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Abstract
PGAS programming languages such as Chapel, Coar-
ray Fortran, Habanero-C, UPC and X10 [3–6, 8] sup-
port high-level and highly productive programming
models for large-scale parallelism. Unlike message-
passing models such as MPI, which introduce non-
trivial complexity due to message passing semantics,
PGAS languages simplify distributed parallel program-
ming by introducing higher level parallel language con-
structs that include operations on global / distributed
arrays, distributed task parallelism, directed synchro-
nization and mutual exclusion.

Past studies on program analysis and optimizations
for PGAS programming languages have been spe-
cific to different languages, i.e. either built on spe-
cial compilers (e.g [1]) or relied on recognizing lan-
guage specific runtime APIs [2]. Since most PGAS
programming languages have similar constructs for
task management, synchronization, and communica-
tion, we believe that it is feasible to build a common
compiler parallel intermediate representation (PIR [9])
that supports these features across multiple languages.
A PIR-based approach enables compiler developers
to write parallelism-aware program optimizations in
a language-independent manner. We choose LLVM
(Low Level Virtual Machine) [7] as the baseline in-
frastructure for implementing our PIR, since it is easy
to extend, is widely used, and supports a wide range of
hardware platforms.
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The following steps summarize our approach to
building PIR-based compiler infrastructure to optimize
PGAS program:

1. Study PIR-related opportunities and challenges in
existing compilers for PGAS programming lan-
guage.

2. Extend LLVM IR to support Runtime-Independent
and Runtime-Specific PIRs.

3. Add new semantic constraints to LLVM for PIR
primitives.

4. Implement a core set of parallelism-aware optimiza-
tions for PGAS programs.

To take the first step towards the goal, we focus on
optimization of Chapel programs1, with an initial focus
on communication optimizations. The Chapel compiler
uses the address space feature in LLVM to distinguish
between local and remote data, thereby providing a lan-
guage and runtime-independent representation for the
local/remote data communications. In particular, the
Wide Pointer Optimization pass expresses remote data
accesses as LLVM load/store/memcpy instructions that
involve a designated address space (100) for remote ac-
cesses. Then, classic LLVM optimization passes (e.g.
loop invariant code motion) can be applied to eliminate
redundant data access instructions even if they involve
different address spaces. Finally, instructions involving
remote address space pointers are lowered to runtime
communication APIs such as get and put that operate
on the remote pointers.

1 To the best of our knowledge, Chapel is the first PGAS program-
ming language to use LLVM as a back-end.



In this talk, we demonstrate the impact of the wide
pointer optimization pass using multiple Chapel pro-
grams. The result of the Smith-Waterman program
shows a performance improvement of 194% on 16 lo-
cales (1 locale per node, 12 CPUs per locale) on an
Intel Xeon X5660 cluster with a quad data rate In-
finiBand interconnect. This experiment shows that the
use of LLVM can effectively improve the performance
of PGAS programs. Our study also shows that the PIR
based parallel program optimization is a promising way
to enhance the compiler construction for future PGAS
parallel programming languages.
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