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Abstract

The following report summarizes the proceedings of a three-and-a-half day inter-agency work-
shop focused on the technical challenges of HPC resilience in the 2020 Exascale timeframe. The
resilience problem is not specific to any particular program or agency; coordinated resilience
solutions will be challenging because of the need for a truly integrated approach. The inter-
agency workshop therefore focused on articulating practical, synergetic R&D goals by assembling
a small but diverse group of experts representing system hardware, system software, application
developers and users, algorithms and libraries, file systems, I/O and storage, visualization and
data analytics for a collective deep dive on the problem of resilience. The workshop format was
highly interactive, focused on problem solving teams of not more than ten persons each. Partic-
ipants were tasked to collaboratively develop a plan and roadmap for implementing resilience at
extreme scale, resulting in “proof of concept” strategies for resilience on future, general purpose
HPC systems in the application domains of “predictive science” and “not predictive science”.
Those strategies were analyzed in the context of future Exascale requirements relative to power,
performance, reliability, usability, dependability and time-to-solution. That analysis consisted
of an assessment of current capabilities, gaps and dependencies culminating in a strawman R&D
roadmap for an integrated resilience framework. These outcomes demonstrate both the need
for and existence of practical resilience strategies that address the future needs of applications
within the constraints of future Exascale technology.



Executive Summary

Resilience is about keeping the application workload running to a correct solution in a timely and
efficient manner in spite of frequent hard (i.e., unrecoverable) and soft (i.e., recoverable) errors. At
this inter-agency resilience workshop hosted by NSA Advanced Computing Systems, DOE/SC and
DOE/NNSA, thirty representatives of DOD, DOE, the national labs, industry and academia came
together to discuss the primary challenges facing resilience as we look down the road to general
purpose HPC in the Exascale timeframe. Workshop participants identified the following topic areas
as high priorities:

Fault Characterization: Reliability will get worse with deeply scaled process technologies creating new
modes of failure. Based on anticipated technology trends, the HPC community needs to develop a
useful taxonomy for describing the types of faults that future systems are expected to encounter,
including their anticipated frequency and impact.

Detection: In the Exascale timeframe, error “recovery” will likely be manageable using known techniques
for local checkpointing. Error “prediction” can reduce the frequency of permanent errors, not tran-
sients, but there are varying opinions on the current state of the research and whether or not the
problem is solvable in the Exascale timeframe. The research focus should be error “detection” which
requires the system and application to work together in a coordinated fashion. Industry is not going
to solve this problem for the HPC community.

Fault-Tolerant Algorithms: Three classes of algorithms were identified: (A) those that are embarrass-
ingly fault-tolerant, (B) those that are not fault-tolerant but are self-checking and (C) those that are
neither fault-tolerant nor self-checking. Most algorithms currently in class C above could be moved to
class B or even class A through a moderate R&D investment.

Fault-Tolerant Programming Models: Resilience would benefit strongly from a programming model
that accommodates some notion of transactions in time (e.g., roll-back and recovery) and space (e.g.,
fault containment domains). An uncomplicated, directive-based interface using a handful of asser-
tions (e.g., create persistent memory domains, allocate “reliable” and “unreliable” code regions, etc.)
provides most of the necessary interfaces for implementing application fault-tolerance.

Fault-Tolerant System Services: System software must be built hierarchically on a small set of highly
trusted services. Techniques for fault-avoidance are known and used in critical systems, but come
at a higher development and execution cost. The software stack should be structured to utilize the
majority of application and system execution cycles in software that may occasionally fail and rely on
trusted services to recover.

Tools: Resilience lacks a mature, validated test infrastructure to verify the effectiveness of various resilience
strategies for keeping the application running in the face of high rates of hard and soft errors. Fault
injection tools are particularly needed to simulate all classes of faults. Models will be required to
support the fault testing infrastructure at scale. In addition, tools themselves will need their own
resilience strategy to operate correctly at scale.

In summary, the number of errors, particularly soft errors, occurring on HPC systems will continue
to increase. A right-sized and well-conceived resilience strategy in the Exascale timeframe will be
ultimately far more cost effective for HPC than continuing to rely on ad-hoc resilience solutions.
That strategy must at a minimum provide for a resilience infrastructure that facilitates (1) system
management of hard errors, by effectively “converting” them to soft errors whenever feasible, and
(2) application management of soft errors, through interfaces that allow it simple controls over how
and when to respond to errors. Such a framework, based on timely and coordinated error detection
and recovery, can serve as the foundation of a deployable and sustainable HPC resilience strategy
in the Exascale timeframe.
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1 Introduction

1.1 Motivation for the Workshop

Resilience is about keeping the application workload running to a correct solution in a timely and
efficient manner in spite of system failures. Future extreme scale supercomputers are likely to suffer
more frequent failures than current systems: As devices scale, they are more susceptible to upsets
due to radiation and to errors due to manufacturing variances. The probability of multiple bit
upsets is growing, since an event is increasingly likely to impact multiple nearby cells. The use of
near-threshold voltage in order to reduce power consumption also increases error rates. Thus, we
can expect more frequent hardware failures, and a significant rate of undetected soft errors.

1.1.1 Hardware Considerations

Techniques do exist to develop more reliable hardware components – but such techniques have a
cost, and this cost will increase. It is far from obvious that the commodity market will provide
cheap, highly reliable components that can be used in future supercomputers. Components with
lower reliability will be cheaper and will be “good enough” for most markets such as personal and
mobile computing and large clouds. The market niches that require highly reliable systems – e.g.,
financial transactions or critical systems – will pay an increasing price premium for high reliability
or will learn how to build highly reliable systems from unreliable components. This “low-end
disruption” [8] has already started, with a large price differential between high volume commodity
processors and “mainframe quality” servers.

1.1.2 Software Considerations

In addition, supercomputing software is becoming more complex. This software serves a narrow
market and is hard to test at scale; hence, it is reasonable to assume it has a higher defect rate
than similar commercial software, and is more failure-prone. Indeed, a large fraction of failures
in current supercomputers is due to failures in the parallel file system and other complex software
subsystems. Additionally, the application is becoming more dependent on multiple levels of the
software stack including libraries and the runtime to support resilience. An error that kills the
communications library kills the applications depending on it, whether or not the actual error was
in fact “fatal” to the application.

1.1.3 The Role of System Scale

The HPC community appears to be learning how to cope with increasing failure rates and, quite
possibly, with a high incidence of undetected soft errors. Our current systems are not ready for
such a change. As an example, in a system where global checkpoint and restart take 20 minutes,
and where a component fails once an hour, more than 60% of the system time would be spent
checkpointing and restarting [9]. Faster checkpointing (e.g., using non-volatile memory) would
help, but would come at a nontrivial cost; faster checkpointing would also increase the likelihood
that errors occurring before checkpointing would be detected only after checkpointing. Finally,
none of the currently used techniques handle undetected soft errors.

Resilience at Extreme Scale (RES) is the problem of designing extreme scale supercomputers
that provide useful answers with acceptable time and power consumption, from hardware and
software components that are failure-prone. This is a cross-cutting problem: Errors in hardware
can corrupt application data, application code, system data or system code. Detection of and
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recovery from errors may happen at different layers of the system stack, with different costs and
different implications to hardware and software designers; recovery is likely to require a coordinated
action of many of these layers.

On the other hand, research on resilience is very compartmentalized: Research on resilient
hardware assumes that error detection and/or correction is fully contained at the hardware level;
research on resilient algorithms focus on application data corruptions but ignore any other type of
errors; etc. A piecemeal approach will not produce a solution to the resilience problem at extreme
scale. Instead, the HPC community needs to take a global view of the problem and on the possible
ways of handling detection and correction in a coordinated manner, at different levels of the system.

1.2 Vision for the Workshop

The Inter-Agency Workshop on HPC Resilience at Extreme Scale, that took place at the Center for
Exceptional Computing, Catonsville, MD, February 21-24, 2012 brought together a small group of
experts from multiple disciplines to start developing this roadmap and a strategy for R&D that will
lead to timely solutions to the RES challenge. The workshop was not intended to be the last word
in resilience, nor was it intended to exhaust the resilience challenges in the Exascale timeframe.
Rather, the vision for the workshop was to demonstrate both the necessity and sufficiency of a
coordinated resilience strategy. We hope that the results reported here can serve as a “stake in the
ground”, a useful first attempt to define a practical resilience framework for the Exascale timeframe.

1.2.1 The Nature of the Challenge

The RES problem matters to mission agencies – in particular DOD and DOE. Its solution will come
from an R&D program coordinated across multiple agencies. Such a program needs to be informed
by a proposed roadmap toward RES, an identification of the main roadblocks, and a focused list of
problems that need to be solved. Solutions can be incremental, encompassing an increasing number
of applications and reducing, over time, the human effort needed to achieve RES.

Thus, attendees were chosen to span the RES space as broadly as possible while still keeping
the working group sizes manageable (ten people or fewer) and the discussions focused. Participants
were instructed to concentrate on requirements, not existing solutions. They were explicitly told
that their current research interests were “off limits” for discussion. Participants stepped through
the process of articulating a cogent RES strategy and asked to distinguish “what needs to be done”
from “what could be done” or what constitutes an “interesting” research question.

1.2.2 Workshop Structure

The format of this report reflects the overall structure of the workshop. The technical challenges
of resilience in the Exascale timeframe, described in Section 2, were addressed first via a series of
overview talks. Next, domain experts were asked to summarize their requirements and capabilities
with regards to resilience: what they need from resilience and what they themselves can provide.
These discussions are summarized in Section 3.

Working from their knowledge of the salient architectural features of the system hardware and
software, working groups developed an actual implementation that integrates target application
domains into a notional system stack. Working groups were given tasking and specific assignments
focused around developing a resilience framework for the Exascale timeframe, summarized in Sec-
tion 4.They were encouraged to avoid getting “stuck” on issues not resolvable within the scope
of the workshop, but to press on towards developing a credible resilience plan for the Exascale
timeframe based on the knowledge of the experts at hand. This report describes their results.

Inter-Agency Workshop on HPC Resilience at Extreme Scale 2



2 Technical Challenges of HPC Resilience at Extreme Scale

The challenges of resilience in the Exascale timeframe are well documented by the HPC community
through a variety of Exascale studies and plans such as [6, 11]. For the purpose of this workshop
we summarize the key points as follows:

The scale challenge: At the system level, horizontal scaling of technology will require three or-
ders of magnitude increase in the number or size of components to reach Exascale. The
resulting aggregated failure rate at the system level will be two to three orders of magnitude
higher than today’s systems, assuming the component level reliability is kept at today’s FIT
rates. Some experts even doubt that maintaining today’s FIT rates will be possible without
an increase in power consumption, challenging the constraints on energy usage further for an
Exascale system. It is therefore reasonable to expect that an Exascale system will have much
shorter MTBF than existing Petascale systems.

The technology effect: It is expected that Exascale system will be made with a silicon node tech-
nology featured between 5 to 7nm. At this size, and this late stage of the CMOS technology,
several technology related issues will have more effect on resilience than in the current gen-
eration, including thermal concentration, electrical noise, near threshold voltage operation,
manufacturing quality and circuit complexity. An in-depth study of these issues is outside
the scope of this document, so we consider only the net effect on system resilience. It should
be expected that multi-bit upsets would be on the rise. Consequently, more complex circuits,
more sophisticated error checking will be required, consuming power and/or reducing perfor-
mance. Furthermore, some experts believe the unprecedented system size will result in some
of these errors escape detection, even with the best efforts. Some postulated that a single
silent error might affect the system per month of operation.

The energy challenge: Exascale systems must fit within a feasible power budget for operation
and cooling. However, resilience provisioning at the fundamental level is a form of provid-
ing redundancy either in space or time. Redundancy costs energy and performance, and
therefore Exascale systems will face an unprecedented tradeoff among power, performance
and resilience. For example, near-threshold voltage (NTV) operation is likely needed to fit
within the power budget. But NTV reduces resistance to soft errors, requiring compensating
techniques that will cost energy and performance resources, possibly negating some of the
energy savings. It is also possible that NTV may introduce susceptibility to temporary timing
hazards which will be easy to detect but may require unwinding several instructions in various
execution stages, again wasting energy due to detection and recovery actions.

The complexity challenge: RES in the Exascale timeframe will rely on the proper operation of
a highly complex, concurrent, and interdependent set of system services. Such software is
bug-prone and today is responsible for many of the interrupts experienced by the system. The
need to handle scale, more frequent hardware failures and energy will result in more complex
and more dynamic system services. Consequently, failure rates will increase.

Over the course of the workshop, participants met together in working groups to examine the current
state of HPC relative to these challenges (Section 4.1). They identified gaps (Section 4.2) and
dependencies (Section 4.3) associated with the challenges, and formulated a strategy (Section 4.4)
and a roadmap (Section 4.5) to implement solutions.
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2.1 System Challenges

Every strategy for RES will depend on the correct functioning of various system services: Hardware
failures must be detected and correctly reported; checkpoints must be correctly stored and retrieved;
processes must be correctly migrated; etc. However, system data and system code are as vulnerable
to device upsets as application data and application code. While most of the memory contains
application data, a significant fraction contains critical system data, such as page tables or routing
tables; this data is frequently accessed and cached, and can be corrupted. The effect of such
corruption – e.g., a corrupted page table or routing table entry can be far-reaching and very hard
to diagnose.

