
ADHA: Automatic Data layout framework for
Heterogeneous Architectures

Deepak Majeti,
Kuldeep S. Meel

Rice University
{deepak, kuldeep}@rice.edu

Rajkishore Barik
Intel Labs

rajkishore.barik@intel.com

Vivek Sarkar
Rice University

vsarkar@rice.edu

ABSTRACT
Data layouts play a crucial role in determining the perfor-
mance of a given application running on a given architec-
ture. Existing parallel programming frameworks for both
multicore and heterogeneous systems leave the onus of se-
lecting a data layout to the programmer. Therefore, shifting
the burden of data layout selection to optimizing compil-
ers can greatly enhance programmer productivity and ap-
plication performance. In this work, we introduce ADHA: a
two-level hierarchal formulation of the data layout problem
for modern heterogeneous architectures. We have created
a reference implementation of ADHA in the Heterogeneous
Habanero-C (H2C) parallel programming system. ADHA
shows significant performance benefits of up to 6.92× com-
pared to manually specified layouts for two benchmark pro-
grams running on a CPU+GPU heterogeneous platform.

Categories and Subject Descriptors
D.3.4 [Software]: PROGRAMMING LANGUAGES—Pro-
cessors, Compilers

Keywords
Compilers, Data Layout, Heterogeneous Architectures

1. INTRODUCTION
In recent years, the end of Dennard scaling has brought

about significant changes in the fundamental processor de-
sign. We are now entering an era of heterogeneous and spe-
cialized processors, and this trend is expected to continue in
the future. One dominant heterogeneous architecture found
in many systems today is a CPU+GPU system. The pro-
cessor architecture, the memory hierarchy and cache struc-
tures are significantly different on the CPU and GPU sides.
With such diverse characteristics, it not only hard to pro-
gram these systems in a portable manner, but also quite
challenging to optimize them.

One major factor which impacts performance is the data
layout [4, 5]. The choice of a good data layout depends on

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
PACT’14, August 24–27, 2014, Edmonton, AB, Canada.
ACM 978-1-4503-2809-8/14/08.
http://dx.doi.org/10.1145/2628071.2628122.

several factors including target machine parallelism, memory
hierarchy, data access patterns, and input size. An applica-
tion program with multiple data-parallel kernels can map
each kernel onto any of the heterogeneous processors. It is
hard for the programmer to determine if a single layout is
best for all the kernels or if a better choice is to select differ-
ent data layouts for different kernels with data remapping
operations performed in between kernels. Also, the pro-
grammer has to manually re-write the code for each data
layout combination even to just evaluate the best data lay-
out. The number of combinations increase exponentially
with the number of kernels and the number of fields accessed
by each kernel increase.

To overcome this limitation, we design ADHA: a two-
level compiler based automatic data layout framework and a
reference implementation of the same in the Heterogeneous
Habanero-C [2] (H2C) programming system. The lower level
formulation deals with the data layout problem for a parallel
code region, and provides a greedy algorithm that uses an
affinity graph to obtain approximate solutions. The higher
level formulation targets data layouts for the entire program,
for which we provide a graph-based shortest path algorithm
that uses the data layouts for the code regions computed in
the lower level. In this work, we consider only AoS (Array
of structure) and SoA (Structure of Array) layouts.

2. OVERALL FRAMEWORK
We denote a data/task-parallel operation that is executed

either on the CPU or on the GPU as a section. A H2C pro-
gram may consist of several forasync parallel loop constructs,
each of which constitutes a section of it’s own.

Our automatic data layout framework, ADHA, consists of
two steps. The first step consists of a greedy strategy with
the goal of determining the ”optimal data-layout of a section”
or simply ODS. The key idea is to construct an affinity
graph for a H2C program where the ”nodes” of the affinity
graph represent the fields (and arrays) being accessed in the
section and the ”edges” represent the affinity between two
fields. The affinity weight of an edge is computed based on
the number of common occurrences between the two nodes
involving the edge. Once the affinity graph is constructed,
we employ a greedy clustering algorithm to cluster the fields.
The cluster size is determined based on the underlying archi-
tecture (e.g., cache size and memory hierarchy). The result
of the clustering algorithm is used to combine the fields in
structures.

The next step involves finding the best data-layout for
the entire H2C program (denoted as ”program data-layout”



Figure 1: Speedup of the Medical sections

or simply PDL) from the computed best data layouts for
each section. First, we construct a control flow graph for
each section (denoted as SCFG). We then construct a rooted
directed acyclic graph with the first section as the root.
Each pair of sections either share two edges, namely the
combine edge and the remap edge, or none. The edge weight
of the combine edge represents the loss in performance due
to combining the two sections involving the edge and assign-
ing an intermediate data layout. The data layout of the
combined sections is obtained running the ODS pass on the
merged section.

