variables
As discussed in Section 3.1,PSEG edges connect each def and

use of a heap variable with its input heap variable operand(s)

in the corresponding dϕ and cϕ operations. (There may be

more than one heap variable operand in the case of a cϕ
operator.) Due to renaming, the set of defs that reach a use U
along a path in the PSEG form a conservative approximation

(i.e. a superset) of the defs D for which there is a def-use edge

(D,U). The PSEGPT flow-sensitive points-to algorithm uses

PSEG edges as input to efficiently and precisely compute

def-use edges for address-taken variables, which we refer

to as Value Flow Edges. The analysis associates each re-

named heap variable Hi with a points-to set (PTS) and an

alias set (AS) of heap memory locations. For the example

shown in Figure 1(b) and (c), AS(H1) is {c} and AS(H2) is {a}.
As discussed later, these alias sets are computed during the

points-to analysis. The computation of the points-to set of

Hi is represented as the union of the points-to sets for each

element in Hi ’s alias set.

A cϕ node in the PSEG, in a similar fashion to a ϕ node in

SSA, is used to merge distinct heap definitions (i.e., dϕ nodes)

from multiple incoming control flow edges. Since each dϕ
represents the potential updates of a set ofmemory addresses,

a cϕ node is associated with all such memory addresses and

their points-to sets from all dϕs on the incoming control flow

edges. The points-to information in cϕ is represented as a

points-to graph (PTG(cϕ)), where each element of its key set

is a member of the alias set for a reaching dϕ node.

3.3 PSEGPT Algorithm
We use a sparse dataflow analysis approach, i.e., propagating

points-to information via def-use connections among scalar

and heap variables. The sparse points-to analysis is challeng-

ing because points-to information is required to compute

the def-use information based on indirect writes to variables

through pointers. The PSEGPT algorithm addresses this

problem by simultaneously computing flow-sensitive points-

to information and value flow edges in a single integrated

analysis.

The following equations define the constraints for points-

to analysis of both scalar and heap variables with respect

to scalar SSA and PSEG nodes. The algorithm must process

scalar SSA ϕ functions for merging scalar values, as well as

cϕ functions for merging heap definitions, computed along

62

Parallel Sparse Flow-Sensitive Points-to Analysis CC’18, February 24–25, 2018, Vienna, Austria

distinct control paths. A ϕ node and a cϕ node at the same

program point have identical incoming and outgoing control

flow edges.

Table 1. Constraints for Points-to Analysis

Eq.1 addrof: p = &a; pts(p) = {a}

Eq.2 copy: p = q; pts(p) = pts(q)
Eq.3 load: p = ∗q; ∀ a ∈ as(usei), pts(a) ⊆ pts(p)

usei (q, Hj) here as(usei) is equivalent to pts(q)
Eq.4 store: ∗p = q; ∀ a ∈ as(Hi), pts(q) ⊆ pts(a)

Hi = dϕ(p , Hj) here as(Hi) is equivalent to pts(p)
Eq.5 scalar merge ϕ : ∀ pi ∈ args(ϕ), pts(pi) ⊆ pts(p)

p = ϕ(p1, p2, ...)
Eq.6 heap merge cϕ : ∀ Hr ∈ reach(Hi)

Hi = cϕ (H1, H2, ...) {as(Hr),pts(Hr)} ⊆ ptg(Hi)

In Eq.5, ARGS (ϕ) is the set of scalar definitions reaching
ϕ along all incoming edges. In Eq.6, REACH (Hi) is the set
of heap definitions reaching cϕ along all incoming edges.

For cϕ, the points-to analysis is dependent on reaching heap

definition information. The reaching heap definition analysis

is a component of the flow-sensitive points-to analysis, and

is based on the edges that connect each heap variable use

and def to its heap operand(s) in Pointer SEG form.

Strong Updates: For flow-sensitive precision, the points-to
analysis needs to identify strong updates. Our algorithm

identities strong updates in two cases.

1. dϕ D strongly updates address-taken variable a: i.e., D’s
alias set is a, which is a singleton set;

1

2. cϕ C strongly updates address-taken variable a: for
each of C’s incoming edges ei , there is a dϕ Di or cϕ Ci
that strongly updates a.

Value Flow Edges: For a value flow edge to be added be-

tween a heap variable’s definition Hi = dϕ (va) and use usek (vb),
it is necessary but not sufficient that Hi [va] reach a node in

which usek [vb] is used. A value flow edge is added from Hi
tousek (vb) only if Hi [va]may-equal usek [vb] (i.e., as(Hi [va])
∩ as(usek [vb]) , ∅). As with a dϕ, a value flow edge is added

from a cϕ C tousek (vb) only if keyset(ptg(C))∩ as(usek [vb])
, ∅. Here keyset(G) represents the key set for G. There are
two special cases in which a cϕ C acts as a use: when C
merges points-to information from dϕs or C belongs to the

dominance frontier of a cϕ.
The four equations listed below cover the four cases for

adding value flow edges. We use D, U , and C to represent

a dϕ, use, and cϕ respectively. Here value(G, key) is the
function that gets the corresponding values for the key in

points-to graph G.

1
The definition of singleton is implementation dependent and explained

further in Section 5

Table 2. Rules for Adding Value Flow Edges

Eq.7 an edge from a dϕ pts(D) ⊆ pts(U)

D to a use U ,

Eq.8 an edge from a dϕ D {as(D), pts(D)} ⊆ ptg(C)

to a cϕ C
Eq.9 an edge from a cϕ C ∀ key ∈ ptg(C). if key ∈ as(U)

to an use U then value(ptg(C), key) ⊆ pts(U)

Eq.10 an edge from a cϕ Ci ∀ key ∈ ptg(Ci),
to a use cϕ Cj {key , value(ptg(Ci), key)} ⊆ ptg(Cj)

3.4 Intraprocedural PSEGPT
The full PSEGPT algorithm is interprocedural, but for sim-

plicity of exposition we first consider its intraprocedural

component shown in Algorithm PSEGPT on pages 6 and 7,

where a single function is input to PSEGPT in PSEG form. It

is a worklist-based algorithm. The worklist WL, the points-to
sets and alias sets of scalar and heap variables, and the set of

heap variable value flow edges are all initialized to empty.