2.1.1 Description of Hardware and Software

An Exascale system will be constructed of commodity components assembled with the goal of
delivering 1000x greater double precision floating point performance than current Petascale DOE
systems at a power footprint of less that 20 MWatts. Delivered memory and storage capacity, inter-
and intra-node bandwidths and other system characteristics will ultimately depend on the availabil-
ity of funding for Exascale R&D and the effectiveness of technology insertion into the commodity
market. However, it is reasonably certain that a delivered Exascale system will achieve perfor-
mance through scale out, and energy efficiency through application of deeply scaled components
and carefully managed memory hierarchies.

For resilience, this implies increased number of components with no anticipated increase in
per component reliability. In addition, it poses challenges of increased complexity, creating more
data pathways that need to be protected against failure. Finally, the system susceptibility to soft
errors is expected to rise dramatically as a consequence of the requirement to increase pJoules per
operation by as much as 100x in Exascale timeframe [24].

System software is complex: it is distributed, nondeterministic, event driven and has timing
constraints, due to various time-outs. Its behavior will change as system configuration and size
changes.Therefore, it is practically impossible to test such software thoroughly; testing at scale is
expensive; in practice such testing occurs only after the first capability system using the software
is deployed. Most of the failures on current platforms are due to failures in various system services
– in particular, parallel file systems – which is, ironically, the subsystem that supports checkpoint
and restart. In some cases, parallel file systems have suffered from data corruption.

2.1.2 Why Not Just Build More Reliable Systems?

While it is desirable to have failure-free system hardware and software, this goal may not be
achievable at reasonable cost as both hardened components and methodologies to design and test
critical software tend to be extremely expensive. The challenge is to construct a system out of less
than perfectly reliable hardware and software that nevertheless behaves as a reliable system from
the perspective of the user.

Such a system is likely to be built hierarchically: e.g., the correct execution of application code
may depend on various system services that schedule resources, allocate memory and provide recov-
ery services; the correct function of these services may, in turn, depend on the correct functioning
of a hardware and software monitoring infrastructure that detects malfunctions, prevent the cor-
ruption of critical state, and initiate recovery processes. A complete solution to RES will require
new system services, to preemptively migrate components of a large computation, to negotiate with
the application modalities for error handling, to compartmentalize in time and space components
of an application, etc.
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2.1.3 A Resilient Software Architecture

How might one structure system services so that (a) errors are detected; and (b) the probability
that an error corrupts persistent state is negligible? One possible approach for achieving this goal is
to use a simplex architecture approach [38]: Focus on a design where a small, simple kernel can be
tested and implemented in a way that its fail-safe functioning is all but guaranteed; and where this
small, trusted kernel ensures the detection of errors in system services and prevents the corruption
of persistent state. Most of the software can be executed efficiently without being designed and
tested to the exacting standards of a fail-safe kernel. Yet, that small kernel architected to more
exacting standards and executed in a way that prevents hardware-caused errors is sufficient to
ensure proper recovery from errors in the main execution stream.

An application may require different levels of reliability for different parts of their execution and
different data sets. The system needs to accommodate these different reliability needs, e.g., by map-
ping threads and data sets to proper hardware resources, and providing an API to negotiate these
needs with the application. The application may also require varying degrees of fault containment.
The resource managers need to map “software containment domains” into suitable “hardware con-
tainment domains” to ensure containers that are assumed to have uncorrelated failure modes do
not map to the same hardware resources.

Information about failures needs to be propagated from the “sensor” that detects the failure
to the subsystem that handles the failure: e.g., form the hardware monitoring subsystem to the
application run-time. Reliable “backplanes” are required to ensure that the information needed for
error recovery is properly delivered in a timely manner. All of these services will need to support
a programming model in which “exceptions” are not handled as global failures, but are instead
handled by suitable, localized exception handlers. Such an approach allows the application to
intelligently distinguish between those system failures which can be “tolerated” and those which
cannot.

2.2 Application Challenges

Large-scale parallel codes can be divided into two classes: those which can easily be broken down
into smaller, independent tasks, and those which cannot. While the computational needs for
“embarrassingly parallel” problems can often be addressed by scaling out commodity parts with
very little modification to the source, the latter class demands more sophisticated architectures,
careful algorithm design, and an integrated approach to system design. Likewise, from a resilience
standpoint, some applications can easily decompose into pieces which naturally lend themselves
to a straightforward reliability strategy. These “embarrassingly resilient” applications will likely
be well-served by riding the rising trends of utility (cloud) computing and large-scale Internet
service infrastructure. For the remaining application domains, novel solutions for fault detection,
notification, and recovery must be developed in order to overcome qualitatively new obstacles in
the resilience landscape [7, 39,46].

2.2.1 Current Approaches

Currently, detected faults are propagated through the system stack to applications through return
codes (in the best case) or OS signals. These mechanisms are crude, often over-stating the severity of
a fault at too low of a level. As the frequency and diversity of faults increases, the overhead involved
in treating a recoverable error as unrecoverable will become cost-prohibitive. While catastrophic
(loss of control) faults can and should be cause for termination an individual program instance,
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applications and system software must be given sufficient opportunity and information to take
appropriate action in response to recoverable errors.

2.2.2 The Importance of Understanding What Is and Is Not Reliable

Application developers (unconsciously) assume certain fundamental behaviors of a computer, even
in “fault-tolerant” codes. While a bit-flip in a data cache might be tested and caught with a
software check, the same error in an instruction cache is infeasible to solve at the application level.
As the underlying assumptions about reliability begin to move, clear boundaries must established
on what can go fail and how badly, taking into account the fact that the costs of such decisions
can precipitate increased costs across the entire system design. Moreover, in order for software
developers to implement resilience techniques, they must be guaranteed a higher level of reliability
in recovery mechanisms. Checkpointing to storage with an identical MTBF as system memory is
nonsensical.

2.2.3 The Need for Portability

In order for any viable resilience solution to be adopted by the applications, it must be portable.
From a productivity perspective, application developers cannot afford to develop and maintain
different versions of a validated and verified code for multiple different system architectures. Most
of the codes that will run at extreme scale were developed and debugged on smaller clusters or
workstations. Thus, any “hooks” provide by the programming model into the resilience features
of a particular platform should conform to a common API. In addition, the libraries upon which
an application depends must support a common interface for communicating with both the system
and the application about the types of errors it can and cannot handle. These interfaces must be
able to accommodate different failure characteristics on different systems.

2.2.4 Productivity, Performance and Reliability Tradeoffs

From the perspective of the user, time-to-solution is paramount. A system supported resilience
scheme that is transparent to the user may cost 3x in terms of performance, but it may be preferable
to code rewrite that cost 10x in terms of time-to-solution. The cost of various resilience strategies
need to be evaluated not only in term of their effect on application runtime, but in terms of applica-
tion development, debugging, validation and maintenance costs. Without tools and programming
model support, some resilience techniques that are attractive from the system perspective may be
intractable from the application perspective. In general, a “light-weight” approach, i.e., effective
and easy to implement, is preferable to a “full-featured” alternative.

2.3 Resilience Challenges

The optimistic assumption of some workshops looking at HPC in the Exascale timeframe has been
that nothing need be done about error rates because industry will presumably have to solve the
reliability problem out of necessity. This line of reasoning often fails to take into account that the
problems articulated here are a result of the scale of the system and not just the technology. Com-
mercial components will indeed be good enough for indented hand-held and desktop applications.
Also, server software has now matured to adopt execution models that compensate for potential
problems at the hardware level. There is little incentive for the industry to over-engineer systems
to provide manageable interrupt rates and end-to-end data integrity for HPC at extreme scale.
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The HPC research community will be responsible to develop the techniques to provide resilience
beyond what is available from the commodity market.

Current approaches to fault-tolerance are very limited. Applications use global checkpointing
and assume that fault detection is handled transparently to the application; various subsystems,
such as hardware monitoring, parallel file system, or resource manager each have their own ad-hoc
mechanisms for detecting and handling failures. Detected faults are propagated through the system
stack to applications through return codes (in the best case) or OS signals. These mechanisms are
crude, often over-stating the severity of a fault at too low of a level. As the frequency and diversity
of faults increases, the overhead involved in treating a recoverable error as unrecoverable will
become cost-prohibitive. While catastrophic (loss of control) faults can and should be cause for
the termination of an individual program instance, applications and system software must be given
sufficient opportunity and information to take appropriate action in response to recoverable errors.
The workshop attendees believe that new approaches will be needed in the Exascale domain.

2.3.1 The Need for New Approaches

The scale challenge spells the demise of global checkpointing where a single failure requires the
entire system to roll back to initiate recovery [9]. This is not a tenable proposition for systems that
are expected to have millions if not billions of threads with the associated increase in failure rate
as discussed before. We stress here that this is not a “checkpoint performance” problem that can
be solved by cleverer checkpointing implementations or faster storage solutions. This is a problem
of the expected high frequency of failures and therefore it has to be solved fundamentally at the
execution model level. That is, this is about failure containment and isolation.

The current popular execution model based on message passing, as manifested by MPI, lacks in
failure containment and isolation. It needs to be enhanced or replaced. In particular, it may become
necessary to involve the application in fault detection. Stopgap measures such as independent
checkpointing possibly coupled with some form of message logging, can and should be deployed
and tested in the interim. Such methods when combined with more sophisticated checkpointing
at the node level and faster stable storage (e.g., SSD) can extend the usefulness of checkpointing
further but we should not be sanguine about the effectiveness of these methods in the long run
they only delay the inevitable switch to a more inherently resilient execution model. We present
some promising directions in this regard in Section 4.4.

2.3.2 The Impact of Soft Errors

The likely increase in SER due to technology issues and system scale will require some research
to assess the potential damage and solutions. Previous research shows that about 40 to 50%
of errors that escape hardware detection end up causing no damage, either because they hit an
unused functional unit or a dead variable. For the remaining failures, research is needed to find
the best tradeoff in hardening the system to maintain or improve upon the current SER rate in
future systems. There are also potential system level and application level techniques that can
be deployed to help in the problem, but the current state of the art requires some fundamental
advances to enable such techniques to be practical [32].

It is also important to stress here that some optimistic assumptions have been stated at several
Exascale meetings that nothing need be done because the industry will have to solve the problem
out of necessity. This line of thought ignores that many of the problem articulated here are due
to the scale of the system and not just the technology. Components designed for “COTS” will
indeed be good enough for indented hand-held and desktop applications. Also, server applications
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have now matured at the software level to adopt execution models that compensate for potential
problems at the hardware level. There will be no incentive for the industry to over engineer systems
just to meet Exascale requirements that will be needed in one or two large systems. The Exascale
community must research additional techniques that will provide added resilience beyond whatever
improvement the industry will introduce.

2.3.3 New Opportunities in Hardware

New hardware advances are also likely to impact resilience and provide opportunities. It is expected
that some form of SSD-based memory will be available at competitive cost to provide a durable
byte-addressable memory. It is conceivable that a good portion of the system memory will be
implemented with this technology due to its energy and size advantages. However, beyond serving
as a fast storage device for paging or file system metadata we currently do not have technology to
exploit this technology at the operating system, system architecture, or application levels. There
will be a need to exploit this technology beyond just providing a faster stable storage device.
Research is needed to exploit these technologies beyond the obvious usage. For instance, if every
memory write is durable, what would be the impact of this on system resilience overall?

2.3.4 Global View of Resilience

Resilience is a cross-cutting problem that affects every component of the system. A bit-flip in a
cache can corrupt application data; it can, to the same extent corrupt user code, corrupt system
data, such as page tables or routing tables, and it can corrupt system code. The effect of such
corruption – e.g., a corrupted page table or routing table entry can be far-reaching and very hard
to diagnose.

Software developers (unconsciously) assume certain fundamental behaviors of a computer, even
in “fault-tolerant” codes. While a bit-flip in a data cache might be tested and caught with a
software check in the application code, the same error in an instruction cache cannot be handled
at the application level and application programmers assume such errors do not occur. Users
periodically checkpoint the application states and often assume checkpoints are reliable, but the
storage may be no more reliable than the data being checkpointed.

As underlying assumptions about reliability begin to change, it is important to categorize error
types and understand the frequency and impact of each type of error; it is important to understand
how the different system components collaborate and depend on each other for fault detection and
correction. Clear, explicit boundaries and divisions of responsibilities across layers will be essential
to design fault-tolerant software. As a result, the design choices may have a significant impact on
the cost and performance of the selected approach.

2.3.5 Evaluating the Tradeoffs

Finally, the tradeoff among energy, resilience and performance is not very well understood currently,
let alone for three technology generations in the future. There is currently no way to identify
the increase in energy consumption due to resilience, as there are no reliable models or system-
level measurements to serve this purpose. Such methods need to be developed, and the impact
on applications must be understood. It will be necessary to experiment with different execution
models to see how they handle the tradeoff of energy-resilience-performance.
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3 Perspectives on HPC Resilience from Across the System Stack

3.1 System Hardware

Exascale machine in 2018-20 timeframe will use 7 nm process technology, it will have three orders of
magnitude higher parallelism, operate near- threshold voltage (NTV) operation which will increase
concurrency burden even further, and thus the machine will be even more fragile. Expect reliability
to get worse with deeply scaled technologies exhibiting unknown aging effects, increased hardware,
increased variability, increased soft error susceptibility, and decreased noise immunity due to NTV
operation [36, 37]. Traditional redundancy based reliability approaches are not practical because
they require 2-3x more energy, which is not practical. Therefore, resilience is the best affordable
approach. We define resilience as a technique to asymptotically provide reliability of an N-modular
redundancy scheme, with the goal of only 10% energy and hardware cost.

