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Introducing 

 new programming language developed by Cray 
Inc. as part of DARPA High Productivity 
Computing Systems program

 provides a parallel programming model for use 
in HPC systems

 supports “global-view” abstractions allowing 
operations on distributed data to be expressed 
naturally

– no explicit communications like MPI programs
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Language Interoperability

 providing new features isn't enough to attract 
developers to adopt a new programming 
language

 should be easy to integrate existing code into 
new programs

 good support for interoperability lowers hurdle of 
accepting a new language
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Babel – language interoperability tool

 LLNL's language 
interoperability 
toolkit for high-
performance 
computing

 designed for fast, 
in-process 
communication

 handles generation 
of all glue-code



5

Babel – relevant features

 programming language-neutral interface 
specification language – Scientific Interface 
Definition Language (SIDL)

 SIDL supports

– fundamental data types

– object-oriented programming (user-defined types)

– interface inheritance

– exception handling

– dynamic multi-dimensional arrays
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Chapel: Language Interoperability

BRAID

first PGAS language to be 
supported by Babel/BRAID
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Design goals

 be minimally invasive

– minimal changes to the Chapel compiler

– user shouldn't have to write 'special' code

 play well with the Chapel runtime

– expected behavior of programs remains unchanged

– support distributed data types

 achieve maximum performance

– avoid copying of arguments (when possible)

– introduce minimal overhead
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Using Chapel with BRAID - I

 first, define the interface in SIDL
   import hplsupport;

package hpcc version 1.0 {
  class ParallelTranspose {
    // C[i,j] = A[j,i] + beta * C[i,j]
    static void ptransCompute(
        in hplsupport.Array2dDouble a,
        in hplsupport.Array2dDouble c,
        in double beta,
        in int i,
        in int j);
  }
}

– no data members are defined in the SIDL file
– all methods are public and virtual
– methods can be defined to be final or static
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Using Chapel with BRAID - II
 next, use the Babel compiler to generate the 

server (callee) glue code:
– ~/cxxLib> babel --server=cxx hpcc.sidl

– generates code for skeleton and Intermediate Object 
Representation (IOR)

– generates empty blocks expecting user code

 user fills in empty blocks as implementation 
code

 user compiles code into shared libraries

– Babel provides support for generating makefiles
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Using Chapel with BRAID - III

 next, use the BRAID compiler to generate the 
client (caller) glue code:
 ~/chplClient> braid --client=chapel hpcc.sidl
– generates code for stub and IOR

 user code uses the stub to make method calls

 user code unaware of implementation 

 link to server code and SIDL runtime library 
during compilation and run the executable

– Babel/BRAID bindings take care of interoperability!
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Babel/Braid – method invocation scheme

Chapel
C++

  example flow while calling from Chapel into C++

user chapel code
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Chapel as client - challenges

 convert Chapel data types to the IOR

 add support for

– fundamental (primitive) types

– local arrays

– distributed arrays

– object-oriented programming

– exception handling
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Supporting scalar data types

SIDL Type Size (in bits) Corresponding 
Chapel Type

  bool        1   bool  

  char        8   string (length=1)

  int       32   int(32)

  long       64   int(64)

  float       32   real(32)

  double       64   real(64)

  fcomplex       64   complex(64)

  dcomplex      128   complex(128)

  opaque       64   int(64)

  string   varies   string

  enum       32   enum
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Local Arrays

 SIDL arrays represent rectangular regions

 two flavors of SIDL arrays

– normal SIDL arrays

• general interface for arrays

• can be used as parameters/return types

• row-major or column-major order

– raw arrays (r-arrays)

• can be used only as parameters

• must be contiguous in memory with column-major order
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Local Arrays contd.
 user can use any Chapel rectangular array as 

raw array

– includes support for distributed arrays

 BRAID client code automatically converts input 
arrays to required SIDL type

– copying involved when input arrays are 

• not contiguous (e.g. distributed) 

• not in column-major order for raw-arrays

– uses custom Chapel library extensions for column-
major ordered arrays and borrowed-arrays to allow 
ease of using raw-arrays
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Local Arrays: Raw Array Example
SIDL File:
class ArrayOps {
 static void matrixMultiply(in rarray<int,2> aArr(n,m), 
   in rarray<int,2> bArr(m,o), inout rarray<int,2> res(n,o), 
   in int n, in int m, in int o);
}

User writes Chapel code:
 var sidl_ex: BaseException = nil;
 var n = 3, m = 3, o = 2;
 var a: [0.. #n, 0.. #m] int(32); // a 2D Chapel local array
 var b: [0.. #m, 0.. #o] int(32);
 var x: [0.. #n, 0.. #o] int(32);
 // initialize the input matrices
 [(i) in [0..8]] a[i / m, i % m] = i;
 [(i) in [0..5]] b[i / o, i % o] = i;
 // call the implementation of matrix multiply
 ArrayOps_static.matrixMultiply(a, b, x, n, m, o, sidl_ex);
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Local Arrays: SIDL Array Example
SIDL File:
class ArrayOps {
 static bool reverseDouble(inout array<double,1> a);
}

