
RICE UNIVERSITY

Productive Programming Systems for

Heterogeneous Supercomputers

by

Max Grossman

A Thesis Submitted
in Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Approved, Thesis Committee:

Vivek Sarkar, Chair
Professor of Computer Science
E.D. Butcher Chair in Engineering

John Mellor-Crummey
Professor of Computer Science and of
Electrical and Computer Engineering

Ray Simar
Professor in the Practice of Electrical and
Computer Engineering

Houston, Texas

December, 2016

ABSTRACT

Productive Programming Systems for Heterogeneous Supercomputers

by

Max Grossman

The majority of today’s scientific and data analytics workloads are still run on

relatively energy inefficient, heavyweight, general-purpose processing cores, often re-

ferred to in the literature as latency-oriented architectures. The flexibility of these

architectures and the programmer aids included (e.g. large and deep cache hierar-

chies, branch prediction logic, pre-fetch logic) makes them flexible enough to run a

wide range of applications fast. However, we have started to see growth in the use

of lightweight, simpler, energy-efficient, and functionally constrained cores. These

architectures are commonly referred to as throughput-oriented.

Within each shared memory node, the computational backbone of future throughput-

oriented HPC machines will consist of large pools of lightweight cores. The first wave

of throughput-oriented computing came in the mid 2000’s with the use of GPUs for

general-purpose and scientific computing. Today we are entering the second wave

of throughput-oriented computing, with the introduction of NVIDIA Pascal GPUs,

Intel Knights Landing Xeon Phi processors, the Epiphany Co-Processor, the Sunway

MPP, and other throughput-oriented architectures that enable pre-exascale comput-

ing. However, while the majority of the FLOPS in designs for future HPC sys-

tems come from throughput-oriented architectures, they are still commonly paired

with latency-oriented cores which handle management functions and lightweight/un-

parallelizable computational kernels. Hence, most future HPC machines will be het-

erogeneous in their processing cores.

However, the heterogeneity of future machines will not be limited to the processing

elements. Indeed, heterogeneity will also exist in the storage, networking, memory,

and software stacks of future supercomputers. As a result, it will be necessary to

combine many different programming models and libraries in a single application.

How to do so in a programmable and well-performing manner is an open research

question. This thesis addresses this question using two approaches.

First, we explore using managed runtimes on HPC platforms. As a result of

their high-level programming models, these managed runtimes have a long history of

supporting data analytics workloads on commodity hardware, but often come with

overheads which make them less common in the HPC domain. Managed runtimes

are also not supported natively on throughput-oriented architectures.

Second, we explore the use of a modular programming model and work-stealing

runtime to compose the programming and scheduling of multiple third-party HPC

libraries. This approach leverages existing investment in HPC libraries, unifies the

scheduling of work on a platform, and is designed to quickly support new programming

model and runtime extensions.

In support of these two approaches, this thesis also makes novel contributions in

tooling for future supercomputers. We demonstrate the value of checkpoints as a

software development tool on current and future HPC machines, and present novel

techniques in performance prediction across heterogeneous cores.

Acknowledgments

First, emphatic thanks have to go to my advisor, Professor Vivek Sarkar. His gen-

erosity and mentorship have had a huge impact on me for nearly the past decade.

When I decided to return to school to earn a graduate degree as a member of the Ha-

banero group, his immediate and unfaltering support of that was all the confirmation

I needed that it was the right decision.

Second, I have to thank my mother, father, and extended family. The emphasis

on education, happiness, and discipline that was instilled in me from an early age has

undoubtedly been invaluable in pursuing this degree.

Third, I would like to thank Professor John Mellor-Crummey and Professor Ray

Simar for their questions, feedback, and criticisms throughout my thesis proposal

and defense. Their contributions have measurably improved the clarity and content

of this dissertation.

Fourth, thank you to the members of the Habanero group, to collaborators outside

of it, and to my friends. This accomplishment would not have been possible without

the technical support, emotional support, and margaritas you have supplied.

There’s a difference in life between things that are scary and things that are

dangerous... There are plenty of things that are scary but not dangerous... Staying

[in industry] was dangerous but not scary. The danger there, the risk of it was

continuing to do something that didn’t make me happy, and getting to 65 and

looking back and going ”Oh My God, I wasted my life”. That is risk, that is danger.

- Jim Koch, Founder of Samuel Adams

Contents

Abstract ii

Acknowledgments iv

List of Illustrations ix

1 Introduction 1

1.1 The Cost of Hardware Heterogeneity 2

1.2 Our Envisioned User Workflow . 5

1.3 Thesis Statement . 8

1.4 Contributions . 8

1.5 Outline . 10

2 Background 11

2.1 Emerging Heterogeneous Architectures 11

2.1.1 NVIDIA Pascal and Volta . 11

2.1.2 Intel Knights Landing Xeon Phi 13

2.1.3 Sunway MPP . 15

2.1.4 Epiphany-V . 16

2.1.5 FPGAs . 17

2.2 Production Programming Models for Emerging Supercomputers . . . 17

2.2.1 OpenMP . 18

2.2.2 Kokkos . 19

2.2.3 Raja . 20

2.2.4 CUDA . 21

2.2.5 GPU-Aware MPI . 21

vi

2.3 Summary . 22

3 High-Level Programming Systems for Data Analytics Work-

loads on Heterogeneous HPC Systems 23

3.1 Motivation . 23

3.2 The Challenge of Managed Runtimes on Accelerators 25

3.3 Offloading Shared-Memory Parallel Java Programs Using HJ-OpenCL 27

3.3.1 HJ-OpenCL Code Generation and Data Serialization 28

3.3.2 HJ-OpenCL Runtime . 37

3.3.3 HJ-OpenCL Performance Evaluation 45

3.4 Accelerating Distributed Data Analytics Platforms Using HCL2 and

SWAT . 56

3.4.1 Background: Hadoop MapReduce and Apache Spark 58

3.4.2 APIs for Accelerated Data Analytics 62

3.4.3 Runtime Code Generation . 65

3.4.4 Runtime Accelerator Memory Management 66

3.4.5 Runtime Coordination . 70

3.4.6 Performance Prediction in HCL2 78

3.4.7 Framework-Specific Tooling 84

3.4.8 HCL2 and SWAT Performance Evaluation 86

3.5 Related Work . 100

3.5.1 Past Work in Shared-Memory Programming Frameworks . . . 100

3.5.2 MapReduce-based Frameworks 101

3.5.3 Functional, Spark-Based Frameworks 102

3.6 Discussion of Selectively Supporting JVM Features 102

3.7 Summary . 103

4 Improving the Scalability, Programmability, and Com-

vii

posability of HPC Libraries on Heterogeneous Systems106

4.1 Motivation . 106

4.2 HiPER Design and Implementation 107

4.2.1 HiPER Platform Model . 108

4.2.2 Generalized Work-Stealing Runtime 109

4.2.3 Pluggable Software Modules 113

4.2.4 Example HiPER Usage . 119

4.3 HiPER Evaluation . 122

4.3.1 Experimental Setup . 122

4.3.2 Regular Workloads . 123

4.3.3 Irregular Workloads . 123

4.4 HiPER Related Works . 127

4.4.1 Composable Frameworks . 128

4.4.2 Heterogeneous Programming Frameworks 131

4.5 HiPER Discussion and Conclusions 133

5 Supporting HPC Programmers with Novel Tooling 135

5.1 Background: Checkpointing . 135

5.1.1 Motivation . 135

5.1.2 CHIMES Design and Implementation 138

5.1.3 CHIMES Performance Evaluation 152

5.2 Decomposition-Based Performance Prediction 162

5.2.1 Background . 162

5.2.2 HYDOSO Design and Implementation 167

5.2.3 HYDOSO Performance Evaluation 180

5.2.4 HYDOSO Discussion and Future Work 192

5.3 Related Work . 193

5.3.1 Related Work to Checkpointing 193

viii

5.3.2 Related Work to Performance Prediction 196

5.4 Conclusions . 200

6 Future Work & Conclusions 201

Bibliography 205

Illustrations

1.1 User workflow . 6

3.1 An example HJlib parallel loop . 27

3.2 An example HJ-OpenCL accelerated parallel loop 27

3.3 Illustrative code snippet for lambda captures. 31

3.4 Illustrative code snippet for singleton objects. 32

3.5 Code snippet illustrating the serialization of an Object into a

ByteBuffer. 33

3.6 Code snippet illustrating the deserialization of an Object from a

ByteBuffer. 36

3.7 Code structure used to enable kernel abort on allocation failure. . . . 44

3.8 GPU kernel speedup with redundant copies in the KMeans

benchmark, relative to multi-threaded JVM execution. 48

3.9 Kernel speedup with redundant copies in the NBody benchmark,

relative to multi-threaded JVM execution. 49

3.10 Kernel speedup with redundant copies in the PageRank benchmark,

relative to multi-threaded JVM execution. 50

3.11 Kernel speedup with redundant copy elimination in the KMeans

benchmark, relative to multi-threaded JVM execution. 51

3.12 Kernel speedup with redundant copy elimination in the PageRank

benchmark, relative to multi-threaded JVM execution. 52

3.13 The Map-Reduce execution flow. 58

x

3.14 Example HCL2 Mapper and Reducer implementations extending

type-specific Mapper and Reducer superclasses. 63

3.15 Generated OpenCL kernel code for storing and manipulating a Spark

DenseVector object. 66

3.16 The flow of event-driven actions in the SWAT Bridge at runtime. . . 74

3.17 Example stack trace of entry point to SWAT Core. 75

3.18 Overall speedup of each HCL2 and SWAT benchmark using 1 master

node and 1 worker node. 89

3.19 Speedup of Hadoop, HCL2, Spark, and SWAT relative to themselves

when going from 2 to 8 worker nodes. 91

3.20 PageRank execution timeline. Light gray indicates input I/O, dark

gray indicates OpenCL operations, and black indicates output I/O.

No dark gray is visible at this time scale as little computation is

performed in PageRank. 92

3.21 Genetic execution timeline. Light gray indicates input I/O, dark gray

indicates OpenCL operations, and black indicates output I/O. Note

that this figure is dominated by dark gray, indicating a large amount

of time in OpenCL operations. 93

3.22 Host processor and memory utilization of the PageRank benchmark

running on Spark and SWAT. 94

3.23 Host processor and memory utilization of the Genetic benchmark

running on Spark and SWAT. 95

3.24 Progression of execution time for auto-scheduled HCL2 Fuzzy

KMeans and Bayes jobs relative to the mean execution time of

manually scheduled HCL2 jobs on Platform A. 97

4.1 An example of the HiPER Platform Model. 108

4.2 An example of a pop or steal path through the HiPER Platform Model.111

xi

4.3 Total HPGMG solve time on up to 512 Edison nodes. Error bars

indicate a 95% confidence interval. 124

4.4 Total ISx execution time. Weak scaling up to 1024 nodes on Titan. . 124

4.5 Total UTS execution time. 125

4.6 A trace of OpenSHMEM calls and their elapsed time inside a single

PE from an execution of Concurrent-CRC on 128 nodes. 126

4.7 HiPER Overheads for Graph500. 127

5.1 The CHIMES compilation workflow. 141

5.2 The CHIMES module init function is used to pass module-specific

information to the CHIMES runtime before entering main. 143

5.3 A simple code example calling checkpoint. 145

5.4 An example of the transformed code generated from Figure 5.3. . . . 145

5.5 An example resume of an application using CHIMES. 147

5.6 Signature of register checkpoint handler, used to insert custom

information into a CHIMES checkpoint. 150

5.7 Signature of register custom init handler, used to register

custom data handlers in CHIMES. 150

5.8 Overheads on Platform A during single-threaded tests. 155

5.9 Overheads on Platform B during single-threaded tests. 156

5.10 Overheads on Platform A during multi-threaded OpenMP tests. . . . 157

5.11 Overheads on Platform B during multi-threaded OpenMP tests. . . . 158

5.12 Median number of checkpoints created on Platforms A and B for each

benchmark. 159

5.13 Median checkpoint efficiency on Platforms A and B across all

checkpoints created by test runs of all applications. 160

5.14 An example HYDOSO directive added to an OpenMP parallel region,

indicating that the user may request performance predictions for this

kernel. 172

xii

5.15 An example HYDOSO directive added to a CUDA kernel, indicating

that the user may request performance predictions for this kernel. . . 172

5.16 The signature of hydoso predict, which is used to query for new

performance predictions in HYDOSO. 173

5.17 An example usage of hydoso predict to produce a relative

performance prediction between two kernels. 174

5.18 An example usage of hydoso predict to produce a binary

performance prediction. 174

5.19 An example instruction sequence. 176

5.20 An example pointer offset calculation. 177

5.21 The accuracy of relative performance predictions from HYDOSO,

plotted on a linear scale and with a y-axis limited to 100.00%. The

horizontal line marks 25%. 186

5.22 The accuracy of relative performance predictions from HYDOSO,

plotted on a log scale. The horizontal line marks 25%. 187

5.23 The accuracy of absolute performance predictions from HYDOSO

plotted on a linear y-axis. The horizontal line marks 25%. 189

5.24 The accuracy of absolute performance predictions from HYDOSO

plotted on a logscale y-axis. The horizontal line marks 25%. 189

5.25 The accuracy of relative performance predictions from HYDOSO

when using a Full, Exclusive, or Singleton Database. 190

1

Chapter 1

Introduction

According to the June 2016 Top 500 list [1], the top three supercomputers in the world

are based on heterogeneous processing cores. Their combined sustained TFlop/s

exceeds that of the next thirty machines on the list. Even more surprising, each uses

a different throughput-oriented processor architecture: the Sunway TaihuLight uses

the Sunway MPP [2], the Tianhe-2 uses Intel Knights Corner Xeon Phi (KNC) [3],

and the Titan supercomputer uses NVIDIA Graphics Processing Units (GPU) [4]. If

we look at the Top 500 list from a decade earlier, no machine in the top ten made

use of accelerator cores or was heterogeneous in its processing elements. Looking

forward, we also know that two of the three upcoming supercomputers funded under

the United States Department of Energy’s CORAL program (Summit at ORNL and

Sierra at LLNL) are also heterogeneous.

From these observations we can conclude that over the last decade accelerated

and heterogeneous supercomputing has demonstrated significant value for the high-

performance computing (HPC) and scientific communities. The improved computa-

tional performance achievable through heterogeneous computing has enabled more

scientific discovery through faster simulation times [5]. This has led to a sustained

investment in the design and development of these large, heterogeneous machines

by government organizations, academia, and industry. Rather than diminishing over

time, that investment instead seems to be accelerating.

2

1.1 The Cost of Hardware Heterogeneity

The benefits of heterogeneous hardware are not without cost. In particular, program-

ming heterogeneous HPC systems is much harder than programming homogeneous

systems. This increased effort comes from five characteristics of software development

on these systems:

1. Composability: Programming a machine with accelerators or with hetero-

geneous cores generally requires combining multiple programming models in a

single application. For example, when programming a GPU-based supercom-

puter it is often necessary to combine CUDA [6] for the GPUs, OpenMP [7]

for the CPU cores, and a communication library such as MPI [8] or OpenSH-

MEM [9] for communicating between nodes. This adds to the complexity of

the code base, degrades application maintainability/portability, and adds an

entirely new programming model for HPC programmers to become experts in.

2. Tunability: While HPC programming has always required more knowledge of

hardware characteristics than many other domains of Computer Science, the

energy efficiency improvements of accelerators and lightweight cores often come

at the cost of removing “hardware programmer aids”, e.g. deep and large cache

hierarchies, branch prediction logic, pre-fetch logic, etc. With the loss of these

programmer aids, an understanding of hardware characteristics becomes more

important and has a magnified effect on the performance of applications. Not

only that, but the characteristics of novel architectures often differ significantly

from those that HPC programmers are accustomed to targeting in the past.

3. Coherency: While most HPC applications are designed with distribution in

mind, adding accelerators magnifies the coherency challenges that arise from

many discrete and explicitly managed address spaces. For example, using dis-

crete GPUs today requires manual management of each GPU’s global memory,

constant memory, texture memory, and scratchpad memory.

3

4. Scheduling: Scheduling irregular workloads across homogeneous processing

cores is an open research problem today. Having a heterogeneous mix of cores

adds a new dimension to the scheduling problem, as different kernels may be

more or less suited to different architectures.

5. Tooling: The debugging and profiling toolsets for HPC machines have evolved

over decades to fit the needs of HPC programmers, and have naturally been

designed to target current homogeneous platforms. As with any paradigm shift,

the advent of accelerators and heterogeneous cores requires a re-thinking of

techniques for HPC debugging and performance profiling.

In practice on today’s heterogeneous supercomputers, most scientific applications

use a combination of hand-coded kernels and high-level libraries to take advantage

of all hardware resources. For example, an application might make use of MPI for

inter-process communication/parallelism, OpenMP for intra-process parallelism, and

CUDA [6], OpenACC [10], or OpenCL [11] for accelerator offload. Each of these

models may be partially supplemented or entirely replaced by a library. Rather

than write their own linear algebra kernels, a programmer might make use of the

CUBLAS [12], CUSPARSE [13], MKL [14], or Trilinos [15] libraries.

On the other hand, distributed data analytics applications running on HPC or

cloud platforms commonly forgo these programming systems for higher-level pro-

gramming models that execute on managed runtimes. Today, the most common

frameworks in use are Hadoop MapReduce [16] and Spark [17]. Both expose high-

level, functional, but limited parallel APIs in Java or Scala and execute on the Java

Virtual Machine (JVM). Both Hadoop and Spark are also often accessed through

high-level, domain-specific libraries such as GraphX [18], MLlib [19], or Mahout [20].

However, efficient native execution of managed runtimes on accelerators would

lead to massive performance degradation. Instead, accelerator enablement of these

data analytics applications commonly takes the form of either 1) a low-level, hand-

coded, labor-intensive, and application-specific integration of accelerators into an

4

existing data analytics framework, or 2) a high-level, domain-specific library which can

be configured to perform accelerator offload under the covers [21]. The hand-coded

approach lacks generality and takes away the programmability benefits that data

analytics frameworks commonly offer, but does enable application-specific, low-level

optimizations. The domain-specific library approach lacks flexibility and programmer

tunability, but offers ease-of-use.

One commonly proposed solution to productively programming distributed, het-

erogeneous machines is to hide this heterogeneity under domain-specific libraries or

languages. While this approach may be effective for many use cases, a block-box,

fixed-function solution can also be 1) overly restrictive in terms of the user opti-

mizations enabled, and 2) the functionality offered. It is also entirely insufficient to

enable novel application or algorithm development. Hence, programming heteroge-

neous platforms for scientific simulation and data analytics will continue to require:

1. The ability to choose from and combine multiple software components such

that the right tool can be used for a given task. For example, the UPC++ [22]

implementation of the HPGMG benchmark uses the one-sided, PGAS UPC++

library for sending small messages between distributed processes but also relies

on MPI collectives as a more mature and well-performing implementation of

collective communication patterns.

2. The ability to express and optimize application logic at the statement level

such that novel approaches to real-world problems can explored outside of the

constraints of a limited, domain-specific interface.

This thesis focuses on the following three principles as a solution to the problems

highlighted above in heterogeneous and multi-tenant computing:

1. Compatibility and composability with existing APIs and models. Fo-

cusing on compatibility lowers barriers to adoption, adds interesting constraints

5

to the research problem, and takes advantage of the decades of development that

have gone into existing programming systems. Composability is important be-

cause any reasonably complex HPC application will be a multi-tenant system,

likely using multiple third-party systems together.

2. Taking advantage of compile-time insights to improve runtime per-

formance. Recently, much of the HPC research community has begun shifting

away from compiler-based programming systems as a result of 1) the costs asso-

ciated with maintaining them, and 2) the introduction of new features in stan-

dard programming languages (e.g. C++ and Java lambdas). The creation of the

UPC++ library from the UPC language is an example of this trend. This shift

towards library-based approaches has placed the burden of efficient scheduling

solely on runtime systems. However, compile-time information and source-to-

source transformations can often be useful for improving runtime performance.

Therefore, the use of static tools to supplement library-based approaches offers

a promising path for well-performing programming systems.

3. Integrated scheduling on resource- and workload-aware runtimes.

While discrete, disjoint systems are desirable from a software engineering per-

spective, their lack of awareness of each other presents challenges for efficient

scheduling. Often, overly strict synchronization is used to ensure correctness

when algorithmic dependencies cross software component boundaries (e.g. when

an MPI message depends on the completion of an OpenMP task). Being aware

of the full workload at runtime may enable more efficient scheduling policies as

well as improve system inspectability and performance diagnosability.

1.2 Our Envisioned User Workflow

Figure 1.1 shows our envisioned high-level development workflow for two classes of

users: domain experts with a limited computational background doing novel algo-

6

Figure 1.1 : User workflow

rithm development, and HPC Gurus who want the ability to tune and optimize ap-

plications at low levels.

Domain experts commonly look for high-level programming languages and models

that allow them to focus on algorithm development and avoid thinking about low-

level computing challenges, such as vectorization, scheduling, and data layout. In this

thesis, we capitalize on work in distributed, data analytics programming systems such

as Hadoop MapReduce and Apache Spark to offer these domain experts high-level

programming models which enable this separation of concerns. Under the covers, we

use automatic techniques to efficiently and natively execute these high-level, user-

written kernels on heterogeneous HPC hardware.

On the other hand, HPC Gurus are interested in having the ability to tune and op-

timize their kernels, scheduling, resource management, and other low-level concerns.

Programmer aids that enable quicker development of well-performing applications

are important to this set of HPC users, so long as those aids are still incrementally

tunable, do not hinder analysis of the application, and do not limit the expressiveness

of the overall programming model. HPC Gurus also commonly have significant past

experience developing applications using a certain set of HPC libraries or tools. While

they are willing to learn new models, anyway that we can capitalize on that existing

7

knowledge is beneficial. Hence, in this thesis we focus on enabling the composition

of popular HPC libraries and languages such as CUDA, MPI, UPC++, and Open-

SHMEM. As a result, we reap both performance and programmability improvements

over hand-tuned HPC implementations.

However, writing application code is only half the HPC software development

process. In general, the initial functionally correct implementation of an HPC appli-

cation is not also a well-scaling and well-performing implementation. HPC developers

require tools and frameworks for analyzing their applications for correctness and per-

formance bugs. In this thesis, we explore the use of checkpoints and performance

prediction for software development.

Checkpoints capture the state of an application at an instantaneous point in exe-

cution. Historically, they have primarily been used for building resilient applications.

However, the ability to capture and replay a point-in-time that may be days into the

execution of a long-running simulation can be an invaluable tool for rapid, iterative

optimization or debugging of a region of code in an application.

Performance prediction, on the other hand, has obvious benefits for both domain

experts and HPC Gurus for scheduling workloads across heterogeneous processors.

However, each set of HPC developers would want to use this capability in different

ways. Domain experts need not be exposed to scheduling decisions, and so it would

be the responsibility of an underlying runtime to take advantage of performance

predictions in scheduling user kernels. On the other hand, HPC Gurus are more

likely to want to use performance prediction to inform the scheduling algorithms they

write into their applications.

As part of this thesis, we explore all of the topics enumerated in this section:

programming models, runtimes, and tools for both domain experts and HPC Gurus.

We design these frameworks to fit into the workflow outlined in Figure 1.1. Later

in this thesis, we illustrate how each set of HPC users would take advantage of the

relevant frameworks.

8

1.3 Thesis Statement

Productive heterogeneous programming can be enabled by building programming sys-

tems that focus on 1) compatibility and composability with other tools and program-

ming systems, 2) using compile-time insights to improve runtime performance, and

3) integrated resource- and workload-aware runtimes. Programming systems for het-

erogeneous HPC systems must balance high-level programmability with low-level tun-

ability.

1.4 Contributions

This dissertation makes the following contributions that support this thesis statement:

1. HCL2, HJ-OpenCL, and SWAT (Spark With Accelerated Tasks) [23][24][25]:

Each of these projects tackles heterogeneous programming through managed

languages and runtime systems. Managed systems improve the inspectability

of an application at runtime. These projects take advantage of that inspectabil-

ity to automatically and transparently offload programmer-written parallel ker-

nels to accelerators (in particular, GPUs). HJ-OpenCL offloads shared memory

parallel loops from the HJlib [26] parallel programming library. HCL2 is a

framework for offloading distributed Hadoop MapReduce applications. SWAT

offloads distributed Apache Spark transformations. These projects share the

same high level approach of using runtime bytecode-to-OpenCL code gener-

ation, automated memory management, and automated data serialization to

enable transparent offload of JVM computation to accelerators. However, each

project differs in the constraints placed on it by the source programming model

(MapReduce, parallel loops, and Spark), in the extent to which scheduling and

kernels are automatically optimized, in the amount of data transfer optimization

possible, and in the flexibility of the code generator and automatic serializer.

2. HiPER (Highly Pluggable, Extensible, and Re-configurable Framework for

9

HPC) [27][28][29]: HiPER is a C++ runtime system and programming model

that focuses on extensibility, pluggability, composability, and compatibility with

existing programming models. The core component of HiPER is a task-parallel

programming model sitting on top of a shared-memory lightweight work-stealing

runtime. HiPER is explicitly designed to be extended with third-party mod-

ules. These modules add APIs to the HiPER programming model, and may

use the HiPER runtime to achieve unified scheduling of all work in a system.

Existing modules include a CUDA module, an MPI module, a UPC++ module,

and an OpenSHMEM module. As such, while the core of HiPER is not itself a

distributed or heterogeneous programming system, it is built with the flexibility

to support future and current distributed and heterogeneous HPC platforms.

3. HYDOSO (HYbrid, Decomposition-based, Offline Sequence aligner for Online

performance prediction): Performance prediction is a fundamentally important

and challenging problem, particularly for scheduling of kernels and communi-

cation on heterogeneous and distributed systems. However, to date, this “Holy

Grail” of HPC remains unsolved due the complexity of both hardware architec-

tures and kernels. This work explores using techniques from genome alignment

to discover similarities between kernels and predict future performance based

on past observations. HYDOSO combines compile-time and run-time tech-

niques to enable accurate and adaptive performance predictions on different

architectures. HYDOSO is an example of a hybrid compile-time and run-time

programmer aid that could support improved runtime performance in HiPER,

HCL2, HJ-OpenCL, or SWAT.

4. CHIMES (CHeckpointing In-MEmory State) [30]: CHIMES is a checkpoint-

restart framework motivated by the observation that checkpoints are a use-

ful software engineering and programming system tool, and not simply useful

for resiliency. Automated checkpointing enables the recall of nearly arbitrary

10

points in application execution. This recall can be useful for iteratively optimiz-

ing parallel regions, for reproducing faults, or for numerical regression testing.

CHIMES uses a combined compile-time and run-time approach to take advan-

tage of high-level semantic information in the application source code so as to

minimize runtime overheads. A variant of CHIMES called CHIMES-lite is also

used in HYDOSO, proving its usefulness in novel runtime and tool development.

Like HYDOSO, CHIMES is also an example of an aid that could be integrated

with HiPER, HCL2, HJ-OpenCL, or SWAT to improve programmability.

1.5 Outline

The remainder of this thesis will be structured as follows. Chapter 2 briefly summa-

rizes emerging heterogeneous architectures and software components in HPC. Chap-

ter 3 describes our work on the HJ-OpenCL, HCL2, and SWAT frameworks to enable

managed, data analytics frameworks to exploit distributed, heterogeneous platforms.

This work explores how new, high-level programming models might be used on fu-

ture heterogeneous supercomputers. Chapter 4 describes our work on the HiPER

framework that introduces an extensible programming model and a generalized work-

stealing runtime to improve the composability of third-party HPC libraries. This

work capitalizes on existing investments into HPC libraries and programmer famil-

iarity with them while enabling unified, integrated, and more scalable scheduling on

future platforms. Chapter 5 describes the CHIMES and HYDOSO frameworks for

tooling to support either of the two approaches to programming future heteroge-

neous supercomputers introduced earlier, as well as other existing HPC programming

systems. In this chapter, we present checkpoints as a powerful software development

tool and make new contributions in heterogeneous performance prediction. Chapter 6

summarizes our contributions and discusses future research directions.

11

Chapter 2

Background

In this chapter, we outline the state of the heterogeneous computing world today in

terms of both the hardware and software used.

2.1 Emerging Heterogeneous Architectures

Arguably the first instance of widespread heterogeneous computing in HPC came

with the Tesla generation of NVIDIA GPUs released in 2006. Offering programmable

shaders for the first time, Tesla cards allowed programmers to start to experiment with

GPU computational parallelism and bandwidth in areas other than graphics. Since

Tesla, the Fermi, Kepler, and Maxwell generations have continued to improve on the

computational performance, memory bandwidth, energy efficiency, and flexibility of

those early programmable graphics cards.

However, GPUs are no longer the only throughput-oriented architecture being

used to build massively parallel HPC systems. In this section, we provide an overview

of upcoming processing architectures that future HPC systems are likely to use to

provide the majority of their computational performance.

2.1.1 NVIDIA Pascal and Volta

NVIDIA GPUs are organized around streaming multi-processors (SMs). Each SM

can be thought of as a separate compute core on the GPU with its own program

counter, vector arithmetic unit, scratchpad memory, registers, and other core-local

resources. In the first GPU in the Pascal generation of NVIDIA GPUs (the GP100,

released in 2016), 60 SMs reside on each GPU [31] each with the ability to issue

12

two independent vector instructions of 32 single-precision operations. Each Pascal

SM also has 32 double-precision units and 8 special-function units. In total, a single

Pascal GP100 will be able to deliver up to 5.3 TFLOPS of double-precision arithmetic

or 10.6 TFLOPS of single-precision arithmetic.

The GP100 includes 256 KB of registers per SM (4 KB of registers per vector

element), a dramatic increase over past GPUs. Each SM also includes 24 KB of L1

cache, 64 KB of programmer-managed scratchpad memory, and 4 MB of L2 cache

shared across all SMs. Finally, the GP100 supports 16 GB of high-bandwidth, stacked

memory on the GPU with an aggregate memory bandwidth of 720 GB/s.

The Pascal generation of GPUs includes several hardware improvements intended

to improve programmability as well. NVLink [32] improves inter-GPU bandwidth

relative to the PCIe bus used today, from ∼30 GB/s to ∼40 GB/s. In certain hard-

ware configurations, NVLink can also connect GPUs to the host CPU. As a result,

data transfer patterns that would have previously resulted in high overheads may be

feasible on Pascal, enabling new applications to take advantage of GPUs.

The Pascal generation is also the first generation to support page faulting on the

GPU and a 512 TB virtual address space. As a result, truly unified memory across

CPU and GPU is possible, with all transfers implicitly managed by the NVIDIA

runtime and driver.

Of course, any Pascal-based system must also include a management processor,

usually an x86 CPU. GPUs do not run a full operating system and so are unable to

support essential capabilities like disk I/O, network communication, and access to

other devices. Pairing a GPU with either x86 or ARM processors makes GPU-based

HPC systems heterogeneous.

The generation of GPUs following Pascal is Volta, and will be used in the CORAL

Summit and Sierra supercomputers. While a release date has yet to be announced,

Volta is expected to be released sometime between mid-2017 and mid-2018. Details of

the Volta architecture are still limited but we can expect 1) continued and improved

13

use of high-bandwidth memory and NVLink to improve memory access performance,

and 2) a re-designed SM architecture. More importantly, because Summit and Sierra

will be POWER9-based systems, NVLink will be used as both an inter-GPU and

GPU-to-CPU interconnect. This should drastically reduce CPU-GPU transfer over-

heads and create a more tightly linked host-device system.

2.1.2 Intel Knights Landing Xeon Phi

Intel’s Knights Landing (KNL) generation of the Xeon Phi product line [33] has

recently been deployed in several supercomputer installations, including the Cori

supercomputer at NERSC [34]. Computationally, KNL is based around “tiles” each

of which contains 2 low-power x86 cores and 4 AVX512 vector units. Each vector unit

is capable of simultaneously issuing 32 single-precision operations. A single KNL chip

contains 36 tiles. As a result, KNL supports up to ∼3 TFLOPS for double-precision

operations and up to ∼6 TFLOPS for single-precision.

Each tile includes 1MB of L2 cache shared by all x86 and vector units on that tile.

Tiles on the same chip are connected by a 2D mesh, across which cache coherence

is configured using KNL “clustering modes”. KNL supports up to 16 GB of on-chip

high-bandwidth memory (MCDRAM) and up to 384 GB of DRAM. At boot, the user

can select how to configure these different memories: 1) in cache mode, MCDRAM

serves as a high-bandwidth and automatically managed cache for DRAM, 2) in flat

mode, MCDRAM is explicitly exposed to the programmer through special allocation

APIs, allowing them to specialize the allocations placed in MCDRAM, and 3) in

hybrid mode, some amount of MCDRAM is used as a cache for DRAM and the rest

is exposed to the programmer. A single KNL chip is able to achieve ∼400 GB/s to

MCDRAM and ∼90 GB/s to DRAM.

Intel also supports including an Omni Path chip on-package, enabling the use of

a high-performance interconnect for communicating between KNLs.

Compared to NVIDIA Pascal GPUs, we can draw a number of conclusions about

14

KNL:

1. The peak FLOPS supported by future GPUs will continue to exceed those on

future Xeon Phi processors, though we currently have no understanding of how

easy it will be to achieve a significant fraction of that peak on either chip.