3.1.1 Categorization of Faults

Faults Type Example

Permanent faults Stuck at 0 - 1 Open, shorts, power supply
or fan shutdown

Gradual faults
Spatial: Variations Fast and slow cores
Temporal: Tempera-
ture effects

Change in frequency with
temperature

Intermittent
faults

Soft errors Data corruption, loss of
control, not reproducibleVoltage droops

Aging faults Degradation (slow
gradual temporal)

Loss of frequency over time,
erratic bits in memory

Table 1: Broad categorization of faults most relevant to an Ex-
ascale class machine in the 2018-2020 timeframe

Faults can be broadly cate-
gorized as permanent, gradual
(spatial and temporal), inter-
mittent, and aging as shown in
the table. Permanent faults are
screened during production, or
in the field, and are easy to de-
tect and correct. Gradual faults
will be new, manifested by NTV
operation, such as variations, ef-
fects of temperature and other
ambient conditions. In the past
we have employed guard-bands,
such as lowered frequency of operation to circumvent these faults, but in the Exascale timeframe
such guard-bands will be prohibitive.

Figure 1: Estimates of the relative increase in er-
ror rates as a function of process technology

Intermittent faults caused by soft-errors and
noise are the most to fear about because they
could corrupt data, exhibit loss of control, may
go undetected and are not reproducible. Soft-
error rate of state-elements, such as memory
and latches, is trending down with technology
scaling; however, the number of state elements
increases faster, resulting in overall increase in
soft-error rate of the system [32,36].

Permanent faults in the field typically do
not increase with the level of integration. That
is, loosely speaking, the rate is constant per
integrated component. These faults are more
common with non-integrated hardware compo-
nents such as power supplies and fans. Also,

they are relatively easy to detect and correct using today’s well understood methods. Coping with
gradual and aging faults, on the other hand, will be increasingly difficult and needs rethinking of
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the whole system design. And the impact of intermittent faults for sustained and reliable operation
of the Exascale machine needs the most investigation.

3.1.2 Expected Impact of Faults

Figure 1 illustrates the level of difficulty we will face with each type of fault, and how it stacks up
compared to 45 nm generation. Soft-error related faults in the logic latches are the most fearful.
These single event upsets in memory are well understood and are corrected by ECC; however,
multi-bit upsets will be on the rise. Variations and unknown aging effects will also be on the rise.
Adding all of these effects suggest that resilience of the Exascale system in 2018-20 timeframe could
be factor of 20 to 40 more challenging.

3.2 System Software

As indicated in Section 1, Resilience at Extreme Scale (RES) is a cross-cutting problem that will
need cross-cutting solutions that span software and hardware components of the system. The re-
sponsibility for error detection and error correction in resilience solutions must be shared jointly
between hardware and software. Current approaches focus on techniques that are most conveniently
implemented at a specific level of the system. For example, hardware approaches to error detec-
tion include techniques such as parity checks and watchdog timers, while software approaches to
error detection include techniques such as anomaly detection and redundant executions. Likewise,
hardware approaches to error correction include ECC in DRAM and software approaches to error
correction include a variety of rollback/replay techniques ranging form checkpointing to transac-
tional paradigms. Instead, a truly integrated solution to resilience will require close coordination of
hardware and software that focuses on increasing the effectiveness of error detection and correction
across the board.

Keeping this co-design goal in mind, we now focus on a software perspective of resilience. Even
within software, there are multiple levels at which resilience support can be introduced, and an
integrated solution will need to harness the capabilities of all the software levels. Thus, some of the
most important challenges include developing an integrated solution for resilience support across
all levels of software stack, as well as quantifying resilience requirements (error significance) for
applications, and resource optimization with respect to those constraints. Table 2 lists examples of
resilience support at different levels of software.

Most importantly, these techniques have to be integrated in a meaningful manner: It does not
help to have a fault-tolerant algorithm, if the services it relies on are error-prone. The overall
resilience of a system is determined by the resilience of the weakest link in the system.

3.2.1 Idempotence and Data-Flow Tasks

Let us examine some of the examples listed in Table 2. A powerful concept in parallel programming
models is that of idempotent tasks. A task T is idempotent if multiple executions of T result in
the same answer as a single execution. Map tasks in a Map-Reduce model are a simple example
of idempotent tasks. For more general parallel programs, a sufficient condition for establishing
idempotence is that the task’s output shared variables must be disjoint from its input shared
variables. In many cases, this condition can be checked by a combination of compile-time and
runtime techniques. If a task is declared to be idempotent, an error message can be issued statically
or dynamically if the idempotence property is violated.

Another programming model concept that can aid in resilience is that of data-flow and data-
driven execution. In a pure data-flow model, each task’s outputs are pure functions of the task’s
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Software level Examples of resilience support
(includes ideas still in research stage)

Application frameworks Resilient algorithms [7, 22,29]

Libraries Resilient data structures (replicated arrays [34],
tuple spaces [3]), checkpointing libraries [33]

Programming models Idempotent tasks [31], transactional semantics [25],
data-flow [5,13], actors, fuzzy barriers [18], phasers [40]

Compilers Checkpointing optimizations, rollback
support, detection of soft errors

Runtime systems Process-level resilience [43], task-level resilience [30],
task/data replication and migration, portable resilience with

heterogeneous processors, checkpoint-on-demand

Communication and data Message logging, containment domains [42],
consistency systems hierarchical places, transactions/sandboxes

Middleware, virtualization, Publish-subscribe frameworks [19], resilience domains,
operating systems durable storage, process isolation and migration

Table 2: Examples of resilience support at different levels of software

inputs. Thus, as objects become part of the execution frontier in a data-flow program, they can be
checkpointed asynchronously in parallel on one processor without requiring any coordination with
checkpoints being obtained asynchronously on other processors. Examples of current data-flow
models can be found in the Intel Concurrent Collections (CnC) language, and in a large variety of
libraries and frameworks that support “DAG parallelism”.

While resilience support can be greatly simplified if programming constructs are constrained for
analyzability (e.g., idempotent tasks, data-flow tasks), the ultimate success of programming model
extensions lies in the adoption of such extensions by the HPC community. Fortunately, we have
a unique opportunity to motivate the use of resilience-friendly programming models right now by
observing that what’s good for simplifying parallelism is good for simplifying resilience. Bear in
mind that none of this comes without a tradeoff, as improvements in productivity and resilience
must be balanced with the impact on performance, resource utilization, and energy efficiency in
overall system design.

3.2.2 The Runtime and Compiler

We now briefly discuss a few examples of resilience support at the runtime and compiler levels.
A recent breakthrough in the use of heterogeneous processors is to make them more amenable
to dynamic task scheduling. In such as a scenario, it becomes possible to pre-compile multiple
versions of a task and let a a runtime system dynamically decide which kind of physical processor
(e.g., CPU, GPU, FPGA) a given task should run on. Such an approach should be beneficial for
resilience as well, because it could easily be extended to support replay of tasks across multiple
(heterogeneous) cores.

Likewise, runtime scheduling on hierarchical structures such as Containment Domains and the
Hierarchical Place Tree (HPT) can also potentially lead to new opportunities for resilience. The
compiler level also offers a number of techniques to assist with resilience, and to reduce the overall
overhead of resilience via code transformations. For example, if memory is assumed to be reliable,
then a compiler can modify code so that all operations are duplicated; the number of memory
accesses is not increased (except as caused by increased register pressure), so that the total overhead
can be significantly lower than a factor of two.
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3.2.3 Areas of Greatest Concern

Finally, the areas that need the greatest attention are as follows:

1. Identification of execution model primitives to integrate software solutions for concurrency,
energy efficiency, and resilience

2. Tight integration of inter-node and intra-node resilience solutions

3. Identification of realistic testbeds for evaluating software solutions for resilience

4. Collaborations among application developers and system software developers to develop us-
able approaches for software resilience

3.3 Visualization and Data Analytics

The ultimate purpose for Visualization and Data Analysis (VDA) is investigating, understanding
and discovering science within the simulation codes. Visualization and data analysis is an integral
part of scientific simulations and experiments. It is also a distinct separate service for scientific
discovery, presentation and documentation purposes.

3.3.1 Current Practices

Current visualization and data analysis is largely done as a post-processing step, in which interactive
visualization tools read in data saved to disk, and an analyst sitting at a desk interacts with
that data in real time. This method uses the disk as a communication mechanism between the
application and the VDA application, so the scientific code and interactive analysis are functionally
decoupled. There are individual efforts aimed at changing this workflow, but it remains the main
way that people interact with their data.

3.3.2 Significant Changes at the Exascale

At the Exascale, this workflow will be completely broken due to the mismatch between the rate at
which we can create large data, and the rate at which that data can be moved to persistent storage.
In fact, this data movement will be so costly in terms of energy that it will be cost prohibitive
to move results from memory to persistent storage. Because of this, Exascale computing will
have integrated VDA as a method of determining what data are of interest and therefore worth
committing to persistent storage.

As a consequence, post-processing will fundamentally change due to the complex nature of the
artifacts we are putting to persistent storage. Thus, the following “use cases” will be necessary at
Exascale:

In-Situ VDA: A simulation is compiled with a VDA capability library, integrating the capability
directly into the code. After a time step is computed, the application executes VDA operations
on data resident in memory. Results may be saved to persistent storage.

In-situ VDA Service: A simulation code sends data and VDA requests to a VDA service, run-
ning independently from the simulation. VDA operations are carried out by the service, and
occur independent of the code.
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In-situ VDA Hybrid Service: A simulation code is compiled with a VDA library which per-
forms some operations in memory, and ships other operations out to be handled by a VDA
service. Examples include extraction of geometry, then shipping that geometry to a service
to be rendered.

Post-processing batch mode VDA: A VDA executable is run in batch mode on data that
have been saved to persistent storage. The results are then written to persistent storage. An
example of this is a post-processing analysis performed over an ensemble of 1000 runs of a
single simulation.

Interactive post-processing VDA: VDA application is run as post-processing step, operating
on data that has been saved to some persistent storage. Examples include interactive visual-
ization and exploration of data.

In each of these use cases, VDA has the same resilience requirements as an application, and will
handle resilience according to the system design. In particular, if resilience is “handled” by other
layers of the software stack, VDA capabilities will take advantage of those. If resilience is left to the
applications, then VDA capabilities will handle resilience internally. We expect no VDA-specific
requirements other than those already needed for applications.

3.3.3 Assumptions and Requirements

In each use case, we assume that data integrity and correctness are clearly defined by the system,
and the context for that data - its provenance - is consistently propagated through the entire
software stack and simulation workflow. We expect that the default behavior of the system is that
data are correct, but context data must be propagated so that this is guaranteed across the system.

One exception to this is interactive post-processing. This is a very different use case for re-
silience, as it requires that failures be resolved as the data are interacted with. This may be a novel
use case, if applications do not require on-the-fly recovery in the face of failures. In particular, if
the system solution for failures is simply “detect and restart”, interactive analysis and visualization
will need to develop an independent solution. Since it is not clear at present if on-the-fly recovery is
a requirement for applications, this specific use case should be considered a VDA-driven resilience
requirement.

An additional requirement for VDA is that the visualization itself - the only truly independent
product of VDA, in that it is not analogous to any other process - must not introduce visual errors
as a result of resilience issues. Again, we expect that the system wide solution for applications
running at Exascale will be applied by the VDA algorithms, with the additional constraint that no
visual artifacts be introduced.

3.3.4 Need for a Coordinated System Approach

As a capability library, a service, and an application, Visualization and Data Analysis will be subject
to the same resilience constraints as codes and code libraries running at Exascale. It is critical that
VDA take advantage of the system-wide definitions and APIs that enable science applications to
run usefully at Exascale.

Making sense of data at Exascale requires a system-wide approach to data integrity and cor-
rectness, which all applications must participate in. Again, VDA will participate in this as a peer,
and must obey the same constraints, interfaces and optimizations that codes face.

VDA algorithms, like all other algorithms, must not introduce unquantifiable changes in the
data, and the visualizations must be quantifiably correct. Otherwise, investigation and understand-
ing of the data will not be possible.
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3.4 Data Storage and I/O

HPC application teams rely on data storage and access to accomplish two goals. First, the storage
system is often used as a holding area for “checkpoints” of application state that can be used to
restart computation in the event of an application interruption. Second, the storage system is used
to hold data that will be further analyzed or shared at a later date.

3.4.1 Current Trends

Traditionally, HPC storage has taken the form of a parallel file system managing disk-based per-
sistent storage that is positioned external to the compute fabric, and today most deployments are
still of this nature. However, three trends indicate that change is coming.

1. Current parallel file systems are seen as both unreliable and a performance bottleneck for
many applications [4,28]. Parallel file systems are a major cause of application interrupts on
current-generation systems, and the expected growth in node counts is likely to exacerbate
this problem. While parallel file systems can deliver a great majority of the underlying hard-
ware bandwidth for carefully-written synthetic benchmarks, rarely do applications approach
hardware speeds.

2. Disk drive bandwidth improves at a very slow rate, forcing disk-based storage systems to
employ increasingly large numbers of devices to achieve required I/O rates. Deployments
using millions of drives are seen as untenable; thus, it is expected that disk drives will continue
to be used to meet capacity requirements while other technologies will be needed to meet
bandwidth requirements [17].