The InitWorkList function of PSEGPT (Line 2) adds all

known allocation sites to the worklist WL, e.g., alloca in-

structions, global variables, and known functions that can be

modeled as allocation sites. In addition, all defs are initialized

to undef as explained below. Here we use vi to denote top-

level variables, and ai for heap variables. Global variables

are included as allocation sites due to their representation in

LLVM as heap variables pointed to by constant pointers. We

model allocation sites as addrof instructions; i.e., instruc-

tions of the form vi = &aj . InitWorkList adds each such

scalar variablevi to WL, and adds to its alias set and points-to
set in accord with Eq.1.
Defs that currently in an analysis have not been set to

point to any address-taken variable are set to undef, with
the following interpretation:

1. A dϕ D is undef ⇐⇒ D’s alias set is ∅.
2. A cϕ C is undef ⇐⇒ ∃ dϕ D whose dominance fron-

tier is C and D is undef. In PSEG form, C consists of a

single cϕ node or is empty.

Analysis Operations: After the execution of InitWork-
List, PSEGPT iteratively selects an item from WL (PSEGPT
Line 3) and performs an operation based on the kind of item

that is selected. Each of the four kinds of items corresponds

to a separate operation. These four analysis operations prop-

agate points-to information and build value flow edges. The

processing of worklist items continues until the worklist is

empty, indicating that the algorithm has converged.

We now describe the four analysis operations of PSEGPT.
1. sv_prop: If the current item popped from the worklist

is a definition of a scalar variable v (PSEGPT Lines 5,6),

then function PropToUses is invoked with input operand v.
PropToUses propagates v’s points-to set via scalar SSA def-

use chains. The setUse (v) contains the instructions that use
v. There is a scalar def-use edge from v to each instruction

vi ∈ Use (v) (PropToUses Line 16).

63

CC’18, February 24–25, 2018, Vienna, Austria Jisheng Zhao, Michael G. Burke, and Vivek Sarkar

Algorithm: Intraprocedural PSEGPT (Part 1 of 2)
function PSEGPT ()1
Input : F : input function in PSEG form

Output: Points-to sets and value flow edges

InitWorkList (F);2
whileWL , ∅ do3

v := PopFront (WL);4
if v is scalar then5

WL ∪ =PropToUses (v, GlobalWL);6

else if v is dphi or cphi then7
if IsModified (AS(v)) then8

WL ∪ =CollectUses (v, AS(v));9

else10
WL ∪ =PropDPhi (v); //Or invoke PropCPhi(v, GlobalWL)11

else if v is heap use then12
WL ∪ = BackTrace (v);13

function PropToUses ()14
Input : v : variable or instruction, GlobalWL : global worklist

Output: wl : worklist
wl := ∅;15
foreach vi in Use (v) do16

if IsCopy (vi) then17
PTS (vi) ∪ = PTS (v); //vi = v18
wl ∪ = IsModified (PTS (vi)) ? PropToUses (vi) : ∅;19

else if IsScalarPhi (vi) then20
PTS (vi) ∪ = PTS (v); //vi = ϕ(v, ...)21
wl ∪ = IsModified (PTS (vi)) ? {vi} : ∅;22

else if IsDPhiValueOp (vi, v) then23
hv := AddrTakenVar (vi); PTS (hv) ∪ = PTS (v); //vi: *p=v24
wl ∪ = IsModified (PTS (hv)) ? PropDPhi (hv) : ∅;25

else if IsPointerOp (vi, v) then26
hv := AddrTakenVar (vi); AS (hv) ∪ = PTS (v); //vi: *v=... or27
vi: ...=*v

wl ∪ = IsModified (PTS (hv)) ? {hv} : ∅;28

return wl;29
30

function CollectUses ()31
Input : D: dϕ or cϕ , as : the input alias set
Output: wl : worklist
wl := ∅; as := AS (D); C := DomFrontier (D);32
if C then33

n := ImmPDom (D);34
while n , C do35

if AS (n) = undef then36
wl ∪ = D; return wl;37

if IsSUSet (n, as) then38
as := as \ AS(n);39

if as = ∅ then40
return wl;41

n := ImmPDom (n);42

changed := UpdatePTG (as, PTS (D), PTG (C));43
if changed then44

CollectUses (C, as);45

foreach U in DomBy (D) do46
if AS (U) , ∅ then47

wl ∪ = U;48

return wl;49

2. hvd_conn: If the current item is a heap variable dϕ or

cϕ operator, D, and its alias set AS has changed, function

CollectUses is invoked at PSEGPT Line 9 to propagate

points-to information to cϕ nodes that may be impacted by

D’s alias set. During this search, CollectUses generates a
set of local worklist items that it returns and adds to WL. The

Algorithm: Intraprocedural PSEGPT (Part 2 of 2)
function BackTrace ()1

Input : U: heap use

Output: wl : worklist
as := AS (U); wl := ∅; n := U; mod := false;2
while n , INIT_NODE && AS(n) , undef && as , ∅ do3

D := ImmDom (n); ∆ := as

⋂
AS (D);4

if ∆ , ∅ then5
PTS (U) ∪ = PTS (D); AddEdge (D, U);6
mod |= IsModified (PTS (U));7
if IsSUSet (D, ∆) then8

as := as \ ∆;9

n := D;10

if mod then11
v := LHS (U); PTS (v) ∪ = PTS (U); wl ∪ = v;12

return wl;13
14

function PropDPhi ()15
Input : D: dϕ
Output: wl : worklist
wl := ∅;16
foreach edge e from D do17

//U is a heap use or cϕ
U := dest (e);18
if U is heap use then19

PTS (U) ∪ = PTS (D);20
wl ∪ = IsModified (PTS (U))? U : ∅;21

else if U is cϕ then22
changed := UpdatePTG (AS (D), PTS (D), PTG (U));23
if changed then24

PropCPhi (U, wl);25

return wl;26
27

function PropCPhi ()28
Input : C: cϕ , wl : worklist
Output: wl : worklist
mods := GetModifiedKey (PTG (C));29
foreach edge e from C do30

