
Folding of Tagged Single Assignment Values for
Memory-Efficient Parallelism

Dragoş Sbîrlea1, Kathleen Knobe2, and Vivek Sarkar1

1 Department of Computer Science, Rice University, {dragos,vsarkar}@rice.edu
2 Intel Corporation, kath.knobe@intel.com

Abstract. The dynamic-single-assignment property for shared data ac-
cesses can establish data race freedom and determinism in parallel pro-
grams. However, memory management is a well known challenge in mak-
ing dynamic-single-assignment practical, especially when objects can be
accessed through tags that can be computed by any step.
In this paper, we propose a new memory management approach based
on user-specified folding functions that map logical dynamic-single -
assignment (DSA) tags into dynamic-multiple-assignment (DMA) tags.
We also compare folding with get-counts, an approach in which the user
specifies a reference count for each single-assignment value. The con-
text for our work is parallel programming models in which shared data
accesses are coordinated by put/get operations on tagged DSA data
structures. These models include dataflow programs with I-structures,
functional subsets of parallel programs based on tuple spaces (notably,
Linda), and programs written in the Concurrent Collections (CnC) co-
ordination language. Our conclusion, based on experimental evaluation
of five CnC programs, is that folding and get-counts can offer significant
memory efficiency improvements, and that folding can handle cases that
the get-counts cannot.

1 Introduction

The multicore revolution has increased the urgency for developing programming
models that deliver scalable parallelism with minimal effort by programmers.
The use of shared data structures by parallel tasks has proved to be a two-edged
sword in pursuing this goal. On the one hand, a shared address space can reduce
the semantic gap between a sequential program and its parallel version. On the
other, uncoordinated accesses to shared data structures are a notorious source
of bugs that arise from data races and other sources of nondeterminism leading
to the programmability wall.

One approach to addressing the drawbacks of shared data structures is to
enforce a dynamic-single-assignment property for shared data accesses, since it in
turn can establish data race freedom and determinism in parallel programs. Thus,
the context for our work is parallel programming models for multicore and many-
core processors in which all shared data accesses are performed through put/get
operations on dynamic-single-assignment data structures indexed using associa-
tive tags (keys). These models include dataflow programs with I-structures [1],



2

functional subsets of parallel programs based on tuple spaces (notably, Linda
[7]), and programs written in the Concurrent Collections (CnC) coordination
language [3].

However, past experiences with implementations of functional languages have
shown that memory management can be challenging with the dynamic-single-
assignment property. It becomes even more challenging when objects can be
accessed through user-computable tags, since standard reference-based garbage
collection cannot be applied in that case. In this paper, we propose a new mem-
ory management approach based on user-specified folding functions that map
logical dynamic-single-assignment (DSA) tags into dynamic-multiple-assignment
(DMA) tags. We also compare folding with get-counts, an approach in which the
user supplies a function that maps tags to integers indicating the number of gets
that will occur on the item Both approaches are fail-safe i.e., an exception is
thrown if the program performs accesses that are inconsistent with the folding
functions or get-counts.

There has been a lot of past work focused on converting a multiple-assignment
program to dynamic single assignment form so as to simplify program opti-
mization and transformation. An early paper [6] described several applications
of dynamic single assignment, such as conversion of a program to a set of re-
currence equations, scalar expansion, array expansion [5], program verification
and parallel program construction. In contrast, folding addresses the dual prob-
lem of converting a dynamic single assignment program to multiple-assignment
form with reduced memory requirements. Based on the well known challenges
in transforming static single assignment form to multiple assignment form [2], it
is natural to expect that translating out of dynamic single assignment form will
be a challenging problem too, especially when the original non-DSA program is
unavailable. To the best of our knowledge, this paper is the first to propose a
user-specified “folding” approach to address this problem.

In summary, this paper includes the following contributions:

– Basic folding (Section 2.1), a novel memory management technique for ac-
cesses to associative dynamic-single-assignment data structures (item collec-
tions). This technique relies on user-specified folding functions with fail-safe
checks for correctness at runtime.

– Update-in-place memory reuse (Section 2.2), an extension that allows the
user to specify GetForUpdate operations that allow an input item to be
rewritten as an output. This approach can be used both with folding func-
tions and get-counts, and includes fail-safe checks as well.