3. In-system storage is being successfully utilized as an augmentation and alternative to tradi-
tional, external storage deployments. As an augmentation, in-system storage is being used
as a “burst buffer” to hold data in transit to external storage, freeing applications to return
to computation while data is asynchronously written [27]. As an alternative, applications
and middleware are using in-system storage (e.g., DRAM, SSD) as a container for checkpoint
data [33], enabling protection from certain classes of failures without the need to interact
with external storage.

To best address the data storage needs of future HPC systems and applications, additional effort
is needed to understand and adapt to these three trends.

3.4.2 Software Concerns

A primary concern with respect to HPC storage is the reliability of storage software. Existing
storage software (e.g., parallel file systems) are a significant source of failures, at least in part because
the health of these services is tied to the health of clients. This tie must be broken. Additionally,
the Internet services community has demonstrated the effectiveness of highly-distributed storage
systems built on commodity hardware [12,16,21].

A better understanding is needed as to the degree that HPC storage software can meet HPC
application requirements while using this more economical hardware. Also, in-system storage brings
a new resource that must be managed, and it is unclear whether this should be managed as
a separate tier of the “global” storage system, or whether this resource should be managed by
separate software as an application resource. Finally, end-to-end data integrity is not ensured by
current systems, and methods must be developed for allowing applications and storage software to
work together to meet this requirement.
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3.4.3 Hardware Concerns

In the next 10 years, it appears that a mix of spinning disk and solid-state storage will be the
most cost-effective means to meet HPC performance and capacity requirements. Even though this
approach limits the number of disk drives that will need to be deployed, problems such as latent
sector errors in spinning media must be addressed in a manner that preserves performance for
applications. Furthermore, while it does not appear that the write endurance of solid-state storage
used as a “burst buffer” would be an issue, if this in-system storage is used for other purposes, it is
less clear that current technologies are appropriate. A better understanding of the I/O requirements
of applications using in-system storage is needed and must be mapped to the capabilities of current
and future solid-state storage technologies.

3.4.4 The Role of Abstractions

The abstraction presented by storage has implications on resilience as well. Providing the POSIX
abstraction used in HPC storage requires coordination that is in part responsible for the fragility
of current HPC storage software. The Internet services community has found alternatives that
allow them to accomplish computing tasks while reducing the impact of faults. New abstractions
and associated semantics are needed that facilitate resilient implementations (and simultaneously
provide better usability). Additionally, given the need to optimize resource use to achieve high
performance in HPC systems, applications should be presented a more rich model of storage that
allows teams to trade-off between performance, resilience, and consistency of data.

3.5 Tools

Resilience techniques will have a profound impact on the entire software stack. They will increase
the system’s complexity and users will expect tools that either hide this extra complexity or ex-
plicitly expose its effects.

3.5.1 Enhancing Existing Tools

Foremost, users will expect that their familiar performance analysis, debugging, or code correct-
ness tools still continue to work despite lower reliability and independent of any fault tolerance
or resilience implemented within the runtime system, the operating system, or the underlying ar-
chitecture. This will require significant enhancements on current tools. They need to be able to
coordinate with fault-tolerance mechanisms and they need to be able to hide effects caused by
faults.

For example, debuggers need to survive checkpoint/restart cycles with their complete state
intact so that users can debug problems that only occur after significant runtimes; performance
analysis tools need to eliminate performance information that is affected by fault mitigation tech-
niques; tools need to be able to ignore source code changes introduces by source-to-source transla-
tion approaches targeted at code duplication; or communication correctness tools need to be able
to perform their work despite message or link failures in the system. The changes required for this
functionality should be transparent to the user and hidden inside the tool implementation.

3.5.2 Tools for Fault Monitoring, Management, and Logging

At the same time, tools need to be available that expose failures as they happen, allow users to
track them, and help understand the impact they have on the application and system software
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stack. This should include the ability to trace failures along with corresponding mitigating actions
as well as to map the information back to source code, e.g., to allow users to identify code regions
that are the cause for higher fault rates.

Combined with the requirement of transparency discussed above, this will have to lead to tools
that allow users to interactively change the level of transparency and thereby enable them to adjust
to the particular problem they need to investigate. As one of the main challenges, such tools need to
be kept intuitive and provide a clean transition between the different levels of transparency, allowing
the user to cleanly map data between the different view points. In addition to these application
level tools, system administrators will expect an additional set of tools that allows them to monitor
and log overall system state as well as system health.

3.5.3 The Need for Interface to Introspect Resilience Techniques

One of the most important aspects in fulfilling the requirements laid out above is the need for
tools to interact with the remaining software stack, in particular the components that implement
fault-tolerance techniques. Tools need to be able to capture any fault and any corrective action
taken, such that they can react to the same fault appropriately. This will require a set of interfaces,
co-designed across the entire software/hardware stack.

3.5.4 Fault Tolerance in Tools

In addition to the new functionalities discussed above, tools themselves also need to be resilient to
failure. In checkpoint/restart schemes, they need to coordinate with the checkpointing system, be
it in the application or the system, to include tool data in the checkpoint and they need to be able
to retrieve it on restart. In scenarios in which the applications is hardened against failures, tools
needs to apply the same techniques in order to maintain the same level of resilience, in particular
in scenarios in which they directly add instrumentation to the application.

It is important to note that these challenges are not unique to the tools ecosystem. Other layers
of the software stack, including I/O, visualization and in-situ analysis, will face similar obstacles
in fault-tolerant software design. Therefore, it is highly desirable to integrate these services in a
common framework and to provide a coordinated approach of resilience.

3.5.5 System Support for Tools

The various tools will need to gather and correlate information streams coming from many sub-
systems: e.g., hardware monitoring infrastructure, system management infrastructure, file-system,
run-time, application, etc. Some of this information is needed in real-time, in order to initiate
proper fault-avoidance or fault-recovery operations, some is needed for proper resource manage-
ment at the level of the OS and runtime, and some needs to be stored off-line for long-term analysis
e.g., to study failure characteristics of individual components, and easily accessible for post mortem
analysis.

For information collection and control, tools rely on external resources, such as tree-based
overlay networks running on a separate set of tool nodes. One example for this kind of tool is
the Stack Trace Analysis Tool (STAT) [1, 26], which is based itself on MRNet [35]. These types
of dependencies will create additional vulnerabilities outside the application. Tools will need to be
resilient to problems on these extra resources, i.e., neither applications nor users should be impacted
by failures that happen outside the actual application. Furthermore, communication system such
as MRNet assumes a simple flow of information from the components of an application to a user
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console, and a simple reverse flow of control. This approach may not be scalable. In addition, many
subsystems may collect the same information redundantly as a consequence of such an integration.

To avoid these issues, it will be important for the system to provide a robust and scalable “pub-
lish and subscribe” infrastructure that gathers information from the various subsystems, distribute
it to the various control agents and stores it, as required. This infrastructure must be fault-tolerant
and not interfere with the compute performance of the system.

3.5.6 Testing Through Fault Injection Tools

While the tools and tool capabilities described above cover the necessary aspects of running tools
on a system that may exhibit faults, we also require tools that help design and test algorithms,
applications, runtime systems, and even tools for such an environment. Even with the higher error
rates expected in future architectures, they will still be rare enough to make testing and code
hardening difficult. To overcome this challenges, we will require tools that enable developers to
inject errors, faults, or other anomalies in a controlled and repeatable fashion.

Such injection tools can work at multiple levels, from adding code to binaries to modifying
source code, from adding individual instructions to altering communication traffic. A wide variety
of techniques for this are known [20, 23, 41], but are mostly restricted to certain error classes and
used mainly for specific research studies. We need to extend and generalize such tools and make
them available to developers. Additionally, and more importantly, we need to change development
habits and make testing for fault-tolerance a fundamental part of any software design cycle.

3.6 Algorithms

Presently it is difficult to implement fault resilient algorithms since current programming models
assume reliable computations. As a result, the algorithms-based resilience discussions at this work-
shop focused on extensions to existing programming models that would allow algorithm designers
and programmers to reason about, design and implement resilient algorithms.

3.6.1 Background

Fault resilient algorithms have been the focus of a number of papers. These effort are primarily
in the area of algorithm-based fault-tolerance (ABTF) where meta-data about the problem, or
knowledge about basic algorithm properties is used to monitor computations, detect faults and, if
possible, recover state [10, 22, 29]. Although academically interesting, these algorithms have not
played a significant role in high-end computing so far. This is because, although resilience has been
a concern for some years, systems have, to-date, been more reliable than predicted. Also, even for
application developers who are concerned about resilience, commonly available programming and
runtime systems do not readily support the required recovery mechanisms for these algorithms.
Furthermore, recovery of problem state from these algorithms alone–state that is usually derived
from some primary state–is not useful unless the primary state itself is recovered. For example, if
a linear solver can recover from a fault but the nonlinear state that was used to generate the linear
system is lost then the linear solver state is irrelevant. The principle ideas discussed are presented
in the sections that follow.

3.6.2 Persistent Local Data

Most scalable science and engineering applications use an SPMD programming model enabled by
MPI. They also have some notion of locality such that data is decomposed so each MPI process
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is associated with a subset of the global data, and in order to make progress to the solution each
processor needs to communicate regularly with only a subset of its neighboring processors.

Presently these applications tend to write problem state to a global checkpoint/restart file.
This file requires coordinated access across all processors. This approach represents a significant
bottleneck to scalability on future systems because the time it takes to create and restart from this
global file rivals the required uptime of future systems.

In this workshop we discussed an approach that supports localized checkpoint/restart. The
fundamental idea is that the programming environment and runtime system would allow application
developers to store specific problem data persistently so that, if an MPI process failed, a new process
would be started and the persistently stored data would be visible to the application in the new
process through a specific function the application had previously registered with the runtime
system.

By having an API to store data persistently, and a recovery mechanism that allows a recovered
process of the application to access its own persistent data (and perhaps its neighbors’ data),
application developers can design and implement checkpoint and recovery algorithms that permit
localized checkpointing (for example, the persistent data of one processor can be replicated on a
neighboring processor, or on local NVRAM).

One simple example that could use this approach is an explicit algorithm for transient PDE
simulations using finite elements, differences or volumes. For this application, each MPI process
is assigned a patch of the domain and has additional storage for “ghost” or “halo” data. These
halo data are copies of values from time step n on neighboring processors acquired during a halo
exchange step, completed just prior to computing values for time step n + 1. Prior to computing
time step n + 1, state from time step n is stored persistently. If an MPI process is lost during a
particular time step it is possible to re-compute it time step n + 1 values by retrieving time step n
data from persistent storage.

Of course we would not store data from each time step persistently, but do so often enough so
that the cost was worth the benefit. One final note worth mentioning is that, by providing access
to persistent storage of neighboring processors, a recovering process can reconstruct multiple time
steps simply by accessing a larger halo of values. For example, if time step n − 1 data were
persistently stored, the restarted process independently compute it time step n + 1 by getting a
halo of twice the size from its neighbors’ persistently stored time step n− 1.

Persistent local data storage and recovery, if provided through a simple API, enables a broad set
of checkpoint and restart algorithms that should result in much more resilient application execution.
Furthermore, the data and programming needed to support this model are not much different from
what is already done to support global checkpoint and restart.

3.6.3 Algorithm-based Self-consistency Checking

When computing on a reliable hardware platform we take for granted that implicitly define al-
gorithmic properties are preserved. When reliability becomes a concerns, these properties can be
explicitly tested to detect, and maybe even correct, errors. Many problems have easy-to-check
consistency tests. For example, the computed answer x̃ to the linear system Ax = b provided by
an iterative linear solver can be tested by explicitly computing the norm of r = b−Ax.

More algorithm-specific tests could include confirming orthogonality properties of basis vectors,
or checking that known conservation properties are preserved. For example, interior cells of a
conservation-based formulation of a PDE have a zero sum property.

More generally, we can explore the use of preconditions, postconditions and invariants to drive
the formulation of self-consistency checks. Although such checks are already present in many
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well-written codes, as a form of sanity test for user-input errors or algorithmic breakdown in the
presence of floating point roundoff error, they can serve a very valuable role in the detection and
even correction of data and execution faults.

3.6.4 Selective Reliability

As software errors increase, the chance that faulty results will be undetected by the hardware or
system software increase, to the point where an application may have to deal with unreliable results.
In order to address this concern we need to develop new algorithms that can tolerate soft errors.

Robust fault soft error resilient algorithms need some ability to compute reliably with reliable
data. Without these features, there is no way to assure that any computational result is reliable. In
this workshop we discussed the concept of selective reliability, such that the programmer can declare
specific data and computations to be more reliable than the “bulk” reliability of the underlying
systems. This higher reliability can be implemented in a variety of ways that will likely vary
depending on the system. Given the ability to have highly reliable data and computation, new
algorithms can be developed that keep much of the data and computation in bulk reliability mode,
but have some in highly reliable mode.

One approach that can benefit from this approach is a sandbox model, where an algorithm
starts in an outer level highly-reliable mode and dispatches a computation in an inner level bulk
reliable mode. Upon completion (if it completes!) the sandbox computation is analyzed by the
outer level to determine if the result is valid. If it is valid, its results are assimilated. If not, the
results may still be useful, or may be discarded.

