
The Tuning Language for Concurrent Collections

Kathleen Knobe1 and Michael G. Burke2

1 Intel Corporation
kath.knobe@intel.com

2 Rice University
mgb2@rice.edu

Abstract. Concurrent Collections (CnC) is a programming model for
parallel systems. A novel aspect of this model is that there is a clear
separation of the specification of the application semantics, called the
domain specification, and the tuning specification, which maps the do-
main spec to a platform. The domain spec is declarative specification
that indicates the constraints on execution. These correspond to data
dependences and control dependences. The domain spec can be written
by a domain expert who does not necessarily have knowledge of the tar-
get architecture. The separation of concerns isolates the domain expert
from the tuning facility. This isolation permits the tuning language to
provide strong capabilities for control and flexibility for a tuning expert.
In addition, the separation means that a given domain spec can have
multiple tuning specs. There might be multiple targets, and within the
same target there might be distinct goals, such as performance vs. power.
This paper introduces the CnC language for tuning specifications in some
detail and show examples of its use. The goal of the tuning language is
to provide capability for mapping the parallelism implicit in the domain
spec for high-performance execution on a target platform. The focus of
this activity is locality. The basic concept in the tuning language is the
affinity group, a set of computations that the tuner suggests executing
close in time and space. Hierarchical affinity groups allow the specifi-
cation of relative levels of affinity. They provide a mechanism that al-
lows the programmer to specify locality, while allowing but not requiring
him to distinguish between spatial and temporal locality. We will use
Cholesky factorization to show the use of multiple tuning specs for a
single domain spec. The tuning spec is under active design.

Keywords: Concurrent Collections, parallel programming, performance
tuning

1 Introduction

Concurrent Collections (CnC) is a parallel programming model that supports
the separation of two distinct components: the domain specification describes
the application; the tuning specification indicates how the application is to be
mapped to a specific target architecture [1, 3]. 3 This approach leads to the pos-

3 This research has been funded in part by DARPA in the Ubiquitous High Perfor-
mance Computing (UHPC) program, contract HR0011-10-3-0007.



2

sibility of a single domain spec and multiple tuning specs for a given application.
The tuning specs vary with the target or the tuning goal.

The domain expert writing the domain spec does not indicate what executes
in parallel. That is difficult and depends on the architecture. Instead he just
indicates the semantic constraints on the ordering of computations in the ap-
plication. This specification depends only on the application, not on the target
architecture. This allows it to be reused for a variety of targets.

Position Many parallel languages have a serial backbone. For these lan-
guages, parallel constructs (data parallelism, fork-join, etc.) are embedded in
the serial code. After the parallel construct has executed, control returns to the
serial backbone. There is no serial backbone in CnC. A CnC domain specifi-
cation indicates only the semantically required ordering. Here all the potential
parallelism is implicitly exposed. The goal of tuning is to guide the schedule
of computations through time and the mapping of the computations across the
platform. Because the platform is limited, we need to reduce the parallelism. The
main motivation driving the tuning decisions is typically to improve temporal
and spatial locality for the given application on the given platform. The tuning
language described here provides general capabilities for the tuning expert to
map the application to a target architecture. The tuning language is currently
under active design and implementation.

Separation of concerns The CnC domain specification indicates compu-
tations of a program, and the control and data dependences among these com-
putations. These relationships impose constraints on the execution order. For
example, the producer of a value must execute before the consumer of that
value. These are the only constraints imposed by the domain spec. There is no
arbitrary serial ordering of statements, only the partial ordering based on the
dependences. These constraints are based on the application logic, not on the
target architecture. The domain spec exposes the parallelism in the application,
but the domain expert does not think about parallelism. For the domain expert,
this separation simplifies the description of the application.

Tuning is inherently difficult. The domain expert is isolated from the tuning
facility. This isolation allows the tuning language to be as complex as needed to
provide strong and general capabilities for controlling the execution of compu-
tations in time and space across the target platform.