User writes Chapel code:
 var sidl_ex: BaseException = nil;
 // create a sidl array using SIDL runtime
 var darray: sidl.Array(real(64), sidl_double__array) = ...;
 ...
 // call the implementation method
 ArrayOps_static.reverseDouble(darray, sidl_ex)
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Distributed Arrays

 one of the most challenging to support since 
Chapel allow user-defined data distributions

 Chapel runtime handles communication 
transparently, user uses these arrays just as 
local arrays

 BRAID requires users to distinguish between 
distributed arrays and SIDL arrays

– BRAID provides library support for distributed arrays
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Distributed Arrays: SIDL.DistributedArray

 copying/syncing of data is expensive

 SIDL arrays are not sufficient

– meant for traditional langauges like C, C++, …

 create our custom type: SIDL.DistributedArray

– no contiguous or ordering requirements

– use Chapel runtime to access elements, server 
language (C, Java, etc.) unaware of communication 

– minimal overhead, no copying!
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Distributed Arrays: Example
SIDL File:
  class ParallelTranspose {
    static void ptransCompute(in hplsupport.Array2dDouble a, 
      in hplsupport.Array2dDouble c, in double beta,
      in int i, in int j);
  }

User Chapel Code:
 ...
 var A: [MatrixDom   ] real(64), // Chapel Distributed Array
     C: [TransposeDom] real(64);
 forall (i,j) in TransposeDom do { // parallel loop
   var aWrapper = new hplsupport.BlockCyclicDistArray2dDouble();
    aWrapper.initData(GET_CHPL_REF(A));
   var cWrapper = new hplsupport.BlockCyclicDistArray2dDouble(); 
    cWrapper.initData(GET_CHPL_REF(C));    
   // C[i,j] = beta * C[i,j]  +  A[j,i];
   ParallelTranspose_static.ptransCompute(
     aWrapper, cWrapper, beta, i, j, sidl_ex);
 }
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Object-oriented programming

 SIDL supports packages, abstract classes, 
static and virtual methods

 Chapel doesn't yet fully support OOP, minimal 
support for classes

– cannot inherit from classes with custom constructors

 support for packages and static methods:

– packages mapped to Chapel modules

– multiple Chapel classes can reside in a single module

– static methods mapped to additional Chapel modules
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Object-oriented programming - II
 Chapel classes allocate IOR via calls to SIDL 

runtime

– reference counting used to keep track of references 
to this newly allocated object

– Chapel class destructors decrement reference count 
to the IOR object

 Chapel types delegate calls to IOR data 
structure which maintains virtual function table

 inheritance simulated via the IOR object, SIDL 
runtime manage the IOR representation

– type-casting supported by explicit cast calls
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Object-oriented programming: Example
SIDL File:
  interface A { string a(); };
  interface B { int b(); };  
  class C { string c(); };
  class D extends implements-all A, B { string d(); };

User Chapel Code:
  // var a: A = new A(); disallowed as A is an interface

  var d: D = new D(sidl_ex);
  var v1 = d.a(sidl_ex);
  var v2 = d.c(sidl_ex);

  var a: A = d.asA(); // Explicitly cast d as an instance of A
  var v3 = a.a(sidl_ex);
  assertEquals(v1, v3);

  var c: C = d.asC(); // Explicitly cast d as an instance of C
  var v4 = c.c(sidl_ex);
  assertEquals(v2, v4);
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Exception Handling

 Chapel supports inout arguments

 SIDL exposed functions require an exception 
object as argument

 BRAID generated code fills in exception object 
to notify calling code of exceptions
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Exception Handling: Example
 User Chapel code for handling exceptions

 var sidl_ex: BaseException = nil; 
 // create a sidl array using SIDL runtime
 var darray: sidl.Array(real(64), sidl_double__array) = ...;
 ... 
 // call the implementation method
 ArrayOps_static.reverseDouble(darray, sidl_ex)
 
 if (sidl_ex != nil) {
   // exception occurred while invoking reverseDouble()
   // user handles exception how she wishes

   halt(sidl_ex.getMessage());
 }
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Performance results - I



27

Performance results - II
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Performance results - III

The ptrans Benchmark, hybrid and pure Chapel versions execution times (in seconds) 
compared, input matrix is of size 2048 × 2048 with a block size of 128 DistributedArray 
interface in SIDL, reusing our own infrastructure to make it completely portable
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Performance results - IV
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Comparing pure and hybrid performance of daxpy() functionality

array sizes are 2^20, programs ran on 64 nodes
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pure: Chapel implementation of C = a * X + Y where X and 
Y are distributed arrays
hybrid: same example implemented by calling the blas  
daxpy() function using SIDL.DistributedArray
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Summary and Future Work

 achieved interoperability between Chapel and 
traditional HPC languages

– support all basic data types

– support distributed arrays

• future work: 

– add support for Chapel as server language

– use similar concepts to add support for UPC and X10
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Questions
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