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Abstract. Type systems that prevent data races are a powerful tool for
parallel programming, eliminating whole classes of bugs that are both
hard to find and hard to fix. Unfortunately, it is difficult to apply previ-
ous such type systems to “real” programs, as each of them are designed
around a specific synchronization primitive or parallel pattern, such as
locks or disjoint heaps; real programs often have to combine multiple syn-
chronization primitives and parallel patterns. In this work, we present
a new permissions-based type system, which we demonstrate is practi-
cal by showing that it supports multiple patterns (e.g., task parallelism,
object isolation, array-based parallelism), and by applying it to a suite
of non-trivial parallel programs. Our system also has a number of theo-
retical advances over previous work on permissions-based type systems,
including aliased write permissions and a simpler way to store permis-
sions in objects than previous approaches.

1 Introduction

As computer vendors turn towards multi-core processors for continued perfor-
mance increases, more and more programmers in the computer industry are
faced with the prospect of writing, modifying, testing, and debugging parallel
programs. However, working with parallel programs can be challenging due to
potential data races. Data races can cause programs to run in unexpected and
counter-intuitive ways, making parallel programs hard to write, debug, and rea-
son about. While the possible effects of data races have been formalized using
complex memory models [23, 8], just determining whether a race could occur, let
alone what the effects of that race could be, is a significant effort. This is true
even for parallelism experts working with very small programs.

There has been much research into programming languages and type systems
that completely avoid data races [7,33,6,25,1,32,12,11,19, 2]. The assumption
is that a data race is a bug, which is, in practice, true for most application
software. Unfortunately, it is difficult to apply these past approaches to real
programs, because past approaches are generally designed around specific syn-
chronization primitives or parallel patterns, such as locks or disjoint heaps. Real
programs often have to combine multiple synchronization primitives and parallel
patterns, both to get good performance and to match specific algorithms. Even
when previous approaches can be used, they often require a high degree of pro-
grammer effort, in terms of annotating the code and re-factoring existing parallel



algorithms to fit specific parallel patterns. Further, many programmers are not
trained to use the sophisticated type systems required by these approaches.

In this paper, we present a practical race-free type system that supports mul-
tiple patterns (e.g., task parallelism, object isolation, array-based parallelism),
and has been applied to a suite of non-trivial parallel programs. Our system is
called Habanero Java with permissions (HJp) and is an extension of the Ha-
banero Java (HJ) language [14], which itself is a task-parallel extension of Java.
The core idea in HJp is that each object, at each point in time, is in one of two
modes: shared read, where any task! is permitted to read from it but none is per-
mitted to write to it; or private read-write, where only one task can read from or
write to the object. We enforce this property by extending permission types [21,
35,13,4,5,12], which capture knowledge about the mode of an object at differ-
ent points in the program. We introduce two technical advances to permission
types. First, our system allows aliased write permissions, while prior work allows
write permissions only to non-aliased pointers, which is restrictive in practice.?
Second, our system introduces a novel approach called storable permissions for
expressing transitive permissions, e.g., permissions to all elements of a linked
list, that requires less technical machinery than previous approaches [13].

To demonstrate the practicality of our approach, we have ported 15 bench-
marks from HJ to HJp, totaling almost 14,000 lines of code and covering a range
of parallel patterns. This only required modifications to 5% of the lines of code on
average. We compared HJp to Deterministic Parallel Java (DPJ) [7, 6], another
race-free type system: for the same 5 benchmarks, HJp required modifications
to 7.3% of the lines of code on average, as opposed to the 10.5% of the code that
required annotations in DPJ. Further, HJp is a gradual [28] extension of HJ,
meaning that some or all of these annotations can be omitted, and the compiler
will insert dynamic type-casts where necessary to ensure race-freedom at run
time. A simple and effective algorithm for inserting these type-casts was covered
in prior work [34], which introduced a runtime approach for checking permis-
sions on entry to regions of code identified by the programmer. The HJp type
system presented here expands on that work by introducing programmer anno-
tations that can reduce the number of type-casts inserted, eventually leading to
a statically-verified program with no type-casts.

The remainder of this paper is organized as follows. In Sections 2, 3 and 4
we introduce and discuss the main features of the HJp type system: fractional
read/write permissions, storable permissions and gradual typing, using a core
calculus, called Core HJp, which is then formalized and proved to be race-free
in Section 5. Extensions to Core HJp to support array-based parallelism and
objects guarded by critical sections are given in Section 6. Practical experience
using HJp is then discussed in Section 7, before discussing related work and
concluding in the last two sections.

1 We use “task” instead of “thread” to distinguish potential parallelism in a program
from OS threads that may be used to implement this parallelism.

2 Bierhoff and Aldrich [5] allow aliased writes for protocol enforcement, but it is unclear
if their approach applies to race-free parallel programming.



2 Fractional Read/Write Permissions

Fractional permissions, first introduced by Boyland [12], are a powerful idea
for fork/join parallel programming. The basic idea is that a task can start out
with some permission p, and can temporarily split p in half, yielding two %p
permissions, both of which can be used in parallel. When parallel use of these
permissions are finished, the two %p permissions can be re-combined into p again.
The exact fractional % is not important, just that the two pieces sum to 1. For
example, the following code uses permission p to read field f from x:

finish (async (... =z.f); ...=u=z.f)

This code uses HJ’s async to fork a child task, which is intuitively passed a %p
permission from the parent to allow it to read x.f. The parent continues to run
in parallel, using the remaining %p permission to allow it to read z.f as well.
The finish construct then indicates a join on all child tasks spawned inside the
lexical block. After this join completes, the parent has p again.

The same pattern, however, cannot be allowed if p is a read /write permission
to x.f, since this could potentially allow data races. Specifically, it should not
be possible for a task to pass a fractional read/write permission to another task
while still retaining any read and/or write permissions to the same object. To
address this issue, previous permissions-based type systems only allow writes
when a task has an ezclusive (or “unique”) permission, i.e., all of the permis-
sions to an object. Exclusivity is indicated by the fraction “1”. This guarantees
that no other task can read while a task is writing. Unfortunately, it effectively
means that writes are only allowed through unique references, which can be very
restrictive to the programmer, especially in an OO setting. For example, with
standard fractional permissions, calling even the simple function

fle,y) =zf:=y.f;

requires that either z and y are statically known to be distinct, or that they are
statically known to be aliased so that the permission for z can be re-used for
y. Such proofs require complex machinery in the type system and, further, the
number of cases grows exponentially with the number of variables.

HJp, in contrast, does allow fractional write permissions. The key idea is this:
it is perfectly fine to form fractional write permissions, as long as they cannot be
passed to other tasks. Thus, HJp has two sorts of fractional permissions: shared
read permissions that can be passed to other tasks; and private write permissions
that cannot be passed to other tasks. In this way, a program can write to an
object without having to show that the pointer is unique. This is especially
useful for gradual typing (see Section 4), as it allows code to be instrumented
with dynamic acquires and releases of permissions, without having to worry
about potential aliases.