Determinism The step instance as a whole has no side effects and is a pure
function of its input data items. We also require that each data item instance
is associated with a unique value: items obey dynamic single assignment. This
combination ensures that the CnC spec is deterministic. The same spec with
the same input can run on a thousand cores or on a single core, if it fits. It will
produce the same results. These properties also mean that CnC programs are
serializable. These requirements on steps’ external behavior do not mean that
the steps need to be written in a functional language. They may, in fact, use
side effects internally.

Determinism in the domain spec means the code produces the same output
collections on every execution. These collections are sets so the ordering is not



3

relevant but the names, tag values and contents must be identical. The tuning
spec cannot violate the constraints of the domain spec. So determinism remains
intact, although the tuning language can be used to specify different mappings
of data and computation in time and space, in accordance with differing archi-
tectures and goals.

Related Work Most of the existing parallel programming constructs ad-
dress time. Data parallel constructs, both fine-grained vector constructs and the
coarser Parallel For constructs such as found in OpenMP, indicate a set of op-
erations that can occur at the same time. Fork-join constructs such as a Cilk
spawn/sync or Habanaro Java’s async/finish or parallel sections are all of this
flavor. They indicate when the forked work can start and when the join work
can proceed. Task graphs indicate a more general partial ordering.

These approaches are specific to time, indicating when computations take
place. They say nothing about where. Some of these languages have distinct
constructs for indicating where a computation is to take place, for example, Ha-
banero Java has the Hierarchical Place Tree (HPT) [4]. But the constructs for
time and for space are distinct and unrelated. High Performance FORTRAN
(HPF) provides facilities, for coarse-grain and array language constructs, for
defining the decomposition and placement of data for distribution across proces-
sors and address spaces.

Hierarchical affinity groups provide a mechanism that allows the programmer
to specify locality, while allowing but not requiring him to distinguish between
spatial and temporal locality. The programmer can optimize the space-time local-
ity, at times trading off temporal and spatial locality. Allowing the programmer
to specify space-time locality is a novel contribution.

Assembly language for tuning The tuning language is fairly low level.
It is intended for a scenario in which more of the burden of mapping decisions
falls on the tuning expert than the runtime. The tuning expert specifies tuning
actions and the control conditions under which the actions are to take place. We
consider this a tuning assembly language because it is very specific about what
to do when, and it could be generated by static analysis. Subsequent versions
may raise the level of language but this is our starting point. The goals are:

– To gain experience with a low-level set of facilities and make early corrections
to gain perspective and the right set of general facilities;

– to provide maximum control for application studies.

We assume that the application spec already exists and will not be modified.
There are some additional limitations of this first design, which will be removed
in subsequent designs. For now the domain spec is assumed to be flat; i.e., it has
no hierarchical step collections. We are not yet concerned about the syntax of
the tuning language.

In Section 2 we describe the CnC domain language. Then we describe the
CnC tuning language.



4

Fig. 1. Ordering requirements

2 CnC Domain Language

The CnC domain spec indicates computations of a program, and the control
and data dependences among these computations. These relationships impose
constraints on the execution order. These are the only constraints imposed by
the domain spec. There is no arbitrary serial ordering of statements, only the
partial ordering based on the dependences. These constraints are based on the
application logic, and are independent of the target architecture.

A computation step that produces a data item must execute before the com-
putation step that consumes that data. A computation step that produces a
control tag must execute before the computation step controlled by that control
tag. These entities and relationships form the nodes and edges of a graph as
illustrated in Figure 1. The CnC domain language coordinates among compu-
tation steps. These computation steps are written in a programming language.
Currently these include: C++ (Intel), Java (Rice), and Haskell. They will soon
include Chapel and Python. Support for FORTRAN and Matlab is in progress.

This graphical description includes the computation steps (in circles), the
data items (in squares), the control tags (in hexagons) and the producer/consumer
relations among them (arrows). The inputs and outputs are shown as data items
produced by the environment and data items consumed by the environment. This
facilitates composability of graphs. The graph may be cyclic.
A static computation step represents a collection of distinct dynamic compu-
tation step instances. The static data item is a collection of distinct dynamic
data item instances. These instances will be placed across the target platform
and scheduled in time. We distinguish among the instances by a tag. A tag is
a tuple, for example < row, col > or < social Security num, date >. A control
tag has the same status in a domain spec as a data item.