– Extended folding (Section 2.5), an extension to basic folding for items that
are written but never read.

– A design and implementation (Section 3) of the above folding and get-count
techniques for the CnC model.

– Empirical results (Section 4) that show that folding and get-counts can of-
fer significant improvements in memory efficiency over the baseline version
without these techniques.



3

2 Folding of Dynamic Single Assignment Values

2.1 Basic folding

The intuition behind folding is as follows: if we know that two values have non-
overlapping lifetimes, we can assign them to the same physical storage thereby
reducing the maximum memory requirement for the application. Following the
terminology used in the CnC model, we refer to the associative dynamic-single-
assignment (DSA) data structures assumed in this work as item collections, to
keys as tags, values as items, and computational tasks as steps. The two oper-
ations supported by item collections are put(tag, item) and get(tag). The DSA
property requires that dynamically at most one put() operation be performed
for a given tag. Further, each get() operation is assumed to be blocking i.e., it
only returns a value after a put() operation has been performed with that tag.

Definition 1 (Folding function) A folding function f transforms a logical
tag t1 to a physical tag, f(t1). Thus, the logical put(t1, i1) operation is trans-
formed into a physical put(t1, f(t1), i1) operation, where f(t1) is the physical
location used to store the item and the original tag t1 is stored as an auxil-
iary value. Likewise, the logical get(t1) operation is transformed into a physical
get(t1, f(t1)) operation.

Thus, the folding function maps DSA tags to dynamic multiple assignment
(DMA) tags which are associative indices into a physical store. When a new item
i2 is mapped to the same physical store location as a previous item i1 (because
f(t1) = f(t2)), the space of i1 is freed. Example executions of a program that
computes the n-th Fibonacci element are in Figures 1 and 2 (without and with
folding, respectively). Item n can fold over item n−2. The folding function used
is: fold(n) = (n+ 1)%2 + 1.

This use of a folding function is called basic folding. As discussed later in
Section 2.3, a runtime error may be thrown if the folding function is specified
incorrectly, but a get() operation will never return an incorrect logical value.

Key:	
  1	
  
Value:	
  1	
  

Key:	
  2	
  
Value:	
  1	
  

Key:	
  3	
  
Value:	
  2	
  

Key:	
  1	
  
Value:	
  1	
  

Key:	
  2	
  
Value:	
  1	
  

Key:	
  3	
  
Value:	
  2	
  

Key:	
  4	
  
Value:	
  3	
  	
  

Key:	
  1	
  
Value:	
  1	
  

Key:	
  2	
  
Value:	
  1	
  

Key:	
  3	
  
Value:	
  2	
  

Key:	
  4	
  
Value:	
  3	
  	
  

Key:	
  5	
  
Value:	
  5	
  

Key:	
  1	
  
Value:	
  1	
  

Key:	
  2	
  
Value:	
  1	
  

Ti
m
e	
  

Fig. 1: Item collection content for a
baseline execution of Fibonacci.

Key:	
  1	
  
Value:	
  	
  

(ltag	
  =1,val	
  =1)	
  

Key:	
  2	
  
Value:	
  

(ltag=2,val=1)	
  

Key:	
  1	
  
Value:	
  

(ltag=3,val=2)	
  

Key:	
  2	
  
Value:	
  

(ltag=2,val=1)	
  

Key:	
  1	
  
Value:	
  

(ltag=3,val=2)	
  

Key:	
  2	
  
Value:	
  

(ltag=4,val=3)	
  

Key:	
  1	
  
Value:	
  

(ltag=5,val=5)	
  

Key:	
  2	
  
Value:	
  

(ltag=4,val=3)	
  

Ti
m
e	
  

Fold(3)=1	
  

Fold(4)=2	
  

Fold(5)=1	
  

Fig. 2: Item collection content for a folding
execution of Fibonacci.

We now identify the conditions under which folding is legal. As an example,
consider the following sequence of logical get() and put() operations: “put(t1, i1);
get(t1); put(t2, i2); get(t1)”. In this case, it would be illegal to fold items i1 and
i2 on the same location because they have interfering live ranges [11]. To ensure



4

safety for folding two items, they must have disjoint lifetimes in any possible
schedule of the program.