2. The KNL will continue to offer more hardware performance programmer aids

than GPUs. For example, consider that Pascal offers 1 MB of L2 cache for an

entire GPU, but that KNL offers 1 MB per tile.

3. We can extrapolate that Pascal will likely also yield higher efficiency in terms

of peak FLOPS per Watt, as fewer transistors will be dedicated to auxiliary

functions.

4. The two will be evenly matched in terms of the amount of high-bandwidth

memory each has access to, though it seems Pascal will likely be able to achieve

higher throughput.

5. The pairing of Atom x86 cores with AVX512 vector units suggests that KNL

will lean more heavily on automatic compiler vectorization to achieve peak

computational performance, whereas GPUs will rely more on programmers to

express their GPU kernels in a way that maps well to the architecture. This

conclusion is supported by recent publications from Intel [35].

It is important to note that while the Cori supercomputer will be KNL-based,

the larger upcoming Aurora machine at Argonne National Lab will be based on

the following generation in the Xeon Phi product line, code named Knights Hill.

Unfortunately, little or no information is available on changes in the Knights Hill

generation.

KNL represents an odd hybrid of homogeneous and heterogeneous. At the tile

granularity a KNL-based system will be homogeneous: each tile will contain the same

processing elements. However, within each tile there is significant heterogeneity in the

15

pairing of Atom x86 processors with vector units. However, if the Intel compilers are

able to efficiently and automatically vectorize significant fractions of KNL applications

this heterogeneity will never be exposed to the programmer.

2.1.3 Sunway MPP

The Sunway MPP [2] is the building block for the supercomputer currently at the

top of the Top 500 list. The MPP is organized into four core groups on a single

chip. Each core group consists of a single Management Processing Element (MPE)

paired with a single Computer Processing Element (CPE). A CPE consists of an 8x8

mesh of lightweight vector cores. Each MPE supports 256-bit vector instructions

but, as indicated by its name, is intended to be used primarily for management

operations. Each core in the CPE mesh also supports 256-bit vector instructions,

and it is expected that the CPE will handle the bulk of the computational load in an

application. The primary difference between MPE and CPE cores noted in [2] is that

an MPE core has two floating-point pipelines while CPE cores only have one. With

a 1.45 GHz core clock, a single chip with four core groups can achieve a theoretical

peak of 3.06 FLOPS of double-precision operations.

Each MPE includes 32 KB of L1 cache and 256 KB of L2 cache. Each CPE tile

includes 64 KB of explicitly managed scratchpad memory. Each core group on a chip

supports 8 GB of DRAM, leading to a total of 32 GB per chip.

We note a few interesting items in the design of the MPP:

1. The MPP has similar peak double-precision FLOPS to a KNL chip, despite

very different designs.

2. Unlike Pascal, Volta, and KNL, the MPP has no high-bandwidth memory. It

also has a relatively constrained amount of memory per chip, with only 32 GB

supported compared to KNL’s 384 GB.

3. Like KNL, the MPP relies heavily on auto-vectorizing compilers and vector

16

notations in source code to achieve high utilization of the vector units in its

CPEs.

Therefore, while the MPP is the first chip discussed in this section which is cur-

rently deployed in a large-scale, production cluster, it also seems to be lacking in some

areas (e.g. peak FLOPS, HBM, etc.) relative to Pascal and KNL.

2.1.4 Epiphany-V

The Epiphany-V [36] is the most experimental of the architectures discussed in this

section, with no public planned HPC systems based on it. The Epiphany-V consists

of an array of 32×32 grid of RISC cores, each with 64 KB of scratchpad memory and

connected by a network-on-chip.

No hardware Epiphany-V chips are available as yet so all performance numbers are

theoretical, but we can try to make some cautious comparisons. For example, Table

12 in [36] cites 8.55 GFLOPS/mm2 for Epiphany-V, 7.7 for Pascal, and 5.27 for KNL

assuming a 500 MHz frequency for the Epiphany. If we keep that assumption, we

can estimate ∼1 TFLOPS double-precision peak for a single Epiphany-V. However,

given that it is unclear what the core frequency will be for the final release of the

Epiphany-V that is only an estimate.

If we focus on energy efficiency, the Epiphany-V becomes more impressive. The

Epiphany-V white paper [36] reports a maximum chip power consumption of 2 Watts.

Given ∼1 TFLOPS of compute, that would yield 500 GFLOPS/Watt. This is an

outrageously high number relative to the other architectures discussed in this section

(18.8 GFLOPS/Watt for Pascal, 14.69 GFLOPS/Watt for KNL) so it must be taken

with a grain of salt. However, it suggests that while the Epiphany-V’s per-chip

floating-point performance may not equal its contemporaries, its energy efficiency

may far exceed them.

17

2.1.5 FPGAs

Field Programmable Gate Arrays (FPGAs) are different from the systems described

in this section in that they have no architecture, and are essentially re-programmable

hardware. An FPGA program consists of a logic gate design which is flashed to the

FPGA.

It is difficult to compare FPGAs to more conventional architectures as there are no

cores, caches, or other architectural structures to compare to on an FPGA. However,

the top-of-the-line FPGA from Altera [37] lists a peak performance of 10 TFLOPS

of peak single-precision performance and 1 TB/s of memory bandwidth to 16 GB of

high-bandwidth memory.

While these peak numbers are impressive, in reality, FPGAs often fall short for

scientific, floating-point intensive workloads. Because the logic gate layouts neces-

sary for floating-point units consume more space on the FPGA, the computational

bandwidth for floating-point operations on FPGAs can often be limited relative to

the peak. Additionally, FPGA compilation times run on the order of hours, mak-

ing FPGA software development a more painstaking process. However, for integer

arithmetic or fixed-point workloads, FPGAs can demonstrate significant efficiency

improvements relative to fixed-architecture alternatives.

2.2 Production Programming Models for Emerging Super-

computers

In Chapter 1 we briefly summarized the state-of-the-art in heterogeneous program-

ming: namely, that it requires the combination of several disjoint programming mod-

els to execute an application across the cores and nodes of a heterogeneous super-

computer.

This pain point has been broadly recognized by the HPC community, and different

organizations and committees are taking steps to address it. We discuss related work

18

before going into more detail on the contributions of this thesis. While many of these

techniques are not widely used today, they are likely to become the status quo for

heterogeneous programming in the near future. As such, this work cannot be treated

as contemporary research (which will be discussed in the related work section of each

chapter of this dissertation), but provide a yardstick with which to measure our work.

2.2.1 OpenMP

One of the largest and most promising efforts to improve the programmability of

production-level heterogeneous programming has been undertaken by the OpenMP

Architecture Review Board, primarily in the form of the introduction of OpenMP

tasks in OpenMP 3.0 [38] and OpenMP accelerator support in OpenMP 4.0 [39].

With tasks, the flexibility and asynchrony of the OpenMP APIs for irregular applica-

tions was significantly improved, making them more amenable to efficient execution

on pre-exascale and exascale platforms. Tasks have also been suggested as a possible

avenue towards improving OpenMP’s composability with other models and libraries,

i.e. by “taskifying” calls to external libraries. With the addition of accelerator sup-

port, OpenMP became one of the first high-level programming models which offered

parallel APIs for multiple architectures. This improves the maintainability of hetero-

geneous codes that use OpenMP, and improves programmability by offering consistent

abstractions for programming multiple architectures.

Currently, OpenMP’s accelerator support is a mixed bag of positives and nega-

tives. Benchmarking of bleeding edge versions of OpenMP 4.0-compliant implemen-

tations show that real application codes running on GPUs using OpenMP are able

to achieve a significant fraction of the performance that hand-coded CUDA versions

can [40]. Additionally, early experiences show that performance portability is achiev-

able to an extent on multiple architectures using OpenMP without modifications to

the programmer-written kernel logic [41]. However, at the same time, support for

accelerators has been slow to appear across OpenMP implementations, and most are

19

still in-development. Flexibility built in to the specification of accelerator directives

which was originally intended to enable the support of many types of accelerators

also means that OpenMP accelerator directives are not usually performance portable

across architectures. Additionally, at times, the accelerator directives do not offer

enough information to the OpenMP compiler to fully optimize kernels in a way that

a programmer might be able to. For example, OpenMP support on KNL platforms

has met difficulties successfully vectorizing loops using only standard OpenMP di-

rectives. There is also no support for explicitly using scratchpad memory or other

special-purpose memories, an important optimization for many accelerators. While

OpenMP is arguably the most promising heterogeneous programming model for near-

future heterogeneous computing, and shows promise in addressing programmability,

composability, scheduling, and tooling challenges on future machines, it lacks some

key features which limit its tunability and continues to saddle developers with co-

herency concerns.

The OMPT Tools API appeared in OpenMP 5.0 preview 1, released in November

2016 [42]. The Tools API will improve the inspectability of OpenMP runtimes by

adding APIs to register notifications on specific events and collect traces from target

devices. This would allow future performance profiling tools to offer deeper insights

into the workload scheduled on OpenMP runtimes. In combination with OpenMP’s

accelerator APIs, this would conceivably enable much richer toolsets for heterogeneous

systems. However, it is important to note that the scope of this API is naturally

limited to work scheduled on the OpenMP runtime and that the inspectability of any

third-party libraries would not improve.

2.2.2 Kokkos

Closely related to OpenMP, the Kokkos [43] project is an effort by Sandia National

Laboratory to use C++ templates and parallel runtimes to produce a highly pro-

grammable and efficient parallel programming system that performs well across archi-

20

tectures. By offering abstractions for mapping application data to different parts of a

heterogeneous platform’s memory hierarchy (something that OpenMP lacks) and ab-

stracting away the underlying execution engine, Kokkos is able to target programming

models from Intel, AMD, and NVIDIA through a single high-level abstraction. While

its programming model is restricted relative to OpenMP and focuses on synchronous

loop parallelism, Kokkos has proved useful for many scientific applications [44]. Its

integration with the Trilinos [15] scientific and mathematical packages has also made

it easy for domain experts to use Kokkos without having to express their algorithm

as a parallel computation. On the other hand, limitations in Kokkos’s programming

model restrict the domain of applications it is useful for. While Kokkos is used by

the Trilinos package, it lacks any significant integration or composability with other

programming systems. However, its ability to portably toggle the same parallel loop

between architectures is powerful and is not yet supported by most existing parallel

programming models.

2.2.3 Raja

The Raja portability layer [45] is similar in abstractions to Kokkos, and focuses on

hiding non-portable programming model features from the programmer while enabling

experimentation with loop nest ordering and data access patterns. Raja only supports

the expression of loop parallelism in C++ and focuses on three abstractions to hide

portability issues from programmers:

1. Data type encapsulation: By wrapping application data structures and pointers

in Raja types, Raja is able to manage architecture-specific optimizations such

as alignment and structure padding for the user.

2. Execution policy: Users may choose different execution policies to automati-

cally toggle between different types of platforms on which to execute parallel

loops. For example, Raja supports targeting OpenMP, OpenMP accelerators,

and CUDA using different execution policies.

21

3. Index sets: Storing the iteration space of a parallel loop as a Raja object helps

Raja enable programmer experimentation and optimization through automatic,

compile-time loop transformations based on C++ template specialization.

2.2.4 CUDA

While the CUDA programming model itself has done little to improve its compos-

ability with other systems, there have been several new technologies introduced by

NVIDIA which should improve the composition of host and device computation.

One of the largest programmability improvements in the accelerator domain is

the upcoming introduction of hardware-supported Unified Memory [46] in NVIDIA

GPUs. Put simply, Unified Memory on Pascal-generation or later GPUs will reduce

the coherence problem for heterogeneous computing by automatically paging virtual

pages to and from NVIDIA GPUs. It will still be the programmer’s responsibility to

avoid data races on pages shared between the host and device. Additionally, Unified

Memory will do nothing to simplify management of the GPU’s on-chip memory hier-

archy, and it remains to be seen how Unified Memory will affect tooling, performance,

and scheduling problems on GPU-based platforms.

2.2.5 GPU-Aware MPI

A recent development in GPU computing that has found its way into production

software packages is GPU-Aware MPI [47]. GPU-Aware MPI enables the direct

communication of data from a GPU in one node of a supercomputer to a GPU in

another node. This simplifies the API by only requiring a single transfer call to

be made, may improve performance if the networking hardware is able to support

DMA from one GPU to the other without host intervention, and overall improves

the composability of the two systems. However, this effort is too localized. While

it improves MPI-CUDA applications, true composability is an all-to-all relationship

and requires a more comprehensive approach to the problem.

22

2.3 Summary

While there are several efforts in the heterogeneous computing community to improve

the state-of-the-art in production heterogeneous programming, many of these projects

address the problem piecemeal by focusing on specific, current programming models

and libraries. Most of these approaches do not consider future extensibility to support

heterogeneity in other components of future HPC systems.

From this chapter, we can conclude two things. First, that the majority of future

HPC systems are likely to include heterogeneous processing units in order to achieve

high computational bandwidth without massive energy costs, and that as we enter

this second wave of throughput-oriented architectures many chip manufacturers are

in tight competition to produce the “best” HPC-oriented architecture. Second, that

while some software projects (notably OpenMP) are working to improve the compos-

ability of HPC software modules, the next generation of software tools installed on

these heterogeneous machines will tackle the problem piece-meal (e.g. by composing

accelerator and host parallelism, or MPI communication and accelerator kernels). To

support future heterogeneous machines, a more comprehensive solution is required.

23

Chapter 3

High-Level Programming Systems for Data

Analytics Workloads on Heterogeneous HPC

Systems

3.1 Motivation

Classically, the scientific workloads that HPC systems have been used for were pro-

grammed in low-level, prescriptive programming models. Programming models like

OpenMP, MPI, and FORTRAN allowed HPC programmers to tune applications for

the target platform while remaining sufficiently high-level to enable the develop-

ment of reasonably portable large-scale scientific codes. These programming mod-

els avoided introducing significant overheads or bottlenecks and meshed well with

optimizing and vectorizing compilers. This led to both efficient parallelization and

well-performing straight-line code, producing well-scaling applications.

However, more recently, the users of large-scale HPC machines have been exploring

the use of alternative programming models, primarily from the data analytics field.

Data analytics and HPC share the problem of programming and scaling across large

distributed machines in order to process massive datasets. However, while HPC

scientific workloads tend to be compute-bound (hence the emphasis on computational

performance), data analytics workloads tend to be communication-bound, I/O-bound,

or memory-bound. For bandwidth-bound workloads, there is less of a need for a

highly optimized execution platform. As a result, the data analytics community has

gravitated towards higher level programming models running on managed runtime

systems, and reaped productivity benefits. While managed runtimes and the high-

level programming languages that accompany them have already been widely adopted

24

by the scientific community at the desktop scale [48][49], only recently have the HPC

and scientific communities begun experimenting with these systems at the cluster

scale [50]. This experimentation has partially been driven by new workloads on HPC

systems, and partially by the downward trend in memory per processing core causing

previously compute-bound workloads to become bandwidth-bound.

On the other hand, as novel algorithms are developed in the data analytics and

machine learning communities and as the frameworks used to implement them become

more efficient, those communities are likewise seeing a diversification in workloads

and an increase in the number of compute-bound problems. One example of this

would be the rapid rise in popularity of neural nets for different image processing

problems. As a result of these trends, the data analytics community is increasingly

adopting hardware and software techniques from the HPC community. For example,

accelerators are now commonly used to accelerate the training of neural nets. Hence,

data analytics frameworks are more commonly being run on HPC-esque platforms for

compute-bound data analytics problems.

The convergence of the scientific and data analytics communities leads to an

open research problem: how can we efficiently execute managed runtimes on accel-

erators, without sacrificing the productivity and programmability that makes these

data analytics frameworks popular to begin with? In this chapter, we present three

pieces of work on this problem: HJ-OpenCL, HCL2, and SWAT. HJ-OpenCL is a

shared-memory parallel programming model which we use to introduce foundational

techniques in offloading data-parallel kernels from managed runtimes to accelerators.

HCL2 and SWAT are extensions of the Hadoop and Spark distributed data analytics

programming frameworks, and support offloading computational kernels to accelera-

tors.

25

3.2 The Challenge of Managed Runtimes on Accelerators

A classical example of a managed system is the Java Virtual Machine (JVM). It of-

fers a portable, abstract, stack machine model on which programming languages and

programming tools can be constructed. Using a custom bytecode-based instruction

set, the JVM natively supports high-level programming constructs such as excep-

tions, virtual methods, classes, inheritance, garbage collection, and multi-threaded

synchronization. While it is a machine model, the JVM and its instruction set do

not map natively down to any commodity hardware platforms. JVM implementers

must efficiently support the stack machine model on top of conventional processors

through runtime optimization tricks, such as just-in-time compilation. Fortunately,

the hardware and software stacks which the JVM executes on can support all of its

high-level features relatively efficiently.

While one of the strengths of the JVM is its portability, that portability is primar-

ily limited to CPU architectures. Supporting the full instruction set and capabilities

of the JVM on accelerators such as GPUs and FPGAs would either not be possible

or incur large overheads, offsetting the performance benefit of the accelerator. Hence,

as most data analytics frameworks are built on the JVM but native implementation

of a full JVM is not feasible on accelerator cores, we must find another approach to

running data analytics frameworks on accelerators.

We highlight five main challenges that any such approach must meet:

1. Incompatibilities in instruction set between managed and native sys-

tems: The JVM and other managed systems commonly use some intermediate

representation for application instructions. Interpreted execution is used to

enable portability across hardware platforms. Because these intermediate rep-

resentations are not natively executable, we use runtime code generation to

convert it to an executable format that is.

2. Incompatibilities in data format between managed and native sys-

26

tems: Managed systems may use custom data structures to store data inter-

nally. The format of those data structures may either be incompatible with

accelerators, may not be knowable, or may be wasteful on memory-constrained

platforms. In this work, we develop techniques that use reflection to convert

JVM objects into a native format supported by accelerators. Our primary

contributions are in extending the range of data types supported relative to

previous work.

3. Resource management in a multi-tenant system: In general, data analyt-

ics platforms are highly parallel and will use several threads or processes within

each shared memory node. It is necessary to efficiently share accelerators and

other resources among them without causing synchronization overheads, over-

subscription, or under-subscription. Adding to the complexity, you generally

have resources in three different address spaces: the automatically managed

JVM heap, the explicitly managed host native address space, and the accelera-

tor.

4. Scheduling in a multi-tenant system: Scalably scheduling the computation

and communication from multiple processes or threads requires an awareness of

both the workload and hardware resources available. In this work, we present

runtime designs that enable efficient scheduling. Additionally, we present tech-

niques in automatic, machine learning-based workload characterization for au-

tomatic processor selection.

5. Inspectability: In any multi-tenant system, being able to diagnose perfor-

mance and correctness bugs is critical to the usability of the framework. How-

ever, gaining insight into a system that combines JVM execution, native exe-

cution, and accelerator execution is a difficult problem for the domain experts

that are the primary users of these frameworks.

27

1 forall (0, niters - 1, (iter) -> {

2 // User -written parallel loop body

3 ...

4 });

Figure 3.1 : An example HJlib parallel loop.

1 forall_acc (0, niters - 1, (iter) -> {

2 // User -written parallel loop body

3 ...

4 });

Figure 3.2 : An example HJ-OpenCL accelerated parallel loop.

3.3 Offloading Shared-Memory Parallel Java Programs Us-

ing HJ-OpenCL

HJlib [51] is a shared-memory, parallel programming library that supports the unifi-

cation of a variety of parallel programming patterns, including task-parallelism, loop-

parallelism, futures, and actors. HJlib includes the loop-parallel forall API shown

in Figure 3.1. The forall loop takes a loop range and user-written loop body as

input and executes each loop iteration in parallel across multiple JVM threads. This

loop body can contain arbitrary user-written code, and is passed as a Java lambda.

There is an implicit synchronization at the return of a forall call that waits for all

parallel loop iterations to complete before returning to the calling code.

In this section, we develop techniques for offloading HJlib’s parallel forall loop

to OpenCL devices, in particular native threads executing on CPUs and GPUs. In

this work, called HJ-OpenCL, we introduce a new identical API named forall acc

(illustrated in Figure 3.2. The semantics of forall acc are the same as forall,

but it supports transparent offload of the user-written parallel loop body to OpenCL

devices.

The main functionality difference between forall and forall acc are the limi-

tations that forall acc places on what can be written inside the parallel loop body.

28

In particular, the data types that can be accessed from the kernel are limited to

primitives, arrays of primitives, objects containing only primitive fields, and arrays of

those objects. HJ-OpenCL does not currently support exceptions, dynamic method

dispatch, or network/file I/O inside of a forall acc loop body.

Efficiently implementing forall acc requires solving several research problems,

which mirror the challenges presented in Section 3.2:

1. Code generation of OpenCL kernels from the JVM bytecode storing the logic for

user-written kernels. In this work, we primarily rely on re-using the bytecode-

to-OpenCL code generator developed as part of the APARAPI framework. We

also extend APARAPI to support Java composite objects of primitive fields.

(e.g. java.util.ArrayList).

2. Efficient serialization and deserialization of JVM objects at runtime to a format

amenable to storage on an OpenCL accelerator. Like code generation, this

support is only for Java objects that contain only primitive fields.

3. Automatic management of memory allocations and transfers, using Java re-

flection to determine the data in the JVM that must be transported to the

accelerator and using inspection of the calling context of a forall acc call to

automatically remove redundant, inter-loop transfers.

The following sections elaborate on the implementation and limitations of the

solutions to these challenges.

3.3.1 HJ-OpenCL Code Generation and Data Serialization

APARAPI [52] is an open-source tool for offloading Java applications to OpenCL

accelerators. It includes a code generation module for converting JVM bytecode

to OpenCL kernels at runtime as well as a runtime for automatically transferring

captured values to the accelerator, launching the kernel, and transferring output

back.

29

In HJ-OpenCL, we extend APARAPI’s existing support for OpenCL code gen-

eration from JVM bytecode. While APARAPI’s code generation module supports a

reasonable subset of the JVM bytecode specification, many of the JVM’s most com-

monly used features (e.g., object references and the NEW opcode) are not supported in

APARAPI kernels. This work removes some of these limitations, while reusing much

of the core code generation framework.

Additionally, we use The RetroLambda[53] tool at compile time to convert Java

8 JVM bytecode that uses the new INVOKEDYNAMIC opcode to instead use an inner

class to store the closure for a lambda. This is not visible to the programmer, but is

necessary for compatibility between APARAPI and HJ-OpenCL.

Storing JVM objects in OpenCL

This work focuses on supporting JVM object references in accelerated parallel regions,

but limits the current scope of that work to only support references to primitive fields

in those objects, or instance methods which only reference primitive fields. For ex-

ample, it would be valid to reference objects of the type Point defined below so long

as those references only used the methods getX, getY, getZ, or distance. Note that

methods with object references as parameters and local variables are supported – the

main constraint is that the method is not permitted to access a non-primitive field dur-

ing GPU execution. Hence, use of the methods getClosest and distanceToClosest

is not supported in accelerated parallel regions.

1 package edu.rice.hj.example.Point;

3 public class Point {

4 private float x, y, z;

5 Point closest;

7 public Point(float x, float y, float z, Point closest) {

8 this.x = x; this.y = y; this.z = z;

9 this.closest = closest;

10 }

30

12 public float getX() { return x; }

13 public float getY() { return y; }

14 public float getZ() { return z; }

15 public float distance(Point other) {

16 return (float)Math.sqrt(Math.pow(other.x - x, 2) + Math.pow(other.y - y,←↩

2) + Math.pow(other.z - z, 2));

17 }

19 public Point getClosest () { return closest; }

20 public float distanceToClosest () {

21 return distance(closest);

22 }

23 }

A JVM class referenced from an accelerated parallel region are represented by a

corresponding struct in the automatically generated OpenCL kernel definition. For

each primitive field in the JVM object, a similarly typed field is created in the struct

definition auto-generated by the modified APARAPI code generator. An example of

the struct generated for the Point class above is shown below:

1 typedef struct __attribute__ ((packed)) edu_rice_hj_example_Point_s {

2 float x;

3 float y;

4 float z;

5 } edu_rice_hj_example_Point;

Note that this conversion is only carried out for object types which are used in

an accelerated parallel region, not for all classes loaded by an HJlib application.

If a referenced object has a superclass whose primitive fields are also referenced,

those fields will be included inline in the generated struct. One side benefit of this

approach is that only primitive fields are transferred to the accelerator, reducing data

movement relative to approaches that copy the whole JVM object.

Once the referenced primitive fields of a class and its superclasses have been

identified using Java reflection, it is straightforward to build a one-to-one mapping

from Java primitive types to OpenCL primitive types. For example, reflection would

tell us that the Point class above has a field named x whose type descriptor is “F”.

31

The type descriptor “F” can be converted to the OpenCL primitive type float using

a lookup table.

Using the packed attribute for generated structs simplifies object serialization

by guaranteeing that all struct fields are stored consecutively in memory.

Serializing and Deserializing JVM Data Structures

Runtime serialization and deserialization of dynamically loaded JVM objects is an

expensive operation that generally takes O(N) time, where N is the size of the data

to be serialized. Here we describe our strategy for serializing and deserializing JVM

objects to the format defined by Section 3.3.1, which ensures that the resulting data

is consumable by an OpenCL accelerator and matches the generated code. This work

does not focus on optimizing this process. We rely on the techniques that will be

presented in Section 3.3.2 to minimize the number of times expensive serialization

and deserialization operations take place.

Data referenced from an accelerated parallel region can be classified as either: 1)

local variables in the method scope enclosing the lambda creation site, or 2) fields in

the class scope enclosing the lambda creation site. For example in Figure 3.3, int b

is an example of a captured local variable and int a is an example of a captured field.

Both of these variables would be captured by the lambda created for the accelerated

parallel region and passed to forall acc.

1 class Foo {

2 private int a;

4 void bar() {

5 int b = ...;

6 forall_acc (0, niters - 1, (iter) -> {

7 ...

8 });

9 }

10 }

Figure 3.3 : Illustrative code snippet for lambda captures.

Local variables in the enclosing method are captured as fields in an anonymous

32

inner class auto-generated by the RetroLambda pass, including this. Fields of the

enclosing class are accessible through the this reference saved in the RetroLambda

anonymous class. Both types of data are accessible from accelerated parallel regions,

including fields of the enclosing this instance.

Prior to launching a parallel loop on an accelerator, we must iterate over each

of these fields that is referenced from inside that parallel loop and decide how to

store them on the accelerator. To do so, we start by classifying each into one of four

categories: primitive, non-array object, array of primitives, or array of objects.

Supporting primitives on the accelerator is straightforward. Primitives are passed

by value to the accelerator kernel using OpenCL’s clSetKernelArg API. Their values

are fetched from the JVM using the JNI APIs.

Serializing JVM Objects

Singleton objects which are shared across all iterations of a parallel loop may arise

in a number of situations, such as the center object in Figure 3.4.

1 Point center = new Point (...);

2 forall(0, P - 1, (iter) -> {

3 Point mine = points[iter];

4 float distToCenter = mine.distance(center);

5 ...

6 });

Figure 3.4 : Illustrative code snippet for singleton objects.

For this code snippet, the center object can be represented by a single Point

struct allocated on the accelerator. The first step in creating that allocation is to

serialize the JVM object to a byte buffer that matches the layout of the OpenCL

struct. This can be done using the code template below, which takes as input

the object to be transferred to the accelerator, a byte buffer to write the serialized

object to, and a list of type descriptors and offsets for each field in the object being

transferred. This field metadata is sorted in the same order as the fields appear in

the OpenCL struct definition. The object to be transferred can be loaded by name

33

using Java reflection.

1 void writeObjectToStream(Object ele , List <FieldDescriptor > structMemberInfo , ←↩
ByteBuffer bb) {

2 for (FieldDescriptor fieldDesc : structMemberInfo) {

3 TypeSpec typeDesc = fieldDesc.typ();

4 long offsetInClass = fieldDesc.offset ();

6 switch (typeDesc) {

7 case (TypeSpec.I):

8 bb.putInt(Unsafe.getInt(ele , offsetInClass));

9 break;

10 case (TypeSpec.F):

11 bb.putFloat(Unsafe.getFloat(ele , offsetInClass));

12 break;

13 ...

14 }

15 }

16 }

Figure 3.5 : Code snippet illustrating the serialization of an Object into a ByteBuffer.

The code snippet in Figure 3.5 relies on the sun.misc.Unsafe package to fetch

both the offset of a field inside an object as well as the value of that field. The Unsafe

package is used rather than Java reflection to enable future work on transferring whole

JVM objects to accelerators and accessing fields by offsets rather than packing them

into a struct.

The contents of the generated ByteBuffer can then be transferred to the accel-

erator and used to represent this JVM object. Given that the order of the fields

in the struct and the order of the fields passed to writeObjectToStream are the

same, the packed attribute used in Section 3.3.1 ensures that the ByteBuffer and

OpenCL representations are compatible. The byte[] backing the ByteBuffer can

then be passed through JNI to OpenCL and transferred to the accelerator. Once on

the accelerator, this object can be referenced using an appropriately typed pointer,

such as:

1 edu_rice_hj_example_Point *ptr;

Public fields in the Point object can be loaded using the -> operator:

1 float tmp = ptr ->x;

34

Methods of the Point class are mangled and include this as an explicit parameter.

Thus, a call to mine.distance(center) would be transformed to:

1 static float edu_rice_hj_example_Point__distance(__global Point *this , ←↩

__global Point *other) {

2 ...

3 }

5 float d = edu_rice_hj_example_Point__distance(mine , center);

For consistency, all object references on the accelerator are represented as global

pointers, pointing to memory in the accelerator’s global address space. This design

choice will be an important constraint when we discuss serializing arrays of objects.

Serializing JVM Arrays

Transferring arrays of primitives to an accelerator starts with passing the array

directly through JNI to a native function. The native code then uses the appropriate

JNI API to extract the buffer backing the Java array. For example, for an int[]

in the JVM the function GetIntArrayElements would be used to extract an int*

pointer to the contents of the JVM array. The values pointed to by the retrieved

pointer can then be directly transferred to the OpenCL accelerator.

Transferring arrays of objects to an accelerator re-uses

writeObjectToStream by iterating over the elements of the array and applying

writeObjectToStream to each object with the same output ByteBuffer. This pro-

duces a single byte buffer that stores the contents of each object in the object array,

consecutively. However, to keep the representation of object references as global

pointers consistent across object singletons and object arrays, it is necessary to al-

locate an additional array of global pointers on the accelerator which represent

the array of object references being serialized on the JVM. The ByteBuffer emitted

by the successive calls to writeObjectToStream stores the data backing those object

references. This additional array of pointers has the same length as the object array,

and element i in the pointer array is pre-populated with the address of element i

in the data buffer on the accelerator. This preprocessing is done in parallel on the

35

accelerator itself after both buffers have been allocated and the contents of the data

buffer have been transferred to the accelerator, but before the main computational

kernel is launched.

Null pointers in arrays of objects require special treatment for consistency between

the JVM and accelerator. When serializing an array of objects to the accelerator, an

extra array of bytes is allocated whose length is the same as the array of objects.

If element i in the array of objects is null, element i in this byte array is set to

1. Otherwise, it is set to 0. This isNull array is transferred to the accelerator

along with the array of objects and used in a pre-processing kernel to initialize the

global pointer array described in the preceding paragraph. If an object reference in

the JVM was null, the corresponding entry in the pointers array is set to NULL. The

extra isNull array is necessary because the object references themselves are never

transferred to or from the accelerator; only the contents of the pointed-to objects. The

isNull array is necessary to determine whether each element of the corresponding

array-of-pointers on the accelerator should be set to NULL or to point to an element

in the array-of-structs that stores the object contents.

Deserializing Data Structures Back to the JVM

Transferring singleton objects, primitive arrays, and arrays of objects back from

the OpenCL accelerator requires performing the same operations as described above,

in reverse.

For objects, the serialized object is transferred back from the accelerator and the

method readObjectFromStream (illustrated in Figure 3.6 is used to populate the

associated JVM object with any changes. Note that HJ-OpenCL does not currently

support atomic operations, reduction operations, or synchronized regions on shared

objects inside accelerated parallel regions. If a field of a singleton object is written

from multiple threads, no guarantees are made as to its state when it is restored in

the JVM.

Arrays of primitives are restored in the JVM by transferring the accelerator buffer

36

1 void readObjectFromStream(Object ele , List <FieldDescriptor > structMemberInfo ,←↩
ByteBuffer bb) {

2 for (FieldDescriptor fieldDesc : structMemberInfo) {

3 TypeSpec typeDesc = fieldDesc.typ();

4 long offsetInClass = fieldDesc.offset ();

6 switch (typeDesc) {

7 case (TypeSpec.I):

8 Unsafe.putInt(ele , offsetInClass , bb.getInt)

9 break;

10 case (TypeSpec.F):

11 Unsafe.putFloat(ele , offsetInClass , bb.getFloat)

12 break;

13 }

14 }

15 }

Figure 3.6 : Code snippet illustrating the deserialization of an Object from a Byte-

Buffer.

directly into the JVM through a primitive pointer retrieved from JNI.

For arrays of objects, we first launch a post-processing accelerator kernel that

iterates across the array of pointers storing the current state of object references

on the accelerator. If pointer i no longer points to object i in the associated data

buffer, it must either have been set to null or to point at a different object on the

accelerator. If the former is true, we mark that object reference as having been

nullified in the isNull array. Otherwise, the contents of object i are updated in the

backing array to be the contents of the object instance pointed to by pointer i on

the accelerator. The object referenced by pointer i may change if it now points to an

object that was constructed on the accelerator, or to another object of the same type

that was transferred from the JVM. More details on how dynamic object allocation

is supported are available in Section 3.3.2.