U := dest (e); ∆ := mods

⋂
AS (U);31

if U is heap use then32
foreach k in ∆ do33

PTS (U) := GetPTS (PTG (C), k);34
wl ∪ = IsModified (PTS (U))? U : ∅;35

else if U is cϕ then36
hasChanged := false;37
foreach k in ∆ do38

pts := GetPTS (PTG (C), k);39
hasChanged |= UpdatePTG (k, pts, PTG (U));40

if hasChanged then41
PropCPhi (U, wl);42

items added to the worklist are heap uses with non-empty

alias sets that are immediately dominated by D and heap

defs and cϕs that need to be processed later if D is undef.
3. hv_prop: If the current item is a heap variable dϕ or cϕ

operator, and its alias set has not changed, functionPropDPhi
or PropCPhi is invoked to propagate its points-to sets (PTS)
to heap uses and to the points-to sets of cϕs via value flow
edges (PSEGPT Line 11). For a def-use edge from a heap def

D to a heap useU , there are four cases to handle: a) D is a dϕ
andU is a use of a heap variable: see PropDPhi Lines 19∼21
and Eq.7. b) D is a dϕ and U is a cϕ: see PropDPhi Lines

64

Parallel Sparse Flow-Sensitive Points-to Analysis CC’18, February 24–25, 2018, Vienna, Austria

22∼25 and Eq.8. Line 23 is in accord with Eq.6. c) D is a cϕ
andU is a use of a heap variable: see PropCPhi Lines 32∼35
and Eq.9. d) D is a cϕ and U is a cϕ: see PropCPhi Lines
36∼42 and Eq.10. Line 39 is in accord with Eq.6. Also, the
altered points-to sets of cϕ uses are propagated to succeeding

cϕ uses (Line 25 of PropDPhi and Line 42 of PropCPhi).
4. hvu_conn: If the current item is a heap use U and its

alias set has changed, the Backtrace function is invoked

(PSEGPT Line 13) to build value flow edges for U. Back-
trace builds value flow edges(D,U) for U by traversing im-

mediately dominating heap def edges in reverse, starting

from U (BackTrace Line 4).
When a value flow edge has been added during the Back-

trace traversal, PropDPhi is invoked to handle the four

value flow edge cases described above.

3.5 Interprocedural PSEGPT Algorithm

Algorithm: Interprocedural PSEGPT
function MainProc ()1
Input : F : root function

Output:
GlobalWL := ∅; GlobalWL ∪ = {F};2
while GlobalWL , ∅ do3

func := PopFront (GlobalWL);4
PSEGPT (func, GlobalWL);5

function PSEGPT ()6
Input : F : input function, GlobalWL : global worklist

Output: boolean flag for side-effect

InitWorkList (F)7
whileWL , ∅ do8

v := PopFront (WL);9
if IsCallSite (v) then10

GlobalWL ∪ = GetCallTarget (v);11

else if v is scalar then12
WL ∪ =PropToUses (v, GlobalWL);13

else if v is dphi or cphi then14
if IsModified (AS(v)) then15

WL ∪ =CollectUses (v, AS(v));16

else17
WL ∪ =PropDPhi (v);18

else if v is heap use then19
WL ∪ = BackTrace (v);20

callers := UpdateCallers (F);21
GlobalWL ∪ = callers;22
return callers , ∅;23

To extend PSEGPT to an interprocedural analysis, we

adapt PSEG to add four kinds of heap nodes:

1. an entry dϕ node associated with the entry of each

function F;
2. an exit heap use node is associated with the set of

returns from each function F;
3. a call heap use node associated with the program point

immediately preceding a call site;

4. a call return dϕ node associated with each program

point immediately following a call site.

It is straightforward to convert the PSEGPT for a function

so that it has only one return node: add a control flow edge

from the other return nodes to a single return node, which

we now call an exit node. Merging call returns into a single

return node does not result in a loss of precision, as the

interprocedural analysis is context insensitive. Callahan’s

program summary graph for flow-sensitive interprocedural

analysis is made up of the same four kinds of nodes [1].

The points-to information at each of these heap nodes is

represented as a points-to-graph, where its alias set is the

key set.

A call heap use is mapped to the entry dϕ of the invoked

function, as this store information needs to be propagated to

all possible uses. Similarly, the exit heap use node is mapped

to the return call dϕ node, since it collects all possible mod-

ifications of heap variables that are shared between caller

and callee.

A program is input in PSEG form to the interprocedural

PSEGPT algorithm. The interprocedural analysis is context

insensitive. The main entry of the algorithm is MainProc
(Lines 1∼5). The global worklist GlobalWL now also contains

functions as elements.MainProc initializes GlobalWL to the
root function and invokes function PSEGPT.
Function PSEGPT is the main driver for the points-to

analysis. It takes a function F as an argument and applies

the four analysis operations introduced in Section 3.3 to WL
for the given input function.

PSEGPT handles strong updates at call sites. A function

F strongly updates address-taken variable a⇔ a is strongly

updated on all paths that dominate F’s exit heap use node.

In the function BackTrace, a call return dϕ node strongly

updates heap variable a⇔ a is strongly updated by all of call
site c’s target functions. Thus, PSEGPT handles all three

cases of strong updates (see Section 3.3) in the BackTrace
step that connects heap uses U to all heap defs that may alias

U by tracing backward through PSEGPT def-use chains.

3.6 Discussion
Monotonicity and Fixpoint Convergence: As discussed
above, PSEGPT iteratively applies the four steps that prop-

agate points-to information. Both the transfer function and

the join operation are monotonic with respect to the partial

orders for both scalar and heap variable’s def-use chains,

thereby ensuring PSEGPT’s fixpoint convergence. For the
interprocedural case, PSEGPT maintains the per-function

memo (i.e., the extra dϕs and heap uses) that record the

changes made by the last visit, and only the modified parts

can be re-analyzed. Thus the algorithm will also reach a

fixpoint in the interprocedural case.