Definition 2 (Item lifetime) The lifetime of an item in a program execution
is the interval between the execution point at which the item is produced by a
put() operation and the execution point of the last get() operation performed on
the item. If there are no get() operations, the lifetime begins and ends at the
put().
Definition 3 (Legal program) A legal program is one that always completes
execution with all get() operations having successfully completed, for all possible
schedules.
Definition 4 (Correct folding transformation) A folding transformation for
a legal program P specified by folding function f is correct if, for every input I,
an execution of P with input I and folding function f is also legal (no blocked
gets()) and results in the same result for each get() operation as the original
execution of program P without folding.
Theorem 1 (Folding correctness requirement). For a folding transforma-
tion of a legal program to be correct, the folding function must not fold together
any two items whose lifetimes may overlap. [Proof omitted due to space limita-
tions.]

2.2 Folding with Update-in-place Memory Reuse

Basic folding ensures that memory can be reclaimed after the end of a compu-
tational step that performs the last logical get() operation on an item. However,
many steps have the following computational structure: “i1 = get(t1); allocate i2;
i2.set(G(i1)); put(t2, i2);”. With basic folding, both i1 and i2 will be assumed to
be simultaneously live and will contribute to the maximum memory requirement
for the program. However, if function G can be implemented as an update-in-
place function, then i1’s storage can be reused for i2 if get(t1) is the last get
operation performed with logical tag t1. To enable this optimization, we allow
the user to use a getForUpdate() operation instead of get(), as an indication
that this is the last get() operation for the given tag in any schedule, thereby
making it possible for item i1 to be updated in place to obtain item i2. Figure 3
is an example. As with the folding function, the correctness of a getForUpdate()
operation will also be checked at runtime so as to guarantee fail-safe behavior
(see Section 2.3).

2.3 Error detection

The folding error detection mechanisms are based on the assumption that the
original program is legal (Definition 3) without the folding optimization. We
define any behavior of a legal program in the presence of folding that differs
from the behavior of a non-folded execution as an error.

For example, a get() that returns an incorrect value would constitute an error.
This could happen, if the content of the physical store location corresponding to



5

Tile	
  1	
  @A1	
  
Tile	
  1	
  @A1	
  

Key:	
  1	
  
Value:	
  	
  

(ltag=1,val=Tile1)	
  

Key:	
  1	
  
Value:	
  

(ltag=2,val=7le2)	
  

Ti
m
e	
  

Copy	
  of	
  Tile	
  1	
  
@A2	
  

Step	
  1	
  

Modified	
  Copy	
  
of	
  Tile	
  1	
  @A2	
  

Key:	
  1	
  
Value:	
  	
  

(ltag=1,val=Tile1)	
  

Key:	
  1	
  
Value:	
  

(ltag=2,val=7le2)	
  

Ti
m
e	
  

Step	
  1	
  

Tile	
  1	
  @A1	
  	
  
(to	
  collect)	
  

Modified	
  Tile	
  1	
  
@A1	
  

Tile myTile = Get(1);!
Update(myTile);!
Put(2, myTile);!

Tile myTile = GetForUpdate(1);!
Update(myTile);!
Put(2, myTile);!

Fig. 3: Left: With a get() call, the item memory is copied before being returned
to the step, which can modify it and put() it with some other tag. This leaves
the old item memory to be collected when an item folds over its entry in the
store. Right: With getForUpdate, the copy is not performed and no memory will
need to be collected, as it is reused by the new item.

a particular tag is returned without checking that the logical tag of the item in
that location corresponds to the logical tag of the item we are trying to get. If
the item in the store does not have the same logical tag, we need to wait for it to
be produced. However, if the item was previously produced and some other item
was erroneously folded over it, we will never find the item. Without an error
checking mechanism, the program may finish with blocked steps instead of the
correct non-folded behavior.

To enable detection of such errors, we define a debug mode for folding, in
which a boolean flag is stored for each tag that is put() during execution. Using
this flag, we can differentiate between items that are not present in the physical
store because some other item was folded over them and items that have not
been produced as yet. A get() performed on previously overwritten items should
throw an exception reporting an incorrect folding function, but a get() should
block until the item is produced if that is not the case. In debug mode the system
also detects dynamic single assignment violations (on every put, if the boolean
flag for that logical tag was previously put(), we report an exception) with or
without the presence of folding.