In more detail, HJp defines permissions syntactically as follows:

wa=0w | lw | e ¢ w=wR | wW | wS
7 u=x:¢ | F(n) II =17 |-



The permission words w define the “fractionality” of a permission. Intuitively,
any fractional permission ¢ can be split into two pieces, Ow¢ and lwe¢, which
can be thought of as the left half and the right half of ¢, respectively. Again, the
actual permission word w is not important except to track the splitting and re-
combining of permissions. The object permissions ¢ include read permissions wR,
write permissions wW, and sharing permissions wS. We often write 1" to stand
for R, W, or S below. Read and write permissions are straightforward, while
the sharing permission wS allows any permissions w1 with the same permission
word w, including the sharing permission itself, to be passed to another task.
Note that passing is linear, i.e., permissions cannot be duplicated.

The permissions w include: permissions x : ¢, that represent permission ¢
to the object pointed to by z; and future permissions of the form F(r), which
state that the current task will have permission 7 after the next enclosing finish
completes. The latter form captures the fact that some child task will hold
permission m when it completes. Finally, the permission sets II include zero or
more permissions 7. We write IT]; to denote the set of all permissions [ : ¢ in IT.

Permissions are defined this way for theoretical succinctness, but can only
occur in practice in permission sets built from one of the following four “build-
ing blocks” that represent the programmer view of permissions (see Section 7).
Private read permissions x : wR allow reads z.f of fields of z. Private read-
/write permissions x : wR,z : wW also allow writes to x. Neither of these can
be shared with other tasks. Shared read permissions = : wR, x : wS allow reads
of x and can be shared with other tasks, but do not allow writes. Finally, ex-
clusive permissions x : eR,z : eW (W and S are interchangeable here, by our
permission equality rules) allow reads from and writes to z.f, and can further be
shared with other tasks. Splitting an exclusive permission, though, will disallow
either writes or sharing, depending on how it is split. We sometimes abbreviate
exclusive permissions as [ : X.

Note that, in HJp, there are no shared mutable variables. Local variables
are passed by value to child tasks, and global variables are fields in static class
objects, as in Java. Thus we do not include permissions for accessing the variable
x itself, and instead all permissions z : ¢ refer to the object pointed to by x. This
also implies an object granularity of permissions, instead of a field granularity.
There is no inherent problem in extending HJp to include field permissions, but
we have found in practice that this is not needed. Note that HJp does support
array-based parallelism, though; see Section 6.

Permission sets are considered equal up to permutations and the rules

I, (z : 0wY), (z : lw?Y) = I,z : wT IH,x:eW=1II,z:eS

The first rule allows the left half 0w? and the right half 1w?" of a permission w1
to be combined. Looking at it the other way, the rule allows w? to be split into
O0wY and 1w?Y'. The second rule allows a write permission to be exchanged for a
sharing permission, or vice-versa, but only when the permission is not fractional,
i.e., when exclusive permissions are held. This means that exclusive permissions
can either be split into private write or shared read permissions, but not both.
Permission set I1; is said to subsume, or be more permissive than, Il5, written



I, > II,, iff adding more permissions to Ils can yield IIy; i.e., this holds iff
there is some I3 such that I, I[I3 = I1;.

3 Storable Permissions

Storable permissions allow permissions to refer to a whole tree of objects instead
of just a single object. The idea is that both an object oy and exclusive permis-
sions to oy can be stored in an object field o1.f. A task with permission ¢ to oy
can then read o5 along with ¢ permissions to oy out of 0;.f, then read ¢ permis-
sions to an object o3 that is stored in o9, etc., transitively yielding permission ¢
to a whole group of objects reachable through o;.

To use storable permissions, some of the fields of class C' are designated as
exclusive fields. (See the exclusive keyword in Surface HJp in Section 7.) We
write fX for exclusive fields, and write f* for normal, non-exclusive fields. An
exclusive field assignment z.f* := y implicitly stores an exclusive permission to
y in x, meaning that the current task must hold y : eR,y : €W permissions to
execute this assignment and these permissions are not held after the assignment.?
For exclusive field reads y = z.fX, if the current task holds permission ¢ to z
before the read, it then “borrows” this permission from z, yielding a ¢ permission
to y after the field read. To specify which object permissions are being borrowed,
exclusive field reads are annotated, as z.fx(a), where (5 indicates a sequence of
zero or more object permissions ¢. The borrowed permissions can then be given
back with a remit, written remity(é‘—> 2.fX). For example, the code

let y = z.f5(wR, wW) in y.f := 1; remit, (wR, wW — z.fX)

borrows private write permission to y = z.fX to write 1 to y.f*, and then gives
back these permissions when complete.

In order to prevent duplication of permissions, the same permissions 5 may
not be borrowed a second time until either: a remit gives back the borrowed
permissions; or another object z is assigned to z.fX. To track this, we expand
the syntax of object permissions as follows:

¢ :=wR | wW | wS | ¢ — tX@y

The new object permission w? — fX@y indicates that w2 has been borrowed in
variable y for field fX. The construct —fX@Qy is called a permission subtraction,
and object permissions are considered equal modulo reordering of permission
subtractions.* The permission subsumption relation is expanded so that x : ¢ >
x: ¢ —fXQy and so that x : ¢ > z : ¢/ implies z : ¢ — fXQy > z : ¢ — fXQy.
We write root(¢) in the below to denote the root wY of ¢ = wl — B.

3 We could allow shared read permissions to be stored as well, but storing private read
or write permissions could allow them to be shared, thereby hurting type soundness.

4 The permission z : wY — fX@y can be defined using linear implication as the per-
mission set .= : wY, (y : wT —o x.f% : wY) where z.f* : wY and z.=f* : WY (not
defined here) are permissions to just z.fX and to all z.f with f # fX, respectively.



search :: (this : List, &\ this : ER) — (Bool \ this : (R)
search (this, &) = if P(this.data) then true
else if this.next == null then false
else let © = this.next((R) in let r = search (z,€) in
remit, (§R — this.next);r
Fig. 1. List Searching with Storable Permissions

As an example, Figure 1 shows how to write a list searching algorithm, search,
with storable permissions. We assume a class List that has fields data and next,
containing the data at the head of the list and the next list element, respec-
tively. The next field is exclusive, so holding a permission to the head of a list
is equivalent to holding the permission for the whole list. The type of search
specifies both types and permissions, separated with a backslash, for input and
output. The type portion states that search is a function from a List to a Bool.
The permissions portion states that, on entry to search, private read permission
&R to the argument this is held, and that it will still be held on exit, where £ is
a permission word variable representing an arbitrary permission word.

The search function first tests if some predicate P holds of this.data, return-
ing true if so. If not, then it checks this.next, returning false if this is null and
recursing on this.next otherwise. In order to recurse, search first performs an
exclusive read of this.next, borrowing permission {éR and binding the result to
x. The recursive call itself has the form search (z,¢), which passes z for the
argument and & for the permission word argument of search. The result of the
recursive call is bound to variable r, and the permission (R on x is given back
to this.next before the function returns r.

4 Gradual Permission Types in HJp

Gradual type systems [35, 28] are systems which allow some or all of the type-
checking of a program to be performed dynamically, rather than statically. This
turns strongly typed programming into a gradual process, where the programmer
can iteratively add typing annotations to a program to reduce the number of dy-
namic checks, as opposed to an all-or-nothing effort of passing the type-checker.
HJp uses this idea to allow programmers to omit permission annotations where
they might not be known by the programmer, or might be hard to guarantee
statically. In fact, HJp programs can be compiled and run with absolutely no
permission annotations. This means HJp can compile HJ programs that were
written with no knowledge of the permissions and HJp still guarantees race-
freedom, though some of the dynamic checks may fail at runtime. On the other
end of the spectrum, programs with enough permission annotations to not re-
quire any dynamic checks are guaranteed not to have any checks that fail at
runtime, and, further, suffer no performance loss from dynamic checks. Grad-
ualness in HJp is thus a powerful tool for programmer productivity, making it
easy to port existing HJ programs and to write new programs with little or no



initial concern for permissions, while at the same time giving the programmer
the ability to gradually perform more work to get more static guarantees.