A control tag collection specifies which step instances are to execute. Each
tag in a control tag collection is a tuple which controls the execution of a corre-
sponding instance of the controlled computation step. A tag function indicates
which step instance corresponds to a control tag instance. Tag functions also in-
dicate the relationships between step instances and input and output data item
instances, as well as step instances and output control tags. In this paper, we
assume that all tag functions are the identity function.
Each computation step collection is controlled by exactly one control tag col-
lection. A given control tag collection may control more than one computation
step collection. A producer produces the control tags and data items. In either



5

Fig. 2. Cholesky factorization

case, the producer might be a computation step or the environment, as shown
in Figure 1. For more detail, see [1, 3].

In the remainder of the paper we use our textual notation instead of the
graph notation described above. We represent step, items and tag collections
using syntax (stepName), [itemName] and < tagName >. Arrows are used for
producer and consumer relations. The control relation represented as a dotted
line in the graph becomes :: in the text.

Cholesky factorization takes a symmetric positive definite matrix as an input,
and factors it into a lower triangular matrix and its transpose. The computation
can be broken down into three CnC step collections. The step (cholesky) per-
forms unblocked Cholesky factorization of the input symmetric positive definite
tile producing a lower triangular matrix tile. Step (trisolve) applies a triangular
system solve on the result of the step (cholesky). Finally the step (update) is used
to update the underlying matrix via a matrix-matrix multiplication. Figure 2
shows the dependences between tiles of (cholesky), (trisolve), and (update). For
more detail, see [2].
The simplified CnC domain spec for Cholesky:

Env -> [X];

[X] -> env;

<tagIter: k> :: (cholesky: Iter);

<tagRowIter: Iter, Row, > :: (triSolve: Iter, Row);

<tagColRowIter: Col, Row, Iter> :: (update: Col, Row, Iter);

X: iter, iter, iter] ->

(cholesky: Iter) ->

[X: iter, iter, iter +1];

[X: iter, iter, iter+1], [X: iter, row, iter] ->

(triSolve: Row, Iter) ->

[X: iter, row, iter +1];

[X: col, row, iter], [X: row, col, iter] ->

(update: col, row, iter) ->



6

Fig. 3. CnC semantics are defined by flow of attributes among instances

[X:col, row, iter +1];

2.1 Semantics

The semantics of a CnC application are defined in terms of semantic attributes.
For example, a data instance might be available. A step instance might be en-
abled. Expressions over these attributes can be used to indicate a time in the
partial order. For example, the semantics dictate that a step cant execute until
its inputs are available. In a programming model with a basically serial flow,
points in that flow are used to refer to time. This indirectly ensures that the
dependences are met but imposes unnecessary ordering constraints on the exe-
cution. In CnC, an attribute/instance pair denotes a time in the partial order.
This can be used to directly indicate when dependences are met, avoiding un-
necessary constraints.

3 CnC Tuning Language

The separation of concerns isolates the domain expert from the tuning facil-
ity. This isolation allows the tuning language to provide strong capabilities for
control and flexibility without complicating the work of the domain expert.

The domain spec exposes the parallelism in the application. Because the
domain spec only indicates the constraints, there is often more than enough
potential parallelism. The job of tuning is to limit the parallelism to improve
performance for a specific target architecture. Tuning accomplishes this by elim-
inating some semantically legal executions that result in poor performance. The
tuner stages the work, determining when and where to release it to the normal
CnC scheduler.



7

Fig. 4. Sample CnC graph

The tuning specification is written by a tuning expert. The tuning expert
might be the domain expert at a later time, different programmer with expertise
in tuning, a static analysis such as a polyhedral tiling facility, or even an auto-
tuning facility. The language and facilities described below would be the result
of the work of any of these tuning experts.