2.4 Programmability benefits of folding

To illustrate the benefits of folding with error detection, consider a common
technique used by performance-oriented C programmers where storage is reused
instead of calling free() followed by malloc(). This approach can be especially
error-prone for parallel programs, because the overlap in lifetime between the
initial and subsequent values may be schedule-dependent. With folding, a similar



6

reuse of memory could be achieved in a fail-safe manner by folding the two logical
items and using the getForUpdate mechanism for memory reuse.

As a concrete example, consider the classic two-buffer approach used by it-
erative algorithms in which one buffer is used as an input and the other as the
output, and their roles are swapped in each sequential iteration. With our folding
approach, the programmer can think in terms of allocating a new DSA output
buffer in each iteration, and a folding function can effectively perform the swap.
This approach was used in our implementation of a Routing simulation appli-
cation (see Section 4) where the routing tables for one iteration are built using
the routing tables of the previous one, and a folding function was specified as
follows:

public final Object fold(point tag) {
int i, j, k; //i: node id, j: iteration id; k: repetition #
i = p.get(0); j = p.get(1); k = p.get(2);
return new point(i, j%2, k);

}

2.5 Extended folding: Folding with ordering

Items with empty lifetimes pose an interesting research challenge for folding.
Consider a program that expects to produce and consume items in order as
follows: “Step1: [put(t1, i1)] Step2:[get(t1);put(t2, i2)] Step3:[get(t2); put(t3, i3)]
Step4:[get(t3)] ”. In such a case, it might seem reasonable to fold t1, t2, and
t3 to the same physical location. However, if (say) get(t2) is not performed for
some reason, there is no way (if using blocking-get synchronization only) to
ensure that put(t2, i2) completes before put(t3, i3), thereby making the folding
incorrect (because get(t3) may never find t3 as it has been folded over).

This is an instance of the more general problem caused by optional get() calls
but in this particular case there is a way to solve the problem. We propose an
extension to folding that allows folding of items that may never be consumed.
Such items can appear when control dependent gets are used, for example with
short-circuit boolean operations such as “get(t1) && get(t2)”. We observe that
items that are never read have an empty lifetime and can be optimized away
from the physical store. However, this may not be known at the time of the put()
operation, but may be known when a subsequent put() is performed on the same
physical location.

We can express this by allowing the presence of an additional user function
that acts like a “compare age" operation. If an item that is being put maps to
a physical location where another item resides and should be declared dead,
the function returns true (“newer"), and the new item is stored. Otherwise, if
the new item is known to never be read, it returns returns false (“older"), the
incoming item is not stored and the old item is retained.

To perform the age comparison, the function needs two parameters: the tag of
the item being put currently and the tag of the old item that exists in the location
in the physical store where the new item would be inserted. The programmer



7

has to identify if the tag of the current item in the item collection means that
all of the steps that could access the incoming item have executed and did not
access the incoming item. If this is the case, then the incoming item can safely be
discarded. The Rician Denoising benchmark (see Section 4) uses this extension.

3 Implementation

We have implemented folding as an extension to the Habanero Java CnC runtime
[3]. The Java key-value data structure used to implement item collections is now
indexed by DMA tags instead of DSA tags. When an item is put() with DSA
tag t1 its corresponding DMA location in the store is determined by identifying
pt1 = f(t1), where f is the folding function. Then, the physical store is accessed
to see if there is any entry at that physical location. If there is none, we create
it, and label it with the logical tag t1. If there is, we need to hold a lock on
the physical store location while the following operations are performed. First,
we update the logical tag of the physical store entry to the logical tag of the
item that has just been put. Then, we go through the list of steps waiting on
that particular physical store location and, for each step that is waiting for the
current item mark it as ready for execution. The marked marked continue their
execution by performing a get() that will succeed because the desired item is
already in the physical store.

When a get() on item with DSA tag t1 is performed, its DMA tag is de-
termined by identifying pt1 = f(t1). If the entry does not exist, it is created,
inserted in the physical store and the step is added to its list of waiting steps. If
the entry does not correspond to the logical tag of the item, it registers itself to
wait also. Compared to a non-folding execution, the only extras step needed for
insertion is the application of the folding function (which does not need synchro-
nization and has minimal overhead). The bigger overhead is in the put() , where
the list of waiting steps has to be checked linearly to unblock only the steps that
are waiting for the new item and this happens while holding the lock. We chose
to have the overhead in the put() and not get() as the get() is usually performed
multiple times on a single item and our approach leads to less contention.

