
LLVM Optimizations for PGAS Programs
Case study: LLVM Wide Pointer Optimizations in Chapel

Akihiro Hayashi ∗,
Rishi Surendran,

Jisheng Zhao

Rice University
{ahayashi, rishi,

jisheng.zhao}@rice.edu

Michael Ferguson

Laboratory for
Telecommunication Sciences

mferguson@ltsnet.net

Vivek Sarkar

Rice University
vsarkar@rice.edu

Abstract
PGAS programming languages such as Chapel, Coar-
ray Fortran, Habanero-C, UPC and X10 [3–6, 8] sup-
port high-level and highly productive programming
models for large-scale parallelism. Unlike message-
passing models such as MPI, which introduce non-
trivial complexity due to message passing semantics,
PGAS languages simplify distributed parallel program-
ming by introducing higher level parallel language con-
structs that include operations on global / distributed
arrays, distributed task parallelism, directed synchro-
nization and mutual exclusion.

Past studies on program analysis and optimizations
for PGAS programming languages have been spe-
cific to different languages, i.e. either built on spe-
cial compilers (e.g [1]) or relied on recognizing lan-
guage specific runtime APIs [2]. Since most PGAS
programming languages have similar constructs for
task management, synchronization, and communica-
tion, we believe that it is feasible to build a common
compiler parallel intermediate representation (PIR [9])
that supports these features across multiple languages.
A PIR-based approach enables compiler developers
to write parallelism-aware program optimizations in
a language-independent manner. We choose LLVM
(Low Level Virtual Machine) [7] as the baseline in-
frastructure for implementing our PIR, since it is easy
to extend, is widely used, and supports a wide range of
hardware platforms.

∗Presenting Author

The following steps summarize our approach to
building PIR-based compiler infrastructure to optimize
PGAS program:

1. Study PIR-related opportunities and challenges in
existing compilers for PGAS programming lan-
guage.

2. Extend LLVM IR to support Runtime-Independent
and Runtime-Specific PIRs.

3. Add new semantic constraints to LLVM for PIR
primitives.

4. Implement a core set of parallelism-aware optimiza-
tions for PGAS programs.

To take the first step towards the goal, we focus on
optimization of Chapel programs1, with an initial focus
on communication optimizations. The Chapel compiler
uses the address space feature in LLVM to distinguish
between local and remote data, thereby providing a lan-
guage and runtime-independent representation for the
local/remote data communications. In particular, the
Wide Pointer Optimization pass expresses remote data
accesses as LLVM load/store/memcpy instructions that
involve a designated address space (100) for remote ac-
cesses. Then, classic LLVM optimization passes (e.g.
loop invariant code motion) can be applied to eliminate
redundant data access instructions even if they involve
different address spaces. Finally, instructions involving
remote address space pointers are lowered to runtime
communication APIs such as get and put that operate
on the remote pointers.

1 To the best of our knowledge, Chapel is the first PGAS program-
ming language to use LLVM as a back-end.



In this talk, we demonstrate the impact of the wide
pointer optimization pass using multiple Chapel pro-
grams. The result of the Smith-Waterman program
shows a performance improvement of 194% on 16 lo-
cales (1 locale per node, 12 CPUs per locale) on an
Intel Xeon X5660 cluster with a quad data rate In-
finiBand interconnect. This experiment shows that the
use of LLVM can effectively improve the performance
of PGAS programs. Our study also shows that the PIR
based parallel program optimization is a promising way
to enhance the compiler construction for future PGAS
parallel programming languages.

References
[1] R. Barik, Jisheng Zhao, D. Grove, I. Peshansky,

Z. Budimlic, and V. Sarkar. Communication optimiza-
tions for distributed-memory x10 programs. In Parallel
Distributed Processing Symposium (IPDPS), 2011 IEEE
International, pages 1101–1113, 2011.

[2] Christopher Mark Barton. Improving Access to Shared
Data in a Partitioned Global Address Space Program-
ming Model. 2009. Ph.D. Thesis.

[3] Chapel. The Chapel language specification version 0.93,
April 2013.

[4] Philippe Charles, Christian Grothoff, Vijay Saraswat,
Christopher Donawa, Allan Kielstra, Kemal Ebcioglu,
Christoph von Praun, and Vivek Sarkar. X10: an object-
oriented approach to non-uniform cluster computing. In
Proceedings of the 20th annual ACM SIGPLAN con-
ference on Object-oriented programming, systems, lan-
guages, and applications, OOPSLA ’05, pages 519–538,
New York, NY, USA, 2005. ACM.

[5] Sanjay Chatterjee, Sagnak Tasirlar, Zoran Budimlic,
Vincent Cave, Milind Chabbi, Max Grossman, Vivek
Sarkar, and Yonghong Yan. Integrating asynchronous
task parallelism with mpi. In Proceedings of the
2013 IEEE 27th International Symposium on Parallel
and Distributed Processing, IPDPS ’13, pages 712–725,
Washington, DC, USA, 2013. IEEE Computer Society.

[6] Tarek El-Ghazawi, William W. Carlson, and Jesse M.
Draper. UPC Language Specification v1.1.1, October
2003.

[7] Chris Lattner and Vikram Adve. Llvm: A compilation
framework for lifelong program analysis & transforma-
tion. In Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-directed
and Runtime Optimization, CGO ’04, pages 75–, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[8] Robert W. Numrich and John Reid. Co-Array Fortran for
parallel programming. ACM SIGPLAN Fortran Forum
Archive, 17:1–31, August 1998.

[9] Jisheng Zhao and Vivek Sarkar. Intermediate Language
Extensions for Parallelism. 5th Workshop on Virtual Ma-
chine and Intermediate Languages (VMIL’11), October
2011.