Space Complexity: We discuss PSEGPT’s space complex-

ity by using the following terms: A, the number of address-

taken variables; P, the number of program points. The space

complexity for the SS algorithm isO (A2×P) [9]. In contrast,
the space complexity forPSEGPT isO ((A−S)2×P+S×P),
whereS is the number of address-taken variables with strong

updates. In the extreme case when all address-taken variables

65

CC’18, February 24–25, 2018, Vienna, Austria Jisheng Zhao, Michael G. Burke, and Vivek Sarkar

sv_prop hvu pts

hv_prophvd pts

hvu_connhvd as

r

sw

sw

r

w

r

hvu as
w

w r

hvu_conn r
r

hv phi
ptg

sw

sv phi
pts

sw

sv_prop hv_prop hvu_conn hvd_conn
sv_prop 1 2 4 1
hv_prop 2 1 1
hvu_conn 4 1
hvd_conn 1 1

(a) Data Dependence between PSEGPT
Operations R: read W: write SW: shared write

(b) Shared Data Structures
HUC_WL

1

23

initialize
worklist

SP_WL

HDP_WL
HDC_WL

1

1
1

4

1. sv_prop
2. hvd_conn
3. hvu_conn
4. hv_prop

(c) Dataflow in PPSEGPT

pts: point-to set
ptg: point-to graph
as: alias set
sv phi pts: scalar control phi's pts
hv phi ptg: heap control phi's ptg
hvd pts: heap def's pts
hvd as: heap def’s as
hvu pts: heap use's pts
hvu as: heap use's as

Figure 2. Data Dependence in PSEGPT and Dataflow in

PPSEGPT

participate in strong updates (S = A), the space complexity

for PSEGPT reduces to O (S × P) = O (A × P), which is

quadratic instead of the cubic space complexity of the SS

algorithm.

Time Complexity: We discuss the time complexity for

PSEGPT using the following additional terms:HD , the num-

ber of dϕ nodes; HU , the number of heap uses; HC , the

number of cϕ nodes;HF , the number of extended dϕs and
heap uses for function invocations; andV , the number of

scalar variables.

We use the number of visited scalar/address-taken vari-

ables as the unit for time complexity. PSEGPT’s time com-

plexity is composed of the four analysis operations.Osv_prop
isO (V ×A), i.e., the number of scalar variables propagated

through scalar SSA def-use edges. Ohv_prop depends on the

worst case for value flow edges, which isO (HD ×HU ×A).
hvu_conn’s complexity also depends on value flow edges,

soOhvu_conn is the same asOhv_prop . hvd_conn depends on

the number of accessed dϕ and cϕ nodes, thus Ohvd_conn is

O ((HD +HC) ×A). Based on these, PSEGPT’s worst-case
complexity is cubic in time, the same as with SS and SUPT.

4 Parallel PSEG Points-To Algorithm
The previous section introduced a PSEG-based analysis algo-
rithm that produces alias and points-to information for each

heap variable and value flow edge between heap variables.

In this section, we discuss how to parallelize the analysis

presented in the previous section, and introduce PPSEGPT,
a parallel version of PSEGPT. Section 4.1 discusses how the

parallelized algorithm will make use of asynchronous task

parallelism by processing worklist elements in parallel as

tasks. Section 4.2 discusses its complexity.

4.1 Parallelizing Points-To Analysis
The PSEGPT algorithm has four analysis operations that

propagate points-to information and build value flow edges

on demand. All of these operations are sparse and functional

in nature, thereby creating an opportunity for executing

them in parallel.

Parallel execution is constrained by data dependences

among operations. Figure 2(a) represents the four operations

(annotated in bold font) described in Section 3.4: sv_prop,
hvd_conn, hvu_conn, and hv_prop. It also represents the

data structures (annotated in italic font) that hold points-to

and alias sets for heap defs and uses, points-to sets for scalar

ϕ nodes, and points-to graphs for heap cϕ nodes. Depen-

dences are enforced between pairs of operations whenever

necessary to ensure that read/write or write/write opera-

tions are not performed concurrently on the same datum.

Figure 2(b) presents, for each pair of operations, the number

of data structures from Figure 2(a) that they share. To maxi-

mize parallelism, we separate worklist processing into four

stages, each corresponding to a separate operation.

Structure ofWorklists: Based on the four execution stages

corresponding to the four types of operations, we now de-

scribe the restructuring of the single global worklist de-

scribed in Section 3.4 into four worklists. The interaction

among these worklists is shown in Figure 2 (c). The worklists

contain the following elements:

• SP_WL: scalar variables and heap uses that have mod-

ified points-to sets (processed by sv_prop);
• HDC_WL: dϕ and cϕ nodes whose alias sets have been

modified and need to be connected to additional heap

uses (processed by hvd_conn);
• HUC_WL: heap uses and dominating heap defs whose

alias sets have beenmodified, and need to be connected

to reaching definitions (processed by hvu_conn);
• HDP_WL: dϕ and cϕ nodes whose points-to sets have

been modified and need to be propagated to their heap

uses via value flow edges (processed by hv_prop).

Initially, PPSEGPT, like PSEGPT, collects the allocation
sites and accessed global variables for a given function. But

here it adds these elements to SP_WL. In Stage 1 (sv_prop),
PPSEGPT processes elements in SP_WL and adds each el-

ement to one of the four worklists. In Stage 2 (hvd_conn),
the elements of HDC_WL are processed and the collected heap
uses are added to HUC_WL. Stage 3 (hvu_conn) connects heap
uses whose alias sets have changed with their possible defs

and puts those heap uses whose points-to sets are modified

into SP_WL. Stage 4 (hv_prop) propagates the points-to in-

formation from dϕs and cϕs to heap uses and adds the heap

uses with modified points-to-sets to SP_WL, as with Stage 3.

Figure 2(c) shows the inputs/outputs corresponding to

each stage of PPSEGPT, which are based on heap variables’

alias sets, points-to sets and the four worklists discussed

above.

66

Parallel Sparse Flow-Sensitive Points-to Analysis CC’18, February 24–25, 2018, Vienna, Austria

The reason for dividing PSEGPT into four stages is to

enable the creation of lightweight tasks with maximum par-

allelism. In this way, the synchronization required for shared

data between elements in the same stage/worklist is mini-

mized. The processing of a worklist element is implemented

as a task that can run in parallel with other such tasks, as

in other parallel worklist algorithms [20]. At every point

in the execution of the algorithm, one of the worklists can

process multiple elements in parallel. sv_prop is data inde-
pendent (excluding the cϕ processing); the collecting of heap

uses (i.e. hvd_conn) needs to be synchronized with updating

cϕ’s points-to graph; hvu_conn is fully data independent;

hv_prop needs to be synchronized on shared uses.