Both the get-counts and folding policies only remove items from item collec-
tions, so that there is no object reference pointing to them; the Java garbage
collection subsequently reclaims the memory.

4 Results

The following results were obtained on a 16 core Xeon system with 16GB RAM,
running Habanero Java implementation of Concurrent Collections [3] on a 64 bit
Java 1.6, using 16 workers for the work-stealing CnC runtime and Java default
garbage collection mechanism. In this section we compare the performance and
memory footprint of the following CnC memory management policies:
1. Baseline: non-collecting CnC (items are never removed from item collections)

leading to memory leaks, but also no folding overhead.



8

2. Get-counts: memory management in which the user specifies a reference
count for selected items, the count is decremented on every get() operation
on a specified item, and the item is freed when the count becomes zero.

3. Folding : the folding runtime described in Section 3. We used the ordering
extension described in Section 2.5 as needed and the tables contain the “Or-
dered" specifier where this happened.

For each policy used, we obtained the following measurements:
1. Execution Time - We performed thirty repetitions of the program in the

same JVM instance, and reported the average, as advocated in [8].
2. Memory at end - the program footprint after the CnC graph finishes execu-

tion. With this metric, get-counts has an advantage because it removes items
immediately, where as folding waits for the birth of another item, so at the
end folding usually has more live items. In contrast, folding saves some work
by taking a lazy approach to freeing items.

3. Items at end - similar to the previous metric, but expressed in items.

We evaluated the impact of folding and get-counts on the following applica-
tions:
1. Microbenchmark showing the difference in scalability between get-counts and

folding with the number of reads per item.
2. N-body simulation for performance analysis.
3. Routing simulation as an application in which get-counts might lead to leaks

because items have a number of accesses unknown at creation time, but
folding works without needing the Ordered extension.

4. Rician denoising as example of an application in which folding with ordering
can safely be used, but get-counts leads to leaks because some items have
data-dependent accesses whose number is unknown.

5. Cholesky factorization as an example of memory reuse via the getForUpdate
optimization.

Microbenchmark: Scalability with read/write ratio This benchmark varies the
reads to write ratio to analyze the performance of the two collection mechanisms.
Because folding performs most of the synchronization on put() as opposed to get-
counts, which performs most of the synchronization on get(), we checked if the
best performing policy might be get-counts for low read/write ratio. However,
as shown in Figure 4, the folding version runs faster than both get-counts and
baseline CnC even for a ratio of 1. Some applications may have a read/write
ratio lower than one; performance for this case is analysed later using the Rician
Denoising application.

N-Body Simulation We implemented the O(N2) algorithm for N-body simulation
with both get-counts and folding and the results are shown in Table 1. The
folding policy performs well because this benchmark has a small step granularity,
large number of items and thus more contention on the item collections. The fact
that folding has less synchronization of gets (in this application there are 10 gets
per item) leads to a consistent (1.3×) performance improvement compared to



9

0	
  

20000	
  

40000	
  

60000	
  

80000	
  

100000	
  

120000	
  

0	
   50	
   100	
   150	
   200	
   250	
   300	
   350	
  

Ex
ec
u&

on
	
  &
m
e	
  
(m

s)
	
  

Read/Write	
  Ra&o	
  

Performance	
  varia&on	
  with	
  read/
write	
  ra&o	
  

Baseline	
  

GetCounts	
  

Folding	
  

Fig. 4: Performance with read/write ratio (16 core Xeon)

get-counts. The get-counts footprint is smaller because folding can only reduce
the footprint to the maximum footprint of the program during its execution, and
in this case, that footprint is 20 items, which is also the maximum theoretical
footprint for get-counts.

CnC Time Memory at end
policy (s) (bytes) (items)
Baseline 16.9 277.0 MB 1,000,005
Get-Counts 18.1 3.6 KB 10
Folding 13.0 7.0 KB 20

Table 1: Experimental results for
NBody (5 bodies, 100000 timesteps)

CnC Time Memory at end
policy (s) (bytes) (items)
Baseline 21 61.0MB 102000

Get-Counts 25 10.7KB 1000
Folding 21 1.3MB 2000

Table 2: Experimental results for
Routing, with reliable links.

