
1

Interfacing Chapel with
traditional HPC programming languages

Adrian Prantl, Tom Epperly
LLNL

Shams Imam, Vivek Sarkar
Rice University

2

Introducing

 new programming language developed by Cray
Inc. as part of DARPA High Productivity
Computing Systems program

 provides a parallel programming model for use
in HPC systems

 supports “global-view” abstractions allowing
operations on distributed data to be expressed
naturally

– no explicit communications like MPI programs

3

Language Interoperability

 providing new features isn't enough to attract
developers to adopt a new programming
language

 should be easy to integrate existing code into
new programs

 good support for interoperability lowers hurdle of
accepting a new language

4

Babel – language interoperability tool

 LLNL's language
interoperability
toolkit for high-
performance
computing

 designed for fast,
in-process
communication

 handles generation
of all glue-code

5

Babel – relevant features

 programming language-neutral interface
specification language – Scientific Interface
Definition Language (SIDL)

 SIDL supports

– fundamental data types

– object-oriented programming (user-defined types)

– interface inheritance

– exception handling

– dynamic multi-dimensional arrays

6

Chapel: Language Interoperability

BRAID

first PGAS language to be
supported by Babel/BRAID

7

Design goals

 be minimally invasive

– minimal changes to the Chapel compiler

– user shouldn't have to write 'special' code

 play well with the Chapel runtime

– expected behavior of programs remains unchanged

– support distributed data types

 achieve maximum performance

– avoid copying of arguments (when possible)

– introduce minimal overhead

8

Using Chapel with BRAID - I

 first, define the interface in SIDL
 import hplsupport;

package hpcc version 1.0 {
 class ParallelTranspose {
 // C[i,j] = A[j,i] + beta * C[i,j]
 static void ptransCompute(
 in hplsupport.Array2dDouble a,
 in hplsupport.Array2dDouble c,
 in double beta,
 in int i,
 in int j);
 }
}

– no data members are defined in the SIDL file
– all methods are public and virtual
– methods can be defined to be final or static

9

Using Chapel with BRAID - II
 next, use the Babel compiler to generate the

server (callee) glue code:
– ~/cxxLib> babel --server=cxx hpcc.sidl

– generates code for skeleton and Intermediate Object
Representation (IOR)

– generates empty blocks expecting user code

 user fills in empty blocks as implementation
code

 user compiles code into shared libraries

– Babel provides support for generating makefiles

10

Using Chapel with BRAID - III

 next, use the BRAID compiler to generate the
client (caller) glue code:
 ~/chplClient> braid --client=chapel hpcc.sidl
– generates code for stub and IOR

 user code uses the stub to make method calls

 user code unaware of implementation

 link to server code and SIDL runtime library
during compilation and run the executable

– Babel/BRAID bindings take care of interoperability!

11

Babel/Braid – method invocation scheme

Chapel
C++

 example flow while calling from Chapel into C++

user chapel code

12

Chapel as client - challenges

 convert Chapel data types to the IOR

 add support for

– fundamental (primitive) types

– local arrays

– distributed arrays

– object-oriented programming

– exception handling

13

Supporting scalar data types

SIDL Type Size (in bits) Corresponding
Chapel Type

 bool 1 bool

 char 8 string (length=1)

 int 32 int(32)

 long 64 int(64)

 float 32 real(32)

 double 64 real(64)

 fcomplex 64 complex(64)

 dcomplex 128 complex(128)

 opaque 64 int(64)

 string varies string

 enum 32 enum

14

Local Arrays

 SIDL arrays represent rectangular regions

 two flavors of SIDL arrays

– normal SIDL arrays

• general interface for arrays

• can be used as parameters/return types

• row-major or column-major order

– raw arrays (r-arrays)

• can be used only as parameters

• must be contiguous in memory with column-major order

15

Local Arrays contd.
 user can use any Chapel rectangular array as

raw array

– includes support for distributed arrays

 BRAID client code automatically converts input
arrays to required SIDL type

– copying involved when input arrays are

• not contiguous (e.g. distributed)

• not in column-major order for raw-arrays

– uses custom Chapel library extensions for column-
major ordered arrays and borrowed-arrays to allow
ease of using raw-arrays

16

Local Arrays: Raw Array Example
SIDL File:
class ArrayOps {
 static void matrixMultiply(in rarray<int,2> aArr(n,m),
 in rarray<int,2> bArr(m,o), inout rarray<int,2> res(n,o),
 in int n, in int m, in int o);
}

User writes Chapel code:
 var sidl_ex: BaseException = nil;
 var n = 3, m = 3, o = 2;
 var a: [0.. #n, 0.. #m] int(32); // a 2D Chapel local array
 var b: [0.. #m, 0.. #o] int(32);
 var x: [0.. #n, 0.. #o] int(32);
 // initialize the input matrices
 [(i) in [0..8]] a[i / m, i % m] = i;
 [(i) in [0..5]] b[i / o, i % o] = i;
 // call the implementation of matrix multiply
 ArrayOps_static.matrixMultiply(a, b, x, n, m, o, sidl_ex);