In previous work [34], we gave a simple but powerful approach to inserting
dynamic permission checks. The checks were coarse enough that the runtime
overhead was relatively low for un-annotated HJ programs — the slowdown
for most benchmarks was under 2.5x, as compared to the order of magnitude
slowdown for some of the best dynamic race detectors — but also avoided false
positives, i.e., spurious failures of dynamic checks: in 11 HJ benchmarks total-
ing over 9,000 lines of code, only one modification was needed to prevent false
positives.® This latter property is especially important for HJp, as it means that
the approach generally captures programmer intent, even in HJ code that was
not written with permissions in mind. HJp builds upon this work by providing
a type system that allows permissions to be fully statically checked. In this sec-
tion, we briefly review how dynamic permission checks are inserted, and discuss
how these checks fit into the type system of HJp.

To support gradual permission typing, Core HJp includes acquires and re-
leases. An acquire tries to dynamically acquire private read, private write, shared
read, or exclusive permissions to x. This succeeds if the requested permission
does not conflict with any other permissions held for z. Private reads conflict
with private writes in another task, shared reads conflict with any writes, and
exclusive conflicts with any other permission. A conflict causes the acquire to
fail, and a runtime exception is thrown. A release then gives a permission back
to the runtime, indicating that the current task is finished using it.

The fact that acquires throw exceptions on failure mean that HJp implements
a fail-stop semantics for data races. This is similar to other work, such as DRFx
[29,24], and means that we view data races as bugs, which is in fact the case
most of the time. While an alternate approach would be for acquires to block
(awaiting the availability of a permission) instead of throwing exceptions, this
would add the significant possibility of deadlock, especially since the compiler
inserts acquires and releases, as discussed below, that may be unknown to the
programmer. Instead, acquires and releases are meant to act as a form of dynamic
type cast, and so should change the semantics as little as possible.

As a side note, although HJp prevents data races, it does not guarantee
determinism. Different acquires could fail for different executions of the same
program, depending on the dynamic schedule, or some execution could report no
failures at all. If an execution contains no failures, however, then it is guaranteed
to contain no races, though it could still contain potential races.

Exclusive acquires are written acquirey(x). This construct attempts to ac-
quire exclusive permissions for x, returning * on success and raising an exception
on failure. Non-exclusive acquires are written let { = acquirey(z) in M, where
the sequence T can be either R for private read, R, W for private read-write, or
R, S for shared read permissions. If successful, M is executed with, respectively,
permissions = : wR, permissions z : wR, z : wW, or permissions z : wR, x : wS.
We abbreviate these permissions as x : wY below. Further, w is also substituted

5 Array-based parallel loops also had to be modified to use new syntax; see Section 6.



for the permission word variable £ in M. Note that programs are not allowed
to acquire specific permission words w, as this would greatly complicate the
implementation of these checks.

Releases are written release a;(a:) One caveat about releases is that we wish to
ensure that a permission can only be released if it was previously acquired. Oth-
erwise, the values of the permission words would matter, complicating the im-
plementation. To do this, we introduce a new permission form dyngc(wfx)7 called
a dynamic permission, which indicates that the sequence T of object permissions
were acquired dynamically with permission word w. A release releasewf(x) then
consumes both the permissions z : w7 and the permission dyn,, (wf) Exclusive
permissions do not involve a permission word w, and so are a special case that
do not require a dynamic permission to be released.

In order to support gradual typing, the HJp compiler automatically inserts
acquires and releases where necessary. The basic idea, as presented in previous
work [34], is to add acquires and releases around variable scopes for the least per-
mission — private write, private read, or none — needed for the given variable.
This essentially creates regions of code that are as large as possible during which
the current task holds permissions to the given object. As we prove in Section 5,
any insertion algorithm will prevent low-level data races (as defined by the Java
Memory Model [23]). Making the regions as large as possible, however, also helps
to prevent high-level races, where an object is modified concurrently (without
a low-level race) while the programmer intends for it to remain constant. Of
course, it is impossible in general to infer programmer intent, but the HJp inser-
tion algorithm seems to seems to capture a “sweet spot” with the intuition that
programmers do not generally intend objects to be modified while they are in
scope as variables. In addition, our experiments on HJ code, which were written
without permissions in mind, also showed that in only one instance for all our
benchmarks were these regions too big.

Note that, as a special case, object constructors are implicitly considered
to be exclusive acquires, meaning that new returns exclusive permissions to an
object. Thus the HJp insertion algorithm inserts corresponding releases at the
end of an allocated object’s scope.

Figure 2 illustrates the HJp insertion algorithm, also demonstrating the use
of acquires and releases. The figure shows a simple function, foo(z,y), which
first checks if x.f is null, assigning y.f to it if so, and then returns the possibly
modified value of z.f. Figure 2(b) demonstrates how acquires and releases are
added to this code: a permission region is inserted around the body of the entire
function, since this is the scope of the variables x and y. The resulting code
starts by acquiring write permission to z and (private) read permission to y. It
then performs the original computation, binding the result to a new variable r.
Finally, the code releases permissions to z and y and returns r.

Note that a more “conservative” approach would only acquire private read
permission to x outside the if-expression, acquiring write permission to x and
private read permission to y only when z.f equals null. The HJp insertion algo-
rithm, however, captures the fact that, logically, calling foo(x,y) requires read



foo (z,y) = foo (x,y) =

if .f == null then let {; = acquireg y(z) in
xf:=yf let £&; = acquireg(y) in
x.f if z.f == null then z.f := y.f) .
let r = o f in

release¢ g ¢, w(z); releaseg,r(y); r
(a) Original Code (b) After Compiler Insertion

Fig. 2. Compiler Insertion of Acquires and Releases

permission to y and write permission to x. A violation of this logic, such as a
concurrent write to (the object referenced by) v, is therefore considered to be a
data race in HJp, even if the read from y does not actually take place. The user
can override this behavior by manually inserting acquires and releases. The user
can also completely remove any acquires and releases by changing the type of
foo, to indicate that write permission to x and read permission to y are required
when foo is called. This is denoted in Surface HJp by adding keywords writing
and reading to x and y, respectively (see Section 7). We explain how this type
is written in Core HJp in Section 5. Modifying the type of foo in this way rep-
resents a gradual refinement, moving the function foo from dynamic to static
type-checking. Since the resulting function has no dynamic permission checks,
it is statically guaranteed not to have any data races, though races in callers of
foo could lead to exceptions being thrown.

As a final point here, the code inserted by the HJp compiler for acquires
and releases is actually slightly more complex than that shown in Figure 2, for
two reasons. First, the code must handle the case where an exception is thrown
between an acquire and a release. This is done with a try-finally block to en-
sure that releases are always performed at the end of permission regions. The
second reason that the inserted code is more complex is to handle mutable vari-
ables in Java. A permission region for a mutable variable = causes the specified
permission to be re-acquired for the new value of x each time z is modified.
All of the permissions acquired for values of = are not released until the end of
the permission region, when all of the permissions are released. Both of these
points are discussed more in our previous work [34], and can be modeled in a
straightforward way in Core HJp.