Routing Simulation The routing simulation benchmark has unknown number of
gets on each item, making it a challenge for the get-counts approach. It simu-
lates the convergence of min-distance routing protocols such as IS-IS [10] and
OPSF [9]. As links might go down, when a routing table is being built, we can-
not know how many gets will be performed on that node. In such cases, the
get-count will never reach zero and the item will become a memory leak. To
see how the number of leaked items varies with the chance of links failing we
varied the chance of a message not getting through from 0 to 10%, as shown in
Figure 5: at only 1% failure rate half the items are leaked. Even in the absence
of link failure, folding shows a 16% performance improvement over get-counts
(Table 2).

Rician Denoising Rician (Poisson) denoising is an image processing application.
Its global convergence check is a reduction on the convergence status of all
tiles and it is sped up using a short-circuit evaluation: if a single tile changes
significantly we do not need to wait for the convergence condition of all the other



10

0	
  

20000	
  

40000	
  

60000	
  

80000	
  

100000	
  

120000	
  

0%	
   0.00%	
   0.01%	
   0.10%	
   1%	
   10%	
  

It
em

s	
  
at
	
  e
nd

	
  

Chance	
  of	
  link	
  failure	
  per	
  message	
  

Baseline	
  

GetCounts	
  

Folding	
  

Fig. 5: Relation of link fail rate and memory leaks.

tiles to be evaluated, we immediately know we will need an additional iteration
and can start spawning the corresponding steps.

Shortcircuit CnC policy Time Memory at end
operators (s) (MB) (Items in each collection)

Im
ag
e

G
ra
di
en
t

Im
ag
e×

G
ra
di
en
t

Fa
ct
or

C
on

ve
rg
en

ce
St
at
us

Enabled
Baseline 6.5 2888 10800 10400 10400 10400 10400

Get-Counts 2.6 740 800 0 0 0 9897
Folding (Ordered) 2.6 800 1200 800 800 800 800

Disabled
Baseline 8.1 2888 108006 10400 10400 10400 10400

Get-Counts 3.7 720 800 0 0 0 0
Folding 3.5 830 1200 800 800 800 800

Table 3: Performance comparison for Rician Denoising: image size 2560*1280, tile
size 128*64. Shortcircuit reductions DISABLED (top) and ENABLED (bottom).

The results (Table 3) show the performance of get-counts and folding: folding
offers the best performance. Furthermore, get-counts leads to leaks of items
from the ConvergenceStatus item collection in which the operands of the short-
circuit operators are stored (the cause of the leaks is the unknown number of
gets): 95% of items stored in that item collection are leaked, totaling 20MB.
However, without short-circuit operators, get-counts collects more items because
at the end of the program, all the items stored in the item collections that store
intermediate results (Gradient, ImageTimesGradient, etc) can be collected. This
does not affect the actual high water-mark of the program which is the same in
both folding and get-counts executions.

Cholesky Factorization Cholesky factorization is a numerical application whose
input is a symmetrical positive-definite matrix and output a lower-triangular
matrix. One possible CnC implementation was previously described and bench-
marked in [4] and the results were encouraging.



11

Table 4 shows that the proposed update-in-place optimization, if applied on
either get-counts or folding, can lead to a large performance increase. Using get-
ForUpdate leads to a performance improvement between 10% and 20% for both
collecting policies. Baseline CnC cannot safely apply this optimization without
additional programmer input to ensure that whenever GetForUpdate is called,
the item accessed is indeed dead. To work around this, we manually added this
call only when such accesses are safe.
Input CnC Policy Without update-in-place With update-in-place
Size Time Item collection memory Time Item collection memory

(s) (MB at end) (items at end) (s) (MB at end) (items at end)

2000

Baseline 0.9 142.2 952 0.8 33.7 952
Get-Counts 0.9 33.7 272 0.8 33.7 272
Folding 0.9 33.7 272 0.7 33.7 272

4000

Baseline 7.3 1008.5 6512 5.6 133.2 6512
Get-Counts 6.2 133.2 1056 5.6 133.2 1056
Folding 6.2 133.2 1056 5.0 133.2 1056

6000

Baseline 26.6 2680.2 20776 19.5 298.4 20776
Get-Counts 22.3 298.4 2352 19.2 298.4 2352
Folding 21.6 298.4 2352 19.1 298.4 2352

Table 4: Performance comparison for Cholesky factorization (125*125 tiles).