Locality is typically a major consideration in this process. The basic concept
in the tuning language is the affinity group, a set of computations that the tuner
suggests should be executed close in time and space. Two computations that
touch the same data will not benefit from locality if they are too far apart in the
platform (space) or if they are too far apart in time. The basic tuning actions map
affinity groups to nodes in a hierarchical representation of the architecture. The
actions are controlled by an attribute-based time at which the actions should
be performed (e.g., when step instance bar has executed and data item x is
available, map affinity group instance G to node N).

3.1 Hierarchical Affinity Groups

Fig. 5. Affinity graph

Hierarchical affinity groups are the tuning mechanism for indicating com-
putations that must be proximate in both time and space. This is the highest
concern. The tuning language provides additional separate mechanisms for each



8

of space and time. Computations that are in the same group have an affinity
with each other. Hierarchical affinity groups allow the specification of relative
levels of affinity, with tighter affinity at lower levels. The hierarchical affinity
group mechanism is intended to be useful by itself. It is also the foundation that
supports space-specific and time-specific tunings (see Section 3.1).

Consider the CnC graph in Figure 4. An option for hierarchical affinity group-
ing for this graph is shown in Figure 5. Assume for our examples that all step
collections in Figure 5 form an outer affinity group. A second grouping option
would to be have a single inner affinity group made up of the step collections
(sonia), (sanjay), and (simon). A third option would be to have step collections
(sonia), (sanjay), and (simon) form an affinity group within the outer group
and step collections (sonia) and (sanjay) form an affinity group within that
one. The domain spec does not imply a particular affinity grouping. This deci-
sion is the work of the tuning expert and may depend on the target architecture,
configuration, characteristics of the data set, goal (e.g., power vs speed) etc.

We will show the tuning language textual representation for the hierarchical
affinity grouping for Figure 5. We use curly brackets to show the hierarchical
nesting of affinity groups:

{(sally)

(sam)

{(sonia)

{(sanjay)

(simon)

}

}

}

Affinity groups have names:

{george:

(sally)

(sam)

{greg:

(sonia)

{gail:

(sanjay)

(simon)

}

}

}

We need a mechanism to indicate the dynamic instances of these groups. In
the domain language, steps are prescribed to control which specific instances of
the step will execute. In the tuning language, groups are prescribed to control
which specific instances of the group will exist.



9

<tony: i> ::

{george: (sally: i)

(sam: i)

<tom: i, j> ::

{greg: (sonia: i, j)

{gail: (sanjay: i, j)

(simon: i, j)

}

}

}

The above example illustrates the prescription of groups. Recall that step
collections are a static construct and we indicate the instances of a step by
a prescribing tag collection. A tag instance in the prescribing tag collection
corresponds to a step instance that will be executed. Here an affinity group is a
static construct, and a tag instance in the prescribing tag collection corresponds
to a group instance that will be created. So this specific statement means that
for each instance of a tag < tony : i > there will be a corresponding instance of
the group {George : i}.

We will also use prescription to indicate when the tuning actions associated
with a group will take place. The group action is controlled by a control expres-
sion. A prescribing tag collection is the simplest control expression.

We will use the Cholesky example to show how hierarchical affinity groups
work.

// iters have no affinity with each other

<CholeskyTag: iter> :: {Cho-Tri-Up
// all the work for a given iteration has a weak affinity

(Cholesky: iter)

<TrisolveTag: row, iter> :: {Tri-Up
// the work for a given iter and row has a strong affinity

(Trisolve: row, iter)

(Update: col = (iter+1 .. N), row, iter)}}

There can be a variety of tuning specs for Cholesky. Let us examine the tuning
spec above. At the outermost level, there is an affinity group {cho− tri−up} for
each value of iter. The distinct instances of {cho− tri−up} are not components
of any group so there is no affinity among them. But inside a single instance of
{Cho − tri − up : iter}, the group’s multiple components have an affinity with
each other. One is the instance of (cholesky) for this value of iter. The others
are instances of the {tri − up} group for this value of iter and for multiple
values of row. The set of < row, iter > instances is determined by tags in the
tag collection < TrisolveTag > from the domain spec. Within an instance
of the {tri − up : iter} group there are multiple components: (trisolve : iter)
and (update : col = (iter + 1N, row, iter). The value of iter referenced by these
components is that of their parent group instance {Cho− Tri−Up : iter}. One
component is (Trisolve). There are multiple (Update) components. The exact