Once the contents of the array of objects have been updated based on changes

in the array of pointers, the contents of the array of objects are transferred out of

the accelerator and used to update the contents of JVM objects by iterating over

the JVM array and updating each object using readObjectFromStream. If an object

reference is marked as null in isNull, the corresponding object reference in the JVM

37

is also set to null.

This work assumes that no two elements in an array of object references transferred

to the accelerator point to the same object.

Clearly, the serialization and deserialization of JVM objects and particularly ar-

rays of JVM objects is an expensive operation. If M is the number of fields in a given

type, serializing or deserializing an object of that type is O(M). For an object array

of length N that cost increases to O(NM). Past work[54] has looked at using GPU par-

allelism and memory bandwidth to accelerate re-formatting the data layout of data

structures. Our work could be extended to use similar techniques to accelerate data

serialization.

3.3.2 HJ-OpenCL Runtime

This section describes the bytecode analysis techniques used to eliminate redundant

data movement between successive accelerated parallel regions. This optimization re-

duces the serialization and deserialization overheads incurred from supporting object

references in accelerated parallel regions. We also discuss our approach to dynamic

memory management on the accelerator, which is necessary to support translation of

the NEW bytecode.

Removing Redundant Data Movement Through Context Inspection

APARAPI supports basic PCIe transfer optimizations by analyzing the bodies of

parallel regions for read-only and write-only buffers. If a buffer is detected as read-

only, it is only transferred from the host JVM to the accelerator. If it is write-only,

it is only transferred from the accelerator to the JVM.

In this work, we extend this capability by loading and inspecting the bytecode

of the method in which this parallel region is launched and finding local variables

or class fields that are passed to multiple, successive, accelerated parallel regions

without being referenced from the JVM between those parallel regions. At a high

38

level, a buffer (object, primitive array, or object array) will only be transferred back

to the JVM after an accelerated parallel region if it may be read before the JVM

launches another accelerated parallel region that is passed the same buffer. A buffer

is only transferred to the accelerator prior to an accelerated parallel region if we

find that this buffer may have been written from the JVM since the last accelerated

parallel region that referenced it.

This analysis is currently intra-procedural and context-insensitive. As a result,

when looking for reads following a parallel region the analysis will transfer a buffer

back if there exists any control flow path from that parallel region to a method return

that does not pass through a parallel for region that uses this buffer. Likewise, when

looking for writes preceding a parallel region the analysis will transfer a buffer to the

accelerator if there exists any control flow path from the start of the enclosing method

to this parallel region that does not pass through any other parallel regions that use

this buffer.

This analysis is particularly useful for applications that exhibit a pipeline of par-

allel regions. For example, the KMeans machine learning algorithm consists of a

pipeline of two kernels: one kernel that classifies each data point into a cluster, and a

second kernel that recalculates each cluster’s centroid based on its member points. In

this pipeline, we can safely skip both retrieving the point classifications after the first

kernel and copying them back to the accelerator for the second kernel. Our analysis

captures this information as long as 1) both parallel regions are launched in the same

function, and 2) the analysis described below indicates the point classifications are

not read or written from the JVM between the two parallel regions.

For each buffer used by any accelerated parallel region, the location in the source

code of the last accelerated parallel region that referenced that buffer is stored by the

HJ-OpenCL runtime. This last referenced location is updated following the comple-

tion of each parallel region for all buffers referenced. To determine if a given buffer

must be transferred to the accelerator prior to launching a parallel region, we first

39

check that the last referenced location is in the same method as the current acceler-

ated parallel region. If it is not, then the transfer must be performed. Otherwise, we

start from the last referenced location and traverse forward over bytecode instructions

to verify that the preceding parallel region is post-dominated by the current parallel

region and that the state of the buffer could not have been modified in the JVM. If

any of the following conditions are met, our analysis indicates that the current buffer

may have been modified and, therefore, must be updated on the accelerator before

the parallel region can be launched:

1. If the current buffer is stored in a local variable slot and we find a local variable

store opcode (e.g. ASTORE 3) to that slot.

2. If we encounter a return statement. Note that even though the last referenced

location for a buffer is within the same method it may have been during a

different call to this method. Checking for a return is necessary to check for

this case.

3. If we encounter an AASTORE opcode.

4. If we encounter a PUTFIELD opcode.

5. If we encounter any type of method invocation.

6. If we encounter any opcode that may throw an exception (e.g. a divide-by-zero

exception thrown by an IDIV instruction)

When deciding whether a buffer must be transferred back from the accelerator

following an accelerated parallel region, we perform a similar traversal starting at the

current parallel region and verify that the current parallel region is post-dominated

by parallel regions that use the same buffer and that no reads of this buffer may

be performed from the JVM between parallel regions. If any of the following con-

ditions is met by any of the bytecode instructions following this parallel region and

40

before encountering another parallel region that uses this buffer, the current buffer is

transferred back to the JVM:

1. If the current buffer is stored in a local variable slot and we find a local variable

load opcode (e.g. ALOAD 3) for that slot.

2. If we encounter a return statement.

3. If we encounter an AALOAD opcode.

4. If we encounter a GETFIELD opcode.

5. If we encounter any type of method invocation.

6. If we encounter any opcode that may throw an exception (e.g. a divide-by-zero

exception thrown by an IDIV instruction)

These transfer decisions are cached for each parallel loop. This allows us to only

perform this analysis once for each buffer in each parallel region regardless of how

many times that region is entered, reducing overhead.

One special case is that of an accelerated parallel region that does not have any

buffers that need to be transferred back to the JVM. That is, all buffers used by this

kernel are also referenced by other accelerated parallel regions that post-dominate the

current parallel region, and none of those buffers is referenced from the JVM. If this is

the case, we can safely allow the non-producing accelerated parallel region to execute

asynchronously on the accelerator while the host system continues JVM execution.

All accelerated parallel regions wait for any preceding kernels before starting their

computation.

Buffers are allocated the first time they need to be transferred to the accelerator

and are freed after they are copied back to the host following the last accelerated

parallel region to reference them. Hence, a buffer may be allocated on the accelerator

even though a currently active parallel region is not working on it if the active parallel

41

region is between two regions that do. This may lead to out-of-memory errors even

when the working set for a single parallel region is within the limits of accelerator

memory. Supporting out-of-core data and building a more resource-adaptive runtime

is beyond the scope of this work.

Future work could extend this analysis to be inter-procedural and control flow

sensitive, which would improve the accuracy of the redundant data movement elimi-

nation.

Dynamic Memory Allocation in Auto-Generated OpenCL Kernels

While supporting JVM object references on accelerators helps to expand the domain

of applications that can be transparently offloaded, object references have limited use-

fulness without the ability to dynamically allocate new objects. However, the OpenCL

standard does not include dynamic memory allocation as a supported operation and

most accelerators have little or no native support for it. In this section, we describe a

technique for supporting dynamic memory allocation on accelerators by transparently

replacing the NEW opcode and object constructors during code generation.

On the accelerator, there are four global data structures used to support dynamic

memory allocation in our approach:

• heap: A large, shared, byte-array pre-allocated in the OpenCL global address

space, where it is accessible to all threads.

• top: A single, shared atomic integer initialized to zero. When a thread per-

forms a dynamic memory allocation, it atomically increments this integer by

the number of bytes it is allocating. If the new value of the integer is less

than or equal to the number of bytes in the global heap, the allocation has

succeeded. If the old value of the atomic integer were stored in oldValue, the

current thread’s allocation is now available at (char *)heap + oldValue and

is followed by a contiguous chunk of the requested number of bytes.

42

• complete: An array of integers whose length is equal to the number of iterations

in the current parallel loop. Each element in this array is initialized to zero at the

start of processing a parallel region. Element i of this array is set to one when

iteration i of the parallel for loop completes successfully on the accelerator. An

iteration can only fail if a dynamic memory allocation cannot be satisfied by

the heap.

• anyFailed: A single integer on the accelerator that is initialized to zero and

set to one by any thread which fails a dynamic memory allocation.

Using these data structures (heap, top, complete, anyFailed), the dynamic mem-

ory allocation technique works as follows from the host application:

1. Buffers for the accelerator data structures described above are allocated. complete

is zeroed.

2. The host application zeroes top and anyFailed and launches the generated

kernel.

3. When the kernel completes, anyFailed is transferred back to the host. If it

is non-zero, we return to step 2 and re-execute with a reset heap. However,

iterations of the parallel loop that have marked themselves as completed in the

complete buffer skip re-execution. Otherwise, if anyFailed is zero we continue.

This technique supports execution of parallel regions on accelerators whose dy-

namic memory allocation requirements exceed the size of the allocated heap by re-

peatedly retrying subsets of iterations in the same accelerated parallel region until

all iterations succeed. This requires an extra allocation for any output object-typed

arrays on the accelerator to persist the final object stored by a completed thread

before resetting the heap. To support dynamic memory allocation, some extensions

to APARAPI’s code generation are also required.

43

First, all methods that perform dynamic memory allocation (i.e., use the NEW op-

code) are identified, along with all callers of these methods. A field named allocFailed

is added to the This struct that each thread has a thread-private copy of. This field

is initialized to zero before performing the work for each iteration of the original

parallel for loop. If an allocation fails, allocFailed is set to one and the memory

allocation function returns. All calls to the memory allocation function as well as any

calls that may lead to the memory allocation function being called are followed by

a check that allocFailed is still zero. If allocFailed is found to be non-zero, the

current function immediately returns as will all others on the current call stack. For

functions with a non-void return value, a default value is returned based on its return

type (e.g. 0 for int). Figure 3.7 illustrates the structure of the generated functions:

This generated code simulates an exception-like mechanism on the accelerator,

albeit only for out-of-memory situations. At the top-level, if allocFailed is found

to be non-zero, the element in complete corresponding to this iteration is not set and

anyFailed is set to one. When the host discovers a non-zero value in anyFailed,

this kernel will be rerun but any iterations with a non-zero value in complete will be

skipped.

This technique does not make any guarantees on completion. With a very small

heap or very large allocations, it is theoretically possible for this approach never to

converge to completion. Future work could address this by reducing the level of

parallelism at each re-execution if no progress was made. Halving the number of

threads executing the parallel region would increase the chance of individual parallel

iterations succeeding as contention for the heap decreases. In the worst case, this

would devolve to a single-threaded parallel region and guarantee completion (but not

efficiency) as long as the allocated heap was sufficiently large to support the dynamic

allocations of each individual thread. If that were not the case, this condition would

be easily detectable and handled by reverting to JVM execution.

This technique also assumes that the body of a single iteration of the enclosing

44

1 __global void *alloc (..., int *allocFailed) {

2 __global void *allocation = ...;

3 if (allocation == NULL) {

4 *allocFailed = 1;

5 } else {

6 *allocFailed = 0;

7 }

8 ...

9 }

11 void foo(This *this , ...) {

12 __global void *ptr = alloc (..., &this ->allocFailed);

13 if (this ->allocFailed) return;

14 ...

15 }

17 void bar(This *this , ...) {

18 foo(this , ...);

19 if (this ->allocFailed) return;

20 ...

21 }

23 __kernel void run (...) {

24 This this;

25 ...

26 for (int i = tid; i < nthreads; i++) {

27 ...

28 bar(&this , ...);

29 if (this.allocFailed) {

30 complete[i] = 0;

31 *anyFailed = 1;

32 } else {

33 complete[i] = 1;

34 }

35 }

36 ...

37 }

Figure 3.7 : Code structure used to enable kernel abort on allocation failure.

forall acc is idempotent: it does not modify its own input state. If a thread modified

some input state, failed an allocation, and then was retried in a later kernel invocation,

it would read partially updated state on the accelerator. This requirement is not

currently enforced during code generation, but could be in future work. While this is

a limitation, this assumption is implicitly true in the functional style programming

that is common in parallel programming frameworks (e.g., Scala parallel collections)

and in current JVM acceleration research[55].

45

3.3.3 HJ-OpenCL Performance Evaluation

In this section, we will start by summarizing the experimental setup and applications

used to benchmark the HJ-OpenCL system. We will then begin the performance eval-

uation by comparing HJlib and HJ-OpenCL performance at the granularity of parallel

regions, without any redundant transfer elimination. HJ-OpenCL will use a GPU ac-

celerator. After enabling redundant transfer elimination we rerun all parallel regions

and then note and explain any change in performance. Using this information, we

statically select whether to run each parallel region as a forall (for JVM execution)

or a forall acc (for native CPU or GPU execution) and measure overall speedup

of HJ-OpenCL using native threads on the CPU or GPU, comparing against parallel

Java Streams. Finally, we measure how performance of one benchmark degrades as

the size of the accelerator heap is artificially reduced.

Experimental Setup

All benchmarks in this section are run on the same hardware platform, containing a

12-core 2.80GHz Intel X5660 CPU, 48GB of system RAM, and 2 discrete NVIDIA

M2050 GPUs each with 2.5GB of global memory. All tests are run using all 12

CPU cores but only 1 GPU, and with the maximum heap size of the JVM set to

48GB. All tests are repeated 30 times inside the same JVM to minimize the impact

of random variations and to allow JIT compilation to improve JVM performance.

The median execution time is reported. All tests are also run across a range of inputs

to quantify where performance is lost or gained using accelerated parallel regions.

These experiments use the Hotspot JVM v1.8.0 45 and the NVIDIA OpenCL 1.1

implementation included with CUDA 6.0.1.

Three benchmarks were used to evaluate HJ-OpenCL: KMeans, PageRank, and

NBody.

KMeans iteratively finds K clusters in an input dataset of P points. Each iteration

of KMeans is a two-stage pipeline: the first stage classifies each point into a cluster

46

based on a Euclidean distance measure from each cluster’s centroid to that point’s

location. The second stage computes new cluster centroids based on the point mem-

berships calculated in the first stage. This pipeline is executed for I iterations or until

the cluster centroids converge to a steady state. In our experiments we keep I as a

constant, 10, but vary the number of clusters and data points. The first stage is par-

allelized across data points and the second stage is parallelized across clusters. The

second stage allocates a new Point object for each cluster to store the re-calculated

cluster centroid.

NBody simulates particle-particle force interactions and the resulting changes in

particle positions. This implementation of NBody is precise, and does not use grid

approximations to reduce the ratio of computation to communication. Each time

step of an NBody simulation includes a two-stage pipeline: the first stage updates

each particle’s acceleration and velocity based on the position and mass of all other

particles. The second stage updates each particle’s position based on its re-computed

velocity. In this evaluation we execute 20 timesteps and vary the number of points.

Both stages of NBody are parallelized across particles.

PageRank is also an iterative application with a two-stage pipeline which assigns

a rank to each node in a directed graph based on the ranks of its neighbors with

inbound edges. The first stage in PageRank’s pipeline assigns a weight to each edge

in the graph based on the source node’s rank and its number of outbound edges. The

second stage uses edge weights to re-compute each nodes’ rank based on the weights

assigned to its inbound edges. We keep the number of iterations as a constant, 10,

but vary the number of nodes and edges. The first stage of PageRank is parallelized

across edges in the graph and the second stage is parallelized across nodes.

Table 5.1 details the characteristics of each benchmark as they relate to evaluating

the contributions of this work. The first column indicates if any of the parallel

regions in the benchmark contain object references. The second column indicates

if this benchmark contains transfers to or from the accelerator which our transfer

47

Benchmark Obj Refs Copy Elim Dyn Alloc
KMeans Y Y Y
NBody Y Y N
PageRank Y Y N

Table 3.1 : Characteristics of each benchmark as they relate to the contributions of

this work.

elimination algorithm identifies as redundant. The third column indicates if any

dynamic memory allocations are performed in parallel regions of this benchmark.

Kernel Performance With Redundant Transfers

Initially, we compare performance of every parallel region running as a forall loop

and as an accelerated forall acc loop on a GPU with no redundant transfer elim-

ination. All input and output singleton objects, primitive arrays, and object arrays

are transferred to and from the accelerator in these experiments. The results for

each benchmark are listed in Figures 3.8, 3.9, and 3.10. For each dataset and ker-

nel, either the forall or forall acc results are shaded gray to visually indicate the

higher performing execution mode. In many cases, smaller datasets perform better

when running on the JVM with the HJlib runtime, and larger datasets perform better

when an accelerator is used (e.g. updateClusters in KMeans and updateRanks in

PageRank).

These results show that even with redundant transfers, sufficiently large datasets

which produce enough parallelism benefit from the accelerated parallel regions imple-

mented in this work. Note that for improved performance to be achieved, the compu-

tational acceleration must be sufficient to offset both increased costs from transfers

over the PCIe bus as well as costs from data serialization and deserialization.

Figure 3.8 shows that KMeans acceleration is primarily a function of the number of

clusters (K) being calculated. K serves as a multiplier of the amount of work performed

for each data point. Because communication scales by O(P + K), computation scales

48

by O(PK), and P is generally much larger than K, increasing K increases the chances

that the accelerator will have a measurably positive impact on overall parallel region

execution time.

 0

 5

 10

 15

 20

 25

 30

 35

 40

K=
100

K=
1K

K=
20K

K=
40K

K=
100

K=
1K

K=
20K

K=
40K

K=
100

K=
1K

K=
20K

K=
40K

S
p

e
e
d

u
p

Dataset

KMeans w/ Redundant Transfers

classify
updateClusters

P=2000KP=1000KP=500K

Figure 3.8 : GPU kernel speedup with redundant copies in the KMeans benchmark,

relative to multi-threaded JVM execution.

Figure 3.9 shows that while accelerated parallel regions in NBody have an impact

at larger datasets for updateVel, updatePos always runs faster on the JVM with the

HJlib parallel runtime. The updatePos kernel includes a trivial amount of work but

requires transferring and serializing JVM objects to and from the accelerator. Hence,

overheads dominate accelerated execution of updatePos on the accelerator.

As we would expect, Figure 3.10 shows that for small node counts the updateRanks

kernel in PageRank (which is parallelized across nodes) does not perform well on the

accelerator. Like the kernels of KMeans and updatePos in PageRank, updateRanks

is dominated by transfer and serialization overheads at smaller node counts with little

computational work to accelerate. However, the calcWeights kernel always performs

49

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

P=
1K

P=
10K

P=
100K

S
p

e
e
d

u
p

Dataset

NBody w/ Redundant Transfers

updateVel
updatePos

Figure 3.9 : Kernel speedup with redundant copies in the NBody benchmark, relative

to multi-threaded JVM execution.

better on the accelerator than the JVM (for the data sizes that we studied).

Kernel Performance Without Redundant Transfers

Building on the results in Section 3.3.3, we enable the redundant transfer elimination

described in Section 3.3.2 and rerun all experiments. For these experiments, we

explicitly force all accelerated parallel regions to block on accelerator computation

before returning to the host program. This simplifies the performance comparison in

this section for kernels which have no buffers that must be transferred back to the

JVM on completion and would therefore execute asynchronously.

Eliminating redundant transfers in KMeans does add some performance benefit.

A summary of the results before enabling this optimization (copy-all) and after (elim)

is provided in Figure 3.11. Redundant transfer elimination saves transferring 50% of

data by eliminating all transfers from the accelerator following classify and to the

50

 0

 2

 4

 6

 8

 10

 12

L=
40

L=
80

L=
120

L=
40

L=
80

L=
120

L=
40

L=
80

L=
120

L=
40

L=
80

L=
120

L=
40

L=
80

L=
120

S
p

e
e
d

u
p

Dataset

PageRank w/ Redundant Transfers

calcWeights
updateRanks

N=18KN=14KN=10KN=4KN=2K

Figure 3.10 : Kernel speedup with redundant copies in the PageRank benchmark,

relative to multi-threaded JVM execution.

accelerator before updateClusters. We can see that for every dataset this improves

execution time. However, for kernels and datasets where JVM execution was faster

than accelerated execution with redundant transfers (Figure 3.8), the performance

improvement from redundant transfer elimination is insufficient to make those exe-

cution configurations now faster on the accelerator.

We find that for the NBody updateVel and updatePos kernels there is no im-

provement in performance. While our redundant transfer elimination algorithm keeps

the velocity and position buffers on the accelerator between these two kernels, our

NBody implementation is heavily computation-bound and so eliminating these trans-

fers does not significantly improve the performance of the overall parallel region. For

simulations of 100,000 particles this elimination reduces bytes transferred to and from

the device by 58.8%.

The PageRank results with redundant transfers eliminated are summarized in Fig-

51

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

K=
100

K=
1K

K=
20K

K=
40K

K=
100

K=
1K

K=
20K

K=
40K

K=
100

K=
1K

K=
20K

K=
40K

S
p

e
e
d

u
p

Dataset

KMeans w/o Redundant Transfers

classify
updateClusters

P=2000KP=1000KP=500K

Figure 3.11 : Kernel speedup with redundant copy elimination in the KMeans bench-

mark, relative to multi-threaded JVM execution.

ure 3.12. Here, eliminating redundant transfers provides a clear performance benefit

across all datasets. In every case, the optimized version performs better than the

naive, copy-everything version. Redundant transfer elimination reduces the number

of bytes transferred to and from the accelerator by 50%.

While the results for PageRank are similar to KMeans in that no kernel and

dataset execution configuration which performed better on the JVM in Figure 3.10

now performs better on the accelerator, it is clear the inflection point at which the

accelerator is the better choice has moved down as a function of L. For example, con-

sider the kernel updateRanks for tests with N=4K. Let us fit a quadratic function f(L)

= E to this data where E is the expected execution time for updateRanks. Without

redundant transfer elimination, the fitted equations for forall and forall acc pre-

dict an inflection point at L=91. With redundant transfer elimination, that inflection

point reduces to L=84, increasing the number of datasets that execute faster on the

52

accelerator.

 0

 0.5

 1

 1.5

 2

 2.5

 3

L=
40

L=
80

L=
120

L=
40

L=
80

L=
120

L=
40

L=
80

L=
120

L=
40

L=
80

L=
120

L=
40

L=
80

L=
120

S
p

e
e
d

u
p

Dataset

PageRank w/o Redundant Transfers

calcWeights
updateRanks

N=18KN=14KN=10KN=4KN=2K

Figure 3.12 : Kernel speedup with redundant copy elimination in the PageRank

benchmark, relative to multi-threaded JVM execution.

Overall Speedup

Using the insights gained in Sections 3.3.3 and 3.3.3, this section measures the over-

all speedup of whole benchmarks relative to a parallel implementation using Java

Streams. We choose to compare performance against Java Streams because it is an

industry standard with similar parallel functionality to HJlib’s forall construct. Ta-

ble 3.2 lists the kernels we choose to offload to the accelerator; updatePos in NBody

is the only kernel that was not offloaded. Table 3.3 lists the overall speedup achieved

on each benchmark and each dataset. All speedups are normalized to the execution

time of an implementation that uses parallel Java Streams. We compare performance

of HJlib’s forall running in the JVM, forall acc using OpenCL to run on the

GPU, and forall acc using OpenCL to run on the CPU.

53

Table 3.3 shows that the GPU-accelerated version of each application generally

performs better than Java Streams, forall, and the CPU-accelerated version as the

data size and parallelism of the input dataset increases.

The forall and Java Streams versions of each benchmark generally outperforms

the GPU-accelerated version on smaller datasets where there is insufficient work for

the GPU’s parallelism to offset the overheads of data serialization and transfer.

The CPU-accelerated version (i.e., the version in which OpenCL code is executed

on the CPU) of each benchmark offers an interesting tradeoff compared to the other

execution platforms. Like forall and Java Streams, it executes on the CPU and

therefore handles irregular computation and memory accesses better than the GPU.

The CPU also handles non-coalesced memory accesses better than the GPU, a com-

mon access pattern when referencing arrays-of-structs rather than structs-of-arrays.

Due to the serialization techniques described in Sections 3.3.1 and 3.3.1, all of these

benchmarks operate on arrays-of-structs. However, when using the CPU as an ac-

celerator we incur the same data serialization overhead that we do on the GPU, but

the data transfer overhead is lower because it does not go over the PCIe bus. These

results show that for some benchmarks there is a middle ground where the size of the

dataset is sufficiently large for native CPU execution to demonstrate a performance

benefit over JVM execution (forall or Java Streams) despite serialization overheads,

but still small enough that the acceleration from GPU execution is insufficient to off-

set the transfer overheads. In particular, note the results for KMeans when K=1K or

the PageRank dataset N=4K, L=120.

Automatic runtime identification of the best performing configuration (JVM, na-

tive OpenCL code on CPU, native OpenCL code on GPU) for a given kernel is a

subject for future work.

54

Benchmark Kernel Accelerator?

KMeans
classify Y

updateClusters Y

NBody
updateVel Y
updatePos N

PageRank
calcWeights Y

updateRanks Y

Table 3.2 : Kernels selected for acceleration.

Performance Degradation as Heap Contention Increases

One of the contributions of this paper is support for dynamic memory allocation on

OpenCL accelerators. The techniques described in Section 3.3.2 enable acceleration

of JVM applications where the dynamic memory allocations exceed the size of the

heap that is allocatable on the accelerator. Because these techniques are based on

retrying threads that fail to complete successfully, launching multiple kernels per

parallel region becomes necessary, but naturally introduces overhead. In this section,

we study how overhead and overall execution time of the KMeans benchmark increases

as we artificially constrain the heap size to force allocation failures.

In KMeans, a new object is allocated on each iteration for each cluster that stores

the new coordinates of that cluster. In these experiments, we test against the dataset

with the largest K. For K=40,000, KMeans dynamically allocates 12 bytes per cluster

(480KB in total).

Tables 3.4 and 3.5 show the number of kernel retries and total execution time for

KMeans running on the GPU and CPU, as a function of the heap size. As we halve the

heap size, the number of retries necessary approximately doubles. Overall execution

time increases sub-linearly because each successive kernel retry in the same parallel

region contains less work than the preceding one as more parallel iterations complete

successfully. The execution time of Java Streams on the same KMeans dataset was

70,091 ms. Even with an artificially small heap size, HJ-OpenCL running on the

GPU and CPU is able to maintain a performance advantage over Java Streams.

55

Dataset HJlib CPU GPU

KMeans

P=500K, K=100 0.97× 0.19× 0.09×
P=500K, K=1K 1.01× 1.31× 0.61×
P=500K, K=20K 1.23× 6.92× 10.26×
P=500K, K=40K 1.21× 5.81× 11.94×
P=1000K, K=100 1.05× 0.22× 0.10×
P=1000K, K=1K 1.12× 1.63× 0.71×
P=1000K, K=20K 1.06× 6.93× 10.36×
P=1000K, K=40K 1.23× 7.51× 15.78×
P=2000K, K=100 1.05× 0.21× 0.01×
P=2000K, K=1K 1.22× 1.63× 0.71×
P=2000K, K=20K 1.10× 7.42× 11.14×
P=2000K, K=40K 1.23× 8.74× 18.33×

NBody
P=1K 0.50× 0.07× 0.08×
P=10K 1.02× 0.61× 0.89×
P=100K 0.89× 0.72× 1.23×

PageRank

N=2K, L=40 1.00× 0.74× 0.45×
N=2K, L=80 1.04× 0.81× 0.45×
N=2K, L=120 1.03× 0.80× 0.45×
N=4K, L=40 1.03× 1.05× 0.89×
N=4K, L=80 1.05× 1.05× 0.90×
N=4K, L=120 0.93× 1.83× 1.53×
N=10K, L=40 1.03× 1.41× 2.43×
N=10K, L=80 0.98× 2.61× 5.95×
N=10K, L=120 1.02× 1.85× 6.45×
N=14K, L=40 0.96× 3.11× 7.05×
N=14K, L=80 0.98× 1.69× 8.60×
N=14K, L=120 0.98× 1.78× 9.03×
N=18K, L=40 0.97× 3.06× 5.88×
N=18K, L=80 0.95× 1.76× 6.57×
N=18K, L=120 1.04× 1.66× 6.68×

Table 3.3 : Speedup of overall execution time for all benchmarks, relative to parallel

Java Streams. This table compares HJlib’s forall to HJ-OpenCL’s forall acc using

the GPU or CPU as accelerators. The fastest performing platform for each test is

highlighted.

56

Heap Size Retries GPU
Time Slowdown

800KB 1 6,202 ms
400KB 2 6,965 ms 1.12×
200KB 3 8,434 ms 1.36×
100KB 5 13,079 ms 2.11×
50KB 10 22,682 ms 3.66×

Table 3.4 : Performance degradation of the KMeans benchmark as the HJ-OpenCL

heap size is reduced on the GPU, tested with 500,000 data points and 40,000 clusters.

Heap Size Retries CPU
Time Slowdown

800KB 1 12,323 ms
400KB 2 13,210 ms 1.07×
200KB 3 16,492 ms 1.34×
100KB 5 23,317 ms 1.89×
50KB 10 37,557 ms 3.05×

Table 3.5 : Performance degradation of the KMeans benchmark as the HJ-OpenCL

heap size is reduced on the CPU, tested with 500,000 data points and 40,000 clusters.

The performance of CPU-accelerated HJ-OpenCL degrades at a slightly slower rate

because the latency to transfer anyFailed from the accelerator to the JVM to check

for failed allocations after every kernel launch is lower.

3.4 Accelerating Distributed Data Analytics Platforms Us-

ing HCL2 and SWAT

Section 3.3 focused on automatic offload of shared-memory parallel JVM programs

and described the foundational techniques for transparent accelerator offload of par-

allel JVM regions. This section will build on and improve those techniques, with a

focus on using them to accelerate distributed managed systems.

Our first experiences accelerating distributed data analytics platforms came in the

form of HadoopCL [56]. HadoopCL accelerated Hadoop mappers and reducers using

57

the same APARAPI code generation framework as HJ-OpenCL. While HadoopCL

was an effective prototype and learning experience, it was far more restrictive than

the HCL2 work that will be presented in this section as part of this dissertation. It

relied more heavily on APARAPI for runtime memory management, code generation,

and kernel offload, and as a result used many blocking operations. HadoopCL was

limited to primitive data types only, and hence the application scope was also limited.

HCL2 shares the same goals as HadoopCL did: transparent acceleration of user-

written Hadoop Mappers and Reducers. However, it differentiates itself by its more

fully featured API and mature runtime, enabling evaluation on more complex bench-

marks. Among other things, HCL2 also adds:

1. Auto-scheduling of tasks on HCL2 devices based on learned performance profiles

(something HadoopCL completely lacked).

2. Use of the JVM device to allow for computation to run outside of OpenCL.

3. Automatic compiler optimizations/transformations for auto-generated OpenCL

kernels.

4. An integrated profiling and debugging framework for studying and debugging

HCL2 application behavior.

SWAT (Spark With Accelerated Tasks), on the other hand, was a follow-on to

HCL2 that accelerates the computational regions of Spark programs. Spark is a

distributed, functional, data-parallel programming model that focuses on iterative

machine learning workloads. Spark programs consist of chained functional transfor-

mations (e.g. map, reduce) on distributed vectors using user-provided kernels. SWAT

automatically offloads these user-provided kernels to accelerators.

The design of both the HCL2 and SWAT code generators and runtimes will be

described and compared in this section.

58

3.4.1 Background: Hadoop MapReduce and Apache Spark

Hadoop MapReduce

Hadoop is a distributed MapReduce[57] programming system. It improves on other

distributed frameworks in many areas, including programmability and flexibility.

Hadoop’s programmability is derived from its high-level MapReduce program-

ming model and its simple, object-oriented API. From a programmer’s perspective,

the MapReduce programming model (depicted in Figure 3.13) divides computation

into two stages: map and reduce. The map stage applies a function to each of many

input key-value pairs (kv-pairs), and outputs zero or more kv-pairs per input. Then,

the reduce stage’s kernel is applied to all map output values paired with the same

key, reducing that collection of inputs to zero or more output kv-pairs per unique key.

In addition to map and reduce, Hadoop also supports a combine stage that acts as

an intermediate reduce and executes spatially near each map instance, reducing data

movement and memory utilization as a result. The application-specific logic for each

of these stages is implemented as single-threaded logic in Java classes. The work-

load for a Hadoop job can then be transparently mapped to multi-processor, shared-

memory machines by taking advantage of the parallelism inherent in the MapReduce

model.

Figure 3.13 : The Map-Reduce execution flow.

A Hadoop job is an instance of a Hadoop application containing a map, a reduce,

and an optional combine stage that is executed on user-specified input. The map,

59

reduce, and combine stages of a Hadoop job are split into many parallel tasks. Each

of these Hadoop tasks iterates over the input data assigned to it and applies the

user-provided map or reduce function to each input kv-pair.

Hadoop TaskTrackers in each node pull tasks from a centralized Hadoop Job-

Manager. The JobManager manages the tasks that make up each job, tracking which

tasks are eligible for execution. Each TaskTracker manages a constant number of task

slots in a node. A single slot generally maps to a single CPU core. The TaskTracker

greedily pulls work from the JobManager as slots become available. Each task is

executed in a Child JVM running as a separate process. In this way, Hadoop jobs

that have been split into tasks can be scheduled across a distributed, homogeneous

system and use all available CPU cores.

Hadoop is flexible in terms of the applications that can execute on it and the

data types it supports. This flexibility can primarily be attributed to its use of the

object-oriented JVM. The ability to represent, serialize, and strongly type-check user

objects is useful when building complex applications.