3.7 Application Developers and Users

Application resilience has been practiced for decades by designing the application to generate restart
dumps on persistent storage at user-selected intervals, and restarting from these files in the event of
either a system crash or the expiration of the user’s time slot on the system. For handling the event
of time slot expiration, this mechanism is likely to be practiced into the indefinite future. However,
as a mechanism for handling hardware or system software generated interrupts, this strategy, known
as checkpoint/restart, is a blunt weapon.

3.7.1 Limitations of Traditional Checkpoint Restart

No resilience strategy comes free of cost. Essentially all strategies for resilience demand some form
and degree of redundancy. The restart file is a redundant copy of the state of the computation
saved to persistent storage. It is usually considerably smaller than the entire state of the memory
used in the computation, but it is still relatively large. It is much larger than the normal data
output from the computation, which is likely to consist, at most, of visualization files, requiring
only eight bits per variable, and global or sub-domain averages of variables, spectra, or other highly
distilled information.

For Exascale systems, and for large runs that utilize the entire system, we anticipate a frequency
of non-user-generated interrupts that is too large to make global checkpoint/restart to shared
persistent storage a practical resilience strategy. If only a single node or a single switch has failed,
it is unreasonable to require that the entire computation, which might involve 10,000 or 100,000
nodes and thousands of switches, stop and return to a global saved state from persistent storage.
Not only would such a global reset be wasteful, but it might not be possible to write checkpoint
files fast enough for the overall computation to make progress using this strategy.
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Note that this analysis does not intend to suggest that the remedy is a simple as replacing
global checkpointing with local checkpointing. In fact, local checkpointing time at large scales is
not dominated by disk write times but by the complexity of reconstructing a globally consistent
state from millions or even billions of communicating processes. In fact, this problem may be harder
to solve than the global checkpoint problem. On the other hand, a strategy that involve writing
the global checkpoint file in an embarrassingly parallel fashion to local or neighboring storage may
be in some sense optimal since it at least scales with the number of compute elements.

3.7.2 Alternatives to Global Checkpoint Restart

In most applications, we can define a domain of dependence for the present computational state at
a given node. Going backward in time, as enumerated in the computation through ”time steps,”
or in iterations of some global solver, we can identify those nodes upon which the present state
at a node of interest depends. For hyperbolic systems of differential equations, this concept of
the domain of dependence comes from finite signal propagation speeds, which limit the size of the
domain at any previous time that could possibly affect our present state.

Computationally, the domain of dependence is usually larger than this physical domain, since
arithmetical signals can propagate faster than the physical signals that they simulate. Nevertheless,
it is usually the case that if for any reason the computational state of a particular node is lost or
contaminated, we need only to regenerate from a set of nodes at a saved earlier state that is very
much smaller than the entire system participating in the computation. From this perspective,
we can easily see the wastefulness of forcing the entire computation to return to an earlier state,
although doing that is by far the easiest strategy to implement.

One might object here that global solvers, by their very definition, upon every time step tie
the state of a single node to the state of every other node in the system. However, it is a general
feature of such solvers that the effect of a node upon a distant node is small, and that therefore
this effect can be encapsulated in only a small amount of data that needs to be transmitted. This
feature results from the solvers approximating the long-time limit of physically causal systems. (For
example, Poisson’s equation approximates the action of gravity in the action-at-a-distance limit in
which the speed of light is infinite. It also appears in incompressible flow solvers, where the speed
of sound is assumed to be infinite. The effects of signals are diluted with distance by the simple fact
of geometry.) Because only a small amount of data is needed from a distant node in such a global
solver, effective strategies for regenerating this data to recover from a node failure without having to
repeat the entire calculation at the distant node can most likely be devised. One possibility would
be to save this compressed state using a shorter time interval than is used for the entire restart
dump. A second might be to use message logging with asynchronous checkpointing, leveraging the
notion of physical causality to simplify the problem of reconstructing a globally consistent state.

3.7.3 Recovering State After an Interrupt

Recovering the state of a node, either after that node is reset or on a new node assigned to replace
its role in the computation, only seems to make sense if the application has implemented some
strategy for dynamic load balancing. Otherwise, even if a new node is provided, the recovering
nodes will lag behind the rest of the system, and will eventually slow down all the other nodes; the
performance will be not better than with a global, synchronized restart. It is not surprising that
when we allow for a dynamically changing set of computational nodes, as various nodes encounter
hardware or system faults and are replaced, that we must also devise a strategy for reapportioning
work, so that the recovering nodes can be assisted in getting back to the time or iteration level
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of the rest of the computation. Load balancing will be useful for many other reasons, such as
coping with dynamic changes in the execution pattern, or coping with changes in processor speeds
due to power management. Once we assume that such a dynamic load balancing strategy has
been implemented, it may no longer be necessary to assign replacement nodes, but instead simply
reapportion the work among a smaller set of nodes.

3.7.4 Implications of Resilience

From the above discussion, we see that resilience places two new burdens upon application code
developers. First, they need to identify failed nodes, their computational domains of dependence,
and code to execute in order to recover using data from the domains of dependence. Second, they
need to implement dynamic load balancing strategies. These are significant programming burdens,
and the second is far greater in most cases than the first. These new demands are, however, fairly
general, and it is possible that general tools, libraries, or frameworks - or possibly new programming
language features - could be devised to assist programmers in addressing them.

These efforts demanded from application developers are, however, not enough. There is no
point in making these code modifications if the application will be killed by the system upon the
first node failure, regardless of the application’s ability and willingness to recover unaided. At
present the default response of system software to a detected error is to terminate the application,
at least in part because alternative containment mechanisms to prevent error propagation do not
currently exist. Present job scheduling software will force the application to relinquish its node set
in such an event. This node set is likely to hold the live redundant state information necessary for
recovery. Thus the checkpoint/restart resilience strategy is hard-wired into the present software
stack at multiple levels. There is no point in changing one of these levels unless all are changed in
a coordinated fashion.

The application code sits at the top of the software stack, and thus is accustomed to receiving
alerts, interrupts, or error messages from below, but it is not generally accustomed to sending
information about system health back down to the lower layers. Nevertheless, a code receives
system health information unintentionally during the normal course of its operation, and it could
be instrumented to transmit that information to other system agents. Much of this health data is
a fundamental part of a dynamical load balancing strategy. Therefore the application will have to
monitor system health in order to be resilient in any event. Consequently, it might as well relate
that health information to the agents who might act upon it.

3.7.5 Coordinated Resilience: An Example

One can see this more clearly from specific examples. In implementing dynamical load balancing,
one might want to monitor the amount of work involved in individual tasks that are dynamically
assigned to nodes. This could be a tally, made by the code as it runs, of the flops performed as well
as a tally of the amount of data read from and written to remote nodes and the amount of data
transferred during the computation to and from the node’s CPUs. Upon each time that this task
is performed, one could make these tallies and record them along with the particular node that
did this task and the time it began and finished the task. From this data, which is very helpful
in deciding how to assign the task the next time it must be performed, we can easily compute the
aggregate performance of this node.

We would expect this performance to be fairly consistent, but we might find that a particular
node runs very much (say, a factor of two) slower than other, supposedly identical nodes on this
sort of task. One could inform the system that this node appears to be running slowly. A particular
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cause of this sort of system health signal in the past is node overheating, although other factors
could be involved as well. Another node health signal we might see in an application is that a
particular node takes ”forever” to write data to persistent storage, while others take only a normal
amount of time. We could exclude the node, but we could also inform agents who might be able
to address this situation. A very easily detected health signal is that we find that a node has
never completed a task it was assigned. We can then assign the task to a different node, and if
it completes the task in a normal time interval, we may conclude that the non-responding node is
dead.

The system is most likely aware of this node’s demise from other software layers, but we might
still inform an appropriate agent. Signals concerning interconnect health can also be apparent to
a running application. Such problems can be undetected data transmission errors. An obvious
data transmission error, which has been known to happen, is a string of zeroes in the intended
message. One might think that checksumming by the application would be needed to detect these
errors, but dividing by one of the zeroes in a bad message string will certainly cause a detectable
error. To determine that this is a system and not a code error would require that a resilient code
implementation recover from a saved state by re-executing the same code and discover that the
error does not recur. Such a process should be automated in coordination with both the system
and application.

3.7.6 Role of the Application in a Total Resilience Strategy

A resilient application can provide assistance to system software layers in still other ways. For
example, it could inform the system that a given file it is writing to local persistent storage is a
restart dump file. Such files have very special properties which the system can exploit. As an
example, they can be formulated so that the system knows how to prioritize staging of them to
shared persistent storage. Since these files are necessary for application recovery the system may
also provide additional end-to-end data integrity checks to guarantee that they are protected from
errors.

Another way in which the system can be aided by a resilient application that incorporates
work load redistribution capabilities is for the resilient application to offer, under appropriate
circumstances, to either add more nodes to its running job or to give up some of its nodes to a
higher priority job. The potential benefit here is more efficient resource utilization than is presently
found on most large systems.
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4 Developing an HPC Resilience Framework for Extreme Scale

4.1 Current State

When a fault occurs, it may cause an error which leads to a failure. Whenever possible, the
system tries to detect the error in the hardware and respond using the entire software stack.
Participants recognized however that the number of error producing faults will increase in the
Exascale timeframe for most classes of errors. In some cases, such as silent data corruption (SDC),
the application itself may be best suited to perform error detection [32]. A resilience framework
for the Exascale timeframe must account for the following observations:

1. Users currently presume faults that result in errors occur (relatively) infrequently, and the
consequent failure will be detected in the hardware checks such as whenever possible.

2. Since the failures are presumed to be infrequent, diagnosing and taking corrective action does
not currently impact performance and energy (much). This assumption needs to be validated.

3. There is an implicit assumption that transient errors occur much more frequently than per-
manent errors.

4. Only one fault occurs at any point in time in the confined area, the area which can be serviced
independent of other faults in the system. Will this assumption continue to be valid?

5. The time to service an error or diagnose a fault needs to be small. That is, mean time to
a fault should be much larger than the time it takes to service a fault in order to enable
convergence of resource availability to a steady state.

6. Diagnosis of the error to isolate it (location of the error), confinement (so it does not prop-
agate), reconfiguration of the hardware if necessary, recovery and system adaptation are all
done in the software stack.

7. All levels in the stack, from applications down to circuits, will need to participate at Exascale.

System level fault-tolerance is currently achieved through two primary means: (1) reactively, re-
sponding to the failure to detect an error and recover, and (2) pro-actively, by continually evaluating
the system for potential failures, such as aging of components and decommissioning the hardware
to prevent future failures. It should be noted however that the general consensus of workshop par-
ticipants was pro-active fault-tolerance is less well understood than reactive techniques. Though
it can play an important role in a resilience strategy, it should be viewed as complementary to re-
active fault-tolerance and not as a replacement to it because the accuracy of pro-active techniques
remains limited.

To cope with the anticipated error rates and classes in the Exascale timeframe, the application
will need to work with the system hardware and software in a coordinated fashion in order to
provide effective resilience. Research is required in architecting the resilience manager, a part of
the system software, for diagnosis and recovery, in reactive mode as well as proactive testing for
future failures. State storage (i.e., check-pointing) and recovery is also an important research topic
to implement such a resilience scheme. Most importantly, the assumption that errors undetected
by hardware are too rare to worry about may not be valid anymore: New software error detection
techniques will be needed.
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4.1.1 Hardware Features

Faults can be broadly categorized as permanent (e.g., power supply failure), gradual (e.g., device
aging), or intermittent (e.g., noise or soft error). Working groups proposed simple sensors to detect
failures in non-integrated hardware, power supplies, fans, and such. The logic in the integrated
components (e.g., processor or memory) needs hardware features to detect intermittent errors. The
memory (DRAM) is covered by ECC with silent correction, yet errors have reported for tracking.
State machine hang-ups caused by control errors also need hardware detection. Confined regions of
hardware (such as cores and memory) can be decommissioned by a local or global control system.
Remote access by other nodes to local state on a failed node can significantly facilitate recovery.

4.1.2 Reactive Response

A reporting architecture will be necessary not only to identify the existence of the error, but also
to point out the location of the error for diagnosis. It is not clear that hardware will detect
a sufficiently high fraction of soft errors in the latches of the cores’ circuits. When an error is
encountered the reporting scheme must interrupt the parent processor as well as the neighbors to
notify of the error. If the parent processor core is active then it negotiates with the neighbors about
responsibility for diagnosis, otherwise the neighboring processor starts the diagnosis process. The
first time occurrence of the error is interpreted as an intermittent error, the instance is logged and
the thread is retried or state recovered from the earlier check- point. Subsequent errors of the same
type may indicate faulty hardware in the confined area, in which case it is decommissioned and the
system is reconfigured.

4.1.3 Proactive Screening

Every processor engages in regular proactive screening when the resources are available, that is
when the energy is available, the processor is idle and not in the performance critical path. The
screening could be even at predetermined intervals such as hours or days. The screening runs
various tests to determine aging of the cores if any, erratic bits in DRAM, any such hardware
marginalities, and also reviews history of previous intermittent faults to determine health of the
individual components. It may reconfigure the system, such as changing the frequency of the
core, reconfiguring DRAM, or may even decommission the region of the hardware and reconfigure
the system. Such techniques may be useful for detecting hard errors, but may be less useful for
identifying errors that are statistical or transient in nature.