10

number is a function of the values of iter and N . There is reuse here in that this
instance of (Trisolve) produces a result that is used by each (Update) instance
in the same row. Note the scoping of the tag components. Since (cholesky :
iter) is within {cho − tri − up : iter}, the values of iter are the same. Since
{Tri − Up : iter} is within {Cho − tri − up : iter}, the values of iter are the
same.

The tuning spec above for Cholesky is an example of an iterative style spec
based on tag collections. We anticipate that this will be a commonly used style.
Another option is a recursive style. The following tuning code for Cholesky uses
a recursively defined affinity group.

<iter= 1> :: {OneIter: iter

{tri-first: iter

(cholesky: iter)

(trisolve: iter+1, iter)

(update: iter+1, iter+1, iter)

// recursive definition of {OneIter}

{OneIter: iter+1}}

<trisolveTag: row, iter> and row > iter+1 ::

{tri-up-rest: iter

(trisolve: row, iter)

(update: col = (iter+1 .. N), row, iter)}}

The {tri − first} group processes the three top tiles: (cholesky), the top
(trisolve), and the one (update) to the right of that (trisolve). Then it recurses
to the next iter. The rest of the (trisolves) and (updates) are a second compo-
nent. The first component corresponds to the critical path, along the main diag-
onal of the matrix. The first component cannot complete its recursions without
some of the results from instances of the second components. These constraints
are part of the domain spec and do not need to be repeated here. The control
tags for {oneIter} are not from the domain spec. They are defined explicitly
in the tuning spec. They begin at < iter = 1 > and recurse via the statement
{OneIter : iter + 1}.

One more possible tuning for Cholesky would be a tiling. Most tiles would
be two dimensional rectangles, a set of instances for the same iteration and for a
neighborhood of rows and columns. Tiles along the diagonal would be triangular.
For this tuning spec, prescriptions identify tiles. There is no concept of a tile
in the domain spec. The tuning spec has to create a new tag collection that
identifies tile instances. This will involve new step collections that compute the
tile tags. These tags, steps and items are in the language of the domain spec
but are not part of the domain spec. They belong to the tuning spec, and will
differ among tuning specs. For instance they were not used in our initial version
of Cholesky, nor in the recursive version. We have shown three distinct tunings
for Cholesky. The first followed the loop structure of the nave code and focused
on reuse of the result of the (trisolve) computation. The second was recursive.
The third was tiled. The domain spec remained untouched for all three.



11

Fig. 6. Tuning tree

Execution model The foundation of the execution model is a representation
of the target platform. We assume only that the platform is hierarchical. A
description of this hierarchy is used as the foundation of the tuning commands.
The platform description names each level, for example, Level1, Level2, etc. or
it might be address space, socket, core, etc..

The execution model for hierarchical affinity groups is as follows. We distin-
guish between two components of the CnC runtime: the tuning component and
the domain component. The tuning component serves as a staging area for the
execution of step instances in the domain component. All tuning actions belong
to the tuning component.

The tuning component consists of four parts.

– Tuning actions: one for each group. These specify the low-level processing
for that group in the tuning tree. The tuning actions control the flow of work
to the domain runtime.

– Event handlers: one for each tag collection in the tuning spec. These control
which instances of the tuning actions take place. When a tag in the normal
domain execution becomes available, the handler for that event will cause
some dynamic action instances to be instantiated.

– Queue manager: one for each queue. These control when to remove items
from the queue and execute them.

– The tuning tree (see Figure 6): same shape as the platform tree. There is a
work queue associated with each node in the tuning tree. The items in the
queue are either static groups/steps or dynamic instances of groups/steps.
Each queue contains work that is ready for an action to be performed (such
as moving down the tree) and work that is not ready. An instance is ready
when its associated tag is available. In Section 3.1 below we generalize the
property of readiness with ”control expressions.” The tuning runtime system
selects from a queue the ready work item(s) that are nearest the head of the
queue.