Spark

Apache Spark, on the other hand, is a distributed, multi-threaded, in-memory pro-

gramming system. The core abstraction of Apache Spark is that of a resilient dis-

tributed dataset (RDD). An RDD represents a distributed vector of elements. Ele-

ments in an RDD can be of any serializable type. RDDs are created and transformed

through massively parallel, functional transformations. For example, a new RDD

might be created by applying a parallel filter operation to an existing RDD which

filters out all values below a given threshold.

RDD creation is lazy: creating an RDD object in a Spark program does not neces-

sarily evaluate and populate its contents. Only certain operations in Spark programs

force evaluation, resulting in long chains of lazily evaluated RDDs as one RDD is

transformed into another. RDD resiliency derives from this ancestry tracking. By

60

maintaining information on how RDDs are created rather than their actual contents,

Spark guarantees that lost data can be recovered through re-computation without

storing large amounts of intermediate data on disk.

One of Spark’s strengths is its API, i.e. the transformations that it supports

on RDDs. Spark transformations run in parallel across the machines that an RDD

is stored on. Transformations are functional: they are applied to one RDD and

produce another. This leads to long chains of lazily evaluated RDDs, linked by

functional transformations. The transformations that Spark supports include map,

reduce, filter, reduceByKey, groupByKey, join, distinct, and more. This variety

of transformations greatly expands the flexibility of Spark relative to its predecessor,

Hadoop MapReduce.

Transformations generally take some Scala lambda f, apply it to the input RDD

using the semantics of the transformation, and produce some output RDD. For exam-

ple, the map transformation applies f to each element of the input RDD, producing

the corresponding element in the output RDD.

We refer to the processing of a single RDD partition by a single transformation

as a Spark “task”. A single RDD is split into multiple partitions. All elements in

the same partition are stored on the same machine, but different partitions may be

stored on different machines. Hence, partitions are the granularity of distribution in

Spark.

Hence a Spark task, Hadoop task, and a single parallel loop in HJ-OpenCL are

all similar forms of shared-memory parallelism.

Spark also supports broadcast variables. Spark broadcast variables are read-only

data structures accessible on every node of a Spark cluster. Broadcast variables are

an efficient way to share read-only data among all tasks in a Spark job.

61

Accelerating Spark and MapReduce

Both Spark and MapReduce jobs are partitioned into tasks which in turn apply some

user-defined kernel across a chunk of inputs. These tasks are each analogous to a

shared-memory parallel loop, and as a result we can re-use many of the code gen-

eration, data serialization, and dynamic memory management techniques developed

as part of HJ-OpenCL (see Section 3.3). As a result, we also inherit the same con-

straints on supported user kernels (e.g. no exceptions, dynamic method dispatch,

nested object references, etc.).

Instead, the novel contributions made by HCL2 and SWAT focus on resource man-

agement and workload scheduling in multi-tenant systems. Whereas in HJ-OpenCL

we focused on efficiently executing one shared-memory parallel loop after another, in

HCL2 and SWAT the computational workload consists of many concurrently launched

parallel loops coming from different parallel tasks in the same node. The HCL2 and

SWAT runtimes are responsible for managing the scheduling of these parallel loops

on accelerators, in addition to any necessary serialization or communication.

Additionally, the work on HCL2 and SWAT emphasizes maintaining compatibility

with the existing APIs that MapReduce and Spark users will already be familiar with.

Recall that this work on acceleration of managed runtimes focuses on domain experts.

Hence, we want to avoid changes to and constraints on the high-level MapReduce and

Spark APIs.

One important difference between the HCL2 and SWAT works comes from the

ways in which MapReduce and Spark managed shared-memory parallelism. In MapRe-

duce, multiple processes are spawned in parallel in each node with each processing a

different task. Spark instead uses a single process with multiple threads, distribut-

ing the workload across threads rather than processes. This differentiation places

different constraints on the solution for acceleration of MapReduce and Spark.

Additionally, HCL2 is implemented as a modification to the core Hadoop code.

SWAT is built as a third-party JAR that does not require changes to the core Spark

62

code. The latter approach simplifies installation and deployment, but we will see in

Section 3.4.8 that modifying the core runtime leads to higher speedups by enabling

optimizations that are not possible as a third-party JAR.

In the following sections, we will cover in detail the HCL2 and SWAT APIs, code

generation extensions, memory management, runtime scheduling, and built-in tools.

We focus on areas in which HCL2 and SWAT go further than the work in HJ-OpenCL.

3.4.2 APIs for Accelerated Data Analytics

The HCL2 and SWAT APIs are different from each other in two regards. First,

because each was designed to emulate the APIs of their host systems, the HCL2 and

SWAT APIs mirror many of the differences between the Hadoop and Spark APIs.

Second, and more importantly, because SWAT was a later work that built on lessons

learned with HCL2, its APIs are also simpler and require fewer changes to existing

Spark programs.

HCL2 API

As Section 3.4.1 described, Hadoop programmers write Java classes to implement

custom Mapper and Reducer logic. The guiding principle of the HCL2 API was to

retain as much similarity to Hadoop MapReduce as possible. As a result, HCL2

applications are developed entirely in the Java programming language and compiled

into JARs, like Hadoop applications. Similar to Hadoop, the map, combine, and

reduce stages are each defined by Java classes which extend type-specific Mapper,

Combiner, and Reducer superclasses. Figure 3.14 depicts example HCL2 mapper and

reducer implementations.

The types in each mapper and reducer superclass name (e.g.,

IntPairBooleanLongMapper) indicate the input and output key and value

types for that computation. These superclasses are auto-generated for a range of

primitive, composite, and sparse vector data types. For example, PiMapper takes

63

public class PiMapper extends

IntPairBooleanLongMapper {

void map(int pid, double valx, double valy) {

...

}

}

public class PiReducer extends

BooleanLongBooleanLongReducer {

void reduce(boolean inside,

HadoopCLLongValueIterator values) {

...

}

}

Figure 3.14 : Example HCL2 Mapper and Reducer implementations extending type-

specific Mapper and Reducer superclasses.

a kv-pair of (int, Pair) as input and outputs a kv-pair of (boolean, long). The

Pair type is an HCL2-supported composite type containing two double-precision

floating-point values.

HCL2 supports globally shared read-write sparse vectors within a Hadoop job.

Many Hadoop applications exhibit a pattern of 1) initialize global data on task setup,

2) read and modify global data at each kv-pair, and 3) if global data was modified

then write those modifications to the Hadoop Distributed Filesystem (HDFS) on

task cleanup. Therefore, to support this pattern, HCL2 exposes a simple API for

interacting with global sparse vectors.

The API for initializing global sparse vectors is straightforward. During job ini-

tialization, a sparse vector Java object is passed to HCL2 with flags indicating if it is

writable and a unique ID to identify that global vector.

These globals are made accessible to the application code through the API below.

Each global sparse vector is keyed by its unique integer ID. The dimensions, values,

and length for that sparse vector can be fetched using that ID.

int[] getGlobalIndices(int GID);

64

double[] getGlobalVals(int GID);

int getGlobalLength(int GID);

Utility functions are also provided for quick lookup, and for manipulation of el-

ements in the global vectors using supported mathematical operations (e.g., incre-

ment).

These user-initialized global sparse vectors are stored in HDFS files so that they

can be accessed from inside the Hadoop job. Section 3.4.5 provides more details on

how these global data structures are managed at runtime and made accessible to user

computation inside a job.

SWAT API

In a vanilla Spark program, RDDs are created by applying transformations or op-

erations to other RDDs. In the example code snippet below, an RDD of integers

is created from a file stored in HDFS, and a new RDD is created where element i

contains the value of element i in the first RDD, multiplied by two:

1 val input = sc.objectFile[Int](hdfsPath)

2 val doubled = input.map(i => 2 * i)

To run this kernel on an accelerator, SWAT simply requires that the input RDD

be wrapped by a custom SWAT RDD object using a cl API call (shown below).

No other code change is required, and this is the only method exposed by SWAT.

By wrapping the RDD object, SWAT can intercept transformations performed on

it and replace the JVM implementations of those transformations with semantically

equivalent but accelerated versions.

1 val input = cl(sc.objectFile[Int](hdfsPath))

2 val doubled = input.map(i => 2 * i)

SWAT currently supports intercepting and accelerating calls to Spark map and

mapValues transformations. Other transformations could be supported, but we have

not found motivating application kernels that use other transformations and would

65

benefit from acceleration. For example, filter kernels tend to be short-lived and the

GPU offload time would be dominated by overheads. Future work could investigate

the use of kernel fusion across chained transformations to produce larger GPU kernels.

These fused kernels might offset the offload overheads, making offload of lightweight

transformations like filter profitable.

Note that Spark’s built-in broadcast variables are similar to the global sparse

vectors introduced by HCL2, hence no new APIs had to be introduced in SWAT to

support that functionality.

3.4.3 Runtime Code Generation

While HCL2 uses the code generation work from APARAPI and HJ-OpenCL un-

changed, SWAT makes framework-specific extensions to it.

APARAPI-SWAT

SWAT extends the code generation work done as part of HJ-OpenCL to support

references to Spark-specific data structures in kernels. In particular, we support the

SparseVector and DenseVector classes from Spark’s MLlib, and the Scala Tuple2

class used to store key-value pairs in Spark. Figure 3.15 illustrates an example of the

OpenCL kernel code generated to store and manipulate a DenseVector object.

One important item to note in the definition of the DenseVector struct is the

addition of a stride field. During serialization of DenseVector JVM objects to

native structs that can be accessed on the GPU, we tile and stride DenseVector

objects to improve memory access coalescing on the GPU. This transformation places

the ith element of neighboring DenseVector objects adjacent to each other. In

our implementation, we tile 32 DenseVector objects together before striding them

because NVIDIA GPUs schedule threads in “warps” of 32 threads. However, the

implementation is structured so that this can be easily tuned when porting to new

architectures. These same optimizations are also performed on SparseVector objects.

66

1 typedef struct __attribute__ ((packed)) dv {

2 __global double* values;

3 int size;

4 int stride;

5 } DenseVector;

7 static int DenseVector__size(

8 __global DenseVector *this) {

9 return (this ->size);

10 }

12 static double DenseVector__apply(

13 __global DenseVector *this , int index) {

14 return (this ->values)[this ->stride * index];

15 }

Figure 3.15 : Generated OpenCL kernel code for storing and manipulating a Spark

DenseVector object.

The automatic optimization of the user-written kernels during code generation

is beyond the scope of this work, but ideas from related work [58][59][60] could be

integrated into this code generator in the future.

3.4.4 Runtime Accelerator Memory Management

At runtime, HCL2 and SWAT must dynamically allocate and release accelerator

memory. Because memory allocation on GPUs generally requires synchronizing all

running kernels on the device, both HCL2 and SWAT pre-allocate all device memory

during initialization of a task. HCL2 and SWAT must also both contend with two

entities competing for host heap allocations within a single process: the JVM heap

and the OpenCL runtime.

One major difference between the constraints placed on the HCL2 and SWAT

memory managers is that while SWAT must support multi-GPU memory manage-

ment from within a single process, HCL2 only needs to support single-CPU memory

management. This is a result of the design of Spark and Hadoop. Hadoop spawns

a process per task, while Spark generally runs one process per shared-memory node

and has multiple threads within that process handling different tasks. As a result, all

of the GPUs within a single node are managed from a single process in SWAT, while

67

in HCL2 processes are spread across GPUs.

HCL2 Memory Management

The HCL2 Runtime explicitly pre-allocates and manages both OpenCL and JVM

memory buffers. This memory management was implemented to limit dynamic allo-

cations on the JVM’s heap and on OpenCL devices so as to prevent operating system

and JVM out-of-memory errors, as well as limit overhead from excessive JVM garbage

collection or device synchronization.

There are 3 types of buffers used in the HCL2 runtime, each used for a different

stage of processing. Each buffer type has a fixed number of buffer instances that can

be instantiated at any time. Each buffer instance is either 1) owned by the component

of the HCL2 runtime which is currently operating on it, 2) stored temporarily in a

queue of pending work, or 3) stored in a pool of free, pre-allocated buffer instances

which are not in active use. The three buffer types are described in detail below:

1. Input Buffer : An Input Buffer is used to store input data in the JVM. These

buffers are filled with input data from the current task’s input stream before

having their contents transferred to the accelerator. Input Buffers encapsulate

primitive Java arrays which store Java objects in a format that OpenCL can

process.

2. Output Buffer : An Output Buffer is used in the JVM to store data output by

an accelerator kernel. Like Input Buffers, Output Buffers store Java objects as

primitive arrays. Output Buffers are transferred to directly from the OpenCL

device. Once the OpenCL outputs have been pulled from the OpenCL address

space into an Output Buffer, the contents of these buffers are written to the

next stage in the MapReduce pipeline.

3. Kernel Buffer : A Kernel Buffer is a JVM object that consumes little JVM

memory but serves as a handle to a set of OpenCL buffers in the OpenCL

68

address space. To access these buffers, each HCL2 runtime component must

first acquire the Kernel Buffer handle associated with them. Kernel Buffers

are allocated from a pre-allocated pool before having the contents of an Input

Buffer transferred to the corresponding OpenCL buffers. Kernel Buffers are

active for as long as the OpenCL kernel using them. Outputs from the kernel

are transferred back from the Kernel Buffer to an Output Buffer.

HCL2’s memory management system consists of the 1) pre-allocation of these

three types of buffers, 2) the acquisition and release of these buffers to and from

a pre-allocated pool, and 3) the passing of these buffers between HCL2 runtime

components as they make their way from input aggregation to final output.

SWAT Memory Management

SWAT takes a more general-purpose approach to multi-device memory management.

clAlloc is a thread-safe, single-accelerator memory management library built on

top of the OpenCL APIs. It exposes two data structures: 1) an allocator object

for each OpenCL device in a platform that serves as a context/handle for clAlloc

operations on that device, and 2) region objects which represent a contiguous block

of allocated memory on a single OpenCL device. Its API is as follows:

1. clalloc init(device): Initialize an allocator instance for the selected de-

vice.

2. cl allocate(nbytes, allocator): Allocate nbytes bytes on the device asso-

ciated with allocator, returning a cl region handle for the allocated memory

or NULL if the allocation failed.

3. cl free(region, try to keep): Release the device memory represented by

region for future allocations. If try to keep is true, clAlloc will make a best-

effort to not use that memory to satisfy future allocations as it may be re-used

soon.

69

4. cl reallocate(region): Using the provided region, attempt to re-allocate

the same device memory. Successfully re-allocating memory guarantees that

it has not been used to satisfy another allocation since region was originally

allocated, and so its state is consistent with previous operations performed on

the same region. If the region is not already free this simply increments a

reference counter, allowing multiple kernels to share the same region.

5. get pinned(region)/release pinned(buf): Fetch or release a page-locked

buffer buf in host memory that matches the size of region. Page-locked buffers

are necessary for performing asynchronous communication to or from accelera-

tors.

6. set region(region, buf, nbytes)/get region(buf, region, nbytes):

Fill or fetch the contents of a region on an OpenCL device using a corresponding

host buffer.

clAlloc adds a higher-level API on top of the standard OpenCL APIs, including

features that enable higher layers of the software stack to perform data sharing across

kernels and efficient data communication. clAlloc pre-allocates all device memory

when it is initialized and partitions memory up for allocation requests on-demand

using the OpenCL clCreateSubBuffer API.

Free device memory is represented by a free list, sorted by offset into the de-

vice memory address space. When a clAlloc region is freed with cl free and with

try to keep set to false, it is merged into any neighboring regions to reduce frag-

mentation. If try to keep is set to true, it is not merged.

clAlloc also stores free regions in buckets for efficient allocation. For a single

device, B buckets are created. Each bucket b from 0 to B-1 stores all free regions on

that device with a size between 2b (inclusive) and 2b+1 (exclusive). A special-purpose

bucket is used to store any regions larger than 2B−1. The free regions in each bucket

are kept sorted by size, from smallest to largest. Regions freed with try to keep set

70

to true are not kept in these buckets, only in the global free list for each device.

When allocating nbytes, clAlloc starts with the smallest bucket that may have a

region of size nbytes, searching larger buckets until a free region that is large enough

to satisfy this allocation is found. The free region is then trimmed to nbytes, any

leftover space is re-inserted in the free list and free buckets, and the allocated region

is returned.

If no free region is found in the buckets list, the allocator reverts to a linear search

of the device-global free list for adjacent free regions that can be merged to produce

a sufficiently large free region to satisfy this allocation. This step will only succeed

where the previous one failed if some regions freed with try to keep set to true can

be merged with neighboring free regions to de-fragment device memory. If this step

fails, a NULL region is returned.

To support multi-GPU memory management in SWAT, an allocator object is

created for each device at initialization. Because allocator objects are already

thread-safe, multiple threads sharing GPUs within a single Spark process can safely

allocate and release device memory at runtime.

3.4.5 Runtime Coordination

Like memory management, the runtime coordination for HCL2 and SWAT is signifi-

cantly different because of the use of processes for parallelism in Hadoop versus the

use of threads in Spark.

HCL2 Runtime Coordination

As described in Section 3.4.1, the Hadoop TaskTracker launches a separate Hadoop

Child process for each task it processes. In HCL2, the TaskTracker is modified to

assign each Child a single device to work with (Section 3.4.6 will describe in more

detail how devices are chosen for tasks). Within that Child process, the HCL2 runtime

is responsible for scheduling execution of user-defined computation on the device

71

assigned to the task, as well as handling any necessary communication or management

work.

HCL2 supports three types of HCL2 “devices”: native OpenCL threads on GPUs,

native OpenCL threads on CPUs, and execution in the JVM. HCL2 is sufficiently

flexible to support additional OpenCL architectures as they become available.

During initialization of the Child process, the HCL2 Runtime loads the global

sparse vectors described in Section 3.4.2 from HDFS. If this Child is assigned the

JVM device, then no further action is necessary as the globals are now in the JVM’s

address space. If this child is assigned an OpenCL device, OpenCL buffers are pre-

allocated and initialized with these global values before processing begins.

When using the JVM device, the HCL2 Runtime mirrors the workflow of a normal

Hadoop Child process. It iterates single-threaded over the input kv-pairs, calls the

user-defined map or reduce function on each, and outputs kv-pairs one at a time. The

work described in this paper does not significantly change this process.

When running on an OpenCL device, the HCL2 runtime chunks input and output

data points into data buffers. The HCL2 runtime follows the following steps to process

these data buffers on an OpenCL device:

1. The bytecode loaded for this task’s map() or reduce() function is translated

to an OpenCL kernel using the techniques described in Section 3.3.1.

2. A dedicated input I/O thread, called the Input Aggregator, buffers many kv-

pairs from the input stream for this task in to an Input Buffer D.

3. Once it is full, D is passed to the Buffer Executor, a separate thread which

acquires a Kernel Buffer on the OpenCL device assigned to this task, transfers

the inputs contained in D to the OpenCL memory buffers associated with that

Kernel Buffer, and launches the OpenCL kernel created in step 1.

4. The Buffer Executor detects the completion of processing for D, transfers its

outputs back to an Output Buffer in the JVM, and passes that Output Buffer

72

to a dedicated I/O thread, the Output Writer, to be written out.

5. If there are inputs left to process, control loops back to step 1. Otherwise, this

task terminates.

Note that while these steps are described sequentially, most of the actual process-

ing of a data buffer D is asynchronous and does not require a component (e.g., Input

Aggregator) to block on D completing unless the storage or compute resources required

for forward progress by a component have been exhausted. Examples of resources

that may cause blocking are pre-allocated OpenCL memory buffers, pre-allocated

JVM buffers, or the OpenCL device.

SWAT Runtime Coordination

SWAT’s runtime design is similar to HCL2 in that it uses a pipeline of JVM threads

to aggregate inputs, execute kernels, and produce outputs.

Sitting on top of the clAlloc memory management layer described in Section 3.4.4

is the SWAT Bridge, a bridge between the components of SWAT running in the

JVM and those sitting on top of OpenCL. SWAT Bridge’s upward exposed APIs are

expressed in terms of JVM or Spark objects, which it then translates into commands

to the OpenCL-centric layers below.

The Bridge’s primary responsibilities are the caching of data on OpenCL devices

across kernels and tasks, the creation and management of native SWAT contexts,

the setting of arguments to OpenCL kernels, and the management of asynchronously

executing OpenCL operations (including kernel executions and data communication).

It exposes APIs to the JVM that enqueue work for accelerators and block or poll on

their completion. At a high level, the Bridge accepts input buffers from the JVM,

places them on the accelerator, launches computation on those buffers at the JVM’s

request, retrieves outputs, and signals the JVM on completion of various stages and

as resources are released.

73

The Bridge stores two mappings for caching data on OpenCL devices: one map-

ping from unique RDD partition IDs to their clAlloc regions, and another from unique

broadcast variable IDs to their clAlloc regions. When layers higher in the software

stack indicate that a partition or broadcast variable should be allocated and popu-

lated on a device, the Bridge first checks if an entry already exists for it in one of the

cached mappings. If it does and a call to cl reallocate succeeds on it, the Bridge

can skip creating a separate allocation. This saves space on the device through de-

duplication, and reduces data communication to the device. When freeing regions

associated with cache-able data, the try to keep flag is set to true.

In practice, we found that caching partitions of RDDs on the device was not useful.

The limited size of device memory and the scale of Spark datasets meant that RDD

partitions were never re-used before being evicted from device memory: the memory

used to store them had to be allocated to store other data before the application came

back around to a re-use of that partition. Broadcast variables, on the other hand,

are frequently used, may be shared across multiple stages of a Spark application, and

are usually smaller than an RDD partition. We generally see benefits from caching

them.

Besides caching, the bridge’s other main responsibility is exposing an API that

allows higher layers to enqueue asynchronous OpenCL operations and check for their

completion. In support of this, the bridge implements an asynchronous runtime

that coordinates asynchronous OpenCL operations with the host application using

pthreads condition variables, OpenCL events, and OpenCL event callbacks. This

runtime is illustrated in Figure 3.16. Below the dotted line in Figure 3.16 are OpenCL

operations managed by the OpenCL runtime including data communication, kernel

execution, and SWAT-specific callbacks. These callbacks are identified by the light

gray boxes. All of these operations are asynchronous with respect to the host JVM,

with OpenCL events being used to maintain inter-operation dependencies.

The functions that the SWAT Bridge exposes to higher layers in SWAT are listed

74

Figure 3.16 : The flow of event-driven actions in the SWAT Bridge at runtime.

below:

1. setPinnedArrayArg: This function initiates the transfer of the contents of a

host page-locked buffer to a buffer on an OpenCL device. It also sets the appro-

priate arguments of an OpenCL kernel to point to the same OpenCL buffers.

This call is non-blocking, and creates OpenCL events for later operations to

depend on.

2. launchKernel: This function launches a new kernel processing data initialized

using setPinnedArrayArg. This kernel is made dependent on the writes started

by setPinnedArrayArg using OpenCL events. Each kernel launch is uniquely

identified by a 64-bit sequence number, which is incremented by one on each

kernel launch.

3. waitForKernel: This function forces the current JVM thread to wait for a

specific kernel launch to complete, identified by its sequence number. This

involves a wait on a condition variable which is set by the box labelled “Release

Device Buffers” in Figure 3.16.

4. waitForInputBuffersRelease: This function forces the current JVM thread

to wait for a set of transfers to the device to complete, signaling that the host

75

Figure 3.17 : Example stack trace of entry point to SWAT Core.

buffers they originate from are now available for re-use by the host.

All of these APIs are thread-safe as they may be concurrently called by multiple

JVM threads.

On the other side of the Java Native Interface from the SWAT Bridge is SWAT

Core. SWAT Core refers to the components of SWAT that sit inside the JVM. SWAT

Core runs inside a Spark Worker JVM. The interface between Spark and SWAT is a

custom SWAT RDD class (illustrated in Figure 3.17). When Spark has a partition to

process it calls a compute method on the custom RDD, passing it an iterator over an

input partition. The compute method returns an iterator over output items. SWAT

currently adds two custom RDD classes: one each for the Spark map and mapValues

transformations. Both of these classes hand off processing of the input partitions to

a shared code base in CLProcessor.

CLProcessor has four main responsibilities: 1) setup and configuration of the

SWAT environment, 2) input buffering and serialization, 3) launching a GPU batched

kernel, and 4) output deserialization and writing. At a high level, CLProcessor

accumulates many input items from the input iterator, launches a batched OpenCL

kernel on the accumulated inputs, and returns the accumulated outputs to Spark

through the iterator which was returned by the RDD compute method.

76

There are five categories of objects that the CLProcessor is responsible for ini-

tializing:

1. OpenCL objects: This includes SWAT-specific items such as clAlloc allocators,

as well as OpenCL-specific items like compiled kernels and OpenCL contexts.

2. Native Input Buffers: These are JVM handles on native, page-locked buffers

allocated from clAlloc. Multiple page-locked buffers may be grouped into a

single Native Input Buffer handle if they are required to serialize a given input

type. For example, accumulating vectors from a DenseVector input iterator

requires three native input buffers: one buffer to store the values of each vector,

one buffer to store the length of each vector, and one buffer to store the offset

of each vector in the values buffer.

3. JVM Input Buffers: These are small JVM objects that contain the logic to

serialize items from an input iterator into backing Native Input Buffers. Some-

times it is necessary to store small temporary buffers in JVM Input Buffers. An

actively buffering JVM Input Buffer is always backed by a Native Input Buffer

in which it stores the accumulated and serialized input items.

4. Native Output Buffers: Page-locked host buffers that SWAT Bridge transfers

the outputs of an OpenCL kernel into, asynchronously.

5. JVM Output Buffers: JVM objects backed by Native Output Buffers that ex-

pose an iterator interface which CLProcessor can use to deserialize and fetch

output elements from Native Output Buffers.

Only one JVM input buffer and JVM output buffer are created by CLProcessor.

Multiple native input and output buffers are created, but are limited to a fixed number

to prevent out-of-memory errors caused by excessive native buffer allocation. Only

a single JVM input or output buffer is necessary as different native buffers can be

swapped in and out as the storage backing the JVM buffers’ interfaces.

77

The CLProcessor uses two JVM threads: a dedicated reader thread and the main

Spark thread. A reader thread is spawned by the main Spark thread when the SWAT

RDD compute method is called. The reader thread retrieves an iterator for a given

input partition. The reader thread is responsible for accumulating items from the

input iterator, through the JVM Input Buffer, and into a Native Input Buffer. It

then initiates the asynchronous input copies to the accelerator from the Native Input

Buffer and launches an asynchronous kernel to process them, using the SWAT Bridge.

Illustrative pseudocode for the reader thread is listed in Algorithm 1.

1 currentInputSeqNo = 0;
2 lastSequenceNo = -1;
3 done = false;
4 jvmInputBuf = createJVMInputBuffer();
5 jvmInputBuf.setNativeInputBuf(fetchNativeInputBuffer());
6 ;
7 while not done do
8 jvmInputBuf.accumulate(inputIter);
9 ;

10 nextNativeInputBuf = fetchNativeInputBuffer();
11 jvmInputBuf.transferOverflowTo(nextNativeInputBuf);
12 jvmInputBuf.nativeInputBuf.copyToAccelerator();
13 ;
14 currNativeOutputBuf = fetchNativeOutputBuffer();
15 bridge.setupOutputBuffers(currNativeOutputBuf);
16 ;
17 kernelSequenceNo = currentInputSeqNo++;
18 done = bridge.run(kernelSequenceNo);
19 if done then
20 lastSequenceNo = kernelSequenceNo;
21 end

22 end
Algorithm 1: Pseudocode for SWAT Core reader thread.

The main Spark thread for the current partition first retrieves an output iterator

from the SWAT RDD object’s compute method and then repeatedly calls that iter-

ator’s hasNext and next methods to retrieve output items for the current partition,

78

until hasNext returns false. hasNext checks that there are no remaining output items

by verifying that the input iterator is finished, there are no pending OpenCL kernels,

and that there are no pending output items left in any Native Output Buffers. next,

on the other hand, either immediately returns an output item from a currently ac-

tive Native Output Buffer or loads a new Native Output Buffer by waiting for the

appropriate kernel launch to finish, based on a kernel sequence number. Illustrative

pseudocode for the output iterator logic is listed in Algorithm 2.

1 currentOutputSeqNo = 0;
2 jvmOutputBuffer = ∅;
3 ;
4 Procedure next
5 if jvmOutputBuffer == ∅ then
6 currNativeOutputBuffer =
7 bridge.waitForFinishedKernel(
8 currentOutputSeqNo);
9 currentOutputSeqNo++;

10 jvmOutputBuffer.fillFrom(currNativeOutputBuffer);

11 end
12 return jvmOutputBuffer.next ;

13 ;
14 Procedure hasNext
15 return lastSequenceNo == -1 or
16 currentOutputSeqNo ¡= lastSequenceNo or
17 jvmOutputBuffer.hasNext ;

Algorithm 2: Pseudocode for the SWAT Output Iterator.

3.4.6 Performance Prediction in HCL2

One of the novel contributions of the HCL2 work was the integration of a heteroge-

neous device performance prediction framework. This performance prediction frame-

work was used by an auto-scheduler to automatically select which device a given

Hadoop kernel should run on. HCL2 supports three types of HCL2 ”devices”: native

OpenCL threads on GPUs, native OpenCL threads on CPUs, and execution in the

79

JVM. SWAT, on the other hand, has a simplified device selection problem because

it does not support the OpenCL CPU device. SWAT relies on the programmer to

select JVM or GPU execution.

While each Hadoop task only uses a single device, multiple tasks being processed in

parallel by different processes may be assigned to the same device. Running multiple

tasks simultaneously on the same device keeps device utilization high even when some

tasks are blocked on I/O, at the cost of potentially increased overhead from context

switching and resource contention.

Deciding which device to assign to a given task is a complex problem. While

the performance tradeoffs between OpenCL CPU and GPU devices are well

understood[61][62], the tradeoffs between OpenCL and JVM execution are more in-

teresting. Using the JVM eliminates the need to perform transfers into a separate

address space (as is necessary in OpenCL). Depending on the characteristics of the

data in an application, using the JVM may also offer memory and I/O benefits.

OpenCL’s batched execution model requires buffering of many input data points.

This increases the working set size of HCL2 tasks and may produce bursty I/O. How-

ever, batching reads in HCL2 also enables optimizations in the runtime that can hide

I/O overhead.

HCL2 uses an internal auto-scheduling framework which constructs a relationship

between the computational load on a HCL2 device and a task’s expected execution

time. By learning from past executions of tasks of the same type, persisting this

information across jobs, and using low overhead techniques to construct this relation-

ship, the auto-scheduling framework can match or beat the performance of manual,

programmer-defined scheduling. The following sections will discuss the techniques

used by the auto-scheduler in more detail.

80

Measuring and Storing Past Performance

HCL2 stores per-device historical performance information for every task type. This

historical information is used to characterize task performance on each device in a

platform. A task type corresponds to a single mapper, combiner, or reducer class in

Hadoop.

For every possible (task-type, device-type) tuple, the HCL2 auto-scheduler

stores a list of past performance data points. Each element in this list includes two

things: the computational bandwidth achieved by an instance of this task type in

kv-pairs/ms, and an estimate of the average load on all devices in the system during

the execution of that task.

Computational bandwidth is measured differently for OpenCL and JVM devices.

For both, it is straightforward to measure the number of kv-pairs processed in each

task by incrementing a counter for each kv-pair read from the input of a task. To

calculate the time taken to process those kv-pairs on OpenCL CPU and GPU devices,

a millisecond-granularity timestamp is taken at the start and end of every kernel

launch.

Because JVM execution is not batched and each kv-pair is processed individually,

placing timing statements around every call to a map or reduce function would sig-

nificantly add to the overhead of the HCL2 runtime when auto-scheduling on JVM

devices. Instead, we can only time the overall task. While this technique induces

less overhead than the technique for OpenCL devices due to fewer timing statements,

it also strictly underestimates the computational bandwidth of the JVM as other

operations, such as I/O, are included in the elapsed time measured.

The estimated average load during a task’s execution is measured in units of tasks

running per device, and is calculated as the mean of the device load at the start of

the task and at the end of the task.

The computational bandwidth of a task is calculated by the task itself and com-

municated to the TaskTracker when the task completes successfully. The TaskTracker

81

writes these metrics to a local file immediately so that they can be reloaded on startup

if the TaskTracker is shut down. The TaskTracker also passes these metrics to the

auto-scheduling framework so that task characterizations can be constructed or re-

vised.

Task Characterization

In the HCL2 auto-scheduler, task characterizations are created for each task type.

Task characterizations use the historical data described in Section 3.4.6 to predict the

performance of instances of that task type on each device in a platform, and provide a

confidence measure for that performance prediction. Each HCL2 task characterization

constructs an internal function:

f(D,L)→ R

from device type D and current device load L to expected execution rate R where R

is measured in kv-pairs per millisecond.

f has a different shape (e.g., linear, exponential, etc.) for different device types.

The function for each device type was chosen experimentally using performance data

from manually scheduled runs. We plotted the performance of different devices run-

ning KMeans against device load and looked for trends in the data. Based on the

trends we observed (discussed below), we chose a function shape to fit to the data for

each device.

For JVM and OpenCL CPU devices, we found there was a clearly linear re-

lationship between device load and task processing rate. Therefore, we use linear

regression to construct a linear function from device load to task processing rate. Re-

lated works[63][64] have also used linear relationships to predict CPU performance.