5 Syntax and Semantics of Core HJp

In this section, we formalize Core HJp and prove that all executions are race-free.
Core HJp is defined using A-normal forms, similar to 3-address codes, where a
term consists of a sequence of steps, each of which returns a value that can be
let-bound in the remainder of the computation. This closely matches the Jimple
representation of the Soot optimization framework [31], which is used as a back-
end for our HJp implementation. The typing judgment associates input, output,
and exception permissions with each term M, in a manner similar to Hoare Type



Theory [26], where the typing judgment associates pre- and post-conditions with
terms. We omit a number of high-level features present in Java, HJ and Surface
HJp, such as subtyping, constructors, final fields, methods, and conditionals;
objects in Core HJp are essentially nominally typed, mutable records. The other
features are straightforward to add, but do not significantly affect the results.

The remainder of this section is organized as follows. Section 5.1 gives the
syntax and type system for HJp. Section 5.2 then gives an operational seman-
tics for HJp, and proves the main result, that any execution of HJp is race-free.
Note that, although our operational semantics is a sequentially consistent se-
mantics, proving that all executions are race-free means that all HJp programs
are correctly synchronized. This in turn ensures that any execution under a weak,
DRFO0-based memory model (such as the Java Memory Model) is equivalent to
a sequentially consistent execution as given here [23].

5.1 Static Semantics

To define the syntax of Core HJp, we first fix sets of class names and fields,
written C and f, respectively, as well as countably infinite sets of term variables,
written z, y, and z, and word variables, written £. We also syntactically dis-
tinguish the normal fields f* from the fields fX marked as exclusive. To denote
sequences of zero or more syntactic elements, we use an arrow over a syntactic
category. For example, & indicates a sequence of zero or more variables, referred
to as x1 through x,. Further, we often use this notation as a shorthand in com-
pound notation; e.g., i ; 7 denotes a sequence ' : 7,..., £} : 7, while z : 5
denotes a sequence of permissions x : ¢1,...,T : ¢p.

The syntax of Core HJp is given in Figure 3. This includes the permissions
and permission sets as defined in Section 2 along with the permission subtrac-
tions —fX@y defined in Section 3 and the permission word variables ¢ and dy-
namic permissions dynw(q;) described in Section 4. The Core HJp types 7 include
the class names C' as well as the types (I'\ IT;) — (y : 7\ I, \ I1,) of functions
that take, as input, values and permission words whose types are specified by
I'. In practice, I" always has the form x : 7, f_; for functions that take one input
but quantify over zero or more permission words. The output type is given by 7.
The permission set II; specifies the minimal (under subsumption) permissions
that must be held to call the function, while I, and Il specify the permissions
returned under normal and exceptional exit from the function. The variables x
and { are considered bound in the remaining constructs, while the variable y,
which refers to the value of the output, is considered bound in I, and I1.. The
latter allows I1, and II, to refer to the output of the function.

Next in Figure 3 are the signatures, written X', and the type contexts, written
I" or A. A signature associates each class name C in a program with a list of
fields and their associated types. We assume a fixed signature for the remainder
of this section, which we write as X below. A typing context I" associates types
with term variables x, and lists word variables £ that are considered to be in
scope; any variables listed in context I are considered bound in later types.
We implicitly assume that all signatures and typing contexts are well-formed,



w =0 |lw|e|& Y:=R|W|S

¢ m=wl | ¢ —fXay mu=x:¢ | F(r) | dyn,(¢)

II =17 | - T u=C | (D\IL) = (y: 7'\ I, \ II,)
E:::~|E,Cr—>{f?1:7_",fX:C_"} Ii=.-|Lx:7| ¢

Mo=z|letz=MinM |z (y,E | Az,&).M | exn | null | 2.f* | z.f* =y
| 2.0%(¢) | .6X :=y | remit, (¢ — y.fX) | new C (f — ) | acquirey (z)
| let £ = acquirey(z) in M | release ;(z) | async; M | finish M
Fig. 3. Syntax

meaning they contain only bound occurrences of variables x and &. In the below,
we use the notations I'(x), X' (C), and X (C)(f) to denote, respectively, the type
associated with x in I', the sequence of field-type pairs associated with C' in X/,
and the type in this sequence associated with f.

The terms of Core HJp are in A-normal form, in order to allow permis-
sion sets to refer to each intermediate value as a variable. Thus field reads and
writes, acquires, and releases all refer only to variables as their arguments. Com-
pound expressions can be built using let-expressions. Functions have the form
Az, g)M , meaning that they quantify over a value x and zero or more permis-
sion words { Similarly, function applications have the form x (y, @), applying
variable x to argument y and permission words .

The typing judgment '\ II; = M :y : 7\ II, \ II, for Core HJp is defined in
Figure 4. It states that M is well-typed under typing context I' and assuming
input permissions IT;, and M returns a value of type 7 and permissions given
either by I, or Il,, depending on whether it had a normal or exceptional exit,
respectively. We sometimes omit the exceptional permission set II, when it is
allowed to have any value, which implies that the given expression cannot throw
an exception. Note that we implicitly assume, for each rule, that the type 7
and the permission sets II, and II, are well-formed, meaning they contain only
variables listed in I" and, in the case of I, and Il., possibly .

The first rule, T-SUB, allows permissions to be added to the input permis-
sions IT; or to be removed from the output permissions I, and I1.. It also allows
the same permissions to be added to both sides, in a manner similar to the frame
rule of separation logic. T-VAR types variables x, allowing the output permis-
sions to refer to the output itself as a variable, y, instead of to the variable x;
output permissions that still refer to x can be added with T-SUB. Since variables
cannot throw exceptions, any Il, may be used. T-LET types let x = M; in M>
by binding x in the type context for M, and also states that the output permis-
sions for M; must serve as input permissions to Ms. Both must have the same
exception permission I1., since an exception from the let-expression could be
thrown from either My or Ms.

T-APP types applications x (y, ), turning the function type for z into a
typing assertion by substituting the arguments y and w into the type for x.
Functions A(J:,E).M do the opposite. Note that functions do not consume or
produce any permissions, since their bodies do not run until they are called.
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Fig. 4. Static Semantics

Exceptions exn can have any type and output permissions, as they will not
return, but they have the same exception permission set as input permission
set. T-EXN gives these both as empty permission sets -, but permissions can be
added to both sides using T-SUB. Similarly, null can have any type and any
output permissions to the null value, since, intuitively, permissions to null do
not matter; this is made more formal in the operational semantics, below.

Normal field reads and writes require read and write permission, respectively,
for the object being accessed. Writes return the sole element * of the singleton



type U. Exclusive field reads a:.fX(wf) require at least read permission to x but
without the borrowing permission subtraction —f*@y, and append this subtrac-
tion to the permissions on z. Note that we use x : w7 to denote the permission
set x: wly,...,z: wY,. Exclusive writes z.fX := y require exclusive permission
y : X (recall that this is shorthand for y : eR,y : eW) and erase any subtractions
f*@z on permissions for x, where x : (5—1— fX indicates the removal of any fX@z
in each ¢;. These ¢; must comprise at least a write permission to x. Note that
all of these return the input permission set as the exceptional permission set, in
the case the the object being read or written is null.