4.2 Complexity Analysis
PPSEGPT does not change the space complexity relative

to PSEGPT, so we only focus on the time complexity in

this section assuming a parallel machine with N proces-

sors (cores). As discussed in Section 4.1, PPSEGPT runs

the four operations (introduced in Section 3.4) in parallel in

four different stages, thus PPSEGPT’s time complexity is

the sum of those four stages. For sv_prop, the synchroniza-
tion happens on concurrently accessed scalar cϕ nodes, so

Osv_prop is: O ((V−VC
N
+VC) × A). HereVC stands for the

number of scalar merge ϕs.Ohv_prop depends on the number

of concurrently updated heap uses. In the worst case, it is the

same as PSEGPT. hvu_conn can be fully parallelized, so we

haveO (HD×HU×A
N

).Ohvd_conn depends on the concurrently

accessedHC , thus it is: O ((HD
N
+HC) × A).

5 Evaluation
5.1 Implementation
The PSEGPT and PPSEGPT versions of the algorithm were

implemented as analysis passes in the LLVM [17] Version

3.6.2 compiler framework. They take LLVM bitcode as input

and generate in-memory IR, invoking the SSA builder to

produce the PSEG form. PSEGPT or PPSEGPT can then be

performed on the PSEG form. For parallelism, we used the

Habanero C/C++ library [11], a lightweight task parallelism

library that supports nested task creation and termination

APIs (async, finish) with work-stealing schedulers. We also

used the compare-and-swap API to implement lightweight

spin locks to support mutual exclusion with guaranteed dead-

lock and livelock avoidance.

Since our pointer analysis is flow-sensitive, singleton
points-to sets are used to identify strong updates for a given

heap variable. In our implementation, a singleton points-to

set is a set containing a single element that is one of following:

a global variable; a local variable that is not allocated or used

in a loop or recursive call path; or a dynamically allocated

variable that is not allocated in a loop or recursive call path.

Similar to [15], our pointer analysis starts from an estimated

call graph, i.e., a call graph in which an invoked function

pointer is conservatively assumed to point to any function

whose address has been taken. The call graph is then updated

as the algorithm progresses.

As mentioned in Section 1, our analysis is field sensitive. It
analyzes the offset calculation (via LLVM’s GEP instruction)

for struct, class and array pointers when it processes load and

store instructions. If the offset can be identified as a constant

integer value, then it is encoded as a unique address for

load and store operations. If the offset is unknown, then it

is encoded as an address that can point to any offset of the

given struct, class or array.

5.2 Evaluation
Experimental Setup: Our experimental evaluation was

conducted on the six benchmarks listed in Table 3, which

provides their number of lines of source code, the number of

functions and LLVM instructions, and the number of scalar

variables (scalar vars) in the first six columns. Three of the

benchmarks (GhostScript, Vim, GCC) have been used in past

work on pointer analysis [9, 15, 19], of which GCC is the

largest benchmark in lines of code. We added three more

benchmarks (V8, Ruby, Tizen) to obtain larger and more rep-

resentative examples from real-world C/C++ applications.

Columns 7∼11 in Table 3 show the PSEG-related statis-

tics, including the number of address-taken variable uses,

dϕs, cϕs, call sites, and allocation sites (allocs), which in-

clude LLVM alloca instructions, global variables, memory

allocation intrinsics and memory-related APIs.

All C/C++ source code was compiled into LLVM bitcode

via the Clang front end. Before performing pointer analysis,

we applied the LLVM optimization mem2reg (i.e., scalar

replacement and ϕ creation for scalar variables) and scalar

optimizations to the bitcode. All results were obtained on

an Intel Westmere node, which has two 6-core Intel Xeon

X5660 CPUs at 2.83GHz with 48GB of memory running Red

Hat Linux (RHEL 5).

Evaluation: We evaluated the PPSEGPT analysis with re-

spect to performance, scalability, memory usage and preci-

sion. For precision, we compared its effectiveness with re-

spect to identifying strong updates in store operations with

SUPT and compared its number of discovered inlinable indi-

rect call sites with respect to SUPT and SS. To obtain as close

to an apples-to-apples comparison as possible, we ported the

implementations of SUPT ([15]) and SS ([9]) from LLVM 2.6

to 3.6.2, since PPSEGPT was implemented in LLVM 3.6.2.

The memory usage of our algorithm is shown in the last

two columns in Table 3, including running the PPSEGPT
analysis and its corresponding memory usage for LLVM

initialization (which includes parsing bitcode, mem2reg,
scalar optimizations, and building the PSEG).

For the performance comparison, Table 4 gives the execu-

tion time for SS [9], SUPT [15], PSEGPT and PPSEGPT (12

threads). Due to its semi-sparse nature (i.e., running densely

on load/store operations), SS is the slowest. For example, SS

67

CC’18, February 24–25, 2018, Vienna, Austria Jisheng Zhao, Michael G. Burke, and Vivek Sarkar

Table 3. Statistics for benchmark characteristics, PSEG characteristics, PPSEGPT memory usage, and LLVM memory usage

Benchmark Desc LOC # of # of # of scalar # of # of # of # of # of ppsegpt llvm

Funcs insts vars uses dϕs allocs cϕs calls (MB) (MB)

GhostScript PS&PDF 282.7k 6,408 433.4k 164,543 56,438 22,293 3,902 23,397 22,780 548 116

Intepreter

Vim Vim editor 310.8k 3,793 350.3k 95,271 57,800 16,917 4,241 30,269 27,583 499 94

V8 Google V8 332.3k 19,683 583.9k 291,964 59,138 34,946 38,204 25,285 99,241 1,250 167.6

JS engine

GCC GNU GCC 382.9k 5,577 587.6k 208,656 125,595 20,158 1,599 31,765 52,249 671 148

Compiler

Ruby Ruby RT& 638.8k 5,366 87.1k 301,732 40,365 10,395 15,609 19,402 28,339 467 82

Compiler

Tizen TizenOS 2,205k 91,839 3,771.9k 1,404,564 461,844 214,156 698,008 254,666 109,483 10,824 6,439

Table 4. Analysis execution times in seconds for SS [9],

SUPT [15], PSEGPT (1 thread) and PPSEGPT (12 threads).

Time-out refers to an execution that had to be terminated

after running for more than 5,400 seconds.

Benchmark ss supt psegpt ppsegpt

GhostScript 42.0 1.7 2.0 0.7

Vim 429.5 5.9 6.0 1.0

V8 1,139.5 418.7 402.6 118.4

GCC 83.5 32.0 60.0 14.6

Ruby 37.8 2.4 2.5 1.0

Tizen Time-out 601.5 642.4 193.4

Table 5. A comparison of the precision of SUPT [15], SS [9]

and PPSEGPT algorithms, obtained by counting the number

of strong updates (SUDs) and inlinable indirect calls (IICs).