Generating f has a computational complexity of O(C2N), where C is the number

of features and N is the number of data points. For OpenCL CPU devices, we only

82

consider the load on that device so C is equal to one. For JVM devices, we consider

the load on all devices in the system so C may be greater than one.

As an example, the function constructed for OpenCL CPU devices running the

Pairwise mapper was f(OpenCLCPU,L) = 26.67−1.17L. This relationship indicates

that adding more load to an OpenCL CPU device causes the expected execution rate

for all tasks on that device to drop.

For OpenCL GPU devices, there was no clear relationship between device load

and task performance. Rather, we observed two clusters of performance: a small

cluster of slow executions caused by initialization overheads, and a larger cluster of

higher-performing executions. We chose to use K-nearest neighbors to estimate task

performance on GPUs. This approach predicts task performance using the mean of

the K performance measurements most similar to the current one in terms of device

load. K-nearest neighbors naturally disregards outliers.

The computational complexity of predicting the performance of a given task on a

given GPU using K-nearest neighbors is O(N) where N is the number of past perfor-

mance data points. For GPUs, only the load on the GPU in question is considered

as an input when predicting performance.

Before predicting task performance, a task characterization must first report if it

has sufficient historical performance data on which to base a prediction. In our imple-

mentation, a task characterization is ”confident” it can make an accurate performance

prediction if there are any similar past executions in its historical performance data.

A past execution is similar if it is for the same device and executed at a similar device

load. We use an n-dimensional Euclidean distance measure to determine similarity

between device loads, where n is the number of devices in a platform. Any device

loads within a constant, experimentally-chosen radius of the current device load are

considered similar.

83

Types of Scheduling Decisions

There are two types of scheduling decisions in HCL2: speculative and performant.

Speculative scheduling decisions are made to fill in gaps in a task characterization’s

knowledge of a particular device’s performance. A speculative scheduling decision is

made when a task characterization indicates it has no confidence in its performance

predictions for a device at the current device load. By scheduling the current task on

the no-confidence device, a performance data point is added to that task characteri-

zation, allowing it to better predict performance for future task executions. Having a

well-defined model of each task’s performance on each device is important in making

accurate and well-performing scheduling decisions.

While speculative scheduling may lead to suboptimal task placement, any short-

term performance gains that are lost are outweighed by the long-term benefits of

well-characterized performance. As a result, there is generally a period of subop-

timal scheduling and performance during the early executions of a new task type.

Section 3.4.8 will characterize this further.

Performant scheduling decisions are made to achieve maximum performance for

a task, given the available HCL2 devices in a platform and the task characterization

constructed from past executions on those devices.

Auto-Scheduler Core

The core of the HCL2 auto-scheduler resides in the TaskTracker and is responsible

for:

1. Keeping track of the current device load in a node, measured in tasks executing

per device.

2. Selecting a device for each task based on the current load in the node and the

known task characterizations (described in Section 3.4.6).

3. Communicating the selected device to the task.

84

The current load for all devices is stored in an integer array, with one entry for

each device. The auto-scheduler increments the load for a device when a new task is

assigned to it. The auto-scheduler also maintains a mapping from executing tasks to

the device each is running on. When a task signals the TaskTracker that it completed

successfully, the TaskTracker signals the auto-scheduler to remove that task from its

accounting. The auto-scheduler uses the task-to-device mapping to decrement the

appropriate device load.

In our implementation, the device for a given task is selected by first querying the

”confidence” level of its task characterization for each device in the current platform.

If the task characterization has no confidence for one or more devices at the current

device loads, this task is speculatively scheduled on a randomly selected no-confidence

device. Otherwise, a performance prediction for each device is made. The task is

assigned the device with the highest predicted performance.

Once a task has been assigned a device, a device ID is passed to the Child process

running that task as a Java environment variable. This environment variable is read

by the HCL2 Runtime and work is only scheduled on the selected device.

Static Scheduler

In addition to the manual programmer-controlled scheduler and the auto-scheduler,

HCL2 supports a third Device Scheduler: the static scheduler. The static scheduler

uses the task performance profiles generated by the auto-scheduler to make scheduling

decisions, but does not update those performance profiles. The static scheduler avoids

the computational overheads incurred when performance profiles are updated with

new performance data.

3.4.7 Framework-Specific Tooling

Both the HCL2 and SWAT frameworks used similar techniques to supply programmer

aids to help with debugging and optimizing applications built on top of them.

85

Debugging Auto-Generated Kernels

One of the strengths of SWAT and HCL2 is that it is possible to disable accelerated

execution and run programmer-written kernels in the JVM. As a result, users can

test and debug their applications from entirely within a managed runtime, taking

advantage of its out-of-bounds checks, arithmetic exceptions, and other exceptions to

verify the correctness of their kernel.

However, it sometimes becomes necessary to analyze the generated OpenCL ker-

nels themselves. Both HCL2 and SWAT use runtime checkpointing of kernel inputs

to enable offline debugging of both correctness and performance of auto-generated

OpenCL kernels.

On each kernel launch, a snapshot is taken of OpenCL buffer contents and sizes,

kernel source code, and any other state necessary to fully recreate the same kernel

launch. This snapshot is written to a dump file on disk, ensuring that the saved state

persists even if the process writing it crashes.

The buffers which must be saved are determined based on directional information

(IN, OUT, INOUT) passed down from higher software layers. Only the contents of IN

and INOUT buffers are written to the dump file. All buffers have their dimensionality

saved.

Upon successful completion of the associated kernel launch, the dump file is deleted

from disk to prevent out-of-space errors in storage-constrained systems.

Once HCL2 or SWAT job execution completes or fails, any dump files remaining

on disk must be associated with kernel launches that either failed or were in-progress

at job termination. A utility was implemented to parse the generated dump files

and perform an identical re-execution based on their contents. This offline execution

can be inspected using other debugging tools, such as print statements, gdb, gprof,

cuda-gdb, or nvprof.

86

Analyzing Runtime Performance

Additionally, the HCL2 and SWAT runtimes both include instrumentation to help

with visualizing time the runtime spends in I/O, computation, serialization, and other

work.

At the core of this profiling infrastructure is a runtime logging component that

logs timestamps of important events in both JVM and native execution. For example,

timestamps are written at the start of input aggregation, at each OpenCL kernel

launch, and for each event in the OpenCL profiling API. By correlating JVM and

OpenCL timestamps within a node, fine-grain profiling is achieved. However, neither

HCL2 nor SWAT currently support correlating these events across multiple nodes.

Following job completion, the timestamp logs can be fetched, post-processed, and

visualized using a standalone tool developed as part of HCL2 and SWAT. This pro-

duces a visual timeline of input aggregation, output dumping, kernel processing,

thread blocking, and other important HCL2-specific states. Examples are shown in

Figures 3.20 and 3.21.

3.4.8 HCL2 and SWAT Performance Evaluation

In this section we evaluate the performance gains and losses made using the HCL2

and SWAT frameworks.

Experimental Setup

All benchmarks and metrics are evaluated on a hardware platform containing a 12-

core 2.80GHz Intel X5660 CPU with 48GB of system RAM and two NVIDIA M2050

GPUs each with 2.5GB of device memory in each node. Nodes in this platform are

connected by QDR Infiniband. Our experiments are limited to a maximum of nine

nodes (one master, eight workers) by hardware availability. All experiments were run

with 12 Spark executor threads or 12 Hadoop Child processes in each node. The

softwate platform consists of JDK 1.7.0 80, Scala 2.11.5, Spark 1.2.0, HDFS 2.5.2,

87

Dataset Size # Items Scala Type
Hyperlink 16 GB 1,289,970K (Int, Int)

Census 14 GB 49,166K DenseVector
ImageNet 1.3 GB 40,646K (Int, DenseVector)

Table 3.6 : Characteristics of each dataset.

and ICC 15.0.2. For the overall and task-level performance results, each benchmark

was tested ten times at each node count. For the more detailed performance analysis,

median runs were selected for study.

We use six benchmarks to evaluate SWAT:

1. PageRank: A graph algorithm that ranks nodes in the graph based on the nodes

that link to them.

2. Connected: Connected components graph algorithm.

3. NN: A simple neural net implementation.

4. Fuzzy: A probabilistic clustering algorithm.

5. KMeans: An iterative clustering algorithm.

6. Genetic: A genetic, evolutionary algorithm. In this case, we use a genetic

algorithm to find cluster centroids.

For these six benchmarks, we evaluate on three datasets. For PageRank and

Connected we use the Hyperlink Graph available from the Web Data Commons [65].

For Fuzzy, KMeans, and Genetic we evaluate on the Census dataset available from

the UCI Machine Learning Repository [66]. For NN we evaluate on a subset of the

images in the ImageNet dataset [67]. The size of each dataset is listed in Table 3.6.

We use five kernels from the Mahout [20] machine learning framework to evaluate

HCL2: KMeans, Pairwise Similarity, Fuzzy KMeans, Dirichlet Clustering, and the

88

Naive Bayes Trainer. All HCL2 experimental runs are done using a subset of the

Wikipedia dataset [68].

All Spark applications were implemented using Spark’s Scala API, and all Hadoop

applications were implemented using Hadoop’s Java API.

Overall Speedup and Scalability

Figure 3.18 shows the overall speedup HCL2 and SWAT achieved relative to Hadoop

and Spark on 1 worker node. We note a number of trends.

For both HCL2 and SWAT, there are two clear categories of benchmarks: those

which see little or no improvement from acceleration, and those with 2× or greater

end-to-end speedup. For SWAT, the Genetic, KMeans, Fuzzy, and NN benchmarks

all show speedups between 2× and 3×, while PageRank and Connected either show

no change, or slight slowdowns. For HCL2, Dirichlet, Fuzzy, and KMeans see up to

an order of magnitude performance improvement, while Bayes and Pairwise see little

speedup. We explain this through the characteristics of the applications: speedups

are achieved when non-trivial computation is present in the application logic being

accelerated by GPUs. For applications that are I/O bound on disk or network band-

width and have small computational kernels, HCL2 and SWAT demonstrate little or

no improvement.

Figure 3.18 also suggests that HCL2 is able to achieve much greater improvements

relative to its baseline than SWAT. While this is true, it is primarily a result of the

simplified programming constructs that HCL2 supports relative to SWAT, simpler

benchmarks, and HCL2’s more intrusive programming model which enables more

compile-time optimizations and less runtime work.

Figure 3.19 shows the scalability of each benchmark running on Hadoop, HCL2,

Spark, and SWAT when moving from two to eight worker nodes. Linear scalability

would be denoted by a 4× speedup on the y-axis. At the scale of only eight worker

nodes, it is difficult to make conclusions about the scalability of any framework. In

89

Figure 3.18 : Overall speedup of each HCL2 and SWAT benchmark using 1 master

node and 1 worker node.

90

general, none consistently achieves linear scalability. However, these applications are

not perfectly parallel and have collect or reduction stages which would make perfect

scalability unlikely.

We do note that HCL2 consistently scales worse than Hadoop. HCL2 (unlike

SWAT) modified core Hadoop code, including the Hadoop TaskTracker that manages

each worker node. The modifications made to the TaskTracker for tracking GPU usage

added synchronization, and affected the scalability of the overall HCL2 framework as

a result of higher overheads in dispatching tasks.

We also note that in Figure 3.19, the two SWAT applications with the worst

scalability (PageRank and Connected) also demonstrated the lowest speedups in Fig-

ure 3.18. This poor scalability is caused by the same network and I/O bottlenecks

that caused poor speedups when comparing SWAT to Spark.

Execution Timelines

Focusing on performance within a single Spark or Hadoop worker node, we can use

the custom HCL2 and SWAT profiling tools described in Section 3.4.7 to better

understand the behavior of these frameworks and explain the performance of different

applications.

In this study, we focus on the benchmarks for HCL2 and SWAT which demon-

strated the least and most speedup relative to their respective baselines. For HCL2,

that is Bayes and Fuzzy KMeans. for SWAT, that is PageRank and Genetic.

Parsing HCL2’s profiling logs produced the statistics in Table 3.7 for Fuzzy

KMeans and Bayes. Because HCL2 focuses on accelerating computation, it makes

sense that the performance improvement from using HCL2 would be larger for

compute-bound applications like Fuzzy KMeans than for more I/O-bound applica-

tions like Bayes.

On the other hand, in SWAT we categorize the work performed into three cate-

gories:

91

Figure 3.19 : Speedup of Hadoop, HCL2, Spark, and SWAT relative to themselves

when going from 2 to 8 worker nodes.

Map Stage Reduce Stage
Read Exec Write Read Exec Write

Fuzzy 5% 94% 1% 23% 65% 12%
Bayes 97% 2% 1% 22% 73% 5%

Table 3.7 : Percent execution time spent by HCL2 in read I/O, kernel execution, and

write I/O while executing Fuzzy KMeans and Bayes.

92

Figure 3.20 : PageRank execution timeline. Light gray indicates input I/O, dark gray

indicates OpenCL operations, and black indicates output I/O. No dark gray is visible

at this time scale as little computation is performed in PageRank.

1. Input I/O, which includes deserialization and disk I/O.

2. OpenCL operations, which includes both data communication with and execu-

tion on the OpenCL device.

3. Output I/O, which includes serialization and disk I/O.

Figure 3.20 shows an execution timeline for the PageRank benchmark, and Fig-

ure 3.21 shows it for the Genetic benchmark. Clearly, PageRank is dominated by

input and output I/O while Genetic is dominated by computation. Combining these

observations with Amdahl’s Law explains the higher overall speedups achieved for

the Genetic benchmark compared to the PageRank benchmark.

SWAT Hardware Utilization

In the SWAT project, we also spent time performing a deeper investigation of hard-

ware resource utilization. In particular, we look at CPU utilization and system mem-

ory utilization.

Figure 3.22 shows the change in CPU and memory utilization for the PageRank

benchmark. Figure 3.23 shows the same information for the Genetic benchmark.

93

Figure 3.21 : Genetic execution timeline. Light gray indicates input I/O, dark gray

indicates OpenCL operations, and black indicates output I/O. Note that this figure

is dominated by dark gray, indicating a large amount of time in OpenCL operations.

Table 3.8 lists peak utilization information for all benchmarks.

We observe that the results in Figure 3.22 and Table 3.8 support the conclusion

that PageRank is not a compute-bound benchmark, only achieving a peak CPU

utilization of 55% when running on Spark. Similarly, Figure 3.23 and Table 3.8

show that Genetic is compute-bound, achieving a peak CPU utilization of 90% when

running on Spark.

Performing a comparative study between Spark and SWAT, we note that CPU

utilization drops by an average of 31% across all benchmarks when using SWAT, but

system memory utilization increases by an average of 25%. Both of these results are

expected. It is natural for the host utilization to drop if the main compute workload

is now offloaded to an accelerator. We also expect system memory utilization to

increase as SWAT allocates extra management data structures and host buffers for

input and output accumulation.

Note that while there is an increase in system memory utilization with SWAT,

the memory controls implemented as part of the SWAT Core are effective in keep-

ing system memory utilization stable throughout the job: it does not oscillate or

monotonically increase. In fact, it closely resembles the behavior of Spark’s memory

94

Figure 3.22 : Host processor and memory utilization of the PageRank benchmark

running on Spark and SWAT.

utilization, albeit with a constant factor added on top.

HCL2 Auto-Scheduler Evaluation

To evaluate the HCL2 auto-scheduler, 20 jobs of each benchmark were run consec-

utively: 10 with auto-scheduling applied only to the map stage followed by 10 with

auto-scheduling applied only to the reduce stage. During mapper auto-scheduling,

reduce tasks were assigned to the same device as was chosen for manual schedul-

ing. During reducer auto-scheduling, the HCL2 static scheduler was used for mapper

tasks.

Figure 3.24 shows the progression of performance over all auto-scheduled runs of

95

Figure 3.23 : Host processor and memory utilization of the Genetic benchmark run-

ning on Spark and SWAT.

96

Benchmark Peak CPU Utilization Peak Sysmem Utilization
Spark SWAT % Change Spark SWAT % Change

PageRank 55% 50% -9% 38% 49% +27%
Connected 28% 36% -22% 81% 91% +12%

NN 89% 66% -26% 77% 85% +10%
Fuzzy 92% 52% -43% 30% 42% +43%

KMeans 85% 45% -47% 37% 47% +30%
Genetic 90% 53% -41% 37% 47% +29%

Average -31% +25%

Table 3.8 : Resource Utilization summary across all benchmarks

Fuzzy KMeans and Bayes on Platform A. These benchmarks were chosen as repre-

sentations of good and poor auto-scheduling. For Fuzzy KMeans, the HCL2 auto-

scheduler task placement quickly converges. There is little loss in performance relative

to manually scheduled jobs for most auto-scheduled runs. Bayes requires more explo-

ration of the task performance characteristics before the HCL2 scheduler converges.

This is due to poor performance when executing the map stage of Bayes on GPUs,

leading to drastic performance variation for any Bayes job which speculatively sched-

ules map tasks on the GPU.

We observe a downwards spike in Fuzzy KMeans execution time on run eleven,

caused by the switch from mapper auto-scheduling to reducer auto-scheduling. At this

point, no historical performance information is available on Fuzzy KMeans reducer

performance, so speculative scheduling decisions are made on suboptimal devices.

Note that these graphs show the raw execution time for individual runs as a way of

illustrating the real-world performance progression one could expect from using this

auto-scheduling framework. Random variations in performance can be attributed to

environmental factors as other jobs in the same compute cluster use a shared resource

(e.g. the network).

The only benchmark on either platform that fails to achieve parity with man-

ual scheduling is Pairwise on Platform B, where only approximately 83% of peak

97

manually-scheduled performance is achieved. This is a result of scheduling the map-

per stage in OpenCL CPU threads instead of on the JVM. This mis-scheduling is

caused by inaccuracies in the technique used to calculate task performance on the

JVM, described in Section 3.4.6. This is only a factor for kernels where an OpenCL

device performs similarly to the JVM. The Pairwise Mapper is an example where the

resulting scheduling actually resulted in a significant performance loss.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Sp
ee

du
p

Run

Fuzzy Kmeans

Bayes

Figure 3.24 : Progression of execution time for auto-scheduled HCL2 Fuzzy KMeans

and Bayes jobs relative to the mean execution time of manually scheduled HCL2 jobs

on Platform A.

Table 3.9 shows how many auto-scheduled jobs completed within 10% of the exe-

cution time of the manually scheduled jobs, and how well the fastest auto-scheduled

job performed relative to the fastest manually scheduled job. The main outlier (ex-

plained above) is the Pairwise benchmark on Platform B.

One item of note in Table 3.9 is the relative ability of the auto-scheduler on

each platform to reach performance similar to manual scheduling. Platform B is

measurably better at achieving performance parity than Platform A on four out of

the five benchmarks (Pairwise’s poor performance was explained earlier). The logs of

the auto-scheduling system explain that this is a result of Platform A having twice as

many GPUs as Platform B. Because the confidence of a task’s performance prediction

uses a distance measure based on system load, this increased dimensionality in the

device load vector leads to an increased amount of time spent performing speculative

execution on Platform A than Platform B, as a larger search space must be covered.

98

Benchmark Platform A Platform B
Runs Relative Perf. # Runs Relative Perf.

KMeans 17/20 0.99x 19/20 1.02x
Fuzzy KMeans 8/20 0.98x 18/20 0.97x

Dirichlet 7/10 0.95x 9/10 0.98x
Pairwise 17/20 0.96x 0/20 0.83x

Bayes 11/20 1.06x 19/20 1.04x

Table 3.9 : Relative performance of auto-scheduled and manual runs based on the

number of auto-scheduled runs whose execution time was within 10% of the mean of

the manually scheduled runs, and the relative speedup of the fastest auto-scheduled

run relative to the mean of the manually scheduled runs.

Hence, more time and more jobs are spent with tasks being speculatively scheduled

on suboptimal devices on Platform A.

It is also important to understand the overhead added when performing auto-

scheduling. This overhead comes from three places: the timing statements used

to measure the elapsed time of device computation, the computation necessary to

revise a task’s performance characterization based on new performance data, and

the computation needed to make a scheduling decision based on task performance

profiles. We can measure this overhead by directly recording the time spent in each

job on revising performance characterizations and making scheduling decisions using

millisecond-granularity timing statements. Note that the HCL2 Static Scheduler from

Section 3.4.6 was added as a way of reducing auto-scheduling overhead by using stored

task characterizations but not updating them.

Table 3.10 shows the average percentage of total execution time spent revising

performance characterizations, making performant scheduling decisions, and making

speculative scheduling decisions for all auto-scheduled jobs. Note that performant

scheduling consumes an order of magnitude more execution time than speculative

scheduling. This is a result of much more performant scheduling being done than

speculative scheduling, as full task performance characterization is often achieved

after at most 5 jobs.

99

Benchmark Speculative Performant Revising
KMeans 0.004 % 0.07 % 0.02 %

Fuzzy KMeans 0.0026 % 0.07 % 0.04 %
Dirichlet 0.0021 % 0.07 % 0.02 %
Pairwise 0.0017 % 0.03 % 0.04 %

Bayes 0.0027 % 0.07 % 0.5 %

Table 3.10 : Overhead added by the auto-scheduler. These percentages are means

across all auto-scheduled runs on all platforms.

Benchmark Platform A Platform B
Map Reduce Map Reduce

KMeans 100 GPU 2 CPU 100 GPU 2 CPU
Fuzzy KMeans 50 GPU 2 CPU 20 GPU 2 CPU

Dirichlet 100 GPU N/A 20 GPU N/A
Pairwise 12 CPU 2 CPU 12 CPU 2 CPU

Bayes 100 JVM 2 GPU 50 JVM 2 JVM

Table 3.11 : Number of tasks placed on each type of device by the HCL2 auto-

scheduler in Platforms A and B.

Table 3.11 shows how many tasks the auto-scheduler placed on each device type

for the fastest run of each benchmark on Platforms A and B. In most cases, the

scheduling decisions made by the auto-scheduler are identical to those made manually

by expert tuning. The most common difference was execution by the auto-scheduler

of tasks on the OpenCL CPU device instead of the JVM. This is likely a result of

the measurement error discussed previously. For most tasks, this has little impact

on performance as they both execute on the same physical architecture. The auto-

scheduler used the GPU for the Bayes reduce stage on Platform A, and was able to

achieve a 6% performance improvement relative to manual scheduling on the CPU as

a result of lowered contention for CPU cycles.

100

3.5 Related Work

3.5.1 Past Work in Shared-Memory Programming Frameworks

While little practical related work exists in this area, several past research projects

have explored accelerated JVM systems.

The Rootbeer [69] and APARAPI [52] projects explored offloading shared-memory

parallel Java programs to GPUs using APIs similar to Java’s Runnable interface.

Rootbeer generally supported more advanced JVM features inside of offloaded ker-

nels, such as exceptions and object references, while APARAPI constrained the sup-

ported subset of the JVM bytecode specification. Both offer fully automatic memory

management, using Java Reflection to inspect data structures referenced from of-

floaded kernels and transfer them to the accelerator. Both Rootbeer and APARAPI

also use code generation from JVM bytecode to create accelerator-compatible kernels.

They differ in that Rootbeer generates these kernels statically at compile-time, while

APARAPI does so lazily at runtime immediately prior to kernel launch.

Past work in [70] and [71] built more advanced offload capabilities by using the

APARAPI framework to offload parallel loops in the Habanero-Java parallel pro-

gramming language (HJlang). These works extended APARAPI to add support for

multi-dimensional array references, global barriers, and exceptions within an offloaded

kernel.

Building on lessons learned from [70] and [71], the same authors are currently also

exploring offloading parallel Java streams from within the IBM JVM itself [72][73].

This work differentiates itself by performing runtime code generation from within

the JVM’s Just-In-Time compiler, generating PTX kernels targeting NVIDIA GPUs.

Sitting within the JVM, this work is also able to use JVM internal information to

optimize redundant data transfers and data serialization. In addition, this work is

one of the first examples of an accelerated JVM programming system which performs

automatic device selection. In [73], the authors explore how Support Vector Machines

101

trained on kernel feature vectors can accurately select the GPU or JVM for a given

kernel.

Similar to [72] and [73], the work in the JaBEE project [74] also modified JVM

internals to enable JVM accelerator offload, but using the J3 JVM. JaBEE arguably

supports the most general object model out of all related work, supporting nearly

arbitrary object references within offloaded kernels and dynamic memory allocation

of new objects. However, the performance evaluation of JaBEE shows that this

support for complex JVM operations causes significant overheads, to the point where

the performance benefit of GPU execution is lost. This underscores the importance

of selectively offloading JVM kernels based on the JVM features they use.

3.5.2 MapReduce-based Frameworks

To a lesser extent, past research efforts have also explored accelerating user-written

MapReduce kernels from within or on top of the Hadoop MapReduce framework.

The work in [75] and [76] take similar approaches to accelerating MapReduce ap-

plications. Both ignore the problem of kernel compatibility by having the programmer

manually write accelerator-compatible kernels, with [75] calling those kernels through

JNI and [76] using Hadoop Pipes to pipe input data to external GPU processes. Both

works use automatic load-balancing runtimes in each worker node of a Hadoop in-

stallation to distribute work among both GPU accelerators and CPU cores, deciding

the work distribution using speculative execution of a small number of tasks on both

architectures to determine the relative processing rate of each for a given Hadoop job.

HeteroDoop [77], on the other hand, generates accelerated Hadoop MapReduce

programs from annotated, high-level, sequential applications, including native bridge

code and accelerator kernels for supporting GPU offload.

102

3.5.3 Functional, Spark-Based Frameworks

The most recent explorations into managed runtime acceleration has focused on the

relatively new Apache Spark framework. Apache Spark is a functional, distributed,

and multi-threaded programming system that uses distributed vectors, in-memory

caching of sub-vectors, and one-way transformations applied to those vectors to sup-

port programmable distributed execution.

SparkCL [78] began the exploration of accelerating Spark applications by us-

ing a lightly-modified version of APARAPI to automatically generate accelerator-

compatible versions of user-written Spark transformations and launch them on any

detected OpenCL device. While this straightforward integration was a useful proof-

of-concept, in practice it would suffer from limitations in the APARAPI execution

model, including blocking communication, redundant transfers, and limited support

for complex data types. Additionally, the evaluation of SparkCL presented in the

paper is limited.

HeteroSpark [79], on the other hand, closely resembles the design of Het-

eroDoop [76]. It pipes input data to external processes running compiled GPU ap-

plications through Java RMI, which then process the received data on an accelerator

using the specified kernel and return the results. This model allows GPU program-

mers to implement and optimize their own GPU kernels, but as a result requires GPU

expertise from the user.

3.6 Discussion of Selectively Supporting JVM Features

While the works presented in this chapter support some high-level JVM features (e.g.

object references) inside of accelerator kernels, limitations remain on the type of JVM

bytecode and JVM objects that can be supported on accelerators. For example, in HJ-

OpenCL and SWAT only objects which had exclusively primitive fields accessed inside

accelerator kernels were supported. This is not an absolute limitation: JaBEE[74]

is an example of existing work that supports nested object references. However,

103

JaBEE’s results demonstrate that adding this support cancelled out the performance

advantage of accelerator execution. Not only does indirection complicate the serial-

ization logic, but multiple layers of indirection is not generally a pattern that fits well

with simpler accelerator architectures. The works presented in this chapter chose to

focus on kernels that were most likely to be amenable to acceleration, kernels that

operate on primitive or simple object types.

This brings up a tension between how much of the JVM bytecode specification

can be supported on accelerators, and how much should be supported. The choice

to move to accelerators is usually made primarily for performance, and secondly for

energy efficiency. We believe the goal of research like ours should be to investigate

how certain portions of the JVM specification are supportable on the accelerator,

what compromises must be made on performance and/or energy efficiency, and how

those compromises change with application or dataset characteristics. JaBEE [74] did

this for indirect object references. Previous work in HJ-OpenCL did this for excep-

tions [71] and global synchronization [70]. Works presented in this thesis did the same

for dynamic memory allocation, framework-specific data types, and simple composite

objects. Through experimentation the community can converge on a reasonable sub-

set of the JVM bytecode specification that can be supported on accelerators without

sacrificing performance/energy efficiency.

3.7 Summary

At the start of this chapter, we highlighted five fundamental challenges to accelerating

managed data analytics frameworks. These works address these challenges in the

following ways:

1. Incompatibilities in instruction set between managed and native sys-

tems. HJ-OpenCL, HCL2, and SWAT all extend on APARAPI’s code gen-

eration module to support dynamic generation of OpenCL kernels from JVM

bytecode. While HJ-OpenCL provides foundational extensions (e.g. object

104

support), HCL2 and SWAT both provide framework-specific code generation to

facilitate common usage patterns. HJ-OpenCL extended APARAPI to support

the NEW bytecode and object references inside of accelerated kernels. HCL2 and

SWAT add framework-specific knowledge to APARAPI to enable code genera-

tion for Hadoop- and Spark-specific data types.

2. Incompatibilities in data format between managed and native sys-

tems. HJ-OpenCL extended on the state-of-the-art in JVM-to-accelerator

data serialization by supporting runtime serialization of user-defined, compos-

ite objects to a format an OpenCL device can manipulate. SWAT extended

on that work to also support useful Spark-specific data structures, such as

scala.Tuple2, DenseVector, and SparseVector.

3. Resource management in a multi-tenant system. HCL2 and SWAT

take different approaches and make novel contributions in managing accelerator

memory, JVM memory, and native memory together in multi-tenant applica-

tions.

4. Scheduling in a multi-tenant system. HCL2 uses a historical performance

prediction framework to automatically schedule user-written kernels on to well-

performing platforms based on device load. Both HCL2 and SWAT use asyn-

chronous runtimes to schedule management operations (e.g. serialization) and

application operations (e.g. accelerator kernels) on a shared system.

5. Inspectability: The HCL2 and SWAT provide intrinsic support for debugging

and optimizing both the runtime itself and application kernels being scheduled

by the runtime.

This chapter presented novel work offloading computational kernels from man-

aged runtimes and data analytics frameworks to accelerators. We address challenges

in code generation, data serialization, resource management, and automatic schedul-

105

ing. These techniques produce significant speedups relative to JVM baselines while

retaining the programmability benefits of the offloaded frameworks for domain ex-

perts. These techniques prepare these frameworks to support future heterogeneous

HPC platforms.

106

Chapter 4

Improving the Scalability, Programmability, and

Composability of HPC Libraries on Heterogeneous

Systems

4.1 Motivation

While Chapter 3 focused on using high-level, managed data analytics programming

models to program HPC systems, HPC systems have classically been programmed

using compiled, native libraries and languages. This approach generally improves

performance and transparency, enabling HPC Gurus to optimize their code however

they see fit. This section will discuss contributions of this thesis in making native

HPC systems more extensible, flexible, and tunable for future platforms.

These works are motivated by the changes we see in HPC today. The architectural

evolution of the field over the last decade eclipses the decades leading up to it. With

NVRAM, high-bandwidth memory, more revolutionary architectures, the slowing of

Dennard scaling, and a number of other changes affecting HPC, we can expect the

next decade to bring even more heterogeneity and change. With these changes in HPC

hardware, an increased heterogeneity can also be expected at the software layer.

The composability of heterogeneous software components with each other is an

all-to-all relation. That is, we do not just need GPU-Aware MPI. We also need

GPU-Aware OpenSHMEM, and GPU-Aware UPC++, and FPGA-Aware MPI, and

more. However, forcing every software component to be aware of all others is not

scalable from a development perspective. Instead, in this work we focus on globally

coordinating work across the system from a single runtime system and through a

single, consistent API. Thus, only one programming and runtime system needs be

107

aware of the different hardware and software components available.

This full-system awareness comes with three primary benefits in three different

research areas:

1. Programming Model: By including multiple types of software components

in a single programming system we have the opportunity to develop novel API

extensions at the interfaces between software components. These new APIs can

improve programmability by allowing the programmer to express dependencies,

computation, or other logic that spans multiple components. For example, it

becomes possible to make the execution of a GPU kernel predicated on an

incoming MPI message.

2. Runtime Scheduler: With more information exposed to a single scheduler,

we can use that information to make better scheduling decisions in order to

improve the scalability of the overall system.

3. Tool Enablement: With more of the work in a system scheduled on a single

runtime, that runtime can offer more comprehensive and informational hooks

to tools, much like OMPT [42] does for OpenMP runtimes.

In this thesis, we introduce HiPER (a Highly Pluggable, Extensible, and Re-

configurable Framework for HPC) [29]: a programming system for HPC workloads

that focuses on extensibility, composability, and by extension programmability. It

is designed with heterogeneous HPC systems in mind. While HiPER is built on a

lightweight, efficient, work-stealing runtime, its main contributions are in its schedul-

ing and API flexibility.

4.2 HiPER Design and Implementation

At a high level, the HiPER system consists of three components: 1) a platform model,

2) a generalized work-stealing, multi-threaded runtime, and 3) pluggable, third-party

software modules.

108

Figure 4.1 : An example of the HiPER Platform Model.

The HiPER Platform Model offers an abstraction of the heterogeneous hardware

resources across which the workload of an application will be distributed. The Gener-

alized Work-Stealing Runtime manages load-balancing and execution of user-created

tasks placed at different locations in the Platform Model. The Pluggable Software

Modules sit on top of the runtime and expose familiar APIs to the user (e.g. MPI,

OpenSHMEM) while placing tasks on the HiPER Platform to be executed by the

work-stealing runtime.