The remap edge weight is the cost of remapping from the
parent section to the child section , which is computed based
on the number of common fields in the two sections. We
then employ the shortest path algorithm to determine the
best data layout for the entire program. For the PDL pass,
we provide a tuning profile of the execution times of both
the CPU and GPU (since we do not perform the mapping
automatically). The output of the PDL pass gives us the
best data layout along with the mapping to the CPU or the
GPU.

Our implementation of ADHA automatically compiles forasync
loops down to OpenCL with the corresponding data layout
output by the ODS + PDL pass. ADHA can be employed
to efficiently run a H2C program on modern CPU+GPU
platforms that support OpenCL.

3. EXPERIMENTAL EVALUATION
We evaluated our implementation of ADHA with two bench-

marks arising from different domains as summarized in Ta-
ble 1. #S denotes the number of sections and #F denotes
the number of fields in the entire program. Medical is from
the CDSC benchmark suite [1] and K-Means is from the
Rodinia suite [3].

Description #S #F Input
Medical Image Registration 7 6 256×256×256
K-Means Clustering Algorithm 2 32 8388608

Table 1: Benchmarks Description

The experiments were conducted on a Intel-X5660 CPU
with 6 cores running at 2.8GHz and a NVIDIA Tesla-M2050
GPU with 8 SMs running at 575 MHz. We use gcc version
4.4.6 with O2 optimization level. For each of the bench-
marks, we executed the OpenCL code with the original data
layout and with the automatically generated layout from
ADHA on both the CPU and GPU.

Medical image registration consists of 7 sections. Sections(1-
3) have heavy control flow and do not vectorize while sections(4-
7) are vectorizable. Table 2 shows the fields accessed by all

the sections and the different data layouts generated by the
ODS pass for each of the sections. For instance, AoSU lays
out fields V 1,V 2,V 3,S,T and interpT as individual arrays
using SoA layout and interleaves the fields U1,U2,U3 using
an AoS layout. Figure 1 shows the speedup from the data

Data Layout Description
SoA V1,V2,V3,U1,U2,U3,S,T,interpT

AoSU V1,V2,V3,{U1,U2,U3},S,T,interpT
AoSV {V1,V2,V3},U1,U2,U3,S,T,interpT

Table 2: Medical Imaging ODS Data Layouts

layout generated by the ODS pass compared to the origi-
nal SoA layout by executing the seven sections on CPU and
GPU. ODS pass performs better for most of the sections on
the CPU. On the GPU, the SoA layout performs the best for
sections-(4-7) due to memory coalescing. The GPU benefits
from cache locality for sections-(1-3).

Platform Layout Description Speedup
CPU-ODS 32 Fields belong to SoA 5.5
GPU-ODS 4 AoS of size 8 each 1

Table 3: KMeans Section-1 ODS and Speedup

The benchmark K-Means consists of two sections: the first
section is a data parallel loop while the second section per-
forms reduction on all the features. The second section is
executed sequentially in the original implementation, ow-
ing to the difficulty of implementing reduction over varying
number of variables using OpenCL. The original data layout
for both these sections is SoA. The first section CPU-ODS
is an AoS layout and the GPU-ODS is SoA layout and are
shown along with their speedups in Table 3. The AoS lay-
out which is the output from the ODS pass for the second
section improves its performance by a factor of 8×. This is
because the second section suffers a lot of cache misses due
to the SoA layout.

Table 4 provides the speedup obtained by the overall data-
layout from the PDL pass. As stated before, the PDL pass
gives the mapping onto CPU or GPU along with the data-
layout. For the Medical benchmark, sections-(1-3) are mapped
onto the CPU with AOSV layout and then a remap opera-
tion is performed to SOA layout with sections-(4-7) mapped
to the GPU. K-Means sections-(1-2) are both mapped onto
the CPU with a combined AoS layout.

Benchmark section Mapping SCFG Speedup
Medical CPU-ODS(1-3) remap GPU-ODS(4-7) 1.34
K-Means CPU-ODS combine CPU-ODS 6.92

Table 4: PDL Speedup for Medical and K-Means

4. REFERENCES
[1] “CDSC Research Applications.” [Online]. Available:

http://www.cdsc.ucla.edu/research/

[2] “Heterogeneous Habanero-C.” [Online]. Available:
http://habanero.rice.edu/Heterogeneous+Habanero-C

[3] Che et al., “Rodinia: A benchmark suite for
heterogeneous computing,” ser. ISWC’09, Oct 2009.

[4] D. Majeti et al., “Compiler Driven Data Layout
Transformation for Heterogeneous Platforms,” in Proc.
HeteroPar, 2013.

[5] I.-J. Sung et al., “Data layout transformation exploiting
memory-level parallelism in structured grid many-core
applications,” in Proc. of PACT, 2010.