12

Fig. 7. Tuning action example

Large static outer groups start at the top of the tuning tree. As a group is
moved down a level in the tree, it will be decomposed into its components. Since
components of a group at some node only move to children of that node (there is
no work stealing), they have a tendency to remain close in the platform, in that
nodes in the tuning tree correspond to nodes in the platform tree. To the extent
possible, groups are moved down from a node in order of their arrival, so the
components of a group have a tendency to remain close in time. Of course there
is a significant opportunity here for interesting policies (not addressed here) and
for the tuning expert to be more specific about when groups are moved and to
where.

For example, the static outer level group Cholesky can have an action defined
where an instance of Cholesky is moved down to a child node and the static
group groupTU is unpacked and moved down to a child node. See Figure 7,
which shows pseduo-API code for an action on the Cholesky static group. An
action defined on a leaf node can move instances of a static group or dynamic
group instances into the domain runtime for execution.

Control expressions When using prescription for steps, the prescription not
only determines which instances will execute but also has some influence on
when (some time after the prescribing tag is produced). For prescribing steps,
the question of ”when” is secondary. In the case of prescribing groups, the control
of ”when” is a major goal of tuning. For the most part in previous examples, we
have used tag collections from the domain spec to prescribe groups. But we use
tags in the execution model to determine when the actions on those instances
are to be performed. We provide the tuning expert with more control over when
these actions occur so that the tuning process can be effective in controlling
when computations are fed to the domain runtime. Recall that instances of
steps, items and tags from the domain spec acquire attributes as the program
executes. The state of instances can be used to refer to points in the partial
order of execution, e.g., (foo : i).executed, and also to identify new points in
the partial order, e.g., (foo : i).executed and [x : i + 1].available. That is, the
partial ordering on instance/attribute pairs is used to indicate a ”time” within



13

Fig. 8. Space-specific mapping options

the execution of a domain specification. We also allow the tuning spec to refer to
these attributes for better control of when tuning actions should be performed.
The action associated with a group can take place when the attribute expression
associated with the group evaluates to true. With this mechanism, for a group
instance to be ready, its attribute expression must be true. Control expressions
and groups both have instances. Group instances also go through state changes.
We associate attributes with these as well. Consider the attributes for groups
and control expressions. Groups are similar to steps. Instances of groups can be
prescribed (their control expression is true). They can also be executed in the
domain runtime. Although steps have an attribute inputsavailable, groups do
not. Control expressions are similar to tags. Instances of control expressions can
be available. We allow reference to these tuning attributes in controlling attribute
expressions, e.g., (foo : i).executed and (george : i− 1).executed :: garcia : i.

Time- and space-specific mappings The hierarchical affinity groups enable
the tuning expert to express affinity within space-time. It is important to provide
this general way of expressing locality without requiring a distinction between
space and time. But, of course, eventually a tuning expert may want to distin-
guish. These specific controls are presented here.

Space The tuning expert has access to the facilities in Figure 8 to express specific
distributions in space.

For example:

<groupTag: j> :: {groupOuter: j replicate across address spaces}

Here for each tag the in tag collection < groupTag >, the correspond-
ing instance of groupOuter will eventually be executed on all address spaces.
replicate across is a keyword. address spaces derives from the description of
the platform tree.

<groupTag> :: {groupOuter distribute across sockets

{groupInnerA }
{groupInnerB }
{groupInnerC }
{groupInnerD }

}



14

Fig. 9. Time-specific mapping options

Here the four inner groups are distributed among the nodes in the tuning
tree holding sockets. distribute across is a keyword. sockets derives from the
description of the platform tree. In the previous example the components to be
placed in space were dynamic instances of the same static group. In this exam-
ple the components are statically distinct groups. The distribution annotation
applies the (static or dynamic) components of the annotated group.

<groupTag: j> :: {groupOuter: j distribute across address spaces via f(j)}

Here when a tag j arrives in < groupTag >, the corresponding group instance
is place on the queue associated with address space f(j).