The remit, (wY — x.fX) construct erases a subtraction —fX@Qy, using the
notation ¢ + fX@y, as well as erasing a w2 permission to y. Object allocation
requires X permissions to all objects assigned to exclusive fields and returns an
X permission to the newly allocated object.

An exclusive acquire returns an X permission to x as output permission but
returns an empty exception permission. Again, using T-SUB allows the input
permission set to be anything and requires the exception permission set to be
the same (in case the acquire throws an exception) but adds z : X to the output
permission set. A non-exclusive acquire let { = acquirey(z) in M provides

permissions Sf to x in the body M, also indicating that these permissions are

dynamic. A release $(:L‘) releases the permissions 5 for x, requiring that either

gg equals exclusive permissions or that there is a dynamic permission dynm(gg) to
indicate that (E can be dynamically released. An async II;M passes to M the
permissions IT;, which must satisfy sharable(IT;). The latter indicates that IT;
contains only pairs = : wR,z : wS and permissions dynx(ﬁ). Any permissions
11, returned by M are returned as future permissions to the current task, where
F(IT) maps each 7 in IT to F(n). Note that an async catches any exceptions
but does not throw any, so it can have any exceptional permission set, while it
requires the output and exception permissions of M to be the same. The latter
can always be achieved by T-SuUB. Future permissions can be reclaimed with
finish M, which returns the same permissions as M with any future permissions
F(7) turned into 7. This is written as IT — F, which also converts F(F(m)), etc.,
to 7, to handle nested asyncs. Note that no future permissions from outside the
finish are passed to M, as these are only available to the next enclosing finish.

5.2 Operational Semantics

The additional syntax needed to define the operational semantics is given in Fig-
ure 5. Two important changes are that values are now allowed to occur in place
of variables in both permissions and terms, and that private read permissions
are now annotated with task ids ¢, where we assume a countably infinite set of
task ids. The latter change was unnecessary in the static semantics, since an ex-
pression can only refer to permissions for the current task, but will be necessary
to model the permissions held globally for an object. There are now distinct
private read as well as private read-write permission sets for each task id t. We
write ITt for the result of adding task id ¢ to the (un-annotated) private read
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Fig. 5. Operational Syntax

permissions in I7. These two changes yield the additional equalities:

z:wR" z:wS =x:wR™, z:wS null: ¢ =-
The first captures the fact that shared read and exclusive permissions are in-
sensitive to which task holds them, while the second captures the fact that
permissions to null can be added or removed at will.

The values v include functions, null, and heap locations [, where the latter
is annotated with its class as (. The new term construct finish(M || T'), which
is considered equal modulo permutation of f, represents a finish waiting for
parallel tasks T' to complete. Tasks are written (I1\ M)*, indicating a task that
is executing term M, holds permissions I, and has task id ¢. Typing is extended
to tasks with the judgement - T : I1,, which holds for task (IT\ M) if and
only if -\ II + M :U\ I, \ II,. Typing is then extended to finish(M | T') by
requiring F T; : II; for each T;, and adding I to the output and exceptional
permission sets returned by the construct.

The results res include exceptions and values, while the heaps H map loca-
tions ! to heap forms (p — II, f — ). The latter are themselves mappings from
fields to values and from the special marker p to the set of permissions IT of
permissions to [ still available for dynamic acquires, where IT must contain only
permissions [ : ¢. (We use permission sets here to take advantage of permission
set equality.) Thus, e.g., H(1)(f) returns the value of field f at location [ in H,
while H(I)(p) returns permissions to ! that are available for dynamic acquires.
As a convenience, each heap H also contains a mapping H (null)(p) = - which
(by the above) equals null : qi? for any .

Finally, Figure 5 defines the evaluation contexts F, which intuitively define a
term with single a “hole” [J indicating where evaluation can take place in a term.
This includes the term being bound in a let and the body of a finish. We write
E[M] for the (non-capture-avoiding) replacement of O by M. We also define
evaluation contexts E* out of which exceptions can be thrown. These exclude
finish, requiring child tasks to complete before an exception leaves a finish.

The operational semantics is defined in Figure 6 as a small-step relation
H\II\M % H'\II'\ M'. This judgment states that term M with heap H, in
a task holding permissions I, evaluates in one step to term M’, changing the
heap to H' and the permissions held by the current task to II’. This step is also
labeled with an action label a, which can have any of the forms given in Figure 6.
Action labels can optionally have the prefix (¢; IT) : a, indicating that the action
occurred in task id t and yielded permission set IT in task t. Only the inner-most
prefix is used, so (t1;I11) : (t2;I2) : a is considered equal to (to; IT2) : a. These
labels are used below to define the happens-before ordering and data races.
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Fig. 6. Operational Semantics



The E-TASK rule defines evaluation on tasks, which evaluates the term and
permission set in the task and then adds the task id and resulting permission set
to a. E-CTX allows evaluation inside evaluation contexts F, while E-EXN allows
exceptions to be thrown out of exception evaluation contexts E*. E-LET and
E-APP evaluate let-expressions and function applications using substitution.

Normal field reads of {.f® return the value H(l)(f") associated with " for [
in H. The action label for a field read is written [.f* — H(I)(f*). Normal field
writes [.f* := v update H (I)(f™) to point to v, written H[(l, ™) — v]. The action
label for a field write is [.f* < v. Reads from or writes to null raise an exception.
Exclusive field reads and writes are similar, except that the permissions held by
the current task are updated to indicate a borrow and to remove any pending
borrows, respectively, as described in the typing rules above. Remits also remove
a pending borrow as described above, and have an empty action label, while new
consumes exclusive permissions to the locations assigned to the exclusive fields of

the new object, as discussed above, and is labeled with new(l; X sy U, £ 17),
where the v; and v} are the values assigned to £ and f2, respectively.

Each form of acquire has two rules, one for failure and one for success. An
exclusive acquire on [ succeeds if H(l)(p) # ! : X, meaning that [ has an ex-
clusive permission available for dynamic acquisition. Similarly, a non-exclusive
acquire of T on I succeeds if permission set IT, H(I)(p) can be separated into
1,1 : wf, 1I,,, which combines the permissions IT held by the current task, the
requested permissions, and some leftover permissions I, remaining in H(l)(p).
The current permission set I7 is included here to allow read-write permissions to
be acquired when the current task holds all the private read permissions to an
object, while the side condition on IT, ensures that not all of the remaining per-
missions are acquired. If these conditions cannot be satisfied, then either acquire
throws an exception. Successful acquires of d_; for [ are labeled with acq(l : (5)
Note that acquires on null automatically succeed, since H(null)(p) equals any
permission set that satisfies the above.

—

A release of | : ¢ gives these permissions back to H(I)(p), and is labeled
with rel(l : ¢). A release on null effectively does nothing. An async creates a
new task with some id ¢’ inside the most closely containing finish, and is labeled
with async(t'). Rules E-AsyNC and E-AsYNCPAR handle an async in the main
body or in a parallel task, respectively, of a finish. Parallelism is modeled by
allowing steps in the parallel tasks of a finish, as captured by E-PAR. Finally, a
finish completes when the main body and all parallel tasks are results, and all
permissions returned by the parallel tasks are collected in the parent task. This
is labeled with finish(f) where ¢ are the ids of the completed tasks.