Memory High-watermark comparison Table 5 shows the maximum number of
live items during the execution of the benchmarks. This metric shows, in the
schedules and with the parallelism actually used during execution, what is the
maximum number of items that were live - the memory “high-water mark" of
the program. To obtain these values we used atomic counters that tracked the
number of stored items. The results show that maximum live items number
is lower than the bound identified by folding. However, in the future, as the
number of processors grows, more tasks will run concurrently and the number
of live items will increase.

Benchmark Baseline Get-Counts Folding
Nbody 1,000,005 19 20
Routing 102000 1100 2000

RicianDenoising
Image 10800 800 800
Gradient 10400 27 800
Image × Gradient 10400 26 800
ConvergenceStatus 10400 9897 800

Cholesky (6000) 20776 2352 2352

Table 5: Maximum number of items live during execution

5 Conclusions and Future Work

In this paper, we introduced a new memory management approach based on user-
specified folding functions that map logical dynamic-single-assignment (DSA)



12

tags into dynamic-multiple-assignment (DMA) tags, while preserving semantic
guarantees of data race freedom and determinism. Our approach is applica-
ble to parallel programming models in which shared data accesses are coor-
dinated by put/get operations on tagged DSA data structures. These models
include dataflow programs with I-structures, functional subsets of parallel pro-
grams based on tuple spaces (notably, Linda), and programs written in the Intel
Concurrent Collections (CnC) coordination language. Our conclusion, based on
experimental evaluation of five CnC programs, is that folding can offer signif-
icant memory efficiency improvements, and that folding can handle cases that
get-counts (an alternative approach to user-specified memory management) can-
not. An interesting direction for future work is automatic generation of folding
functions. In many of the benchmarks that we studied, it is possible to use static
analysis of get and put function parameters to identify candidates for folding.

Acknowledgments

We are grateful to the Intel Concurrent Collection team, in particular Frank
Schlimbach, James Brodman and Ryan Newton (now at Indiana University), for
proposing the Get-Counts idea and for having stimulating discussions. We thank
Shams Imam for his debugging help and thorough feedback and the reviewers
for their helpful comments.

References

1. Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. I-structures: data structures
for parallel computing. ACM Trans. Program. Lang. Syst., 11, October 1989.

2. Benoit Boissinot, Alain Darte, Fabrice Rastello, Benoit Dupont de Dinechin, and
Christophe Guillon. Revisiting out-of-ssa translation for correctness, code quality
and efficiency. CGO ’09, pages 114–125, Washington, DC, USA, 2009.

3. Zoran Budimlic, Michael Burke, Vincent Cavè, Kathleen Knobe, Geoff Lowney,
Ryan Newton, Jens Palsberg, David Peixotto, Vivek Sarkar, Frank Schlimbach,
and Sagnak Tasirlar. Concurrent collections. Scientific Programming, 2010.

4. A. Chandramowlishwaran, K. Knobe, and R. Vuduc. Performance evaluation of
concurrent collections on high-performance multicore systems. In IPDPS, 2010.

5. P. Feautrier. Array expansion. In Proceedings of the 2nd international conference
on Supercomputing, ICS ’88, pages 429–441, New York, NY, USA, 1988. ACM.

6. Paul Feautrier. Dataflow analysis of array and scalar references. International
Journal of Parallel Programming, 20(1):23–51, Feb 1991.

7. David Gelernter. Generative communication in linda. ACM Trans. Program. Lang.
Syst., 7:80–112, January 1985.

8. Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous java
performance evaluation. In Proceedings of the 22nd annual ACM SIGPLAN con-
ference on Object-oriented programming systems and applications, 2007.

9. J. Moy. OSPF Version 2. RFC 2178, July 1997. Obsoleted by RFC 2328.
10. D. Oran. Osi is-is intra-domain routing protocol. RFC 1142, February 1990.
11. Linda Torczon and Keith Cooper. Engineering A Compiler. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2nd edition, 2011.