4.1.4 State Storage (i.e., Check-Pointing)

When a error is detected and serviced it may be necessary to restore the entire system, or part
of the system, to a known good state for recovery. The state storage should be frequent enough
so as not to impact the application performance due to recovery, yet not too frequent to spend
too much time and energy. Hence, a hierarchical and incremental approach for state storage and
recovery will likely be required. Fault behavior and the frequency of occurrence need to be much
better understood to determine efficient check-pointing scheme. It is important that state storage
be substantially more reliable than memory in order for it to be effective for fault-tolerance.

4.1.5 Architectural Considerations

The working groups were asked to make detailed assessments of the most likely architecture targets
in the Exascale timeframe, and evaluate the implications for resilience in terms of metrics that the
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working groups themselves defined. The results were as instructive for what they had in common
as for the ways they differed. In particular, there was general agreement among the working
groups that the right metric for “resiliability”, or the resilience characteristics of a system and
its application workload, was expressible as some form of expected time-cost-energy to a correct
solution. The definition of ”correct” however generated a great deal of discussion and no consensus
definition was achieved. Interestingly most of the definitions included some notion of probability
or expectation, indicating the statistical nature of the metric. The general sense was that a 10%
loss of “resiliability” due to errors was “acceptable”, but 25% or more would not be acceptable.

In terms of system architecture, most of the working groups assumed an Exascale architecture
in the 2020 timeframe would consist of on the order 400k chips, 400M ALUs and 300 MW with
little or no additional Exascale investment and on the order of 350k chips, 1.2B ALUs and 50 MW
with aggressive investment. It was the general consensus of the workshop participants that the
mainstream compute industry would not likely address the resilience concerns of HPC. Estimates
of MTBF for such systems ranged from 30 seconds to 3 hours depending on failure in time (FIT)
rate estimates made independently by each working group. This suggests that more work is needed
to improve estimates of likely MTBF, though for back of the envelope estimates these showed
remarkable agreement.

Finally, the most compelling observation made by the working groups is that the basic resilience
conclusion do not appear to depend heavily on the system path forward. This conclusion is a
consequence of the belief that failure rate is more strongly correlated to the component count
than the number of ALUs. All of the assumed architectures have similar component counts, even
though the number of ALUs varies significantly. The observation is particularly important because
it suggests that development of a resilience strategy need not be gated on the definition of a final
architecture. Resilience research and the implementation of a resilience framework can proceed in
tandem with system design and need not create additional programmatic risk or cost if the system
design changes.

4.1.6 Proxy Applications

Applications can be characterized in terms of both their susceptibility to faults and their ability to
detect those faults. Participants characterized the following three classes of applications in terms
of their fault-tolerance behavior:

Non-checking, flexible algorithms are those for which a self-consistency check may be expen-
sive or hard to compute, but the algorithms it implicitly tolerant of errors. For example, a
GUPS or needle-in-a-haystack type problem may be able to tolerate some number of false
positives or false negatives, and elliptic PDEs may converge iteratively even under failure.

Non-checking, frangible algorithms are those which lack an obvious self-consistency check,
but their results are highly sensitive to even small errors. Initial value problems may be an
example of such algorithms, but this category was not explored in great detail.

Self-checking, flexible or frangible algorithms are those for which an internal consistency
check is easily and cheaply implemented. Linear algebra (e.g., Linpack solving Ax = b)
is an example of such algorithms since it is computationally inexpensive to check the solution
compared to the time to solve.

Attendees agreed that the tradeoffs between application performance and fault-tolerance of
these three classes of applications remains an important open issue in the Exascale timeframe.
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Self-checking algorithms need system hardware and software support run through errors. Those
applications need to have the information and resources to decide for themselves whether or not
to continue running. For non-checking algorithms that are frangible, it may be that N-modular
redundancy (NMR) solutions will be required to provide detection of errors. Two examples of
specific algorithms representative of these general classes were targeted by the working groups in
working out the strawman resilience strategy in Section 4.4.

4.2 Gaps

Improving the end-to-end integrity of applications and architectures in a system constructed of
unreliable components is a complex endeavor and the current state of the art still exhibits significant
gaps, both in terms of the fundamental understanding of the problem itself and the techniques
needed to overcome them. Workshop participants articulated this challenge at a high level as a
problem of “separation of concerns” [14]. From that perspective, the role of system stack beneath
the application is to address hard (i.e., unrecoverable) errors in such a way that they appear to be
soft (i.e., recoverable) errors from the application’s perspective. The role of the application is then
the handling of soft errors.

This simple yet powerful concept means that the role of the system hardware an software is
to insulate the application from unrecoverable errors, such as component failures, while allowing
the application itself to determine how to manage recoverable errors, such as corrupted data. This
way, if the system loses a component that the application does not need to perform its work then
the system gives the application a means by which it can keep running. For applications that
do not wish to participate in their own fault-tolerance, this approach satisfies the “do no harm”
dictum, since those applications will run no less reliably as a consequence of their being oblivious
to the concerns of fault-tolerance. For applications that are self-checking (ref. Section 4.1), this
approach provides a straightforward mechanism by which the developer can intelligently tailor the
application’s response to various types of system errors. However, certain gaps remain in our ability
to implement such a strategy in the Exascale timeframe. The following section lists a set of those
gaps, grouped by high-level concepts.

4.2.1 The Need to Better Understand the Problem to be Solved

Foremost, workshop participants identified gaps in understanding the depth and magnitude of the
resilience problem, how far current and future systems will be impacted, and what can and will be
prevented through new hardware and software techniques. This gap ranges from basic questions on
error types and rates to metrics to evaluate their impact as well as the associated costs of protecting
against them.

Error types and rates: The HPC community needs a clear classification of which kind of errors
exist on current or will exist on future systems. Today’s approaches loosely distinguish only
a few classes of faults, such as permanent, transient, gradual and silent errors, but this
classification needs to be extended and refined. This is a hard to solve problem that is
currently not well understood.

Magnitude of the Problem: Additional studies are needed that help document both the mag-
nitude of the problem (in terms of current and expected error rates) as well as the impact of
running on unreliable hardware and the impact on software productivity and robustness.

Error Propagation: While some recent work is starting to address questions on how errors and
faults propagate in a system, this is generally an open field. Understanding propagation,
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however, is critical as a step towards whole system evaluations and realistic fault prediction
and analysis techniques.

Metrics: There are currently only a limited number of metrics that allow us to characterize the
fault behavior and characteristics of both applications and architectures. This, however, will
be fundamental to evaluate the reliability of future system and to judge any improvement or
success of proposed new techniques.

Cost of Resilience and Fault Tolerance Techniques: Fault tolerance will not be free and we
will pay in terms of performance and energy both in fault and fault free cases. The HPC
community needs the ability to understand these costs and their tradeoffs in order to make
informed tradeoff and design decisions.

Validated Fault Injection: There is currently no community accepted, validated fault injection
tool or fault model for the HPC community. Without such tools and models the community
has no means for testing fault-tolerance of resilience detection and recovery techniques at
extreme scales where testbeds do not exist.

4.2.2 Support for Event Analysis and Notification

One of the fundamental needs for any fault-tolerance technique is the ability to be notified in case
of a failure. However, there is no central location where all errors or faults are detected. Instead,
every components will need to participate, including but not limited to the underlying hardware
from compute cores to the I/O system, runtime and operating systems, libraries and applications
as well as through the help of external tools.

Such detection must not be restricted to catching of external events, but can and should also
include self-checking software components and algorithms that can detect external influence indi-
rectly. The latter will be essential for detection techniques in applications and numerical libraries.

Once detected, any error or fault must be made available to all agents that need to participate in
the recovery process. This requires a system wide, resilient yet light weight publish-and-subscribe
infrastructure. It must allow for every component to both deliver events to all other components
as well as receive events.

A fault avoidance or fault recovery action may depend on many events, generated at different
times and different locations. For example, the imminent failure of a memory may be predicted
from the stream of warnings about previously corrected errors; in order to identify a low-performing
network link, one may need to correlate information on end-to-end messaging performance, with
information on the current routing scheme used; and so on. In addition to the ability to collect
and distribute information, one will also need a significant ability for real-time “data fusion” and
off-line data mining.

4.2.3 Coordinated Holistic Approach

Already the notification discussion above shows that resilience cannot be achieved in a single
location in the overall system, nor is it possible to implement techniques in multiple layers indepen-
dently. A successful resilience strategy will need a vertically coordinated and integrated approach
that gives a holistic view on faults and ways to mitigate them.

Interfaces: A key part will be the development of the necessary interfaces that allow applications
to expose their information, state, and detected fault to the other software layers in a stan-
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dardized and coordinated fashion. This requires the creation of common abstractions and is
closely related to the gaps on fault types and metrics above.

Containment and Isolation: In order to provide clean semantics and to reason about errors
and their propagation, we will need techniques that provide error containment and isolation
between system components and layers.

Coordination: Fault tolerance techniques will be implemented in all layers of the application
stack, potentially by different developers and/or vendors. However, in order to be effective
and efficient these mechanisms must be coordinated to avoid unnecessary replication of state,
inconsistent snapshots of system state, or missing information. This not only refers to coordi-
nation between the application, the runtime, and the underlying architecture, but must also
include other system components, such as in situ and online data analysis, runtime tools, or
the I/O subsystem. Fault tolerance approaches developed disjointly in an adhoc manner could
have significant overhead and yield spotty or ineffective resilience when applied at extreme
scales.

4.2.4 Viable Prediction

Titled in the workshop as “The Holy Grail of Fault Tolerance and Resilience”, an accurate prediction
of faults will a substantial aid for system-wide fault avoidance. If prediction is successful and correct,
systems will be able to preemptively vacate failing resources, avoiding costly correction or restart
techniques. Further, correct predictions of failure rates will help with fine tuning techniques, e.g.,
by setting optimal checkpoint intervals, and will help concentrate efforts on the most critical and
vulnerable resources.

Note that fault prediction is useful, even if it has low precision and recall. Suppose that one can
predict in a timely manner half of the node failures, but half of the predictions are wrong. Then
one will have avoided half of the restarts, at the expense of twice as many process migrations. This
is likely to be a worthwhile trade-off. Current research shows that better precision and recall are
already feasible [15]. On the other hand, fault prediction will not be perfect, and will not obviate
the need for fault detection and recovery techniques.

4.2.5 Adoption and the Road to It

Implementing fault-tolerance techniques and a resilience strategy will not be effective without
changes to applications and system software. Some of these changes may be significant and in
some cases will require a rethinking of fundamental software design. This could impact on the
sustainability of existing codes, even though the proposed resilience strategy in Section 4.4 was
formulated with the intention of supporting the execution of unmodified codes. Such codes would
continue to run in the new resilience framework, but may derive little or no resilience benefits
without some amount of rewriting.

Application and library developers desiring to fully avail themselves of new resilience features
will likely face increased code complexity, and depending on implementation choices may find
themselves facing a steep learning curve. In order to overcome hurdles in the adoption of these new
techniques, it will necessary to both focus on education and training of developers as well as on the
tools and methodologies that enable developers to more easily transition existing applications to a
fault-tolerance aware model. And with changes in the programming model looming in the Exascale
timeframe, because of parallelism and data locality challenges, now may be the opportune time to
embrace the disruptive changes required to implement a coordinated HPC resilience strategy.

Inter-Agency Workshop on HPC Resilience at Extreme Scale 28



4.3 Dependencies

In order to build a software stack that enables all the required interdependencies between the
separate layers that are necessary for resilience, it is useful to begin with the concept of a fault
model, or fault API. The idea is to establish a standard description of faults, so that the software
layers can respond appropriately to them. This fault model must include features that allow each
layer to be developed separately and in parallel by different teams, without needing to know the
implementation details in any of the other layers.

Developing this model may require some experimentation, but the computer science community
already is familiar with a very serviceable approach - that of exception handling. This seems a very
reasonable starting point. Workshop participants do not intend to minimize the effectiveness of
automatic correction of faults, transparent to an application, as one finds with ECC memory or
error correcting data transmission protocols. On the contrary, we expect the vast majority of faults
to be handled this way. However, these techniques cannot cover every case. Exceptions are then
the faults that these techniques do not correct.

4.3.1 Fault Model

A fault model built on exception handling has three main components: detection, notification, and
recovery. Fault detection can occur at multiple layers of the software stack, including even the top,
application layer. One may expect the granularity of fault detection to increase as we ascend from
layer to layer, with the application responding mainly to relatively large faults, such as the loss of
a node or a small, undetected error that has propagated extensively and ultimately led to some
physically impossible behavior that the application can detect.

Fault Types Examples Effects Today Exascale

Permanent Fans, Power supply,
Chip

Hardware fails EXISTS WILL EXIST

Gradual Spatial and temporal
(temperature, voltage,
external sources, etc)

Slow down, speed up,
data corruption, loss of
control

DESIGNED
OUT

WILL EXIST

Intermittent Soft errors (cosmic
rays, packaging), Noise
(voltage droops)

Data corruption, silent,
loss of control

EXISTS WILL EXIST

Table 3: Fault types: today vs. Exascale

A well designed fault model will enable post-mortem root cause analysis, so that equipment can
be replaced or software bugs fixed. For the application level, the idea is to provide fault notifications
with sufficient information to allow a willing application to take appropriate action. For example,
an API in which the application could specify the following set of capabilities by task, work ID,
and work phase provides the basis of an uncomplicated, flexible and powerful interface:

Persistent State Storage: provides the application an ability to identify and allocate storage
blocks that will persist through node failures.