At the top level, small-step evaluation is applied to machine states H\ T,
where T is called the top-level task. If T = (II \ res)’, then H\T is called a
final state. We write Mach for machine states, and define the set perms;(Mach)
of permissions for [ held by Mach as the combination (using “) of

{10 | 3.1\ M) € Mach} U H(D)(p) U
{l:wY | I':wY — B € perms, (Mach) AN H')(f*) = IA A(i,2).B; = tXQz}



where C is the subterm relation. This set is well-defined iff reachability under RS
fields is acyclic, which is ensured by machine well-formedness for Mach = H \ T

1. =T : I, for some II, and - = H(I€)(f) : X(C)(f) for all I € Dom(H);
2. 1: X > perms;(Mach);
3. Any async occurring in Mach is a subterm of a finish.

This judgment is written = Mach. The first condition ensures that the top-
level task and all field values are well-typed. The second ensures that the total
permissions in the program to any [ are at most X; i.e., there are no duplicated
permissions. The final condition ensures that tasks are always spawned inside
of a finish scope; note that the HJ runtime does this implicitly. Using this
definition, we can prove Type Soundness using Preservation and Progress:

Lemma 1 (Preservation). If - Mach and Mach — Mach' then - Mach'.

Lemma 2 (Progress). If = Mach then either Mach is a final state or Mach —
Mach for some Mach'.

We write s : Mach; — Machy to denote that s is a step, or derivation of
Mach; % Machs. A collection of such steps Machy — ... — Mach,, is called an

execution; we write £ : Mach, ¥>* Mach,, to denote that £ is such an execution.
We also write <¢ for the sequence order of the steps in £. In order to prove that
any execution has no data races, we shall prove that any steps which conflict
must be ordered by the happens-before order. We define these concepts below.
To define this notion, we first define when permissions conflict, which intuitively
means that they cannot be held at the same time.

Definition 1 (Conflicting Permissions). We say that II; and IIs conflict,

written IT > IT', iff 1 X > II1|;, IT3|; does not hold for some l. We say that

I11): HIPYE 3
steps s1 1 Machy M) Mach’1 and so : Machy M) Mach/2 conflict,

written s1 X 8o, iff I > I15.

Definition 2 (Happens-Before). Step s1: Machy % Mach’, happens-

(tz;Hz):az
ST

before step so : Machs Machy, written s1 = sa, iff 51 <g¢ so and:

— 11 =t

— ay = async(ta);

— a9 = ﬁnish(zf_”7t2,t77),'

—a;=rel(l: gz?) and ag = acq(l : gz?’) forl: 5%1 : gz;’; OR
— 51 X s’ <X 59 for some s'.

Theorem 1 (Race-Freedom). If £ : Mach " Mack! for = Mach, and if
s1 X4 89 for s1 <g So, then s1 X sa.

As a final point, we prove that the implementation of acquires and releases
does not have to track the permission words that are returned by acquires, and
only needs to count the number and sorts of acquires and releases:

Lemma 3. If- - \T and & :-\T 57 H\T' then there is a one-to-one mapping
between releases in € and subsequent acquires of the same permissions, where
new is considered an exclusive acquire.



6 Extensions

We now show how Core HJp can be extended to support two common parallel
patterns, array-based parallel loops and objects guarded by critical sections.
These extensions modify Core HJp very little, and it is straightforward to show
that they preserve the race-freedom property proved in Section 5.

6.1 Array-Based Parallelism

For the purposes of this paper, array parallelism is the technique of dividing
an array into disjoint pieces which are then modified by parallel tasks. (Parallel
tasks that read from the same array are straightforward to support using shared
read permissions.) One technical difficulty in supporting array parallelism in
HJp is the potential aliasing inherent to standard Java arrays. Specifically, each
dimension of a standard Java array is an array of pointers to the next dimension,
and there is no guarantee that these pointers do not alias. Thus there is no easy
way to break a standard multi-dimensional Java array into disjoint pieces. To
address this problem, HJ includes a construct called an array view [14,27,22],
which intuitively is an array that is indexed by either one- or many-dimensional
points. Under the hood, array views are implemented as maps from points to
indexes in a one-dimensional Java array. In Core HJp, array views are modeled
as maps from points to store locations. Holding a permission ¢ for an array view
A is then just a shorthand for holding permission ¢ for all the store locations in
A.

To support array parallelism, HJp allows an exclusive permission to an array
to be split into exclusive permissions to disjoint pieces of the array, which can
then be passed to child tasks for parallel modification. When all the child tasks
are done, these exclusive permissions are then combined back into an exclusive
permission for the entire array. This is written in Core HJp as follows:

foreach (z € r; y1 Cay; ...; yn C ayp) body

This expression forks child tasks, as per async, to modify disjoint portions of
the array views a; through a,, and then waits for the child tasks to complete, as
per finish. One task is created for each point specified by r, a region expression,
and this task executes body with the variable x bound to the selected point in
r and with each variable y; is bound to a sub-view of a;. These sub-views are
formed by logically dividing the regions of each array view a; into rectangular
pieces, one for each point in r, and then binding y; to the sub-view of a; for the
rectangular piece given by the current value of z. For example, the code

foreach (x € [1: M,1: NJ; sub C a) for (p € sub.rgn) sublp| := F(sub[p|)

modifies 2-dimensional array view a with M x N parallel tasks, each of which
applies function F' to the elements of a portion of a. The expression sub.rgn
returns the region of the array view sub, while [1 : M, 1 : N] is the rectangular
region of points whose dimensions are from 1 to M and from 1 to NV, inclusive.



When a foreach begins, the parent task must hold exclusive permissions to
each array view a;. Each child task then receives exclusive permissions to the
sub-views passed to it in the variables y;, permissions that it must still hold
upon completion. Once all children have completed, the foreach then returns
the original exclusive permissions for the array views a; to the parent task.

Permissions can also be stored in and borrowed from the cells of array views
just as with normal objects. The one caveat is that only one permission may
be borrowed from a given array view at a time. Allowing multiple borrows from
the same array view would require complex typing features, such as dependent
types, to prove statically that these borrows use different points. This restriction
has not been a problem in practice.

6.2 Objects Guarded by Critical Sections

Another common parallel pattern that is supported by HJp is objects that can
only be accessed inside critical sections. Critical sections in HJ and HJp are
written with the construct isolated (&) M, which is called an isolated region.
This indicates that program term M should be run in a way that is isolated
from, meaning not at the same time as, any other conflicting isolated region. Two
isolated regions are said to conflict if, at runtime, the values of their variables &
overlap. Isolated regions are therefore similar to locks and to Java synchronized
statements. A key difference is that the isolated construct prevents deadlock:
if an isolated region occurs inside another isolated region, then the variables &
of the inner isolated region must refer, at runtime, to a subset of a the objects
referred to by the outer isolated region. Otherwise, an exception is thrown. This
is similar to requiring that a task cannot grow the set of locks it holds while
already holding locks. Note that throwing an exception in a potential deadlock
situation is a conscious choice in the design of HJp. Although there are type
systems to statically prevent deadlocks without exceptions [11], we have found
that our approach is intuitive to use and does not cause problems in practice.