Time With respect to time, CnC provides a domain mechanism for cases where
a data or control dependence requires an ordering. It already allow attribute
expressions that add ordering constraints. Groupings allow us to group a set of
computations as being close together in space-time. There are two other kinds
of tuning commands that we want to include. The tuner may indicate that the
set of components in a group should execute in an order specified by a priority
or maybe they are unordered. The set of components of a group may be required
to run one at a time (or at most N at a time). These two possibilities for each
of two traits result in four possible situations as seen in Figure 9.

If the set of components are to be executed in an arbitrary order and they may
overlap, they are not additionally constrained with respect to time. If they are
to start according to a priority and they are not to overlap then they execute
serially with a barrier between them. (Notice that the component may itself
be a group that executes in parallel.) The other two are the interesting cases.
Consider image processing where frames are entering the system. We want the
processed frames to exit in order. Here we will have a priority order for starting
the work on a frame but we dont want to require that there is a time consuming
barrier between them. This is the ordered/overlapping case. The other interesting
case, unordered but non-overlapping might be used for components with a large
memory footprint. In this case we want to run one at a time but we may not
care about the specific order. This case can be generalized from one at a time
to N at a time.

Tuning Actions The focus of this paper has been on tuning actions that stage
computations for the domain runtime by using the hierarchical affinity groups
to enhance locality. Below is a list of some of the actions we are considering. The
first four are described above. The others are beyond the scope of this paper.



15

– Define a group
– Map group with space-specific mappings
– Map group with time-specific mappings
– Add steps, items and tags used only for tuning
– Include data items in affinity groups
– Set/ref tuner-defined attributes (e.g., demanded, dead)
– Set/ref tuner-defined values (e.g., optimize for power/time)
– Explicitly move data items

4 Status and Conclusions

Concurrent Collections (CnC) is programming model for parallel systems. In-
stead of providing facilities for the domain expert to describe the parallelism
explicitly, it provides facilities for describing execution order constraints. Sub-
ject to these constraints, computations can potentially execute in parallel. This
depends only on the application. This approach creates a partial ordering of
computations and typically supplies more than ample parallelism. Implementa-
tions of the domain spec are available at http://habanero.rice.edu/cnc and at
http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc. We are
now developing a separate language for writing tuning specs. The central com-
ponent of the tuning language is hierarchical affinity groups. These provide a
mechanism that allows the programmer to specify locality, while allowing but
not requiring him to distinguish between spatial and temporal locality. This
is a novel contribution. The programmer can optimize the space-time locality,
at times trading off temporal and spatial locality. The tuning facility enables
the tuning expert to remove some of the less efficient possible mappings of the
parallelism provided by the domain spec.

We have designed the tuning runtime component at a high level. The im-
plementation is under development at Rice University as part of the Ubiquitous
High Performance Computing project.

References

1. Budimlic, Z., Burke,M., Cav, V., Knobe, K., Lowney,G., Newton, R., Palsberg,
J., Peixotto, D., Sarkar, V., Schlimbach, F., Tasirlar, S.: Concurrent Collections.
Scientific Programming 18(3-4): 203-217 (2010)

2. Budimlic, Z., Chandramowlishwaran, A., Knobe, K., Lowney, G., Sarkar, V., Treg-
giari, L.: Declarative Aspects of Memory Management in the Concurrent Collections
Parallel Programming Model. Proceedings of DAMP 2009 Workshop (Declarative
Aspects of Multicore Programming) (2009)

3. Burke,M., Knobe,K., Newton,R., Sarkar, V.: The Concurrent Collections Program-
ming Model. David Padua (Ed.), Encyclopedia of Parallel Computing, Springer New
York (2011)

4. Yan, Y., Zhao, J., Guo, Y., Sarkar, V.: Hierarchical Place Trees: A Portable Abstrac-
tion for Task Parallelism and Date Movement. Proceedings of the 22nd Workshop
on Languages and Compilers for Parallel Computing (LCPC) (2009)