For both metrics, larger values represent higher levels of

precision.

of suds # of iics

Benchmark supt ppsegpt supt ss ppsegpt

GhostScript 5,254 6,390 12 57 57

Vim 4,391 5,298 32 53 53

V8 17,794 26,616 31 45 47

GCC 2,507 5,617 18 45 45

Ruby 2,297 5,492 21 43 43

Tizen 8,820 108,696 314 — 533

was unable to complete the analysis of the Tizen workload

in 90 minutes (5400 seconds). Due to its flow-sensitive na-

ture, the sequential version of PSEGPT ran a bit slower than

SUPT on most of the benchmarks. However, by leveraging

parallelism, PPSEGPT (running with 12 threads) resulted

in faster analysis times than SUPT, while also delivering

increased precision as indicated below.

For the precision comparison, the 2nd and 3rd columns in

Table 5 show the number of strong updates (SUDs) obtained

when using the SUPT and PPSEGPT algorithms. Large SUD

values indicate a more precise points-to analysis. PPSEGPT

0"

1"

2"

3"

4"

5"

6"

7"

8"

ghostscript" vim" v8" gcc" ruby" Tizen"

seq$ 1$ 2$ 4$ 8$ 12$

Figure 3. Speedup of sequential PSEGPT, and parallel im-

plementations of PPSEGPT, relative to a single-thread im-

plementation of PPSEGPT.

identified more strong updates than SUPT due to its flow sen-

sitivity and its field sensitivity, which can identify struct/class

fields and array elements with constant integer indices.

We also developed a client application for points-to analy-

sis, an inlinable indirect calls (IIC) analyzer which determines

whether an indirect call site (i.e., function pointer invoca-

tion) has a single target thereby enabling it to be expanded

inline without a conditional guard. The last three columns in

Table 5 show how many inlinable call sites (IICs) were iden-

tified by the SUPT, SS and PPSEGPT algorithms. PPSEGPT
identified more IICs than SS and SUPT. Since PPSEGPT anal-

ysis can identify array elements with constant indices, vtable

elements that have a single target can easily be identified.

SS is field sensitive as well, but it still missed some array

element cases.

For scalability, we evaluated PPSEGPT on a 12-core Xeon

SMP system. Figure 3 shows the speedups of sequential

PSEGPT (denoted by seq) and of parallel implementations

of PPSEGPT, relative to a single-thread implementation of

PPSEGPT. The best case for scalability isVim, which gives an

improvement of 7.35× running on 12 threads. The average

speedup for the 12 threads case is 4.45× and the geomet-

ric mean is 4.62×. Our experimental results show that the

68

Parallel Sparse Flow-Sensitive Points-to Analysis CC’18, February 24–25, 2018, Vienna, Austria

PPSEGPT algorithm can fully analyze a 2.2MLOC applica-

tion (Tizen) while using < 16GB of memory and delivering

an average analysis rate of > 10KLOC/second.

6 Related Work
LLVM-based Pointer Analysis: Pointer analysis based on
SSA form has been studied intensively in past work. Here we

confine our discussion to the most closely related SSA-based

work, which is based on LLVM.

Hardekopf and Lin present SS [9]: a flow-sensitive points-

to analysis based on LLVM’s partial SSA. Their analysis is

sparse for top-level variables, for which it follows scalar SSA

def-use chains. It uses iterative dataflow analysis for address-

taken variables and maintains a points-to graph per program

point for all such variables. Operations on address-taken

variables are labeled and connected by a SEG representa-

tion [22]. For memory efficiency, they use binary decision

diagrams formaintaining points-to graphs. In later work [10],

they stage pointer analysis with a pre-analysis, an auxiliary

flow-insensitive pointer analysis that computes conserva-

tive def-use information for address-taken variables. This

information is used by the primary flow-sensitive analysis,

which is sparse and uses SSA form for all variables. The re-

sulting analysis is an order of magnitude more scalable than

their SS analysis. Su et al. [28] present a similar multi-stage

technique that employs flow-insensitive pointer analysis as

the auxiliary analysis. Their technique supports both flow

and context sensitivity. However, it is unclear if any of these

algorithms is amenable to parallelization.

Lhotak and Chung’s SUPT [15] algorithm performs an

SSA-based points-to analysis and maintains a global points-

to graph for scalar variables. For address-taken variables,

they maintain a single points-to-graph for the whole pro-

gram instead of per program point. This results in a loss of

flow-sensitive precision. However, where this representa-

tion identifies a singleton points-to set for the variable of

a store operation, they perform a strong update. Based on

an experimental evaluation that shows that strong update

stores occur frequently in many applications, they find an

effective balance between precision and speed/memory ef-

ficiency. SUPT employs a global worklist, whose elements

contain constraints that are applied to points-to sets. This

worklist-based algorithm could be staged like ours, making

it amenable to task parallelism. But because their algorithm

is partly flow-insensitive, it has larger points-to sets, which

would result in more data sharing than in our case.

Li et al. [16] introduce a value-flow based points-to anal-

ysis that iteratively examines the set of pointers that point

to allocation sites by checking graph reachability, and dy-

namically adds value-flow graph edges to connect scalar

variables and memory objects (indirect flows). Their algo-

rithm is also worklist-based and produces the points-to set

for each variable. Since their indirect flow calculation needs

to resolve dataflow equations sequentially, this algorithm is

also difficult to be parallelized due to data sharing. In [25],

Sui et al. present a sequential flow-sensitive pointer analy-

sis for multi-threaded programs. Their technique performs

may-happen-in-parallel and value-flow analysis to identify

the happen-before pairs that assist lock analysis to establish

thread-aware def-use information for pointer analysis.

PPSEGPT balances precision and performance in a novel

way, compared to past work. In PPSEGPT, the dataflow tra-

versal process is divided into multiple subtasks, and thus can

be easily parallelized by using lightweight task parallelism

with proper synchronization. PPSEGPT maintains a global

points-to graph for scalar variables in the same manner as

SUPT and SS. For address-taken variables, it maintains points-

to information for each heap variable. This saves memory in

comparison to maintaining a points-to graph at every point,

as with SS.