Isolated regions act as guards in HJp, allowing unrestricted access to the
objects referred to by the variables &, while preventing any access to these objects
outside isolated regions that refer to them. To support this in HJp, any class
C can be designated as an isolated class, meaning that all objects o of class C
can only be accessed inside critical sections for o. Isolated classes are designated
in Surface HJp by making them subclasses of the IsolatedObject class. The
isolated (Z) M construct then requires the variables Z to each have type C for
some isolated class C. The body M is executed with write permissions w;R, w; W
for each x;, for some permission words .

This can be modeled in Core HJp with acquires and releases of write permis-
sions to the variables Z at the beginnings and ends of isolated regions. The only
change required to Core HJp is that, for isolated objects, acquires never throw
exceptions, they simply wait until the acquire can succeed. This change obvi-
ously does not violate the race-freedom guarantee from Section 5, since it only
restricts the possible executions that must be considered. As per the discussion
in Section 4, however, the HJp compiler does mot insert acquires and releases



for isolated objects, since this would change the synchronization behavior of a
program. Instead, if accesses are made to an isolated object outside of an isolated
region, the HJp compiler flags a compile-time error.

7 Practical Experience using HJp

Surface HJp is an extension of HJ [14], which itself is an extension of Java to
include the async, finish, and isolated constructs, along with a number of con-
structs for manipulating array views [14, 27, 22]. Surface HJp adds the keywords
reading, writing, shared_reading, and exclusive, which can be applied to a
method argument indicate that the corresponding permission to the argument
must be held on entry to and exit from the method. The same keywords can also
be applied to an entire method, indicating that the permission must be held for
this. A method can be annotated with exclusive_ret to indicate that exclusive
permissions are held for the return value on exit. Other keywords are possible,
but these are the common cases that were needed for our benchmarks. Object
fields and array view element types can be annotated with exclusive to indi-
cate storable permissions. To indicate that a class is an isolated class, it must
inherit from IsolatedObject. Acquires are written with the methods acquireR(),
acquireW(), acquireSR(), or acquireX(); similar methods exist for releases.

By design, Surface HJp allows the programmer to think only about read,
write, shared read, and exclusive permissions, without having to worry about
the complexities of permission words, word variables &, etc. Specifically, exclusive
field reads are not marked with the permissions that are being borrowed, there
are no remits, and acquires do not involve let-bindings for permission words.
To support this, the HJp compiler infers all of these; as discussed in Section 4,
it also inserts acquires and releases, to support gradual typing. We implement
this inference using standard dataflow analysis techniques, using a backwards
dataflow to determine where permissions must be acquired or borrowed and a
forwards dataflow to insert remits and releases. Although we leave the question
of completeness of this inference algorithm for future work, it has worked well
in practice. This is all implemented as a lightweight compiler pass on the Soot
intermediate language [31] used in the back-end of the existing HJ compiler.

In previous work [34], we examined the performance impact of dynamic per-
mission acquires and releases, which yielded an average slowdown of 1.5%. (This
work used a subset of the benchmarks we use here.) In essence, that work repre-
sented the minimum possible programmer effort in using HJp. Here, we quantify
the maximum possible programmer effort, where programs have been modified
enough to remove all acquires and releases; this is checked with the -staticperms
HJp compiler flag. More specifically, we have taken a set of HJ programs, written
without permissions in mind, and ported them to HJp by adding enough anno-
tations to statically guarantee race-freedom. With a few exceptions described
below, the resulting HJp programs compile to the exact same programs as the
original HJ programs, so there is guaranteed to be no performance penalty.



Benchmark Code |LoC for| LoC for | LoC for |LoC for
Name Size array | method |storable |isolated| Total

(Methods)| views |keywords| perms |objects
NPB.CG 1070 (61) | 4]|0.37%| 25| 2.33%| 7]0.07%| 0]0.00%| 36| 3.36%
JGF .Series 225 (15) | 3|1.33%| 6| 2.67%| 3|1.33%| 0/0.00%| 12| 5.33%
JGF.LUFact 467 (20) | 0]0.00%| 16| 3.40%| 11|2.36%| 0]0.00%| 27| 5.78%
JGF.SOR 175 (12) | 1/0.57%| 6| 3.43%| 4|2.28%| 0/0.00%| 11| 6.29%
JGF .Moldyn 741 (57) |19/2.56%| 9| 1.20%| 29|3.91%| 0/0.00%| 57| 7.69%
JGF.RayTracer 810 (67) | 110.12%| 57| 6.75%| 22|2.60%| 4|0.47%| 84| 9.94%
BOTS.NQueens 95 (3) 0[0.00%| 3| 3.15%| 0[0.00%| 1{1.00%| 3| 3.16%
BOTS.Fibonacci 70 (3) 0[0.00%| 0| 0.00%| 0[0.00%| 0]0.00%| 0| 0.00%
BOTS.FFT 4480 (46) |13]|0.29%| 33| 0.74%| 0]0.00%| 0]0.00%| 46| 1.04%
PDFS 537 (26) | 0/0.00%| 10| 1.80%| 8|1.44%| 8|1.44%| 26| 4.67%
DPJ.BarnesHut 682 (56) | 1[0.15%| 18| 2.64%| 10|1.47%| 0|0.00%| 28| 4.11%
DPJ.MonteCarlo | 2877 (287) | 3|0.10%|151| 5.25%| 22|0.59%| 1[0.03%|177| 6.15%
DPJ.IDEA 228 (18) | 1]0.43%| 9| 3.94%| 8|3.50%| 0]0.00%| 18| 7.89%
DPJ.CollisonTree| 1032 (69) | 0/0.00%|108|10.40%| 24|2.32%| 0|0.00%|132{12.70%
DPJ.K-Means 501 (38) | 1/0.20%| 25| 4.99%| 6]1.20%| 1|0.20%|33*| 6.59%

[Total [13990 (778) [47]0.33%]476] 3.40%|152]1.09%[15[0.11%][690] 4.93%]
Table 1. Programmer Effort for Statically Verifying Race-Freedom in HJp

We chose a number of small- to large-scale parallel benchmarks from the
NAS Parallel Benchmark suite [3] (NPB), JavaGrande benchmark suite [30]
(JGF), the BOTS benchmark suite [17], a Parallel Depth First Search application
(PDFS), and the benchmarks used for Deterministic Parallel Java [6,7] (DPJ),
another type system for statically ensuring race-freedom. The DPJ benchmarks
were originally written in Java and were ported to HJ, while the others were
originally written in HJ. We measured the number of lines of code (LoC) that
had to be modified (from the HJ version) to statically ensure race-freedom.

The results of this experiment are summarized in Table 1, which presents,
for each benchmark, the name prefixed with the suite it came from, the code size
in LoC with the number of methods in parentheses, and then the LoC modified
from the original code. The latter are divided into modifications needed for:
array parallelism, which mostly included adding the foreach construct from
Section 6.1; adding the method keywords discussed above; adding the exclusive
keyword to fields and array view elements types, to use storable permissions; and
designating classes as subclasses of IsolatedObject. On average, HJp requires
about 5% of the LoC to be annotated, with the majority of the annotations,
accounting for 3.4% of the LoC, being method keywords.