4.2.1 HiPER Platform Model

The HiPER Platform Model consists of an undirected, unweighted graph. Nodes

within the graph logically represent hardware components that software libraries may

utilize, and are referred to as “places” [80]. Figure 4.1 depicts an example HiPER

Platform Model.

Edges between places in the platform graph logically represent direct accessibility

109

between hardware components. For example, a direct edge between system memory

and GPU device memory indicates that data in system memory is directly trans-

ferrable to that GPU’s device memory. There is no strict requirement that there be a

one-to-one mapping of places or edges in the platform model to physical hardware or

connections. However, some similarities are likely desirable for improved performance

fidelity.

The HiPER Platform Model is implemented as an in-memory graph structure. It

is loaded from a JSON-formatted file at HiPER runtime initialization. HiPER comes

with utilities for automatically generating JSON platform configuration files using

the HWloc library [81], but users are also free to edit these configurations.

4.2.2 Generalized Work-Stealing Runtime

The HiPER “Generalized Work-Stealing“ runtime depends upon the Platform Model

and consists of four components: a set of persistent worker threads, task deques of

eligible tasks at each place in the platform model graph, a pop and steal path for

each thread which traverses some subset of the places in the platform model, and an

API for enqueueing tasks to these deques in the platform model.

Persistent Thread Pool

Like most work-stealing runtimes, a generalized work-stealing runtime contains a

persistent set of worker threads on which all tasks are executed. The number of

worker threads to create is defined in the JSON file used to initialize the platform

model.

Tasks are defined as suspendable single-threaded streams of execution, and may

synchronize on other tasks or create new tasks.

As in Realm, HPX, and QThreads [82][83][84], the HiPER runtime threads use

runtime-managed stacks to enable task suspension. When a HiPER task blocks on

a synchronization operation, HiPER will suspend that task without blocking a CPU

110

core on it by swapping its call stack off of the current thread, wrapping its continuation

in a task, and making the execution of that task predicated on the satisfaction of the

appropriate synchronization event.

Per-Place Task Deques

Each place in the platform model includes N task deques, where N is the number of

runtime threads configured in the platform configuration file. The ith deque in a

place contains only eligible tasks that are ready to begin executing and which were

spawned by the ith worker thread. Hence, given a place and a thread looking for

work to do it is a straightforward and efficient process to differentiate between tasks

created by that same thread and tasks created by other threads. Executing a task

created by the same thread likely encourages locality, while executing a task created

by other threads encourages load balance.

Per-Thread Pop and Steal Paths

Each worker thread has one “pop path” and one “steal path”. Each of these paths

is an ordered list of places in the platform model. A path defines the sequence of

places a runtime thread will traverse when searching for a task to execute. When

traversing a pop path, a runtime thread will only check for work that it created. A

steal path is similar, but runtime threads traversing a steal path will only look for

work created by other runtime threads. Figure 4.2 depicts an example path through

the platform model from Figure 4.1. Pop and steal paths are also loaded from the

platform configuration JSON file.

Hence, each runtime thread’s logic simply consists of:

1. Search along its pop path for any work created by the same thread at any place,

where work created by thread T is always placed in the Tth task deque in a place.

2. If no work has been found yet, search along its steal path, only looking for work

111

Figure 4.2 : An example of a pop or steal path through the HiPER Platform Model.

created by other threads.

3. Repeat #2 until either work is found or a runtime shutdown signal is received

by this thread.

When a runtime thread discovers a task along either its pop or steal path, that

task is immediately executed.

Task Creation APIs

The generalized work-stealing runtime must also expose APIs for placing and remov-

ing tasks at deques in the platform model. These APIs may be used by a program-

mer, but are also key to implementing the pluggable HiPER modules described in

Section 4.2.3. HiPER currently only supports C++ APIs.

The async API creates a task executing body at the place closest to the current

runtime thread:

112

1 async ([] { body; });

The async at API creates a task executing body at a specific place:

1 async_at ([] { body; }, place);

HiPER’s API and runtime also support the use of promises and futures for inter-

task synchronization. A promise in HiPER is a single-assignment, thread-safe con-

tainer for some value. A future is a read-only handle on that value. Promises and

futures can serve as a flexible synchronization channel from one source task to many

sink tasks. Sink tasks may block on the future, only being released when another

task performs a put on the promise. In HiPER, a programmer can manually satisfy

a promise or block on a future.

Promise and future objects can be created in HiPER using standard C++ con-

structors and getters:

1 promise_t *p = new promise_t ();

2 future_t f = p->get_future ();

Satisfying a promise, blocking on a future, and fetching the put value from a future

are simple member function calls:

1 p->put(NULL);

2 f->wait();

3 val = f->get();

Additionally, the async future API creates a task and returns a future which

will be automatically satisfied when that task completes, while the async await API

creates a task whose execution is predicated on the satisfaction of a future object:

1 future = async_future ([] { body; });

2 async_await ([] { body; }, future);

Bulk task synchronization is possible using the finish API. finish waits for all

tasks created in body before returning, including transitively spawned tasks.

1 finish ([] { body; });

Many combined variants of the task creation APIs exist as well. For example,

async future await creates a task whose execution is predicated on the satisfaction

113

of a future, and returns a future that is satisfied when that task completes.

HiPER also comes with an async copy API which asynchronously transfers data

from a location in one place to a location in another place:

1 async_copy(dst_loc , dst_place , src_loc ,

2 src_place , nbytes);

4.2.3 Pluggable Software Modules

The final component of the HiPER system is its pluggable modules. A single pluggable

module adds user-visible APIs that can be called to schedule tasks doing module-

specific work on the HiPER work-stealing runtime. These tasks may perform arbitrary

logic. For example, an MPI module would extend the HiPER user-visible APIs with

functions from the MPI standard and would schedule inter-rank communication on

the HiPER runtime. A complete HiPER module includes:

1. An initialization function registered with the HiPER runtime which is called

once during the life of a process.

2. A finalization function registered with the HiPER runtime which is called once

during the life of a process.

3. A set of optional, special-purpose functions registered with the HiPER run-

time. For example, a module may register itself as responsible for handling

data transfers between places of certain types in the platform model.

4. A set of functions added to the global HiPER namespace and accessible to

programmers. These functions extend the capabilities of HiPER to make use of

a new hardware or software component (e.g. GPUs, MPI, hard disks). These

user-facing functions are commonly implemented as the placement of tasks at

special-purpose nodes in the platform model. As a result, all work created by

HiPER modules is scheduled together on a single unified runtime. Examples of

114

modules supported today include modules for CUDA, MPI, OpenSHMEM, and

UPC++.

One of the key characteristics of HiPER modules is that they do not require that

the software or hardware component they support be aware of HiPER or of the other

HiPER modules.

To illustrate these points, we will perform several case studies on existing HiPER

modules below. Note that in general, these HiPER modules may only implement a

useful subset of the APIs they are implementing (e.g. the MPI module implements

a subset of the MPI standard) and are not necessarily full, specifications-compliant

implementations of the corresponding HPC libraries.

MPI Module

The MPI module implements a subset of the APIs in the MPI standard, relying on a

full MPI library to handle the actual messaging.

Regarding the platform model and thread configuration, the MPI module relies

on a single “Interconnect” place existing in the platform model and that place being

on a single thread’s pop and steal paths. This allows the MPI module to configure

the underlying MPI implementation in MPI THREAD FUNNELED mode, keeping MPI

runtime overheads low. It is up to individual modules to make these assertions about

the current platform model during module initialization.

Many MPI APIs are implemented using the following flow:

1. A C++ lambda is created which captures the inputs to the MPI API being

implemented, and which calls the underlying MPI library’s implementation of

that API.

2. This lambda is passed to the async at API in Section 4.2.2, targeting the

Interconnect place in the platform place graph.

115

3. A finish scope is used to block the calling task on the completion of the

spawned task. Under the covers, this deschedules the calling task until the

spawned MPI task completes.

For example, the HiPER Module implementation of MPI Send is shown below:

1 finish ([&] {

2 async_at ([&] {

3 :: MPI_Send(buf , count , datatype ,

4 dest_rank , tag , comm);

5 }, interconnect);

6 });

On the other hand, asynchronous MPI APIs (e.g. MPI Isend) are implemented

by issuing the non-blocking calls from a wrapping task and periodically polling on

the result. When the communication has completed, a promise is satisfied by the

HiPER runtime. The future associated with that promise is returned to the user.

It can be used to register other HiPER work on the completion of the asynchronous

MPI communication.

Polling for the completion of an asynchronous MPI operation is implemented as

follows. A look-up table is kept in the MPI module which stores the MPI result

object associated with an asynchronous operation and the promise to satisfy when

that operation completes. When a new asynchronous MPI operation is launched, it

adds itself to this table. If it is the first entry in the table, it also spawns a task at

the Interconnect place which scans the lookup table for any completed operations.

If that task finds completed operations, it removes them from the look-up table and

satisfies the appropriate promise. If the look-up table is non-empty after the scan

finishes, it will then recursively spawn another instance of itself to again check the

table. This way, the worker thread visiting the Interconnect place does other useful

work while only periodically checking for completed asynchronous operations.

Using future-producing APIs like these enables programmers to compose MPI

messages with other work in the system, such as task parallel computation. For ex-

116

ample, the code snippet below would trigger a task on the receipt of an asynchronous

MPI message.

1 fut = MPI_Irecv (...);

2 async_await ([=] { body; }, fut);

UPC++ Module

UPC++ differs from MPI in that it was designed as a C++, object-oriented com-

munication library. As such, intercepting function calls is not sufficient for the im-

plementation of the HiPER UPC++ module. Whole classes must be wrapped. Like

MPI, UPC++ can be configured to be thread-safe but has fewer internal performance

bottlenecks when configured for single-threaded access. We therefore use the same

platform constraints for UPC++ as were used for MPI.

The UPC++ module primarily consists of a set of C++ classes extending UPC++

classes, overriding super class functions when necessary to offload the work of the

parent function to the Interconnect place. In addition, UPC++ also has several

top-level APIs which are wrapped in a similar manner to the MPI module.

The following code snippet is an illustration of UPC++’s asynchronous copy and

tasking APIs, taken from the UPC++ implementation of HPGMG-FV [85]:

1 upcxx_finish {

2 for (...) {

3 upcxx:: async_copy (..., copy_e);

4 upcxx:: async_after (..., copy_e , data_e)(

5 [=] { body; });

6 }

7 }

In this snippet, several copies are created, each with a remote asynchronous task

triggered once the copy completes. After all tasks and copies have been spawned,

the upcxx finish scope blocks the current thread on completion of all outstanding

copies and tasks. We argue there are a number of programmability challenges with

these APIs, illustrated by this example:

117

1. Because events are passed as arguments, the source-sink relationship between

async copy and async after in the above snippet is unclear.

2. The purpose of the data e event as an output event of async after is similarly

unclear.

3. The use of thread-blocking APIs like upcxx finish wastes CPU resources and

limits scalability.

To address these programmability concerns and improve the composability of

UPC++’s APIs, we made the following extensions in the implementation of the

UPC++ module:

1. Like the asynchronous MPI APIs, async copy was refactored to return a future

object. This clarifies the input and output relations of its dependencies.

2. A new function, remote finish, was added to the UPC++ APIs which com-

bines HiPER’s finish API and UPC++’s upcxx finish API to wait on remote

work without blocking the current thread.

With these extensions, the previous HPGMG-FV code snippet becomes:

1 upcxx:: remote_finish ([&] {

2 for (...) {

3 copy_e = upcxx:: async_copy (...);

4 upcxx:: async_after (..., copy_e , [=] { body; });

5 }

6 });

OpenSHMEM Module

The OpenSHMEM specification currently does not make any guarantees about thread

safety; therefore, the OpenSHMEM Module has the same platform constraints as the

MPI and UPC++ libraries: a single Interconnect place must exist which is only visited

by the master thread. Like MPI, the OpenSHMEM specification consists entirely of

118

functions and is not object-oriented like UPC++. As a result, many of the supported

OpenSHMEM APIs are implemented using the async at-finish pattern described

along with the MPI module in Section 4.2.3.

The OpenSHMEM specification includes distributed locking routines.

shmem set lock and shmem clear lock enable critical sections across Open-

SHMEM PEs. A naive implementation of these APIs using the async at-finish

pattern would lead to a deadlock in the following situation:

1. A HiPER runtime thread calls shmem set lock, suspending the calling task and

shipping the shmem set lock to the Interconnect place.

2. A second HiPER runtime thread currently executing a task inside of an Open-

SHMEM critical section calls shmem clear lock, also shipping that task to the

Interconnect but behind the previous shmem set lock call in the task queue.

3. The master thread picks up the first task and calls shmem set lock, deadlocking

because it will never reach the shmem clear lock task.

Instead, the HiPER implementations of shmem set lock and shmem clear lock

use promises and futures to chain locking calls together within a node. The task for

the next locking call in the chain is not made eligible for execution until the preceding

call to unlock is complete.

The integration of OpenSHMEM into HiPER also enabled the development of

novel APIs. For example, the OpenSHMEM specification includes wait APIs which

allow an OpenSHMEM process to block on a remote put into its address space.

While these are useful APIs for point-to-point synchronization, their blocking na-

ture may waste CPU cycles and reduce application scalability. One extension to the

OpenSHMEM APIs enabled as part of the HiPER module implementation was an

asynchronous variant which makes a task’s execution predicated on a put by a remote

process, called shmem async when:

119

1 shmem_async_when(mem_addr , wait_for_val , [=] {

2 body;

3 });

CUDA Module

The CUDA Module supports basic CUDA operations, such as blocking data transfers,

asynchronous data transfers, and asynchronous CUDA kernels.

The CUDA Module is the only module discussed here which registers special-

purpose functions with the HiPER runtime. In particular, it registers itself as han-

dling any copies to or from GPU places. Anytime a call to HiPER’s async copy API

reads or writes a GPU place, it is automatically handed off to the CUDA Module.

The CUDA Module uses the same polling technique as the MPI Module (de-

scribed in Section 4.2.3) to support asynchronous CUDA operations satisfying HiPER

promises.

4.2.4 Example HiPER Usage

Consider a three-dimensional stencil application, in which the cells of a three-

dimensional, regular grid are distributed in only the z-direction among MPI ranks.

Let us assume that in this simplified application, a single data-parallel kernel is run

across the z values a given rank is responsible for before a halo exchange occurs with

neighboring ranks. This process repeats on each of several time iterations.

In an MPI+OpenMP implementation, this application could be implemented as

something like the following:

1 for (t = 0; t < nt; t++) {

2 // Process ghost regions on this rank in parallel

3 #pragma omp parallel for

4 for (...) { }

6 // Transmit ghost regions to neighbors , and post receives

7 MPI_Isend (..., &reqs [0]);

8 MPI_Isend (..., &reqs [1]);

120

9 MPI_Irecv (..., &reqs [2]);

10 MPI_Irecv (..., &reqs [3]);

12 // Process remainder of z values on this rank

13 #pragma omp parallel for

14 for (...) { }

16 // Wait for all sends/recvs to complete

17 MPI_Waitall (4, reqs);

18 }

Adding MPI+CUDA instead produces a slightly longer code snippet. More im-

portantly, doing so introduces more blocking operations which may waste host CPU

cycles. Additionally, the inter-statement dependencies in the straight-line sequence

of API calls is unclear as a result of a lack of composability between the CUDA and

MPI APIs:

1 for (t = 0; t < nt; t++) {

2 // Process ghost regions on this rank in CUDA

3 stencil <<<...>>>(...);

5 // Copy ghost region from CUDA device

6 cudaMemcpy (..., cudaMemcpyDeviceToHost);

8 // Transmit ghost regions to neighbors , and post receives

9 MPI_Isend (..., &reqs [0]);

10 MPI_Isend (..., &reqs [1]);

11 MPI_Irecv (..., &reqs [2]);

12 MPI_Irecv (..., &reqs [3]);

14 // Process remainder of z values on this rank

15 stencil <<<...>>>(...);

17 // Wait for all transmissions to complete

18 MPI_Waitall (4, reqs);

20 // Copy received ghost region to CUDA device

21 cudaMemcpy (..., cudaMemcpyHostToDevice);

22 }

However, it may also be possible to improve performance by combining MPI,

121

OpenMP, and CUDA by processing the smaller ghost region with OpenMP to avoid

a cudaMemcpy while still offloading the main computational region to CUDA. The

code snippet below not only requires that the programmer have expertise in OpenMP,

CUDA, and MPI, but also understand how to manage their interaction safely.

1 for (t = 0; t < nt; t++) {

2 // Process ghost regions on this rank in parallel

3 #pragma omp parallel for

4 for (...) { }

6 // Transmit ghost regions to neighbors , and post receives

7 MPI_Isend (..., &reqs [0]);

8 MPI_Isend (..., &reqs [1]);

9 MPI_Irecv (..., &reqs [2]);

10 MPI_Irecv (..., &reqs [3]);

12 // Process remainder of z values on this rank

13 stencil <<<...>>>(...);

15 // Wait for all transmissions to complete

16 MPI_Waitall (4, reqs);

18 // Copy received ghost region to CUDA device

19 cudaMemcpy (..., cudaMemcpyHostToDevice);

20 }

In contrast, expressing the same computational pattern in HiPER’s future-based,

composable programming model would look like the following (assuming the user

already has the CUDA and MPI modules installed):

1 for (t = 0; t < nt; t++) {

2 // Place an outer finish scope to ensure all work completes before

3 // continuing to the next time step

4 finish ([&] {

6 // Asynchronously process ghost regions on this rank in parallel

7 ghost_fut = forasync_future ([] (z) { ... });

9 // Asynchronously exchange ghost regions with neighbors

10 reqs [0] = MPI_Isend_await (..., ghost_fut);

11 reqs [1] = MPI_Isend_await (..., ghost_fut);

12 reqs [2] = MPI_Irecv (...);

122

13 reqs [3] = MPI_Irecv (...);

15 // Asynchronously process remainder of z values on this rank

16 forasync_cuda (..., [] (z) { ... });

18 // Copy received ghost region to CUDA device

19 async_copy_await (..., reqs[2], reqs [3]);

20 });

21 }

Note that in the code listing above, dependencies are expressed more naturally

and between different software components. Each asynchronous operation waits on

precisely the futures it needs to in order to ensure its dependencies are maintained,

and input/output relations are visible as return values and API parameters. At

the same time, the future-based APIs used to express CUDA parallelism and MPI

communication remain syntactically similar to their standard variants in order to take

advantage of existing expertise.

4.3 HiPER Evaluation

4.3.1 Experimental Setup

The experiments in this section were run on one of two platforms: the Edison su-

percomputer at NERSC [86] or the Titan supercomputer at ORNL [87]. Edison is a

Cray XC30 with 2×12-core Intel Ivy Bridge CPUs and 64 GB DDR3 in each node.

Titan is a Cray XK7 with a 16-core AMD CPU, an NVIDIA K20X, and 32GB of

DRAM in each node. For the experiments listed below, Cray SHMEM v7.4.0 and

GCC v4.9.3 were used on Titan. GCC 5.2.0 was used on Edison. All flat UPC++,

MPI, or OpenSHMEM experiments are run with 1 process pinned to each core. All

hybrid experiments on Edison are run with 2 processes and 12 threads per process,

and on Titan are run with 1 process and 16 threads per process.

Our benchmark suite consists of:

1. HPGMG-FV [85]: “Implements full multigrid algorithms using finite-volume...

123

methods”. Uses the UPC++ and MPI modules. This is a weak scaling bench-

mark, and was run with log2 box dim=7 and target boxes per rank=8 based

on the advice of the HPGMG-FV developers.

2. ISx [88]: Integer sort benchmark. Uses the OpenSHMEM module. This is a

weak scaling benchmark, and was run with 229 keys to sort per process.

3. UTS [89]: Unbalanced tree search. Uses the OpenSHMEM module. This is a

strong scaling benchmark, and it was run with the T1XXL dataset.

4. Graph500 [90]: Parallel, distributed breadth first search of a graph. Uses the

MPI module. This is a strong scaling benchmark, and was run using 231 vertices

with edge factor set to 16.

4.3.2 Regular Workloads

We start by running performance experiments focused on regular applications

(HPGMG-FV and ISx) to demonstrate that the HiPER framework is low overhead,

and that improvements to composability and programmability do not come at the

cost of performance. For regular applications, we do not expect HiPER to improve

overall performance.

Figure 4.3 depicts the total execution time spent in the solving stages of HPGMG-

FV. Figure 4.4 shows the weak scaling of ISx up to 1024 nodes on Titan. We note that

for each benchmark the HiPER and reference hybrid implementations are comparable

in performance. While the Flat OpenSHMEM implementation of ISx outperforms the

two hybrid versions at smaller node counts, it scales poorly to 512 and 1024 nodes

(i.e. 8,192 PEs and 16,384 PEs) due to a global all-to-all.

4.3.3 Irregular Workloads

We now turn to more irregular benchmarks, UTS and Graph500. Due to the asyn-

chrony of HiPER’s APIs and the ability to more naturally express the algorithmic

124

 0

 0.2

 0.4

 0.6

 0.8

 1

64 128 256 512

T
o
ta

l
e
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Total nodes on Edison (2 processes/sockets per node, 12 cores per process)
UPC++ + OpenMP HiPER

Figure 4.3 : Total HPGMG solve time on up to 512 Edison nodes. Error bars indicate

a 95% confidence interval.

 0

 5

 10

 15

 20

32 64 128 256 512 1024

T
o
ta

l
e
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Total nodes on Titan (16 cores per node)
Flat OpenSHMEM

OpenSHMEM+OpenMP

HiPER

Figure 4.4 : Total ISx execution time. Weak scaling up to 1024 nodes on Titan.

125

 0

 50

 100

 150

 200

 250

 300

32 64 128 256 512 1024

T
o
ta

l
e
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Total nodes on Titan (16 cores per node)
OpenSHMEM+OpenMP

OpenSHMEM+OpenMP Tasks

HiPER

Figure 4.5 : Total UTS execution time.

dependencies of a parallel algorithm, we expect these types of workloads to perform

better on HiPER and be more naturally expressible using its APIs.

UTS

Figure 4.5 shows the overall execution time of UTS using OpenSHMEM+OpenMP,

OpenSHMEM+OpenMP Tasks, and AsyncSHMEM.

The hand-coded OpenSHMEM+OpenMP version of UTS scales similarly to

HiPER up to 128 nodes, but starts to degrade as contention from distributed load

balancing increases.

Because of the lack of integration between OpenSHMEM and OpenMP, the Open-

SHMEM+OpenMP version that uses OpenMP’s tasking APIs performs slowly as

coarse-grain synchronization is required to join all tasks before performing distributed

load balancing using OpenSHMEM.

126

Figure 4.6 : A trace of OpenSHMEM calls and their elapsed time inside a single PE

from an execution of Concurrent-CRC on 128 nodes.

Graph500

We implement HiPER versions of the two OpenSHMEM-based implementations of

Graph500 presented in [91], named Concurrent and Concurrent-CRC. In contrast to

UTS, Graph500 is an entirely network- and memory-bound benchmark. For the Con-

current and Concurrent-CRC implementations of Graph500, the addition of multi-

threaded parallelism does not benefit parallelism.

Instead, HiPER is used for concurrency, programmability, and unified scheduling

for Graph500. We also use it as a basic illustration of how HiPER enables tooling.

The Concurrent and Concurrent-CRC reference implementations of Graph500 use

polling to detect incoming RDMA from remote OpenSHMEM PEs. We use the novel

shmem async when API introduced in this work and enabled by HiPER to replace this

polling with asynchronously spawned tasks which are triggered when an incoming

RDMA is detected. This change reduces clutter in the code, and hands over the

problem of polling intervals and other scheduling issues to the global HiPER scheduler.

It also improves the ability of the HiPER system to visualize the application workload

by exposing more semantic information to the runtime. For example, Figure 4.6

demonstrates how the HiPER runtime can be used to visualize traces of execution

from a single PE with high-level semantic information attached by HiPER modules.

Figure 4.7 reports overheads from using the HiPER runtime to schedule triggered

127

Figure 4.7 : HiPER Overheads for Graph500.

asynchronous tasks rather than using manual polling. In general, we see approxi-

mately 5% overhead. While this is larger than desired, it is an upper limit. There has

not yet been any exploration of more complex, cooperative, non-greedy scheduling

algorithms for computation and communication on the HiPER runtime. Most of this

overhead likely comes from memory allocation system calls needed for task creation

in the runtime, which are unnecessary in a manual polling approach.

4.4 HiPER Related Works

We identify two categories of related works for HiPER: frameworks designed to im-

prove the composability of multiple software components, and frameworks designed

to improve the scalability or programmability of heterogeneous platforms.

128

4.4.1 Composable Frameworks

To frame the discussion of related work, we start by defining six types of software

components that are likely to be in use on future HPC systems and which should

therefore be composable with each other:

1. Hand-coded, accelerator kernels: These are kernels executed on the accel-

erator in an HPC system which can be modified by a programmer. The fact

that these kernels are modifiable means that composability is defined by the

programming system used to write them.

2. Third-party accelerator libraries: These libraries offer accelerator kernels

which a programmer cannot modify. As a result, software components of this

type are more constrained in their composability unless the library developer

has deliberately exposed sufficient functionality.

3. Hand-coded, host kernels: These are kernels that are executed on the host,

latency-oriented cores of a system and as a result may be single-threaded. Like

the accelerator variant, the composability of these kernels with other software

components depends on the programming system used.

4. Third-party host libraries: Like accelerator libraries, but intended for exe-

cution on the host, latency-oriented cores of a heterogeneous system.

5. Inter-node communication libraries: These libraries enable the communi-

cation of data between shared-memory nodes. Their composability with other

components is dependent on the functionality they expose and support inter-

nally.

6. Intra-node communication libraries: These libraries enable explicit data

movement within a node (e.g. CPU to GPU). Their composability with other

components is dependent on the functionality they expose and support inter-

nally.

129

We focus on evaluating related works in terms of the extent to which they enable

composability between different types of software components.

Some past works have already explored the use of thread offload for inter-node

communication using techniques similar to this work. In [92], [93], and [94], the au-

thors demonstrated the performance and scalability benefits of a dedicated communi-

cation thread to which all communication is funneled. However, these works were all

hard-coded to a single communication library (MPI or UPC++), dedicated an entire

OS thread to communication (likely hurting the performance of more compute-bound

applications), and in the case of [94] depended on changes to the MPI runtime itself.

Hence, none of these works are applicable to other software components.

GPU-Aware MPI [47] enabled the direct communication of data from a GPU

sitting in one node of a cluster to another GPU sitting in a different node. This

work demonstrated both performance benefits from a more direct data path and pro-

grammability benefits as a single asynchronous MPI call is required. While this work

is restricted to composing NVIDIA GPUs and MPI, the techniques are more generally

applicable. A future direction of the HiPER project would allow registered modules to

query for other modules which they can offer tighter integration with. With this capa-

bility, a GPU-Aware communication module could use techniques from [47]. However,

today this capability does not exist in HiPER.

The recent introduction of target and task directives, as well as the depend

clause in OpenMP [39] have made composing accelerators and host parallelism using

OpenMP possible. A programmer may create dependencies between tasks running

on the host and accelerator kernels. While the abstractions offered by OpenMP mean

that this enables the composability of any accelerator with host parallelism, in reality

this support has only been added for GPUs to date. However, like HiPER, the higher

level abstractions of OpenMP mean that the composability it enables has a much

broader scope than most related works.

There have also been several research projects into composing GPUs with host

130

parallelism [95][96][83]. In general, the approach taken by these works is similar to

that taken by work on communication offload: a dedicated GPU management thread

is used to schedule work across all GPUs in the system. These works have similar

challenges, in that they are usually hard-coded to a single accelerator type and lose

a whole OS thread to GPU management.

XKaapi [97] contributes a work-stealing, locality-aware runtime for scheduling

tasks with internal parallelism across CPUs and GPUs. This runtime offers auto-

matic data coherency across CPUs and GPUs and automatic load balancing across

devices. While the data coherency contributions are less relevant today with the up-

coming release of hardware-supported GPU Unified Memory [46], the load balancing

contributions of XKaapi would ease programmer burden when combining CPUs and

GPUs. Supporting this kind of native capability would require significant extensions

to the HiPER runtime.

Another approach to the composability of multiple software components is to hide

them from the programmer entirely. In projects such as Legion [98][99], the aim is to

use high level abstractions to completely hide the underlying components being used.

Legion, for example, allows the programmer to express accelerator parallelism, host

parallelism, and distribution without using any low-level frameworks. While there

are clear programmability benefits to this approach, it also can suffer from a lack of

fine-grained tunability and extensability. With HiPER, new modules can quickly add

new capabilities.

Lithe [100] focuses on composing libraries that use one or more processing units on

a shared multi-processor. It proposes APIs which allow these libraries to request and

yield cores, relative to a parent in the Lithe scheduler. While this is a scalable and

elegant solution, it does require modifications to libraries to make them composable

and its scope is limited to composing systems that share the same computational

resource (e.g. an OpenMP host runtime and Intel MKL).

131

4.4.2 Heterogeneous Programming Frameworks

The work presented in EXOCHI [101] is divided into two parts. The Exoskeleton

Sequencer (EXO) includes hardware support for a number of useful features in a

shared-memory heterogeneous platform, including a MISP exoskeleton which allows

interaction between a IA32 processor and non-IA32 accelerator using user-level inter-

rupts, an Address Translation Remapping mechanism which has the IA32 processor in

a heterogeneous processor handle page faults by proxy for an accelerator to support a

shared virtual address space, and Collaborative Exception Handling which again uses

an IA32 processor as a proxy for handling hardware exceptions on a non-IA32 accel-

erator. C for Heterogeneous Integration (CHI) provides a programming environment

for EXO-like architectures by adding inline accelerator-specific computation, fork-join

or producer-consumer style parallelism for sections of inline accelerator code, and a

way to specify input/output/resident memory regions for accelerator code segments.

CHI extends OpenMP to provide a familiar programming environment for hetero-

geneous, shared-memory processors. In the paper, performance improvements of up

to 10.97× were demonstrated for highly-optimized media applications. This work is

similar to OpenACC in its OpenMP-like interface, and supports multiple ISAs in a

single binary. Due to the hardware support added by EXO, CHI is a high-performance

and productive programming environment for shared-memory heterogeneous acceler-

ators. It is unclear how applicable this type of programming environment would be

for processors with discrete memory. However, with the recent addition of hardware-

supported shared memory for PCIe NVIDIA GPUs, the EXOCHI work is relevant to

future HPC platforms.

Merge [102] describes a programming model, compiler, and runtime built on EX-

OCHI that uses programmer annotations of functions to understand the target ar-

chitecture as well as necessary conditions for correct execution. These architecture-

specific implementations of common functions are often at different granularities,

reflecting the architecture-specific optimal granularity for different processors. By

132

filling a work queue with tasks that include metadata about supported architectures

Merge can schedule available work on all processors in a heterogeneous platform and

do so efficiently thanks to EXO’s hardware support. Merge decomposes a MapRe-

duce application into side-effect free C++ tasks for scheduling on the Merge runtime.

Merge was evaluated on the same heterogeneous processors as EXOCHI as well as a

32-way Unisys SMP system and demonstrated up to 8.5× and 22× speedup on those

platforms, respectively. Merge’s main contributions are a higher-level MapReduce

framework on top of EXOCHI and the dynamic selection from multiple architecture-

specific implementations of the same function to achieve high utilization and well-

performing mappings of tasks to architectures.

Phalanx [103] describes a library-based, PGAS, task-based programming model

and runtime system for distributed and heterogeneous CPU+GPU machines. Like

HiPER, Phalanx includes a platform model composed of places representing proces-

sors and attached memories. Like other works, Phalanx uses a tree-based rather

than graph-based platform model (as in HiPER). Phalanx exposes a task-based pro-

gramming model where tasks may themselves include internal parallelism, similar to

thread blocks within a CUDA grid. Each task is described as either “streaming” in

which case each sub-task is entirely independent, or “parallel” in which case sub-tasks

within the same grouping task may synchronize with each other. Task objects can

be layered on top of each other, allowing programmers to specify different schedul-

ing constraints at different work granularities. Phalanx allows asynchronous tasks

to be launched without execution predicates, or with a future-based API that de-

clares one task as dependent on others. Phalanx also defines a memory model that

accounts for discrete address spaces in a single program, supporting both distributed

execution and discrete accelerators. Phalanx includes pointer objects which encode

both the memory address and place of the referenced object. Phalanx offers explicit

memory management APIs for allocation, de-allocation, and transfer. The authors

of [103] implement Phalanx on top of GASNet, OpenMP, and CUDA and demon-

133

strate scalable performance on shared- and distributed-memory implementations of

dense matrix-matrix multiplication, sparse matrix-vector multiplication, and 2D FFT

across a wide variety of platforms.

The PaRSEC system [104] is a dataflow programming and runtime system for

heterogeneous platforms. PaRSEC uses a dataflow model of an application to au-

tomatically manage the scheduling of both coarse-grain user-written tasks and the

implicit data movement required by those tasks across heterogeneous computational

units. PaRSEC focuses on a re-thinking of how parallel programs are expressed, al-

lowing programmers to explicitly express and tune their applications in the dataflow

model. All composability and mapping to heterogeneous hardware is handled auto-

matically behind the scenes.