Sparse Pointer Analysis:
The algorithm by Tok et al [26] is similar to our algorithm

in that it integrates points-to analysis with an on-demand

construction of heap def-use chains. It differs from ours in

the use of interprocedural def-use chains and in maintaining

a worklist of basic blocks per procedure. Also, they employ

the technique of dynamically computing SSA form, which

limits the scalability of their analysis.

Parallel Pointer Analysis: Mendez-Lojo et al. introduce

a parallel inclusion-based flow-insensitive points-to analy-

sis [18]. This algorithm is based on graph rewriting, defining

a set of rules for constraint solving. In [24], Su et al. present a

parallel points-to analysis for Java programs. Their technique

runs CFL-reachability operations in parallel by identifying

data sharing and adding locks for protection.

Nagaraj and Govindarajan [19] furthered the development

of the graph rewriting approach by extending the rewriting

rules from [18] to support flow sensitivity, thereby obtaining

a parallel flow-sensitive pointer analysis. They use an auxil-

iary flow-insensitive analysis (as in [10]) to conservatively

build def-use chains for address-taken variables. The flow-

insensitive aspect of their work leads to more data depen-

dences and adds synchronization overhead for protecting the

shared data structures. Their experimental results showed

many cases of negative scalability, whereas PPSEGPT al-

ways showed improved performance improvements with an

increased number of threads. We did not find a publicly avail-

able implementation of their algorithm for an experimental

comparison.

7 Conclusions and Future Work
This paper introduced a novel algorithm for points-to anal-

ysis, based on Pointer SEG (PSEG) form, an adaptation of

SEG form. In contrast to classic constraint-solving based

approaches, our algorithm can decompose the analysis into

units of granularity that are well suited for fine-grained

69

CC’18, February 24–25, 2018, Vienna, Austria Jisheng Zhao, Michael G. Burke, and Vivek Sarkar

task parallelism. The analysis also produces precise def-use

connections (value flow edges) between memory stores and

loads. We implemented our Parallel Pointer SEG-based
Pointer Analysis in the LLVM compilation framework by

leveraging the fine-grain parallelism capabilities of HCLib.

We evaluated this analysis with six real-world applications

on a 12-core Intel Xeon SMP, and obtained an average speedup

of 4.45× with 12 threads and maximum speedup of 7.35×,
compared to the sequential runs.

In this paper, we evaluated our algorithm on a weakly-

typed language, in which case PSEG form has to conserva-

tively assume that each node may be aliased to all others

in same heap space. There are many opportunities for fu-

ture work. The analysis can be extended to apply to binary

programs, which are inherently weakly typed. One can also

explore the use of multiple heap spaces in strongly-typed

programs, and the addition of context sensitivity to our in-

terprocedural flow-sensitive pointer analysis algorithm. Fi-

nally, one can extend the implementation of our algorithm to

leverage many-core/accelerator parallelism and distributed-

memory parallelism for further scalability.

Acknowledgments
We are grateful to Jong-Deok Choi and the anonymous re-

viewers for their constructive suggestions and comments,

which helped improve the presentation of the paper.

References
[1] David Callahan. 1988. The Program Summary Graph and Flow-

sensitive Interprocedural Analysis. In PLDI ’88. ACM, New York, NY.

https://doi.org/10.1145/960116.53995
[2] Jong-Deok Choi, Michael G. Burke, and Paul R. Carini. 1993. Effi-

cient Flow-Sensitive Interprocedural Computation of Pointer-Induced

Aliases and Side Effects. In POPL’93. https://doi.org/10.1145/158511.
158639

[3] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. 1991. Automatic

Construction of Sparse Data Flow Evaluation Graphs. In Proceed-
ings of the 18th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’91). ACM, New York, NY, USA, 12.

https://doi.org/10.1145/99583.99594
[4] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. 1994. Context-

sensitive Interprocedural Points-to Analysis in the Presence of Func-

tion Pointers. In PLDI ’94. ACM, New York, NY, USA, 15. https:
//doi.org/10.1145/178243.178264

[5] Stephen Fink et al. 2006. Effective Typestate Verification in the

Presence of Aliasing. In ISSTA ’06. ACM, New York, NY, USA, 12.

https://doi.org/10.1145/1348250.1348255
[6] Stephen J. Fink, Kathleen Knobe, and Vivek Sarkar. 2000. Unified

Analysis of Array and Object References in Strongly Typed Languages.

In SAS ’00. http://dl.acm.org/citation.cfm?id=647169.718147
[7] Rakesh Ghiya and Laurie J. Hendren. 1998. Putting Pointer Analysis

to Work. In POPL ’98. ACM, New York, NY, USA, 121–133. https:
//doi.org/10.1145/268946.268957

[8] Samuel Z. Guyer and Calvin Lin. 2005. Error Checking with Client-

driven Pointer Analysis. Sci. Comput. Program. 58, 1-2 (Oct. 2005), 32.
https://doi.org/10.1016/j.scico.2005.02.005

[9] Ben Hardekopf and Calvin Lin. 2009. Semi-sparse flow-sensitive

pointer analysis. In POPL ’09. ACM, New York, NY, USA, 13. https:

//doi.org/10.1145/1480881.1480911
[10] Ben Hardekopf and Calvin Lin. 2011. Flow-sensitive Pointer Analysis

for Millions of Lines of Code. In CGO ’11. Washington, DC, USA, 10.

https://doi.org/10.1109/CGO.2011.5764696
[11] Akihiro Hayashi, Sri Raj Paul, Max Grossman, Jun Shirako, and Vivek

Sarkar. 2017. Chapel-on-X: Exploring Tasking Runtimes for PGAS

Languages. In ESPM2’17. ACM, New York, NY, USA, Article 5, 8 pages.

https://doi.org/10.1145/3152041.3152086
[12] Michael Hind, Michael Burke, Paul Carini, and Jong-Deok Choi. 1999.