17

Local Arrays: SIDL Array Example
SIDL File:
class ArrayOps {
 static bool reverseDouble(inout array<double,1> a);
}

User writes Chapel code:
 var sidl_ex: BaseException = nil;
 // create a sidl array using SIDL runtime
 var darray: sidl.Array(real(64), sidl_double__array) = ...;
 ...
 // call the implementation method
 ArrayOps_static.reverseDouble(darray, sidl_ex)

18

Distributed Arrays

 one of the most challenging to support since
Chapel allow user-defined data distributions

 Chapel runtime handles communication
transparently, user uses these arrays just as
local arrays

 BRAID requires users to distinguish between
distributed arrays and SIDL arrays

– BRAID provides library support for distributed arrays

19

Distributed Arrays: SIDL.DistributedArray

 copying/syncing of data is expensive

 SIDL arrays are not sufficient

– meant for traditional langauges like C, C++, …

 create our custom type: SIDL.DistributedArray

– no contiguous or ordering requirements

– use Chapel runtime to access elements, server
language (C, Java, etc.) unaware of communication

– minimal overhead, no copying!

20

Distributed Arrays: Example
SIDL File:
 class ParallelTranspose {
 static void ptransCompute(in hplsupport.Array2dDouble a,
 in hplsupport.Array2dDouble c, in double beta,
 in int i, in int j);
 }

User Chapel Code:
 ...
 var A: [MatrixDom] real(64), // Chapel Distributed Array
 C: [TransposeDom] real(64);
 forall (i,j) in TransposeDom do { // parallel loop
 var aWrapper = new hplsupport.BlockCyclicDistArray2dDouble();
 aWrapper.initData(GET_CHPL_REF(A));
 var cWrapper = new hplsupport.BlockCyclicDistArray2dDouble();
 cWrapper.initData(GET_CHPL_REF(C));
 // C[i,j] = beta * C[i,j] + A[j,i];
 ParallelTranspose_static.ptransCompute(
 aWrapper, cWrapper, beta, i, j, sidl_ex);
 }

21

Object-oriented programming

 SIDL supports packages, abstract classes,
static and virtual methods

 Chapel doesn't yet fully support OOP, minimal
support for classes

– cannot inherit from classes with custom constructors

 support for packages and static methods:

– packages mapped to Chapel modules

– multiple Chapel classes can reside in a single module

– static methods mapped to additional Chapel modules

22

Object-oriented programming - II
 Chapel classes allocate IOR via calls to SIDL

runtime

– reference counting used to keep track of references
to this newly allocated object

– Chapel class destructors decrement reference count
to the IOR object

 Chapel types delegate calls to IOR data
structure which maintains virtual function table

 inheritance simulated via the IOR object, SIDL
runtime manage the IOR representation

– type-casting supported by explicit cast calls

23

Object-oriented programming: Example
SIDL File:
 interface A { string a(); };
 interface B { int b(); };
 class C { string c(); };
 class D extends implements-all A, B { string d(); };

User Chapel Code:
 // var a: A = new A(); disallowed as A is an interface

 var d: D = new D(sidl_ex);
 var v1 = d.a(sidl_ex);
 var v2 = d.c(sidl_ex);

 var a: A = d.asA(); // Explicitly cast d as an instance of A
 var v3 = a.a(sidl_ex);
 assertEquals(v1, v3);

 var c: C = d.asC(); // Explicitly cast d as an instance of C
 var v4 = c.c(sidl_ex);
 assertEquals(v2, v4);

24

Exception Handling

 Chapel supports inout arguments

 SIDL exposed functions require an exception
object as argument

 BRAID generated code fills in exception object
to notify calling code of exceptions

25

Exception Handling: Example
 User Chapel code for handling exceptions

 var sidl_ex: BaseException = nil;
 // create a sidl array using SIDL runtime
 var darray: sidl.Array(real(64), sidl_double__array) = ...;
 ...
 // call the implementation method
 ArrayOps_static.reverseDouble(darray, sidl_ex)

 if (sidl_ex != nil) {
 // exception occurred while invoking reverseDouble()
 // user handles exception how she wishes

 halt(sidl_ex.getMessage());
 }

26

Performance results - I

27

Performance results - II

28

Performance results - III

The ptrans Benchmark, hybrid and pure Chapel versions execution times (in seconds)
compared, input matrix is of size 2048 × 2048 with a block size of 128 DistributedArray
interface in SIDL, reusing our own infrastructure to make it completely portable

29

Performance results - IV

32 64 128 256 512 1024 2048 4096 8192
0

5

10

15

20

25

30

Comparing pure and hybrid performance of daxpy() functionality

array sizes are 2^20, programs ran on 64 nodes

Pure
Hybrid

Data block size

E
xe

cu
tio

n
 ti

m
e

in
 s

e
co

nd
s

pure: Chapel implementation of C = a * X + Y where X and
Y are distributed arrays
hybrid: same example implemented by calling the blas
daxpy() function using SIDL.DistributedArray

30

Summary and Future Work

 achieved interoperability between Chapel and
traditional HPC languages

– support all basic data types

– support distributed arrays

• future work:

– add support for Chapel as server language

– use similar concepts to add support for UPC and X10

31

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