4.5 HiPER Discussion and Conclusions

While HiPER’s use of modules, generalized work-stealing, and an abstract platform

model makes it a general framework, it is important to consider where it might

struggle to enable composable components. In particular, we believe HiPER’s main

challenge is in supporting components that share the CPU with the HiPER runtime

itself. For example, supporting composable MKL would require logic in the HiPER

runtime for 1) forfeiting CPU cores for the use of MKL, and 2) scheduling MKL

on those cores specifically. Indeed, this is the exact challenge that Lithe [100] solves,

demonstrating that this type of composition will require modifications to the software

components themselves, an undesirable property and something HiPER deliberately

avoids.

An important item to note is the tooling that HiPER enables. Like any unified

scheduler, the HiPER runtime is aware of all of the work executing on a system. Hooks

have been added to the HiPER runtime which enable programmers to gather statistics

on time spent in different calls to different modules. While any standard performance

profiler could provide this information, HiPER can add high-level, module-specific

134

semantic information about performance bottlenecks. This information was useful

in optimizing applications and the HiPER runtime itself. Similar ideas are being

explored in the OpenMP Tools APIs [42].

In conclusion, HiPER is a framework for enabling the composition of a variety of

software components, including accelerator libraries, communication libraries, stor-

age libraries, and host parallelism. Using a foundational work-stealing runtime, an

abstract platform model, and pluggable software modules HiPER enables unified

scheduling of near-arbitrary software components, as well as the expression of depen-

dencies between them. This paper has explained the high-level system design, de-

scribed in detail its implementation, illustrated the programmability and performance

benefits of such a system, and pointed out opportunities for future optimizations in

the HiPER framework.

135

Chapter 5

Supporting HPC Programmers with Novel Tooling

Recall in Section 1.2 we described an envisioned HPC workflow in which both domain

experts and HPC gurus are able to productively program heterogeneous platforms us-

ing different programming models. Chapter 3 illustrated how the HJ-OpenCL, HCL2,

and SWAT works enable productive and well-performing heterogeneous execution of

applications written by domain experts and executed on managed runtimes. Chap-

ter 4 discussed the design and implementation of the novel HiPER runtime system for

supporting native execution on current and future heterogeneous platforms. HiPER

focuses on being usable by HPC gurus, improving the composability and tunability

of low-level frameworks without removing optimization opportunities.

The workflow in Section 1.2 also argued that novel HPC tooling would be nec-

essary to augment and support these novel programming models. In particular, this

thesis makes concrete contributions in the use of software checkpointing as a software

development tool and in the area of performance prediction. This thesis will also

discuss how these or similar techniques integrate with and complement the runtime

and programming model contributions described in Chapters 4 and 3.

5.1 Background: Checkpointing

5.1.1 Motivation

Application checkpointing is a well-studied problem with a variety of use cases. An

application checkpoint is a snapshot of program state that includes sufficient infor-

mation to resume execution of an instance of that application from an intermediate

point in time. Application checkpointing is most applicable to the following use cases

136

in scientific computing:

1. Resiliency against software or hardware errors.

2. Debugging of application failures or numerical errors.

3. Performance profiling and tuning of application hotspots.

Resiliency is the classic motivating example for checkpointing. Creating periodic

checkpoints allows a crashed process to be immediately resumed from its most recent

checkpoint.

Checkpointing also enables debugging and performance tuning. Creating periodic

checkpoints simplifies the process of reproducing a program error or analyzing a per-

formance hotspot by allowing programmers to resume from a checkpoint immediately

prior to the relevant code region. For long-running scientific applications, this can save

days or weeks of time and enable more rapid iteration on an application. Checkpoints

can be integrated into automated testing environments to protect against future re-

gressions, or used as representative application inputs for a performance auto-tuning

framework.

Modern debugging and performance profiling tools generally induce a significant

amount of overhead. This can make program behaviors difficult to reproduce. Check-

pointing techniques are uniquely suited to resolve these issues by allowing the appli-

cation developer to compile and run their application with the highest optimization

settings by default, but re-compile with different compiler flags or added instrumenta-

tion before resuming from a checkpoint. To make it feasible to run with checkpointing

permanently enabled, checkpointing frameworks must keep overheads low and retain

original application behavior.

The existing research in application checkpointing has primarily focused on re-

siliency, with some attention given to debugging using record-replay techniques. How-

ever, we argue that research in checkpointing should place just as much emphasis on

137

their use as a software development tool or as an underlying infrastructure for other

tools, as it does on resiliency.

For example, in the application acceleration work in [105] and [106], work fo-

cused on offloading the computational kernels of a geophysical simulations to GPUs.

These geophysical simulations are long-running and their behavior and data varies

over time during a single simulation. This means that a given simulation run may

only encounter a state which triggers a bug after multiple hours or days of execution.

Manually created, application-specific checkpoints enabled rapid debugging and res-

olution of difficult-to-reproduce bugs in these projects.

Additionally, in the HCL2 and SWAT projects presented in Section 3.4 checkpoints

were invaluable in enabling performance profiling and debugging of auto-generated

OpenCL kernels. In large-scale, multi-tenant systems such as HCL2 and SWAT, it

can be difficult to iteratively inspect and modify the behavior of components which

are logically far away from the application code, sitting in the lower levels of the

software stack. Checkpoints allow for the capture of application and runtime state

at these lower levels of the software stack and the repeated replay, inspection, and

optimization of accelerator kernels. Then, the techniques which were found to be

effective in optimizing the kernels captured by checkpoints can be plugged back into

the overall framework from which the checkpoint was captured.

In this work, we use a compiler- and library-based approach to checkpointing to

support all three use cases of checkpointing: resiliency, correctness debugging, and

performance profiling. This hybrid compile-time and run-time approach has a number

of merits relative to more low-level techniques proposed in past work including fewer

platform dependencies, reduced overhead, and a more user-tunable checkpointing

process.

CHIMES (CHeckpointing of In-MEmory State) is a checkpoint-restart framework

that uses compile-time insights to guide and optimize runtime checkpointing. As a

result, CHIMES demonstrates and average of ∼5% checkpointing overhead across a

138

wide range of benchmarks and multiple HPC hardware platforms.

5.1.2 CHIMES Design and Implementation

CHIMES design focuses on satisfying the following three constraints:

1. Checkpoints should include all user-visible heap and stack data structures.

2. Checkpoint creation should require minimal assumptions about the execution

platform.

3. CHIMES itself should offer sufficient pluggability to be extended to handle

third-party data types without negatively impacting performance.

While some past work supports checkpointing kernel-level state (e.g. file descrip-

tors) to some extent [107][108], CHIMES’s emphasis on software development rather

than full-application resiliency makes this support a lower priority. The most com-

mon use case of CHIMES would be to capture in-memory application state prior to

a parallel, computational bottleneck such that the correctness or performance of that

bottleneck could be analyzed. Parallel kernels are unlikely to include file I/O, network

communication, or other system calls that would require checkpointing of kernel-level

state. Therefore, CHIMES’s emphasis on checkpointing user-visible state is driven by

the motivation of this research.

Past work on checkpointing has often added certain platform dependencies, such

as running inside of a certain virtualization environment or installing a custom ker-

nel module [108]. These constraints may not be satisfiable in certain deployment

environments for performance or security reasons. Therefore, we constrain the re-

search problem to make minimal assumptions about the platform support available

for efficient checkpoint creation.

As in Chapter 4, we recognize that HPC applications are multi-tenant systems

and that CHIMES may be required to support checkpointing of third-party state. For

139

example, user-managed, opaque data structures are quite common in HPC libraries

such as pthreads, CUDA, OpenMP, and MPI. Initialization of these data structures

can only be properly handled by that third-party library. As a result, we also ensure

that CHIMES includes pluggability as a first-class citizen in its design such that

initialization of certain third-party data types can be handled by the necessary third-

party routines.

This section describes the main contributions of this work: a compiler- and library-

based approach to checkpointing single-threaded and OpenMP programs. We start

with an overview of what a CHIMES checkpoint contains and then cover step-by-step

how the compile-time and run-time workflows 1) create a single checkpoint, and 2)

resume from it.

Anatomy of a CHIMES Checkpoint

A CHIMES checkpoint includes the following application state:

1. Per-thread stack contents, including variable names, sizes, types, and values.

2. Global state, including variable names, sizes, types, and values.

3. Constant state, including variable names, sizes, types, and values.

4. Function addresses and function names.

5. Thread hierarchy information indicating which OpenMP threads spawned other

OpenMP threads.

6. Heap state changed since the last checkpoint.

7. Metadata on aliased pointers in the host application.

8. Metadata on the pointer hierarchy in the host application (i.e. pointers that

point to other pointers).

140

9. User-provided checkpoint data.

We assume that the heap of the host application accounts for the majority of its

in-memory state. Checkpoints are stored on disk as binary files and all checkpoints

are incremental in their storage of heap contents. To restore the full contents of an

application’s heap from a checkpoint, it may be necessary to also traverse backwards

through a chain of predecessor checkpoints to find the current state of all bytes in the

heap.

Checkpoints are created by programmer-inserted calls to checkpoint(), giving

the programmer the ability to place checkpoints prior to important, buggy, or long-

running code regions.

Note that the current checkpoint format does not include metadata on open files,

signal handlers, or other system-managed state. Handling these types of system-

specific state leads to less platform flexibility and higher overheads as more system

interaction must be instrumented. These types of objects can be restored by custom

user callbacks during checkpoint creation and resume.

Compile-Time Analysis and Transformations

Figure 5.1 shows the high-level workflow of the CHIMES compilation pass. CHIMES

processes one .c file at a time. The input file first goes through a preprocessing pass

that performs some lightweight transformations to simplify the main transformation

pass later, including hoisting expressions with side effects out of return statements or

function call parameters.

Following the preprocessing pass, LLVM bitcode is generated from the prepro-

cessed file and passed through an LLVM analysis pass. The analysis pass’s primary

purpose is to produce information on 1) intra-procedural pointer aliasing, and 2) the

memory locations modified within each procedure.

During intra-procedural alias analysis, pointer variables within a function that

may alias are marked as part of a single alias group. A globally unique alias group

141

Figure 5.1 : The CHIMES compilation workflow.

ID is generated for each alias group in each function. The analysis pass also tracks

which alias groups are pointed to by other alias groups.

The analysis pass identifies alias group change locations, i.e., source code locations

where a STORE to a member of an alias group occurs. This information is used at

runtime to calculate heap state that may have changed since the last checkpoint was

taken.

Alias groups that may be modified between two checkpoints are collected by prop-

agating alias group change information from the original change location down control

flow paths until it encounters 1) a checkpoint call, or 2) a redirection of control flow

that may lead to a checkpoint being created. This generally leads to the aggregation

of alias group change locations at checkpoint calls, at function calls, at conditional

branches, and at return statements. These aggregate alias group change locations

record all of the alias group IDs that may have been modified by STORE operations

since the last aggregate alias group change location.

In addition to storing alias groups that have definitely changed, it is necessary to

store alias groups that may be changed by a call to an externally defined function

or function pointer. Any arguments passed by reference and all global values are

conservatively marked as “possibly changed” and added to the next alias group change

location as such. If at runtime CHIMES finds that the external call was instrumented

by CHIMES, these “possibly changed” alias groups are removed from the change

142

location. Otherwise, these alias groups and any alias groups indirectly reachable

from them are conservatively added to the change location as definitely changed.

This ensures that if an external library modifies any state tracked by CHIMES, the

changes are included in the next checkpoint.

The analysis pass also generates metadata on:

1. Global, constant, and stack variables

2. Alias groups passed as parameters to function calls or returned by functions

3. Heap management locations, such as calls to malloc, calloc, realloc, and

free

4. The call tree for this compilation unit, including any externally defined functions

that are called but are currently unresolvable.

5. The OpenMP pragmas and clauses in the source code.

Once the analysis pass completes, the metadata generated by it is passed to the

transformation pass, which is implemented as a standalone clang tool using LibTool-

ing [109]. The CHIMES transformation pass performs a source-to-source transforma-

tion of the preprocessed source code. This transformation primarily inserts calls to

CHIMES library functions that track application state identified by the analysis pass

(e.g. stack variables, globals, function addresses).

Every compilation unit (i.e. input file) has a static, one-time module initialization

function inserted which passes module information to the CHIMES runtime prior to

entering the application’s main. This module init function is depicted in Figure 5.2.

The transformation pass also instruments each function with a variety of CHIMES

runtime callbacks that are used for tracking stack variables, heap allocations, inter-

procedural alias creation, alias group change locations, entrance or exit from OpenMP

parallel regions, or changes to the call stack.

143

1 s t a t i c i n t module_init () {
2 libchimes_init_module (. . .) ;
3 re turn 0 ;
4 }
5 s t a t i c const i n t __libchimes_module_init =
6 module_init () ;

Figure 5.2 : The CHIMES module init function is used to pass module-specific

information to the CHIMES runtime before entering main.

As part of the transformation pass, jumps and labels must be inserted in any

functions that may be on the stack when a checkpoint is created. The labels allow a

resume of a checkpoint to skip to the original checkpoint location while reproducing

the original call stack using only jump operations and function calls. A label is added

to every callsite that may directly or transitively create a checkpoint, to each CHIMES

callback that registers stack variables, and before each OpenMP parallel region that

may have a checkpoint created inside.

By inserting jumps between these labels, we build a control flow tree within each

function that allows the transformed application to jump from the entry point of a

function, through stack variable registrations, and into any parallel regions or func-

tion calls necessary to reproduce the stack and thread state of the application when

checkpointed. The root of the tree is the entrypoint of the function. The children

at each layer of the tree are any parallel regions spawned from the current node of

the tree or checkpoint-causing function calls made. This model supports resume from

arbitrary call stacks and nested parallel regions, including recursive ones. The use of

this control flow tree will be illustrated further in Section 5.1.2.

CHIMES Checkpointing Runtime

The transformations described in Section 5.1.2 add instrumentation to the host ap-

plication. This instrumentation registers all checkpointable state with the CHIMES

runtime. This section expands on the state stored by the CHIMES runtime and how

144

that state is used to create checkpoints.

At a glance, the CHIMES runtime stores the following:

1. A mapping from the address of a heap allocation to its metadata.

2. A list of global and constant variables, along with associated metadata.

3. A mapping from function names to their addresses in the running application.

4. A mapping from each alias group to all other alias groups that have become

aliased with it at runtime.

5. Points-to information for each alias group.

6. Per-thread stack trace information, stored as a stack of integer IDs.

7. A full call tree for the program, dynamically constructed from the per-

compilation unit call tree information passed to libchimes init module as

described in Section 5.1.2.

Precise and correct alias analysis is vital for CHIMES checkpointing: the mapping

from aliases to heap allocations is used to determine what heap regions may have

changed since the last checkpoint and need to be included in the next checkpoint.

We perform inter-procedural alias analysis at runtime by passing the alias group

information for function parameters and return values to CHIMES callbacks at the

entry of each function, exit of each function, and before each callsite. For example, the

alias groups of a formal parameter and an actual parameter will be merged following a

function call. This analysis works across functions in different compilation units and

through function pointer calls as long as both the source and target are transformed

by CHIMES.

To illustrate the CHIMES runtime, we consider a simple example function in

Listing 5.3 that creates a checkpoint. Pseudocode of the transformed code generated

by the CHIMES transform pass for this function is shown in Figure 5.4.

145

1 int ∗sum_alloc (int ∗a , int b) {
2 int sum = ∗a + b ;
3 ∗a = sum + b ;
4 int ∗alloc = (int ∗) malloc (sum ∗
5 sizeof (int)) ;
6 checkpoint () ;
7 return alloc ;
8 }

Figure 5.3 : A simple code example calling checkpoint.

1 int ∗sum_alloc (int ∗a , int b) {
2 libchimes_enter_func (” sum_alloc ” , sum_alloc ,
3 . . .) ;
4 if (____libchimes_resuming) goto lbl_0 ;

6 lbl_0 : int sum ;
7 libchimes_register_stack_var(&sum , . . .) ;
8 if (____libchimes_resuming) goto lbl_1 ;
9 sum = ∗a + b ;

10 ∗a = sum + b ;

12 int ∗alloc ;
13 lbl_1 : libchimes_register_stack_var (
14 &alloc , . . .) ;
15 if (____libchimes_resuming) {
16 switch (libchimes_next_call ()) {
17 case (0) : goto lbl_2 ;
18 default : abort () ;
19 }
20 }
21 alloc = (int ∗) malloc (sum ∗ sizeof (int)) ;
22 libchimes_register_heap (alloc , . . .) ;

24 libchimes_alias_groups_changed (. . .) ;
25 lbl_2 : checkpoint () ;

27 libchimes_leaving_func (. . .) ;
28 return alloc ;
29 }

Figure 5.4 : An example of the transformed code generated from Figure 5.3.

146

Upon entering sum alloc, the CHIMES runtime is notified that a new entry should

be pushed on the current thread’s stack by the libchimes enter func callback. The

information passed to libchimes enter func also assists with inter-procedural alias

analysis for the parameters of sum alloc.

Then, the transformed code checks to see if the current program execution

is a resume from a checkpoint using libchimes resuming. We assume it is

not for this example, Section 5.1.2 will provide more detail on how a check-

point is resumed. Next, the sum and alloc stack variables are registered using

libchimes register stack var, and the heap memory allocated in alloc is reg-

istered with the runtime using libchimes register heap.

Immediately before creating a checkpoint, libchimes alias groups changed is

called to inform the runtime of which alias groups have been modified since the last

checkpoint. This call would inform the CHIMES runtime that sum and alloc have

both had their values set.

The checkpoint function has three main steps. First, it serializes all program

state outside the heap into byte buffers, including stack variables, per-thread stack

traces, global variables, and constants.

Second, the checkpoint function determines what parts of the heap need to be

checkpointed based on 1) alias group change tracking, and 2) hashing of heap contents.

The first stage is straightforward: CHIMES has been collecting a set of modified alias

groups since the last checkpoint. Combined with a mapping from alias groups to

heap allocations, CHIMES can construct a set of user heap allocations that may have

changed since the last checkpoint.

In the second stage, CHIMES subdivides heap allocations into evenly sized chunks

and computes a hash for the contents of each chunk. The chunk size is configurable,

but defaults to 4MB. Hashing is done using the xxHash library [110]. Hashes are

stored between checkpoints and only chunks whose hashes have changed since the last

checkpoint are added to this checkpoint. Once checkpoint has determined exactly

147

1> CHIMES_CHECKPOINT_FILE=chimes . 2 . ckpt \
2 . / a . out . . .

Figure 5.5 : An example resume of an application using CHIMES.

which regions of the heap need to be checkpointed, in-memory copies of each region

are made.

Finally, the serialized byte buffers from the first step of checkpoint and the heap

contents from the second step are passed to a dedicated checkpointing thread which

writes them out to disk. The checkpointing thread uses asynchronous writes to keep

the checkpointing thread off-core. If an out-of-memory error occurs while preparing

data for checkpointing, the checkpoint function becomes blocking and writes heap

state directly from the application buffers.

After the call to checkpoint returns in Figure 5.4 we call

libchimes leaving func and return from sum alloc. libchimes leaving func

aids with inter-procedural alias analysis for return values and pops from the stack

trace for this thread.

Resuming From a Checkpoint

The previous section covered checkpoint creation. In this section, we look at how a

checkpoint can be used to resume program execution from the point-in-time that the

checkpoint was created.

Specifying the checkpoint file to use when resuming is as simple as setting an

environment variable and running the original executable with the same command-

line arguments, as shown in Figure 5.5.

During initialization, the CHIMES runtime will detect check for a

CHIMES CHECKPOINT FILE environment variable and, if found, load the serialized pro-

gram state from it. Restoring program state from the serialized state is a three step

process.

148

First, during runtime initialization at the start of program execution CHIMES

reads the contents of the checkpoint file and stores the deserialized data. CHIMES

uses the deserialized heap, constant, and globals data to construct a mapping from the

addresses of objects in the address space of the original execution to their addresses

in the current execution. This information is used to update pointers stored in the

stack, heap, and globals. The pointer translation process uses a self-balancing binary

tree to store the mapping from addresses in the checkpointed address space to their

addresses in the current address space. Each node in this tree is an address in the

checkpointed address space and the number of allocated bytes that follow it. A binary

tree is used to keep lookups efficient.

The second step of the restore process is to restore the thread and stack state of the

program using the labels and jumps discussed in Section 5.1.2. Figure 5.4 shows an

example of the code generated to support this step. Upon entering a function with

libchimes resuming set to true, control flow will jump to each stack variable

registration, passing updated addresses for each of these variables to the CHIMES

runtime. Once all stack variables have been traversed, libchimes next call is used

to pop the next entry from the checkpointed stack for the current thread. The value

popped determines which label to jump to next. This jump may target a function call

or a nested parallel region. At the completion of this step, all threads will be inside

a call to checkpoint with the same stack trace that the original program followed

to create the checkpoint being restored, but with stale stack state. Note that this

approach does not support restoring checkpoints taken from beneath function pointer

calls, as there are no guarantees that the function pointer’s value will be correct on

resume. Future work could remove this restriction by special-casing the restore of

function pointers.

This label-jump approach is the main reason for the CHIMES preprocessing stage.

During the CHIMES preprocessing stage one of the transformations performed is to

hoist any expressions with side effects out of function argument lists. If this step were

149

not taken, jumping to a function call would cause its arguments to be evaluated with

only partial program state restored.

The third step of the restore process happens from inside the final checkpoint

call. First, the values of all stack variables are restored using the values deserialized

from the checkpoint file. Then, all pointers in the stack, heap, and global variables

are translated from the old address space to the new address space using the address

information collected from the previous two steps. This step also finds all variables

whose type is either a pointer-to-pointers or a pointer-to-structs and recursively per-

forms the translation for all pointers reachable from each variable.

This pointer translation step is complicated by the flexibility of the C program-

ming language. void* pointers may point to data structures that contain pointers

which need to be translated. If these “hidden” data structures are unreachable from

anywhere else, the obfuscation of a void* type prevents CHIMES from identifying all

pointers in the program. We have implemented a feature (disabled by default) that

brute force searches any heap allocations behind void* pointers for pointers that can

be updated. While this feature has not caused unexpected behavior when enabled, it

is possible it could mutate data which appears to be a pointer from the old address

space but which is not.

After the address translation completes each thread returns from the checkpoint

call and execution continues as usual with a fully restored program.

Pluggability

In CHIMES, we include a number of hooks to allow users to add custom checkpoint

and restore functionality to their applications as needed.

Users can insert custom data in CHIMES checkpoints using

register checkpoint handler, shown in Figure 5.6.

During checkpoint creation, handler is called and passed the pointer data as its

first argument. If handler wishes to add state to the checkpoint, it must set its second

150

1 void register_checkpoint_handler (
2 void (∗ handler) (void ∗ , void ∗∗ ,
3 size_t ∗) ,
4 void (∗ restore) (void ∗ , heap_tree ∗ ,
5 chimes_stack ∗) ,
6 void ∗data) ;

Figure 5.6 : Signature of register checkpoint handler, used to insert custom in-

formation into a CHIMES checkpoint.

1 void register_custom_init_handler (
2 const char ∗type_name ,
3 void (∗ handler) (void ∗)) ;

Figure 5.7 : Signature of register custom init handler, used to register custom

data handlers in CHIMES.

argument to be a valid buffer on the heap and set the third argument to be the length

of this buffer.

On resume, restore is called and passed the address of the restored buffer, a

data structure that can translate pointers in the old address space to the new address

space, and a data structure that can look up stack variables by name and scope.

Users can also register custom handlers for restoring objects of a certain type

using register custom init handler, shown in Figure 5.7.

If CHIMES finds an object whose type matches type name, it will pass the address

of this object to register custom init handler. This is useful for restoring objects

specific to third-party libraries (e.g. CUDA, pthreads).

Optimizations

Section 5.1.1 pointed out that for a checkpointing system to be feasible it must be

efficient, adding little overhead. A naive implementation of the techniques described

in this section would lead to significant overheads for many applications: taking the

151

address of stack variables and functions impedes compiler optimization, excessive

function calls and runtime logic adds overhead, and frequent checkpointing would

considerably add to execution time. In this section we describe techniques used to

limit the overhead incurred by the CHIMES runtime, and evaluate their effectiveness

in Section 5.1.3.

One of the most effective optimizations implemented is the CHIMES ShortCut

Mode (SCM). For SCM, a duplicate version of each function is emitted with most

of the CHIMES instrumentation removed. The only instrumentation kept is heap

registration callbacks, which are necessary to associate each allocated buffer with an

alias group.

Calling the SCM version of a function reduces overhead, but has some constraints.

The called function and all of its callees must be known functions which definitely

will not checkpoint. This can be determined using the global call tree constructed at

runtime. If the SCM version of a function is called then all changes to and aliasing of

alias groups must be evaluated ahead-of-time based on statically known information.

This can reduce the accuracy of this information, but not the correctness.

The CHIMES runtime is also aware of the overhead it adds to the host application

and limits checkpoint creation to keep overhead below a certain threshold, when

possible. Expensive CHIMES runtime callbacks are instrumented to measure the time

spent inside. The total time in the CHIMES runtime is tracked and compared to the

overall wallclock time of the application. If this ratio exceeds a threshold, checkpoints

are not created. This threshold was set to 5% in our experiments. This system

includes a maximum allowable period between checkpoints and forces checkpoint

creation if that period is exceeded, even if the estimated overhead is greater than the

allowable threshold. In our experiments, we set this period to be 60 seconds.

During experimentation, we also found that taking the address of functions and

stack variables can significantly degrade the ability of the compiler to optimize ap-

plication code. We addressed this problem by using POSIX dlsym to fetch function

152

addresses, and used liveness analysis to reduce the set of stack variables that had to

be registered.

5.1.3 CHIMES Performance Evaluation

We evaluate CHIMES performance based on three metrics: overhead added, check-

point size relative to the size of the application in memory, and number of checkpoints

created. We use benchmarks from the Rodinia benchmark suite [62], benchmarks from

the SPEC benchmark suite [111], the Lulesh [112] application, the CoMD [113] ap-

plication, the UTS [89] application, and a custom 3D stencil benchmark called Iso3D

that is representative of wavefront propagation simulations from the energy industry.

All benchmarks and metrics are evaluated on two hardware platforms. Platform

A contains a 12-core 2.80GHz Intel X5660 CPU, 48GB of system RAM, and is con-

nected to a GPFS storage system by QDR Infiniband. Platform B is an IBM Power

755 node containing 4 eight-core 3.86GHz POWER7 CPUs with 4-way simultaneous

multithreading (128 hardware threads in total), 256GB of system RAM, and is also

connected to a GPFS storage system through QDR Infiniband. The GNU C Compiler

was used on both platforms, v4.8.5 on Platform A and v4.4.7 on Platform B.

We compare performance of both single-threaded and OpenMP multi-threaded

programs. Single-threaded tests are denoted with the label “CPP”. Multi-threaded

tests are denoted with the label “OMP”.

All tests are repeated 10 times and the median result is used to build the graphs

below. Table 5.1 lists the execution time and memory consumed for each application

running on Platform A without CHIMES.

Overheads

To evaluate the overhead of CHIMES, we start by running a transformed version of

the application linked with an empty runtime library (referred to as Empty tests).

This evaluates the overhead added by only the inserted function calls and other source

153

Benchmark CPP OMP
Time Space Time Space

Iso3D 147.86s 3.21GB 36.38s 3.22GB
Lulesh 32.63s 2.76MB 167.60s 80.32MB
CoMD 101.23s 308.32MB 101.63 314.66MB
UTS 64.07s 15.26MB 5.84s 183.11MB
RodBackprop 103.00s 19.97GB 44.35s 19.97GB
RodBfs 124.11s 2.50GB 121.71s 2.50GB
RodB+tree 10.96s 73.97MB 2.00s 73.97MB
RodHeartwall 112.24s 28.73MB 11.70s 28.73MB
RodHotspot 54.52s 384.00MB 18.65s 384.00MB
RodKmeans 101.46s 132.11MB 16.92s 132.11MB
RodLavamd 122.70s 20.56MB 11.68s 20.56MB
RodLud 8030.28s 16.00MB 8207.23s 16.00MB
RodMyocyte 227.46s 286.91MB 18.81s 286.91MB
RodNn 184.50s 15.32MB 29.06s 15.32MB
RodNw 49.62s 19.20GB 27.99s 19.20GB
RodParticlefilter 9.62s 200.33MB 9.29s 3.07GB
RodSrad 91.47s 85.14MB 12.25s 85.14MB
SPECBotsAlgn 761.60s 1.35MB 63.82s 1.35MB
SPECBotsSpar 791.65s 757.83MB 737.69s 72.31MB
SPECSmithwa 97.51s 0.27MB 0.38s 11.33MB
SPECKDTree 0.22s 40.06MB 40.10s 6.96MB

Table 5.1 : Median execution time and peak memory consumption for the baseline

version of each application on Platform A.

154

code instrumentation. Then, we use a CHIMES library that implements all of the

functionality from Section 5.1.2 but does not actually create checkpoints (referred to

as No-Checkpoint tests). This measures the overhead added by tracking the state

of the application. Finally, we test with the full CHIMES runtime library and mea-

sure any increase in overhead caused by creating checkpoints on disk (referred to as

Checkpoint tests). All overheads are measured relative to the original application,

compiled with gcc -O3.

Note that in some cases the Empty tests may demonstrate higher overhead than

the others because No-Checkpoint and Checkpoint tests are often able to enter SCM

mode in cases where Empty tests do not.

Figures 5.8 and 5.9 show the results of running the single-threaded tests on both

hardware platforms. In general, we see an expected trend of increasing overhead from

the Empty tests to the No-Checkpoint tests to the full Checkpoint tests. The median

overhead for the Checkpoint tests across all applications on Platform A is 4.3%, and

on Platform B is 4.1%.

Figure 5.8 shows a significant slowdown for RodiniaBackprop caused by the

CHIMES code transformations interfering with compiler optimizations when stack

variable and function addresses are taken, as discussed in Section 5.1.2.

In Figure 5.8, the RodiniaNw results show significant overhead with checkpointing

enabled, and in both Figures 5.8 and 5.9 we see similar behavior for SPECKDTree.

We find that the added execution time comes from a wait at execution termination for

the last and only checkpoint to complete being written to disk. These benchmarks

are not characteristic of the long-running iterative scientific applications targeted

by this and other checkpointing work. They are short-lived applications for which

checkpointing offers little value.

In Figure 5.9, the RodiniaB+tree results show negative overheads when running

the No-Checkpoint test. This result is caused by cache behavior. RodiniaB+tree

performs many small heap allocations. In CHIMES, a small header (8 bytes) is added

155

Figure 5.8 : Overheads on Platform A during single-threaded tests.

to each of these allocations, improving the cache characteristics of RodiniaB+tree by

pushing more allocations onto separate cache lines. If these allocation headers are

removed, No-Checkpoint overhead becomes 1.5%. Note that Platform A and B both

have the same L1 cache line size (64 bytes), but that Platform B has a longer L2 cache

line (128 bytes vs. 64 bytes for Platform A). This explains why Platform A does not

demonstrate this behavior for RodiniaB+tree: its smaller L2 cache lines cause similar

caching behavior with and without the added header.

In the OpenMP results, most of the outliers mimic the results from the single-

threaded programs. The main difference is the CoMD Empty test on Platform B,

where ∼50% overhead is recorded. This is caused by the lack of SCM mode in the

Empty tests. Without SCM mode, some tight parallel loops are run with instrumenta-

156

Figure 5.9 : Overheads on Platform B during single-threaded tests.

157

Figure 5.10 : Overheads on Platform A during multi-threaded OpenMP tests.

tion enabled, which includes one inserted synchronization point. This synchronization

adds significant overhead on Platform B because it is more parallelism than Platform

A (128 hardware threads on Platform B vs. 12 on Platform A).

Otherwise, the OpenMP tests perform similarly to the single-threaded tests, with

an average overhead of 6.1% on Platform A and 5.3% on Platform B.

Number of Checkpoints

When evaluating the overhead of CHIMES, it is important to also consider how many

checkpoints are being created. Figure 5.12 shows the number of checkpoints created

by each application on Platforms A and B.

Some benchmarks execute for an insufficient amount of time to create more than

158

Figure 5.11 : Overheads on Platform B during multi-threaded OpenMP tests.

159

Figure 5.12 : Median number of checkpoints created on Platforms A and B for each

benchmark.

one checkpoint, though many produce on the order of tens or hundreds of bench-

marks. Note that OpenMP applications tend to produce fewer checkpoints than

single-threaded applications as instrumentation is added to track thread state, thereby

increasing overheads and leading to more checkpoint throttling.

Checkpoint Efficiency

Checkpoint efficiency is a measure of the size of the checkpoints created for an applica-

tion, relative to its total size in memory. Figure 5.13 shows the checkpoint efficiencies

for all benchmarks on Platforms A and B. 100% efficiency indicates that the size of

the application’s in-memory state and the size of the checkpoints are the same. For

160

Figure 5.13 : Median checkpoint efficiency on Platforms A and B across all checkpoints

created by test runs of all applications.

some applications, we see that the change set tracking and hashing described in Sec-

tions 5.1.2 and 5.1.2 successfully reduced the amount of application state that had to

be checkpointed. However, it is quite common for applications to regularly touch all

application state (e.g. on every time step), so in many cases a checkpoint is a full copy

of the running application. In some cases where the application working set is small,

the checkpoint is appreciably larger due to CHIMES-specific objects added to the

checkpoint. For instance, CHIMES includes alias set information in the checkpoint,

which is not considered a part of the running application’s working set.