Interprocedural Pointer Alias Analysis. ACM Trans. Program. Lang.
Syst. 21, 4 (July 1999), 848–894. https://doi.org/10.1145/325478.325519

[13] Kathleen Knobe and Vivek Sarkar. 1998. Array SSA form and its use

in parallelization. In POPL ’98. ACM, New York, NY, USA, 107–120.

https://doi.org/10.1145/268946.268956
[14] William Landi and Barbara G. Ryder. 1992. A Safe Approximate Algo-

rithm for Interprocedural Aliasing. In PLDI ’92. ACM, New York, NY,

USA, 235–248. https://doi.org/10.1145/143095.143137
[15] Ondrej Lhoták and Kwok-Chiang Andrew Chung. 2011. Points-to

analysis with efficient strong updates. In POPL ’11. ACM, New York,

NY, USA, 14. https://doi.org/10.1145/1926385.1926389
[16] Lian Li, Cristina Cifuentes, and Nathan Keynes. 2011. Boosting the

Performance of Flow-sensitive Points-to Analysis Using Value Flow. In

ESEC/FSE ’11. ACM, New York, NY, USA, 11. https://doi.org/10.1145/
2025113.2025160

[17] LLVM 2018. LLVM Compiler Infrastructure. http://llvm.org.

[18] Mario Méndez-Lojo, Augustine Mathew, and Keshav Pingali. 2010.

Parallel Inclusion-based Points-to Analysis. In OOPSLA ’10. ACM, NY,

USA, 16. https://doi.org/10.1145/1869459.1869495
[19] Vaivaswatha Nagaraj and R. Govindarajan. 2013. Parallel Flow-

sensitive Pointer Analysis by Graph-rewriting. In PACT ’13. IEEE Press,

Piscataway, NJ, USA, 10. https://doi.org/10.1109/PACT.2013.6618800
[20] Keshav Pingali et al. 2011. The Tao of Parallelism in Algorithms. In

PLDI ’11. ACM, New York, NY, USA, 12–25. https://doi.org/10.1145/
1993316.1993501

[21] G. Ramalingam. 1994. The Undecidability of Aliasing. ACM Trans.
Program. Lang. Syst. 16, 5 (Sept. 1994), 1467–1471. https://doi.org/10.
1145/186025.186041

[22] G. Ramalingam. 2002. On sparse evaluation representations. Theor.
Comput. Sci. 277, 1-2 (April 2002), 119–147. https://doi.org/10.1016/
S0304-3975(00)00315-7

[23] Vivek Sarkar and Kathleen Knobe. 1998. Enabling Sparse Constant

Propagation of Array Elements via Array SSA Form. In SAS’98. http:
//dx.doi.org/10.1007/3-540-49727-7_3

[24] Yu Su, Ding Ye, and Jingling Xue. 2014. Parallel Pointer Analysis with

CFL-Reachability. In ICPP’14. IEEE Computer Society, Washington,

DC, USA. https://doi.org/10.1109/ICPP.2014.54
[25] Yulei Sui, Peng Di, and Jingling Xue. 2016. Sparse Flow-sensitive

Pointer Analysis for Multithreaded Programs. In CGO ’16. ACM, New

York, NY, USA, 160–170. https://doi.org/10.1145/2854038.2854043
[26] Teck Bok Tok, Samuel Z. Guyer, and Calvin Lin. 2006. Efficient Flow-

Sensitive Interprocedural Data-Flow Analysis in the Presence of Point-

ers. In CC’06,. 17–31. https://doi.org/10.1007/11688839_3
[27] Robert P. Wilson and Monica S. Lam. 1995. Efficient Context-sensitive

Pointer Analysis for C Programs. In PLDI ’95. ACM, New York, NY,

USA, 1–12. https://doi.org/10.1145/223428.207111
[28] Hongtao Yu et al. 2010. Level by Level: Making Flow- and Context-

sensitive Pointer Analysis Scalable for Millions of Lines of Code. In

CGO ’10. ACM, New York, NY, USA, 218–229. https://doi.org/10.1145/
1772954.1772985

70

https://doi.org/10.1145/960116.53995
https://doi.org/10.1145/158511.158639
https://doi.org/10.1145/158511.158639
https://doi.org/10.1145/99583.99594
https://doi.org/10.1145/178243.178264
https://doi.org/10.1145/178243.178264
https://doi.org/10.1145/1348250.1348255
http://dl.acm.org/citation.cfm?id=647169.718147
https://doi.org/10.1145/268946.268957
https://doi.org/10.1145/268946.268957
https://doi.org/10.1016/j.scico.2005.02.005
https://doi.org/10.1145/1480881.1480911
https://doi.org/10.1145/1480881.1480911
https://doi.org/10.1109/CGO.2011.5764696
https://doi.org/10.1145/3152041.3152086
https://doi.org/10.1145/325478.325519
https://doi.org/10.1145/268946.268956
https://doi.org/10.1145/143095.143137
https://doi.org/10.1145/1926385.1926389
https://doi.org/10.1145/2025113.2025160
https://doi.org/10.1145/2025113.2025160
https://doi.org/10.1145/1869459.1869495
https://doi.org/10.1109/PACT.2013.6618800
https://doi.org/10.1145/1993316.1993501
https://doi.org/10.1145/1993316.1993501
https://doi.org/10.1145/186025.186041
https://doi.org/10.1145/186025.186041
https://doi.org/10.1016/S0304-3975(00)00315-7
https://doi.org/10.1016/S0304-3975(00)00315-7
http://dx.doi.org/10.1007/3-540-49727-7_3
http://dx.doi.org/10.1007/3-540-49727-7_3
https://doi.org/10.1109/ICPP.2014.54
https://doi.org/10.1145/2854038.2854043
https://doi.org/10.1007/11688839_3
https://doi.org/10.1145/223428.207111
https://doi.org/10.1145/1772954.1772985
https://doi.org/10.1145/1772954.1772985

	Abstract
	1 Introduction
	2 Background
	2.1 Memory Model and LLVM IR
	2.2 Semi-Sparse Flow-sensitive Pointer Analysis
	2.3 Array SSA and Heap SSA Forms

	3 PSEG-based Pointer Analysis
	3.1 Pointer SEG Form
	3.2 Value Flow Edges for Address-taken Variables
	3.3 PSEGPT Algorithm
	3.4 Intraprocedural PSEGPT
	3.5 Interprocedural PSEGPT Algorithm
	3.6 Discussion

	4 Parallel PSEG Points-To Algorithm
	4.1 Parallelizing Points-To Analysis
	4.2 Complexity Analysis

	5 Evaluation
	5.1 Implementation
	5.2 Evaluation

	6 Related Work
	7 Conclusions and Future Work
	References