There is one additional modification that was necessary for the K-Means DPJ
benchmark, which is not reflected in Table 1; the total LoC for this benchmark is
marked with an asterisk. The issue is that the original code uses an array lock[]
of locks, where each lock[i] guards accesses to the elements new_centers[i] and
globalSize[i] of two other arrays. To support this access pattern in HJp, we had
to refactor these into a single array of a new class ClusterAttr that inherits from



Benchmark Code LoC LoC Execution Time (s)
Name Size modified | modified Xeon T2

(Methods) | in DPJ | in HJp |DPJ|HJp | DPJ| HJp
DPJ.BarnesHut 682 (56) 80[11.73%] 28] 4.11%] 4.207] 4.041] 5.715] 5.695
DPJ.MonteCarlo | 2877 (287) [220*| 7.64%|177| 6.15%| 3.102| 3.047| 6.065| 5.792
DPJ.IDEA 228 (18) 24[10.52%| 18| 7.89%| 0.725| 0.731| 0.737| 0.705
DPJ.CollisonTree| 1032 (69) | 233[22.58%|132[12.70%| 1.253| 1.268| 3.282| 3.245
DPJ.K-Means 501 (38) 5*| 1.00%|33*| 6.59%]20.188(19.016|65.084(64.953
[Total | 5320 (468) [ 557[10.47%]388] 7.29%]

Table 2. Comparison of Programmer Effort and Runtimes between DPJ and HJp

IsolatedObject. This class has two fields, new_centers and globalSize, where
the first is marked as an exclusive field to allow it to be accessed during an
isolated region isolated (x) for the parent ClusterAttr object x. The second field,
globalSize, is a primitive Java integer, and so does not need to be exclusive.

We also directly compared HJp with DPJ on the DPJ benchmarks. This
comparison is summarized in Table 2. On average, HJp required modification
to only 7.3% of the LoC, while DPJ required modification to 10.5% of the LoC.
For most benchmarks, HJp requires fewer annotations; for K-Means, however,
HJp requires annotations on 33 LoC, as opposed to the 5 LoC for DPJ. Both the
K-Means and MonteCarlo benchmarks, however, are not completely verified by
DPJ: each of these benchmarks require the user to add a commutative annotation
to one of the methods. This is an unchecked user assertion in DPJ stating that
two parallel executions of the method always commute. Thus, although the HJp
version of K-Means requires more annotations, this version is statically verified.
Further, the HJp version of the MonteCarlo benchmark is also statically verified,
and requires fewer annotations than DPJ.

The execution times of DPJ and HJp were also compared, to ensure that there
is nothing about HJp that limits performance. The results are given on the right
side of Table 2. This includes numbers for two machines: a 16-core (quad-socket,
quad-core per socket) Intel Xeon 2.4GHz system with 30GB of memory, running
Red Hat Linux (RHEL 5) and Sun JDK 1.6 (64-bit version); and a 128-thread
(dual-socket, 8 cores per socket, 8 threads per core) 1.2 GHz UltraSPARC T2
(Niagara 2) with 32 GB main memory, running Solaris 10 and Sun JDK 1.6 (64-
bit version). The size of the thread pool for DPJ was varied, and the table shows
the best numbers obtained. In most cases, DPJ and HJp performed comparably.
For K-Means, HJp performed better; we believe this is because the DPJ runtime
uses JUC locks, while HJp uses the built-in synchronized construct of Java,
which is significantly faster.

8 Related Work

There has been much recent work on imperative parallel programming languages
that prevent data races, mostly based either on ownership or permissions. In the



former, each object has an owner, specified in its type, that mediates all accesses
to the object. Originally introduced by Clarke et al. [15] to control aliasing,
Boyapati et al. [11] showed how to use ownership to ensure race-freedom by only
allowing accesses to an object when the current task either owns an object or
holds a lock that owns an object. Static race detection [25,1,19,2] is form of
ownership, where each object is either owned by a lock or by the current task. In
the work of Vaziri et al. [33,32], object fields are owned by atomic set objects,
which ensure that all sequences of accesses to a group of related values satisfy
a strong consistency guarantee called atomic-set serializability. Deterministic
Parallel Java (DPJ) [7,6] also fits the ownership model, where each object is
owned by a memory region. DPJ ensures determinism by restricting parallelism
to disjoint regions.

Though it is a powerful notion, ownership suffers from a number of draw-
backs. First, it requires programmer annotations to specify ownership; e.g., the
comparison of HJp with DPJ in Section 7 indicates a higher annotation burden
in DPJ. Second, ownership-based systems are only designed for a single par-
allel pattern; e.g., traversal-based ownership in DPJ and lock-based ownership
in other approaches. The work of Vaziri et al. [33,32] partially addresses this
concern, since all synchronizations are automatically generated by the compiler
after the atomic sets are specified. A final issue is the static nature of ownership.
This means that the synchronization behavior of an object cannot change over
time, which again limits the algorithms that can be written using ownership.

Permission-based systems, in contrast, view the ability to access an object as
a resource, which may change over time. They are closely related to linear type
systems, which ensure that resources are not duplicated or deleted when doing
so is disallowed. A number of systems for avoiding races have been based on lin-
ear types, since only one task can have permission on a linear pointer at a time.
Haller and Odersky [20] describe one such system, Scala capabilities. A major
breakthrough was Boyland’s work on fractional permissions [12], which showed
how a linear read/write permission could be split into fractional read permis-
sions. One approach that builds on this work is typestate-oriented programming
(TSOP) [35,4, 5], in which the “state” of an object may be changed only when
an exclusive, non-fractional permission is held for it. Beckman et al. [4] use this
approach to ensure that state changes do not cause data races. Although gradual
typing has been studied for TSOP [35], it is not clear that this could be directly
applied to race-freedom as in HJp. In addition, permissions have been studied
in the context of program verification using separation logic [16, 10, 9].

The storable permissions of HJp can be seen as a restricted form of Boyland’s
nested permissions [13]. Although storable permissions are less expressive, they
do seem to correspond to many of Boyland’s examples in a more concise way.
Specifically, storable permissions allow these examples to be expressed without
using existentials, object equality, and disjunction at the type level, which seem
to be required to express them using nested permissions. Fahndrich and DeLine
[18] have also introduced a notion of permission guards, where permission “key”
p allows access to a linear permission 7. The latter can be temporarily borrowed



using the “focus” construct when permission key p is held, in a manner similar
to permission borrowing for exclusive fields in HJp.

9 Conclusions

In this paper, we present a new type system for race-free parallel programming,
based on Boyland’s fractional permissions. Our system, Habanero Java with
permissions (HJp), is an extension of the Habanero Java (HJ) task-parallel lan-
guage. HJp is designed to be gradual, meaning that it can compile parts of a
program that do not contain any annotations or types related to race-freedom,
by inserting dynamic checks. This allows existing programs to be compiled with
no modifications. The programmer can then gradually add permission annota-
tions to increase performance and static guarantees, eventually leading to a fully
annotated, race-free program. Further, no parallel or concurrent programming
expertise is necessary to understand these permission annotations. We demon-
strate how a number of different concurrency patterns, such as fork-join, array
partitioning, and objects guarded by critical sections, can be accommodated in
HJp. We also introduce a number of theoretical advances over previous work on
fractional permissions, including aliased write permissions and simpler way to
store permissions in objects than previous approaches. Finally, we evaluate the
annotation burden required to yield statically-verified race-free benchmarks in
HJp starting from existing HJ benchmarks, using a complete implementation
of the compiler and runtime of the HJp type system. Our results show that for
15 benchmarks we have been able to statically verify race-freedom with only a
modest number (5% of the lines of code on average) of annotations.
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