Ability to Recover This State: provides a mechanism for automatically recovering program
state among neighboring nodes.

Notification: provides information on what is happening at the system level (e.g., lost data, lost
resources, degraded operation, etc.) in response to the error.
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Log Messages: provides an interface for the application to start, stop and update its assessment
of the state of a computation.

Applications that are not designed to take such action will be killed, presumably to fall back
upon a restart dump that they will have written earlier. Application developers will be able to
decide whether or not faults are frequent enough and costs of roll-backs and restarts are high enough
that they should provide the appropriate exception handlers to deal with these faults immediately
as they occur. Thus, even applications that leverage none of the failure handling infrastructure
supplied by the resilience framework can still run normally.

4.3.2 Fault Notification

At the application level, it will be possible to respond to or ignore fault notifications, but at other
layers of the software stack this will not be an option if the entire system is to function properly.
For example, if the response of the messaging layer is to kill the job upon the loss of a node then
it is pointless for an application to be resilient to such node loss. Here we have no chicken and egg
problem - it is absolutely clear where the work of resilience must begin.

We can thus imagine a process for enabling resilience that begins at the lower layers of the
software stack and builds upwards. Only considerably into this process would it make sense to
build truly resilient applications. Nevertheless, a small number of representative applications might
volunteer to be resilience pioneers and to develop the necessary exception handlers in parallel with
the changes to the lower levels of software. Such early resilient applications would most likely be
necessary for testing the effectiveness of the overall changes to the software stack.

4.3.3 Containment Domains

In this picture, we consider a chain of resilience dependencies that begins at the bottom and extends
up to the application layer of the software stack. In order to recover from a fault, one needs to
identify the limits in hardware or in data that contain the fault (a “containment domain”). At
present, this containment domain is the entire job. For resilience to be effective, this domain must
become smaller. We can also think of such containment domains in terms of the layers of the
software stack. Thus we could design the fault model in such a way that particular kinds of faults
are contained within certain layers or groups of layers. This would enable each layer to respond to
only a limited subset of all faults identified in the fault model.

For example, one might demand that data transmission faults on the system interconnect be
handled by the messaging layer, so that at the application layer these faults would not need to
be either detected or handled. An aggressive application design might nevertheless notice slow
data delivery to a particular node and then exclude that node from the working set, but this
instrumentation of the application would be optional, and not required for resilient operation. The
total loss of all connection to a given node could be signaled to the application as a loss of the node
itself, since the action to be taken by the application would be the same regardless of why the node
was lost. In this fashion, the amount of new work required at each level of the software stack could
be kept manageable.

4.3.4 Fault Characterization

As a start in identifying fault types and which layers of the software stack must deal with them, we
may sort faults according to Tables 4a–c. The first two tables serve to expose those hardware faults
that we can clearly anticipate. The third table captures what we believe we know today about
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Component Prob. of Fail Impact Scope

Fans High Low * Node down

Power Supply High Low * Node down

CPU / SRAM Low Low * Node down

DRAM Mid Low Reconfiguration (ex: page mapped out)

Solder Joints High Low * Node down

Sockets High Low * Node down

Disks Mid to High Low Reconfiguration (ex: rebuild)

NAND / PCM Low Low Reconfiguration (ex: rebuild / page
mapped out)

Network Low to Mid Low Reconfiguration (ex: dynamic route)

(a) Permanent and gradual hardware faults at Exascale

Component Prob. of Fail Impact Scope

Fans - - -

Power Supply - - -

CPU / SRAM Unknown High Soft error / noise / data corruption

DRAM Unknown High Soft error / data corruption

Solder Joints - - -

Sockets - - -

Disks Mid to High Low Loss of access

NAND / PCM Unknown High Soft error / data corruption

Network Low Low Noise / data corruption

(b) Intermittent hardware faults at Exascale

Component Prob. of Fail Impact Scope

Node OS Unknown Low Node

Storage Unknown High System

Runtime Intra-node Unknown Low Node

Runtime Inter-node Unknown High System

Scheduler Unknown High System

Programming System
(ex: compiler)

Unknown Low Application

Application Unknown Low Application

Tools Unknown Low Variable

Vis and Data Analy-
sis

Unknown Variable Variable

(c) Software-related faults at Exascale

Table 4: A partial fault characterization for Exascale
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software-related faults, and in particular it is clear that we do not yet understand the probability
of failure of software components. The hard work of determining which layers of the software stack
should deal with hardware failures, and in which ways, is left to a resilience strategy that will result
from research. Nevertheless, exception handling and fault containment are general principles that
we expect such a strategy to apply to this problem.

4.4 Strategy

Figure 2: More general fault-tolerance techniques re-
quire greater overhead but are also more flexible

Any strategy for resilience will ultimately
involve tradeoffs. Figure 2 is helpful in
visualizing those tradeoffs in terms of ex-
isting fault-tolerance techniques. In par-
ticular, more general techniques such as
triple modular redundancy (TMR) can be
very easy to implement, from the applica-
tion perspective, but are expensive from
the perspective of system resource utiliza-
tion. On the flip side, fault-tolerant Lin-
pack (FT-HPL) and various techniques in
algorithm-based fault-tolerance (ABFT)
can be extremely efficient in terms of sys-
tem utilization, greatly reducing the per-
formance and energy impacts of the fault-
tolerance scheme, but are often application specific. Thus, the resilience strategy exercise consists
in trying to develop a balanced approach that accommodates the needs of both the application and
the system.

4.4.1 Focus on Real Application Requirements

The charge to the working groups was to let the needs of the application drive the requirements
for the resilience strategy. The goal of this approach is to develop a complete resilience strategy
for the “predictive science” and “non- predictive science” domains by first focusing on the partic-
ular requirements of two “proxy applications” chosen to reflect the subject matter expertise of the
workshop participants. For these purposes, the strategy working groups focused on GMRES [45]
as one proxy application and PPM [44] as a second. Both of these are mature computer kernels
representative of important resilience challenges facing the HPC community in the Exascale time-
frame. The working groups evaluated their resilience strategies in terms of these two proxies, which
attendees believe will be generalizable across the target application domains.

4.4.2 Transactional Semantics

The strawman strategy that follows was put forward by the workshop participants as a starting
point for attacking the resilience problem. The purpose is not to confine the research space or
identify the solution. Rather, we aim to present a different thought process on how to structure
the application and the system according to a different execution model that promotes failure
containment and isolation. This exercise should serve as an example of how to attack the problem
with a holistic approach that includes all system layers.

The proposed strategy is based upon an abstract entity called the Recovery Unit (RU) (see
Figure 3,, which is the unit of failure and recovery in the system. This is a construct similar to the
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Figure 3: A diagram of a Recovery Unit (RU) that serves as the backbone of the proposed resilience
strategy for an extreme scale HPC system in the Exascale timeframe.

containment domains proposed by Mattan Erez at. al [42]. The RU has transactional semantics
in the sense that it executes a program in the form of a sequence of atomic actions, each receiving
input and producing output according to program control and semantics. (Logically, internal state
can be viewed as an output of the action that is an input to the next action.) Its implementation
should thus promote defensive programming on the part of the programmer.

Each action within the RU is checked at input and output stages to ensure that all errors are
detected before it can affect the state of other RUs. Thus, failures and errors will not propagate
outside the boundaries of the RU. The error checking presents a tradeoff to the programmer, where
more effort spent can lead to easier time during debugging and more resilient operation. Such
an effort-reward system is different from today’s practice where resilience is essentially an after-
thought. The approach also can naturally extended to include security provisioning.

RU’s can be defined statically, as part of the system structure, or dynamically, as part of the
execution evolution; they can be single level, or hierarchical. The system will consist of a number
of RUs (likely a large number), with provisions in place to ensure that:

1. If an RU fails, it is simply replaced by redirecting the input toward another functioning RU.
No global rollback or aborts are necessary.

2. Once the output of the RU is produced, it will persist future failures. This provides a
mechanism to advance the computation through failures in a scalable manner. To achieve
this goal, it may be necessary to store the output in stable, persistent storage, until it is
consumed.

4.4.3 Error Containment

The system is resilient if errors are not allowed to propagate from RU to RU and state is properly
preserved. To achieve this goal The RU includes a “simplex” subsystem that takes as input some
specification of the expected behavior of the application. The input would preferably be composed
of a formal specification of the system behavior. Less than ideally, the input could consist of a
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number of assertions that are used to verify the system execution. The simplex is responsible for
checking the input and output into and out of the RU, respectively, to ensure conformance with
expected behavior. (Input checking can be avoided if communication is reliable.)

For example, the simplex may verify that an index to an array as an input parameter is within
the bounds of legal values. Similarly, the programmer may specify that the expected value of an
output variable lies in a certain range, and the simplex will verify that indeed the output is within
the stated range. The simplex is likely to be implemented in a manner where its correctness is
verifiable (e.g. a small operating system kernel working on an adjacent simple processor that can
be cheaply hardened). The checkpoint and restart mechanisms need to be similarly hardened.

The interface to the programmer is not very different from the proven transactional model.
The system should communicate failures upward and extensive use of exception handling must be
provided to enable the program within the RU to rectify the situation instead of merely “killing” the
program. Of course, the program within the RU will be required to perform best effort resolution
of the problem before it declares to the system that a failure has occurred, at which time the RU
is taken off line and substituted with a spare.

4.4.4 Efficiency and Overhead

The system is efficient if the overheads of reliably testing and storing outputs is low. A naive
implementation can have unacceptable overheads. Various optimizations will be needed to achieve
acceptable performance. For example, application state is often redundant. This allows one to
reduce the amount of persistent storage needed, possibly at the expense of a more expensive process
to recreate lost values. Also, one can use hierarchical designs, where frequent errors are avoided
with fine grain RUs while infrequent errors may require the re-execution of a coarse grain RU
(possibly, an entire application).

The efficiency of the system will also depend on the frequency of errors and the number of RUs
affected by an error. The later can be reduced by matching the boundaries of logical RUs, with
the physical boundaries of errors. A hardware error can affect a single processor chip, or a single
node containing several processor chips that share memory; Accordingly, RUs should be mapped,
to single chips or single nodes. On the other hand, an error in the communication network can
have a global effect. This can be mitigated by ensuring that unrecoverable communication errors
in the network are very unlikely, or by compartmentalizing communication.

In particular, new persistent memory technologies should provide opportunities to write infor-
mation to a stable storage device at an unprecedentedly low performance overhead. The approach
also can leverage existing technologies within the confines of the RU, such as local checkpointing
for long transactions, virtualization, etc.

4.4.5 Flexible Tradeoffs

The RU has to allow the user to specify a flexible tradeoff among performance, energy consumption
and resilience. Flexibility in providing these measures is therefore a necessary tenet for building the
system. The system should allow the user thus to have “knobs” to identify the appropriate measure
most appropriate for a certain applications, with the understanding that not all applications require
the same level of resilience, or are of the same priority. The concept can also be taken at various
components of the application, affording increased resilience and the associated increase in energy
consumption to the application component most critical to correctness, and perhaps less so for
other components deemed as more inherently resilient or whose compromise may not affect the
quality of the result.
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A transition to a new execution model is certainly not a simple undertaking. There is research
that must be performed not just to validate the strategy but to also automate the transformation
from the existing execution models such as MPI, Map-Reduce and PGAS, into the new model.
Such automation is necessary to preserve the previous investments in software and to move this
software to a new era where it can be made more amenable to sophisticated treatment in the
performance-power-resilience tradeoff.

There are additional advantages to the approach we present here as an example. It enables
the programmer to specify resilience and reason about the properties of the application. This
has the nice byproduct of simplifying the process of application debugging, as well as improving
maintainability and robustness of code. Further, it provides a stable, well compartmentalized
system software stack to facilitate reasoning about and diagnosing bugs arising during the system
stabilization period subsequent to initial operating capability (IOC).

4.5 Roadmap

The final workshop activity was roadmap development, to identify R&D activities necessary to
realize essential components of a resilience infrastructure appropriate to extreme scale system in
the Exascale timeframe. Each topic lists specific tasks. After each topic is a number (1, 2 or 3)
showing approximate phasing and dependencies (i.e., Tasks in phase #1 should be completed before
moving ahead with tasks in phase #2), followed by a priority (Med or High – low items are not
listed). Sometimes a letter is included with the number (e.g., 1b) to identify subordering of tasks
that may be conducted concurrently.

Topics are further divided into sublists of finer grained tasks. Participants tagged tasks by their
approximate cost ($, $$, $$$ or ? when uncertain) and were asked to differentiate between “little-r”
and “big-R” research tasks (r/R) as a coarse measure of technical risk. This distinction corresponds
to a relatively higher or lower technology readiness level (TRL) [2] and should be helpful in tailoring
a “right-sized” resilience strategy for a program developing its technology portfolio for the Exascale
timeframe. Finally, all of the roadmap tasks from this section are summmarized in timeline format
in Figure 4.

Figure 4: Roadmap for resilience R&D indicating phases for various research tasks as the stand in
relationship to one another in the Exascale timeframe.
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4.5.1 Characterization

Requirements (1b, High): Elicit “real” requirements of different kinds of algorithms and
applications

• For a very limited set of applications [r/$]

• For a broad set of applications [R/$$]

Error Studies (1b, Med): Identify what kind of errors exist in the wild that we do not
even know about (inquisit people and codes, do experiments) to gain a better understanding
of the types of errors we are up against

• Obtain very limited set of errors [r/$]

• Obtain comprehensive set of errors [R/$$$]

4.5.2 Resilience Policy

Define Interfaces (1a, High): Create a resilience interface for applications users and de-
velopers to complement exception handling that already exists (e.g., “try” / “except” in
Python)

• Define and develop the interfaces [r/$]

• Determine whether and how well the interfaces work [R/$$]

Dependency Model (2, Med): Develop full system / full stack model to define dependen-
cies [R/?]

Socialization and Adoption (2, High): Buy-in from application writers, open source com-
munity, facilities and system vendors [r,R/?]

Socio-Economic Concerns (2, Med): How do we convince the community to use this?
[R/?]

4.5.3 Governance Mechanisms / Framework

Global System Manager (2a, High): Create a resilience manager - every system compo-
nent must participate

• Current crash recovery mechanisms & RAS system, embedded systems, dependable soft-
ware technologies [r/$]

• Making it efficient and cost effective [R/$$]

Performance / Power / Reliability Model (3, Med): Develop a model to define trade-
offs [R/$$]

System Software Hardening (2b, High): Address the issues that the system software
must be at least as fault-tolerant as the applications it is protecting from errors

• Adopting architecture patterns and practices for dependable software [r/$$]

• Restructuring of system software (ref. Section 4.4) [R/$$$]
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4.5.4 Detection (i.e., Something Happened)

ABFT (1b, Med-High): Algorithm-based fault-tolerance schemes that permit applications
to self- detect and self-correct errors

• Focus on very limited algorithms [r/$]

• Apply more generally [R/$$]

• Automatic FT code generation [R/$$$]

• Implement selective reliability [R/$$]

Replication (1b, High): Implement N-modular redundancy schemes in system software to
run multiple instances of an application and compare results

• Manual implementation or coarse grained auto- replication [r/$]

• Automatic implementation and optimization [R/$$]

System (2, Med-High): System level error self-checking

• SECDED, parity, checksum, etc. [r/$]

• Chinese remainder theorem [R/$$]

• Performance, energy or cost impact and automated optimization [R/$$$]

Validation (2, High): Creating methods and infrastructure for measure fault-tolerance of
algorithms and effectiveness of a resilience strategy

• Testing infrastructure for resilience [r/$$]

• Formal methods - possibly very hard [R/$$$]

4.5.5 Diagnostics (i.e., What Happened?)

Root Cause Analysis (2, High): Working backwards from the failure to determine the
fault

• Historical (post-mortem) or manual [r/$]

• Real-time, automated [R/$$]

Error Forensics / Provenance (3, Med): Working forward from faults to all potential
errors

• Historical (post-mortem) or manual [r/$]

• Real-time, automated [R/$$$]
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4.5.6 Notification

O/S & Runtime Modifications (1b, High): Changes to the software stack necessary to
support information exchange from hardware to the application

• Getting more sophisticated about posting events [r/$]

• Bounding the errors and doing attribution [R/$$]

Registration of Application Handlers (2, High): Mechanisms to allow the application
to communicate error classes for which it desires notification

• Handling registration [r/$]

• What types of things need to be registered [R/$]

Tools (1b, High): To notify the users and developers and administrators of system state

• Notification system [r/$$]

• Analysis and reporting [R/$$]

4.5.7 Containment

Quarantine Errors (1b, Med): Prevent further propagation of errors once detected

• Hardware vendors do this to some extent on a component basis [r/$$]

• Across the system or across the stack (R) [R/$$]

Separation of Concerns (1a, High): System software and tools should do no harm to ap-
plication; application should do no harm to system software and tools

• Leverage security solutions [r/$]

• Containment domains to prevent irresponsible use of things like RDMA [R/$]

• General strategies for component interactions and implementation – this is going to
touch every other aspect of the resilience framework [R/$$$]

4.5.8 Recovery

Reliable, Persistent Storage & Software (1a, High): Hardware and supporting software
to facilitate the error recovery process

• Local Storage [r/$]

• New global high performance, resilient solutions as current solutions are inadequate for
Exascale with existing applications [R/$$$]

Reconfigurable Logical to Physical Mapping (2, Medium): Necessary to support re-
allocation and rescheduling of resources after a failure

• Reallocation mechanism for preallocated resources [r/$]

• Dynamic coordinating and optimizing [R/$$]
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Virtualization (2, Medium): Facilitates movement of an application away from failed re-
sources

• Static translation [r/$]

• Dynamic translation [R/$$]

• Extending the concept through the execution model [R/$$$]

Rollback (1a, High): Mechanisms that return the system or application to a known good
state

• Global and local with existing transactions [r/$]

• General local [R/$$]
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5 Summary and Conclusions

As the HPC community embarks on the path to Exascale computing, several uncertainties remain.
Perhaps the most glaring of these is the status of resilience eight or more years out at a system scale
not contemplated before. This report outlines the issues that need to be tackled to fully address
those uncertainties and provide a path forward for computing in the face of increasingly unreliable
systems. It dictates a roadmap and should motivate an active research and development agenda to
meet the needs of the community and realize the goals of computing in the Exascale timeframe.

5.1 Scope of the Challenge

The collective opinion expressed by workshop attendees predicts that the number of errors, and
particularly soft errors, occurring in HPC systems will continue to rise with deeply scaled process
technologies. The situation is exacerbated by the power consumption challenge that these systems
must meet to produce a system with realistic resource and operational parameters. Sub-threshold
voltage operation, increased heat concentration and continuous change in voltage will be needed
to produce optimal energy consumption, but will create problems of intermittent failures and may
also affect the longevity of a system’s components.

However, the resilience issues are not confined only to hardware. At the software level, the
predominant programming models today are based on unconstrained message traffic, a model char-
acterized by poor error containment properties. Thus the failure of one component can propagate
quickly and recovery generally requires a total system abort. This arrangement was found in-
efficient at Terascale, problematic at Petascale, and we predict will be unworkable at Exascale.
A programming model that is based truly resilient, allowing applications to continue running to
correct solutions in spite of errors, it what is needed.

Software lacks a robust application interface to failures and recovery. Today, programmers deal
with systems that provide unrealistic abstractions of perfect operation. Failure is modeled with
clean semantics of an abrupt stoppage that does not cause any permanent corruption of data.
Immediate error detection is assumed in the abstractions available today, and thus techniques such
as synchronized global checkpointing have been used to restore a sane system state and resume
computing. With the rise of error rates at the component level and at the system scale level, the
timely detection of these errors during runtime is going to be of paramount importance and is a
challenge by itself.

Further, programmers have no tools to either predict or assess the fault-tolerance of an ap-
plication. Faced with these challenges, programmers have resorted to adhoc techniques that are
programmed into their software to provide rudimentary recovery when an error occurs. However,
this often leads to code obfuscation and reduced robustness.

5.1.1 Building on Success

It is important in the midst of discussing all the work to be done that the HPC community not lose
sight of the good news and sometimes surprising successes. For example, the fact to the resilience
strategy can be effectively decoupled from final system architecture decisions, because reliability is
effectively proportional to component count, could be a huge win. It means that work can proceed
toward development of a practical resilience infrastructure long before final details of the Exascale
system architecture have been nailed down. It was also a welcome relief to discover that even
though global, shared checkpoints are a non-starter in the Exascale timeframe, multiple solutions
based on concepts of writing checkpoints to some form of local or nearest neighbor storage appear
that they will be viable in the Exascale timeframe.
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Other areas where the workshop uncovered hopeful indicators included the area of application
fault-tolerance. Workshop participants discovered several classes of applications that were either
“embarrassingly fault-tolerant” or at least had the potential to self-check and even self-correct for
errors. This will translate into less work to be done at the system level to capture and correct
soft-errors, and more efficient methods of error detection and recovery. In fact, it did not appear to
the experts in attendance that there was any class of applications of interest to the DOD or DOE
that could not substantially improve their ability to tolerate errors through careful consideration
of algorithms and methods. And perhaps even more surprising was the fact that a great deal of
the communication that needs to occur between the system and the application to negotiate errors
can be accomplished via a comparatively simple and non-disruptive assertion based interface.

As a result of the findings of this workshop, there is good reason to be confident that a practical
resilience framework is implementable at reasonable cost in the Exascale timeframe. By starting
with what already is known to work reasonably well and focusing attention on the “low hanging
fruit” it should be possible to implement a resilience strategy that, while it will not address every
conceivable error scenario, will nevertheless demonstrate quantifiable improvements in both user
productivity and time and energy to a correct solution on systems that encounter failures frequently.

5.1.2 An Overarching Strategy to Address the Challenges

Workshop attendees identified a strategy to address the challenges outlined above, and a roadmap
of technical milestones on the way to formulating a workable resilience framework for the Exascale
timeframe. To begin with, it is imperative to assess the situation of component resilience, and
therefore work in fault characterization will be necessary to understand the impact on application
performance and correctness. A taxonomy of failures and their rates needs to be developed. Fault
detection needs a more realistic abstraction to enable the development of more effective failure
recovery.

Further up the system stack, resilience mechanisms should exploit application characteristics
to improve fault-tolerance and reduce overhead. We identified three classes of fault-tolerant algo-
rithms, namely those that are inherently fault-tolerant, those that enable self-checking, and those
that have nefarious characteristics that prevent self checking or resilient operation. Work is needed
in establishing the application patterns of each class, and there is a need for transformation that
move an algorithm from less fault-tolerant class to a better one.

At the programming model level, there is a need for strong error containment characteristics.
We propose to revisit programming models with transactional semantics, assertion checking, self-
checking and facilities for failure recovery. These models should allow the programmer to interact
with system notifications of failure at a high level, enabling redirection of resources or application-
level specific actions. Interfaces that enable this two way communications between the system and
the application need to be developed. Such interfaces not only allow the user to improve reliability
of the hardware and software components most critical to their application, but in cases where the
application is embarrassingly fault-tolerant such interfaces provide users the flexibility to “trade
off” reliability for energy efficiency or performance. There is also an important consideration of
ensuring that error management is not communicated at such a low level so as to make programming
more complex and reduce programmer productivity.

The proposed solutions for software handling of fault detection and for low-overhead fault
correction, presuppose a fairly sophisticated set of system services for resilience. There is a real risk
of “solving” the problem posed by rare hardware failures by implementing a software infrastructure
that is even more failure-prone. The need for more sophisticated energy management and more
dynamic resource management exacerbates the problem. Therefore, it will be essential to invest
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in robust designs for the Exascale software stack, ensuring that the inherent unreliability of large,
complex and concurrent system software does not increase the unreliability of the system.

Finally, resilience will require developing tools that can be used to quantify the effects of failure
and recovery, predict the inherent resilience of an application, and enable the simulation of faults
to support code development, test and debugging. Developers who have years of finely honed
intuition with regards to performance tuning cannot be expected overnight to tackle the challenges
of implementing fault-tolerant algorithms without robust, fault-tolerant tools that give genuine
and useful insight into the types of errors they will be facing and the impact of those errors on
the performance and correctness of their applications. Validated fault injection tools are needed in
particular to simulate all classes of faults, for the purpose of hardening both system software and
applications.

5.1.3 Cultural Hurdles in the Commodity Space

Workshop attendees identified an important cultural issue that may pose a hidden hurdle to progress
in resilience. It has been assumed at various Exascale forums that the industry will work to ensure
that systems are going to be resilient, out of necessity as commercial customers will not put up
with unreliable systems. Therefore, it is assumed that the “resilience problem will be solved”.
This line of reasoning points to the long history of HPC systems and how industry has always
solved the resilience problem by providing what are basically reliable systems. When you have
reliability, resilience is not needed. And even as reliability has seen a marked decline on some of
the communities largest HPC systems, vendors have usually managed to step up to the plate with
a fault-tolerance solution to compensate.

While this basis of confidence has some historical precedent, it will ultimately lead to false
hopes and expectation as the needs of the commodity computing market continue to diverge from
needs at the highest end of HPC. Thus, it is important to understand the unique characteristics
of HPC especially at Exascale compared to commercial computing. As a consequence, industry
participants of the workshop unanimously stated that they do not see commercial systems growing
at the scale required to meet Exascale requirements. Even very large cloud based systems will be
carved up to serve many independent workloads. Therefore, the notion of a single capability system
that uses all its resources to solve a single problem is unique to HPC, and there will be no specific
motivation to over-engineer those systems to meet the resilience requirements at Exascale. Cost
and power were cited as particular concerns.

5.2 Final Recommendations

In summary, the number of errors, particularly soft errors, occurring on HPC systems will continue
to increase. A right-sized and well-conceived resilience strategy in the Exascale timeframe will be
ultimately far more cost effective for HPC than continuing to rely on ad-hoc resilience solutions.
The industry will not do it as they do not see the incentive, and therefore it is important for the
HPC community to invest in researching the unique problems of HPC at extreme scale. Academia,
government, national laboratories and industry must work in concert to develop new, cost effective
approaches to resilience beyond what will be available from “commodity” systems in the Exascale
timeframe. Workshop participants identified six technical areas from which to launch such an effort:
fault characterization, error detection, fault-tolerant algorithms, resilient programming models,
fault-tolerant system services and tools. Addressing these areas will prove a smart risk mitigation
strategy for HPC in the Exascale timeframe and a necessity for realizing the full potential of
computing at extreme scale.
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