161

Conclusions

There are many tradeoffs in the design of a checkpointing framework: how compre-

hensive the checkpointable state is, how much attention is given to efficiency, how

much control the user is given over checkpoint creation, the layer in the software

stack to implement the framework, etc. In this work we present a novel checkpoint-

ing framework that has the following characteristics:

1. Automated checkpointing of stack, heap, and other user-level objects through

source code inspection and transformation.

2. A highly efficient, overhead-aware runtime for multi-threaded programs that

handles program state tracking and checkpoint creation.

3. Support for user specification of checkpoints.

4. Support for pluggable user functionality in the creation and restoration of check-

points.

5. A combined compiler and library approach to checkpointing which uses insights

gained from the source code to enhance efficiency.

The evaluation in Section 5.1.3 shows that this framework is not only flexible

enough to handle checkpointing of real-world scientific applications, but that it does so

efficiently and transparently to the user. CHIMES supports real-world, long-running,

scientific applications that have large memory footprints, use function pointers, use

complex types, and use complex build systems. Not only does CHIMES support

them, but CHIMES makes it easier to build and improve them by easing debugging,

performance hotspot analysis, and resilient application development.

162

5.2 Decomposition-Based Performance Prediction

5.2.1 Background

Categorizing Performance Prediction Techniques

The ability to predict the performance of a given kernel on a given architecture has

many applications. These predictions can be used to improve device selection on het-

erogeneous systems by providing the scheduler with completion time estimates across

a variety of computational resources. They can also be used to improve the partition-

ing of a workload across multiple devices, by predicting the relative computational

bandwidth of each device. Performance predictions can be used to make frequency

and voltage throttling decisions for improved energy efficiency. Performance predic-

tions can even be used in the procurement of new systems by predicting the behavior

of existing computational workloads on new architectures.

In this work we focus on predicting the performance of loop-parallel kernels im-

plemented in both OpenMP and CUDA. We assume that these kernels are run in

isolation, i.e. they have access to all processing elements in a given processor. We

also assume that we have access to all of the source code for the kernel, besides cer-

tain math intrinsics (e.g. sin, sqrt, etc.). The actual use case for these performance

predictions is left open so as to not overly constrain the impact of this work, but at

a minimum we require that the predictions made be useful for runtime scheduling

decisions.

We make no assumptions about the type of data structures accessed from the

kernel, nor do we perform any automatic data layout transformations based on the

results of performance prediction. That work is considered beyond the scope of this

work, though the framework developed in this work could be used to guide automatic

data layout optimizations. This work also does not account for special-purpose mem-

ories (e.g. GPU constant memory, scratchpad, etc.), but support for that would be a

straightforward extension.

163

Performance predictions can be categorized into three levels of accuracy:

1. Binary: Given two execution platforms, a binary performance predictor indi-

cates which is faster. For example, it might predict that a given kernel will run

faster on an x86 processor than on a GPU.

2. Relative: Given a collection of execution platforms, a relative performance

predictor estimates the relative computational bandwidth of each platform rel-

ative to the others. For example, it might predict that a given kernel will run

2× faster on a GPU and 4× faster on an FPGA, relative to x86.

3. Absolute: Given a single kernel, an absolute performance predictor produces

a performance prediction in terms of absolute elapsed time or processor cycles.

On the other hand, performance predictors can be split into four categories:

programmer-provided, analytical, simulator-based, and learning-based.

Programmer-provided performance prediction uses hints or estimates from

the programmer to determine the time a particular kernel will take on a given archi-

tecture. This manually-specified information is then generally used by the runtime

system to aid with scheduling decisions. For example, in [114] the programmer is

responsible for differentiating between “low” priority tasks which should be chunked

together for accelerator execution, and “high” priority tasks which may be executed

immediately on the host. In [95], the authors instead phrase performance predic-

tion in terms of a task’s “affinity” to a particular architecture. Programmers must

provide abstract, relative affinities for each task on each available architecture (e.g.

GPU, CPU, FPGA). The scheduler then uses runtime resource availability and task

affinities to select the architecture to schedule a task on. Similarly, the OSCAR com-

piler [115] uses compile-time annotations of cycle estimates for each kernel to select

architectures at runtime.

Of course, programmer-provided predictions are prone to human error, not future-

proof, generally lack awareness of runtime state (e.g. loop counts), lack a confidence

164

measure, and are not generalizable. It is often difficult to predict the behavior of a

kernel across a wide variety of inputs, particularly since past works commonly con-

strain programmer-provided estimates to a constant. However, programmer-provided

predictions are easily tunable and inspectable (i.e. they can be simple to reason about

for programmers).

Analytical models, on the other hand, try to model some behavior of the target

system or architecture in a closed and human-derived form based on understanding

of the architecture. For example, in [116] the authors construct performance and

energy predictions functions by inputting sampled performance counters from a kernel

into a human-defined performance prediction function. This prediction function is

constructed using the developer’s understanding of architectural features. Then, the

generated predictions are used to select the number of cores to run a parallel region

on, and the number of SIMT threads to run on each core.

While analytical models can benefit from human intuition and understanding of

hardware characteristics, they share many of the same challenges as programmer-

provided prediction. These analytical models are generally hard-coded to a single

architecture’s features and rely on the creator of the analytical model having a com-

prehensive understanding of that architecture’s behavior. Analytical models are also

often too simple to capture the full behavior of a complex multi-tenant system.

On the other hand, simulator-based performance prediction uses cycle-

accurate or near cycle-accurate hardware simulators to estimate performance [117].

The accuracy of simulator-based techniques can of course far exceed the previous

techniques discussed, as the actual behavior of the hardware is being modeled rather

than some abstraction of it. However, constructing a cycle-accurate simulator is a

major engineering effort, making their creation costly in terms of developer hours.

Additionally, because simulators model architectures at a finer granularity, they take

longer to produce their predictions.

Finally, learning-based performance prediction uses a statistical model ap-

165

plied to a curated set of features to model hardware behavior. Creating a learning-

based performance model generally requires the selection of the statistical model to

use (e.g. linear regression, logistic regression, support vector machine) and a set of

curated features that are relevant to kernel performance. The curated features can be

features of the architecture being targeted, of the kernel being executed, of runtime

state, or of any other relevant inputs the model developer selects.

Once the features and statistical model are selected, a performance model is then

trained using that statistical model and a set of sample, curated input datasets for

sample, curated kernels. When it comes time to create a performance prediction, the

trained performance model is applied to the same set of curated features.

The work described here builds directly on the work described in [73], a learning-

based approach to performance prediction. In [73], the authors train a Support Vector

Machine (SVM) to perform a binary performance prediction for a given kernel. This

binary performance prediction decides whether to run the given kernel on a POWER

CPU or an NVIDIA GPU. The SVM is trained on a feature vector consisting of

high-level kernel features, including items like:

1. The loop range of the parallel loop to offload.

2. The number of instructions in each kernel.

3. The percentage of kernel instructions that are memory accesses, arithmetic

operations, method calls to math functions, or branch instructions.

4. The number of coalesced, strided, and offset memory accesses.

The SVM is trained offline and evaluated online to decide which device to run a

given kernel on. The results presented show that for the selected set of kernels, the

accuracy of the binary predictions made can reach 99%. Hence, the work described

in [73] is an initial exploration into accurate learning-based techniques for binary

performance prediction.

166

Guiding Principles

Here, we present a learning-based performance prediction model called HYDOSO

(HYbrid, Decomposition-based, Offline Sequence aligner for Online performance pre-

diction) that builds on lessons learned in [73]. The development of HYDOSO was

guided by the following observations and principles:

1. The set of all kernels is massively diverse, but including kernel features in any

execution performance model is crucial for accurately predicting performance

of previously unseen kernels. Hence, accurately training a performance model

across the space of all kernels is an important but intractable problem. Instead,

it may be beneficial to decompose the performance prediction problem to work

on smaller blocks of code, and then combine the per-block insights to generate

full-kernel predictions.

2. Thanks to instruction pipelining and other latency-hiding mechanisms, the per-

formance of a block of code depends on both its composition as well as the

ordering of the instructions it contains.

3. In performance prediction, confidence measures for a given prediction are cru-

cial to deciding whether a prediction should be relied on at runtime. These

confidence measures can also guide further offline performance model training.

4. Runtime values which are indeterminable at compile time can drastically affect

the performance of kernels (e.g. runtime-defined loop iteration counts).

5. Re-training accurate performance models online without significantly disrupting

application performance is a difficult problem. However, spending cycles offline

to continually improve performance models is cheap.

Items 4 and 5 above are supported by the approach to performance prediction

in [73]. However, items 1, 2, and 3 are insights which require a drastically different

approach.

167

Based on the above guiding principles, we design and implement the HYDOSO

performance prediction framework to operate at the basic block level. HYDOSO

trains a block-level performance model offline for straight-line sequences of code. This

performance model is then combined with run-time state to make accurate online

performance predictions. HYDOSO focuses on making accurate binary and relative

performance predictions, but Section 5.2.3 also evaluates the accuracy of its absolute

performance predictions.

5.2.2 HYDOSO Design and Implementation

The HYDOSO framework consists of two software pipelines: a model training

pipeline, and a model-use pipeline. Offline, the model-training pipeline collects perfor-

mance data for all available architectures across a set of sample kernels and datasets.

The model-use pipeline uses the collected performance data to predict kernel perfor-

mance at runtime from within a “predictive application”. A predictive application is

one that uses the HYDOSO APIs to query for performance predictions.

For this investigation, our evaluation will focus on performing binary and relative

performance predictions on x86 and NVIDIA GPU platforms. However, our discus-

sion includes investigation into how this work could apply to performance prediction

for JVM kernels as well.

A HYDOSO Performance Model

In HYDOSO, a “performance model” consists of a large set of short, straightline

sequences of instructions with metadata attached to each. Each member of this set

is referred to as a “sample” and includes:

1. The sequence of instructions that this sample captures performance information

on (e.g. LOAD,STORE,ADD,...).

2. The average observed latency of this sequence of instructions, in milliseconds.

168

3. The observed standard deviation of this sequence of instructions, in milliseconds.

4. The minimum observed latency of this sequence of instructions.

5. The maximum observed latency of this sequence of instructions.

6. The architecture this performance sample is for.

7. The architecture configuration this performance sample is for.

8. The number of observations this performance sample is based on.

This approach differs from past approaches in that it does not build a closed-form

representation of the performance of a kernel. Instead, the performance model is a

collection of past performance measurements. For the remainder of this discussion,

we will refer to this construct as the “sample database”. Later sections will describe

how this performance model is created, and how it is used to predict performance.

Creating a HYDOSO Sample Database

Creating a HYDOSO Sample Database requires block-level, low overhead sampling

of representative kernels on representative datasets. Recall from Section 5.2.1 that

we focus this work on composing block-level performance predictions together to

perform full-kernel performance prediction, based on the observation that the space

of all kernels is much more diverse and more difficult to characterize than the space

of all basic blocks.

In this work, we have explored three different ways to sample basic blocks in

target kernels: full application sampling, checkpoint-based sampling, and Java Agent-

based sampling. Full application sampling and checkpoint-based sampling support

performance prediction of native execution on x86 and NVIDIA GPU processors,

while Java Agent-based sampling supports performance prediction for the JVM.

All three of these approaches rely on the same fundamental capability: lightweight,

transparent insertion of timestamp sampling at instruction-level granularity. For

169

native x86 execution, this capability is supported by reading the RDTSC (or Time

Stamp Counter) register. The RDTSC register counts cycles, and offers efficient

and low-latency measurement. Sampling of RDTSC is inserted using LLVM. For

interpreted x86 execution on the JVM, a Java Agent is instead used to dynamically

transform the bytecode of a JVM application at runtime and insert JNI calls to a

library which in turn samples the RDTSC register. Finally, for native GPU execution

we can insert calls to the CUDA clock API using LLVM, which reads a clock register

on each GPU SM similar to the RDTSC register.

With the question of capturing low-overhead, high-accuracy timestamps answered,

we next need to consider where to insert this sampling. Note that in order to make

the performance information captured with these timestamps relevant, we need to

minimize the amount of perturbation introduced to the instrumented application

both in terms of runtime overheads as well as compile-time interference. As a result,

only a single block is instrumented at a time and all instrumentation is inserted as

external function calls to minimize interference with the compiler’s intra-procedural

register allocator. Instrumenting a block implies using the low-overhead methods

described previously to take a timestamp at the beginning and end of a target block,

and storing the elapsed number of cycles in memory for later output.

In both LLVM- and Java Agent-based sampling, this process begins with parsing

the instruction-level representation of the kernel and its callees (either as LLVM

bitcode or JVM bytecode) into a directed control flow graph of call-less basic blocks.

This process starts by producing a control flow graph of basic blocks for each function

from an instruction-level representation. Then, basic blocks in the produced control

flow graphs are split at call sites, and edges added from the call site to the entry basic

block of the callee and from any return points in the callee to the call site. The end

result is an inter-procedural control flow graph where conditional branches, jumps,

and function calls are all modeled as edges in the graph. Repeated edges in this graph

(i.e. due to loops in the source code) are annotated with either 1) a constant loop

170

count if it can be derived at compile-time, 2) a variable whose runtime value controls

how many times this edge is repeated, or 3) a special annotation indicating that we

do not have a way to estimate the number of times this edge is repeated.

Then, given a sample kernel within a sample application and a sample dataset

to run it on, we selectively instrument a single block at a time in that kernel’s

inter-procedural control flow graph. The exact implementation of this depends on

whether we are performing full application sampling, checkpoint-based sampling, or

Java Agent-based sampling.

In full application sampling, the original application source code is passed to

LLVM for insertion of RDTSC- or clock-based instrumentation. No other trans-

formations are applied. To collect samples the full application must be repeatedly

transformed and run on the sample dataset, once for each call-less basic block in each

kernel we are training. This process can be time-intensive if the target kernel makes

up a small fraction of overall application execution time.

In checkpoint-based sampling, collecting performance samples is a multi-step pro-

cess:

1. The original application has checkpoint creation points inserted prior to the

start of each parallel kernel. These checkpoint creation points capture the state

of the program prior to that parallel kernel.

2. The checkpointed application is run once on a sample dataset, producing a set

of application checkpoints.

3. A “resume program” is auto-generated for each checkpoint which reads a check-

point and re-executes that parallel region on the application state stored in that

checkpoint.

4. Then, the same LLVM-based transformation techniques used in full application

sampling are used to instead instrument these resume programs, followed by

171

re-executing each checkpoint and collecting performance samples from those

re-executions.

Semantically, full application sampling and checkpoint-based sampling produce

the same output. However, checkpoint-based sampling does not require repeatedly

rerunning the full application and so can speed up the model training process.

On the other hand, a Java Agent is a small applet that is pre-loaded by the JVM

before starting execution of a JVM program. The bytecode of the loaded user program

is passed to the Java Agent, which it can then transform prior to the JVM executing

it. Using a Java Agent we are able to instrument a JVM kernel at instruction-level

granularity to insert reads of the RDTSC register. However, this process has the same

downside as full application sampling in that it requires full application execution and

is not checkpoint-based.

Regardless of whether full application sampling, checkpoint-based sampling, or

Java Agent-based sampling is used, the output of this stage is a list of triples, where

each triple contains:

1. The instructions in an instrumented call-less basic block.

2. A list of samples of the latency of that call-less basic block.

3. The platform that those samples were collected on (e.g. x86, NVIDIA GPU,

JVM).

The collected latency samples are adjusted to account for the expected overhead

incurred by the timestamp collection. We do this by empirically determining the

number of cycles measured for an empty block using our timestamping methods, and

then subtract this number of cycles from each latency sample. For reference, on

our evaluation platform we measured an overhead of 32 cycles on our x86 evaluation

platform and 71 cycles on our GPU evaluation platform.

172

1#pragma omp p a r a l l e l f o r
2 f o r (i = 0 ; i < N ; i++) {
3 #pragma hydoso kernel omp omp_kernel_lbl

4 . . .
5 }

Figure 5.14 : An example HYDOSO directive added to an OpenMP parallel region,

indicating that the user may request performance predictions for this kernel.

1 __global__ void kernel (. . .) {
2#pragma hydoso ke rne l cuda cuda k e r n e l l b l
3 }

Figure 5.15 : An example HYDOSO directive added to a CUDA kernel, indicating

that the user may request performance predictions for this kernel.

We aggregate these triples into a single HYDOSO Sample Database (described in

Section 5.2.2) by merging information for identical blocks on the same architecture.

This HYDOSO Sample Database then becomes our “performance model” for the

tested platforms.

User Interface for Predictive Applications

As defined earlier, a predictive application is one that “uses the HYDOSO APIs to

query for performance predictions”. In Section 5.2.2, we covered what a HYDOSO

performance model contains and how it is generated. The first step to using that

model in a predictive application is to have the user specify the kernels whose perfor-

mance they wish to predict.

This is done by applying compiler directives to the body of the kernel. For exam-

ple, marking a target OpenMP kernel is shown in Figure 5.14.

On the other hand, marking a CUDA kernel is shown in Figure 5.15.

In each of the above code snippets, the programmer needs to supply the name of

the platform they will be executing on (e.g. omp, cuda) as well as a unique label for

173

1 // A data s t r u c tu r e f o r captur ing the pred i c t ed performance
2 // o f a g iven ke rne l
3 typede f s t r u c t {
4 // I t e r a t i o n s per ms
5 double predicted_rate ;
6 // Conf idence measure
7 double score ;
8 // Informat ion on plat form con f i gu ra t i on , e . g . how many
9 // threads per CUDA block .

10 device_thread_config config ;
11 } hydoso_prediction ;

13 // A data s t r u c tu r e f o r s t o r i n g runtime app l i c a t i o n s t a t e
14 // in , to be passed to the HYDOSO runtime
15 typede f s t r u c t {
16 // L i s t o f names o f each va r i ab l e being passed down
17 const char ∗∗var_names ;
18 // Values o f each var i ab l e , f o r now l im i t ed to
19 // in t ege r−typed va r i a b l e s
20 i n t ∗var_values ;
21 // Number o f v a r i a b l e s
22 unsigned nvars ;
23 } hydoso_app_vars ;

25 hydoso_prediction hydoso_predict (const char ∗kernel_name ,
26 hydoso_app_vars ∗vars) ;

Figure 5.16 : The signature of hydoso predict, which is used to query for new

performance predictions in HYDOSO.

this kernel (e.g. omp kernel lbl, cuda kernel lbl).

With the target kernels marked the user is able to query the HYDOSO runtime

for performance predictions at runtime. This is done using a function call, to which

the user passes the name of the kernel they would like to predict performance for as

well as runtime state that HYDOSO can use to refine the inter-procedural control

flow graph for that kernel. This API is called hydoso predict and is depicted in

Figure 5.16.

hydoso predict then returns an estimate of the rate at which the target loop-

174

1 hydoso_prediction pred_omp = hydoso_predict (” omp kernel ” , ←↩
NULL) ;

2 hydoso_prediction pred_cuda = hydoso_predict (” cuda kerne l ” ,←↩
NULL) ;

3 // A r e l a t i v e performance p r ed i c t i on
4 double relative_perf = pred_cuda . predicted_rate / pred_omp .←↩

predicted_rate ;

Figure 5.17 : An example usage of hydoso predict to produce a relative performance

prediction between two kernels.

1 hydoso_prediction pred_omp = hydoso_predict (” omp kernel ” , ←↩
NULL) ;

2 hydoso_prediction pred_cuda = hydoso_predict (” cuda kerne l ” ,←↩
NULL) ;

3 // A binary performance p r ed i c t i on
4 bool is_omp_faster = pred_omp . predicted_rate > pred_cuda .←↩

predicted_rate ;

Figure 5.18 : An example usage of hydoso predict to produce a binary performance

prediction.

parallel kernel will run in terms of iterations per millisecond, as well as a confidence

score for that prediction. The HYDOSO framework does not assume anything about

how these predictions are used by the programmer.

The value returned by hydoso predict is an absolute performance prediction. It

can be used to produced relative and binary performance predictions. Figure 5.17

depicts how a relative performance prediction is calculated by dividing one absolute

prediction by another.

Likewise, Figure 5.18 shows how a binary performance prediction can be made by

comparing one absolute prediction to another.

175

Compile-Time Application Transformations for Predictive Applications

After a user has created a predictive application using the APIs described in Sec-

tion 5.2.2, this application is analyzed (but not transformed) by the HYDOSO frame-

work.

First, the same techniques that were described in Section 5.2.2 are used to con-

struct an interprocedural control flow graph for each of the annotated kernels.

Second, for each call-less basic block in the generated interprocedural CFGs we

use algorithms from substring matching/genome alignment to align the call-less ba-

sic block to the sampled blocks in a Sample Database, looking for the match that

produces the highest score based on the ordering and composition of instructions in

each block. We record both the best match, and its confidence score. In particular,

the current implementation uses the Needleman-Wunsch algorithm [118].

Third, each interprocedural CFG is converted into a “latency graph” by assign-

ing latency estimates to each block. Currently, the latency estimate of a block is

configurable and may be set to be the mean, minimum, or maximum of the latency

measurements made for the highest scoring aligned block from the Sample Database.

Hence, our original graph of straightline sequences of instructions becomes a graph

with the same structure, but containing estimated latencies for each node.

The latency graphs for each annotated kernel are then stored on disk.

Application compilation takes place normally and without any other HYDOSO

passes.

Generating Instruction Lists

As described above, HYDOSO relies on accurately aligning one instruction list

to another for its performance predictions. Instruction lists are generated from

LLVM bitcode or JVM bytecode through a straightforward one-to-one mapping of

instructions to HYDOSO’s instruction representation. For example, the LLVM bit-

code sequence in Figure 5.19 would result in a HYDOSO instruction sequence of

176

1%div = fdiv double 1 .000000e+00, %conv
2 %1 = load i32 , i32∗ %x . addr , align 4
3%idxprom = sext i32 %1 to i64

4%weights = getelementptr inbounds %class . openmp , %class .←↩
openmp∗ %this1 , i32 0 , i32 2

5 %2 = load double ∗ , double ∗∗ %weights , align 8

Figure 5.19 : An example instruction sequence.

FDIV,LOAD,CAST,GEP,LOAD.

However, this alignment process makes an implicit assumption that instructions

with the same representation in HYDOSO’s instruction set also have similar latencies.

This is true for many instructions, but may not be the case for memory accesses. A

given load or store operation might hit anywhere in the cache hierarchy on a given

architecture, and the resulting latency can change by orders of magnitude as a result.

To address this, we extend the conversion of LLVM bitcode to HYDOSO’s in-

struction set by analyzing the access patterns for any memory access and adding

this information to the instruction stream. With this added analysis, the gener-

ated instruction sequence for the LLVM bitcode in Figure 5.19 instead becomes

FDIV,STACKLOAD,CAST,GEP,COALESCEDLOAD. A given access pattern refers to the dis-

tribution of offsets from an identical base address across all threads for a single in-

stance of that instruction. A single instance of an instruction is defined by a single

instruction in the generated instructions for a kernel, as well as a unique point in

the iteration space of any loop that contains that instruction. We currently support

differentiating between five different types of access patterns:

1. Broadcast: A broadcast access pattern guarantees that for a given instance of

a given instruction executed by any thread, that access will always be to the

same memory address.

2. Stack: A stack access references a stack-allocated variable, which is likely to

be in registers or some other thread-local memory.

177

1%base = load i32 ∗ , i32∗∗ %ptr . addr
2%address = getelementptr inbounds i32 , i32∗ %base , %i
3%val = load i32 , i32∗ %address

Figure 5.20 : An example pointer offset calculation.

3. Strided: A strided access implies that neighboring threads are accessing mem-

ory at a constant stride relative to each other. For example. thread 0’s access

starts at byte 0, thread 1’s access starts at byte 20, thread 2’s access starts at

byte 40, etc. This pattern can be caused by intra-thread looping over a chunk

of an array.

4. Coalesced: A coalesced access pattern is a special case of strided where the

accesses by all threads are to neighboring elements in a primitive array.

5. Random: A random access pattern indicates an access pattern that our frame-

work was unable to analyze. For example, if the offset of an access is determined

by a value loaded from memory it would be labeled as Random.

These access patterns are constructed recursively by applying mathematical op-

erations on top of one another in the same sequence they are used in the original

instruction sequence. For example, Figure 5.20 shows a common instruction pattern

in LLVM bitcode for computing the address of the ith element in an array, where i

is the index of the current iteration of a parallel loop.

The value loaded by the first load in Figure 5.20 would be labeled a Broadcast,

assuming that the HYDOSO framework was able to analyze the value loaded from

%ptr.addr and guarantee it is the same base address across all threads. Then, the

getelementptr instruction is used to calculate an offset address from which is purely

determined by the parallel iterator, %i. Hence, this is the addition of a Coalesced

access pattern to a Broadcast pattern, which in turn produces a Coalesced access

pattern. This analysis would result in the final load in Figure 5.20 being labeled a

178

Coalesced load.

HYDOSO at Runtime

At runtime, the user must set a HYDOSO GRAPHS environment variable to be a colon-

separated list of the latency graphs generated at compile-time. These graphs are

loaded and parsed by the HYDOSO runtime on initialization of a predictive applica-

tion and stored in a dictionary, mapping from user-provided kernel name to latency

graph.

As described in Section 5.2.2, the only HYDOSO API is hydoso predict, which

accepts a kernel label and runtime variable state and returns a prediction for the

performance of that loop-parallel kernel, in iterations per millisecond.

When a call to hydoso predict is made at runtime, the HYDOSO runtime will

first look up the latency graph for the target kernel. It will produce a single-threaded

latency estimate for this kernel by simulating the latency graph and producing a

latency estimate for the full graph.

Given a node in the latency graph, the latency estimate for the subgraph from

that node to kernel termination is calculated by summing a latency estimate for the

current node with a latency estimate computed across its successor nodes.

The latency estimate of a single node is tuneable at runtime, and can be either

the mean, maximum, or minimum of the latency measurements for the block that

node was aligned to in the Sample Database.

The latency estimate calculated across successor nodes in the latency graph is also

tuneable, and depends on the type of successors the current block has. There are four

different types of successor relations:

1. Direct: The current block has a single successor which it jumps to directly.

2. Call: The current block has a single successor which it jumps to directly, but

which is in another function. This relation represents a function call in the

original source code.

179

3. Branch: The current block has more than one successor which it may condi-

tionally branch to.

4. Repeated: The current block is a loop-ending conditional block which is eval-

uated L times for the execution of a single instance of the loop. The first L-1

times it takes one branch. On the last evaluation, the conditional block branches

to the other branch.

Given a type of successor relation, the latency estimation for successors can be

tuned in the following ways:

1. For Direct and Call successor relations, the latency estimate for successor

blocks is simply the latency estimate for the single target block (which is recur-

sively defined based on it and its own successors).

2. For a Branch successor relation, the latency estimate over all successors can

be calculated as either the mean, maximum, minimum, or sum of the latency

estimates across all successors.

3. For a Repeated successor relation, the latency estimate over all successors

is the latency estimate for the body of the loop, multiplied by a loop repeat

estimate, plus the latency estimate for the non-repeated branch.

The loop repeat estimate is also tuneable. If the loop repeat was a constant de-

terminable at compile time during the inter-procedural CFG generation, the constant

is used. If it was dependent on a runtime value, we assume that value was passed in

the vars parameter to hydoso predict and its runtime value is used. Otherwise, a

tuneable “repeat guess” is used which defaults to ten.

Note that using a repeat guess implicitly sacrifices the ability to reliably estimate

absolute performance, and means that the HYDOSO framework will only be able to

estimate relative performance. Hence, an accurate combination of compile-time and

180

run-time analysis is necessary to produce accurate full-kernel latency estimates, but

that even without that combination accurate relative performance estimates are still

possible.

For a single call to hydoso predict, a performance estimate is produced for the

target kernel on all architecture configurations the HYDOSO performance model was

trained on. For OpenMP kernels the architecture configuration consists of the num-

ber of threads used and the number of SIMT threads assigned to each core. For

CUDA programs, the architecture configuration consists of the number of threads

to create per thread block. Only the architecture configuration with the lowest esti-

mated latency/highest estimated execution rate is returned to the user for the target

architecture.

Recall that for each call-less basic block in the latency graph, we also computed

a confidence score using the Needleman-Wunsch algorithm which indicates how ac-

curately the target block aligned to a block in our Sample Database. To produce a

whole-kernel confidence score for the user, we return a weighted average of the confi-

dence scores for each block, weighted by the number of instructions in each block.

5.2.3 HYDOSO Performance Evaluation

Evaluation of the accuracy of the HYDOSO framework was carried out on the Titan

machine at ORNL [87]. Titan is a Cray XK7 with a 16-core AMD CPU, an NVIDIA

K20X, and 32GB of DRAM in each node. We focus our use of HYDOSO on estimating

the performance of a variety of kernels on a variety of datasets on the AMD CPU

and NVIDIA GPU.

Our evaluation uses the benchmarks and datasets shown in Table 5.2.

We focus on training performance models for only the platform configurations

shown in Table 5.3, using checkpoint-based sampling to train the Sample Database.

We evaluate the accuracy of the HYDOSO framework in terms of its binary,

relative, and absolute performance prediction accuracy. All benchmarks are evaluated

181

Suite Benchmark # Datasets # Kernels
Rodinia [62] bfs 2 2

b+tree 1 2
cfd 1 5

hotspot 2 1
hotspot3D 2 1

lud 2 2
nw 2 2

particlefilter 2 10
pathfinder 2 1

srad 2 2
Polybench [119] doitgen 1 2

gemm 1 1
gesummv 1 1

jacobi-1d-imper 1 2
Parsec [120] blackscholes 1 1
Parboil [121] mri-q 1 2

NAS [122] BT 1 35
CG 1 8

Table 5.2 : Benchmarks

Platform Configuration
OpenMP 1 thread per core
CUDA 64 threads per block

128 threads per block
256 threads per block
512 threads per block

Table 5.3 : Tested platform configurations

182

HYDOSO Tunable Values
OpenMP Block Latency Estimation MIN, MAX, MEAN
CUDA Block Latency Estimation MIN, MAX, MEAN
OpenMP Divergence Estimation MIN, MAX, MEAN, SUM
CUDA Divergence Estimation MIN, MAX, MEAN, SUM

Repeat Guess 10, 100

Table 5.4 : HYDOSO Tunables

using all possible permutations of the HYDOSO tunables shown in Table 5.4. We

refer to a single, unique instance of these tunable values as an estimation strategy in

that it guides how the runtime performance predictor estimates unknown values or

branches. There are 288 unique estimation strategies possible using the tunables in

Table 5.4.

We also evaluate the accuracy of the HYDOSO framework using three strategies

for generating the HYDOSO Sample Database:

1. Full: In Full training, we generate a Sample Database that contains perfor-

mance information from all of the benchmarks and kernels in Table 5.2. Hence,

when we use this Sample Database to make performance predictions on those

same kernels, it includes performance data from the kernel being predicted as

well as many other kernels.

2. Singleton: In Singleton training, a Sample Database is generated for each

benchmark in Table 5.2 that contains only the performance data from that

benchmark. We then use that Sample Database to only make predictions for

that same benchmark. As a result, we expect Singleton Sample Database to

be quick to train, to be highly specialized for its target benchmark, but to not

generalize well to other benchmarks.

3. Exclusive: In Exclusive training, a Sample Database is generated for each

benchmark that contains performance data from all benchmarks in Table 5.2

183

Average Block Length 97.29 instructions
Minimum Block Length 1 instruction
Maximum Block Length 3,364 instructions

Average Block Latency for OpenMP 161.77 cycles
Minimum Block Latency for OpenMP 2.29 cycles
Maximum Block Latency for OpenMP 11,372.53 cycles

Mean % STD of Block Latency for OpenMP 31.11%
Average Block Latency for CUDA 3,037.42 cycles

Minimum Block Latency for CUDA 59.69 cycles
Maximum Block Latency for CUDA 138,913.55 cycles

Mean % STD of Block Latency for CUDA 21.44%

Table 5.5 : Statistics on the blocks contained in the Sample Database used in this

evaluation

except for that benchmark. Hence, Exclusive training should demonstrate that

HYDOSO can effectively generate performance predictions even for unseen ker-

nels.

Finally, we compare the binary accuracy of the HYDOSO framework to the SVM-

based techniques from [73] that inspired this work.

Analysis of the Sample Database

We start by analyzing the block-level data generated from all kernels for our Full

Sample Database. The Full database, including block-level performance information

from all benchmarks on all datasets, consists of information on 261 unique blocks

backed by 2,837,972,766 unique block latency samples. Table 5.5 lists various statistics

on the blocks contained in this table.

Binary Performance Estimate Accuracy

Next we consider how different estimation strategies perform in predicting the correct

platform configuration to target using a Full Sample Database. Out of the total of

288 possible estimation strategies, eleven achieve a maximum of 86.21% accuracy

184

Estimation Class Repeat Guess
10 100

Best 63.64% 36.36%
Worst 50.00% 50.00%

Table 5.6 : Percentage of the best and worst estimation strategies which used repeat

guesses of 10 or 100.

across all kernels and datasets in choosing the correct fastest device. 34 strategies

achieve better than 75% accuracy. The ten worst estimation strategies all achieve an

accuracy of 22.41%. This demonstrates that the selection of an accurate estimation

strategy is important, and does impact the accuracy of the performance predictions

made.

To understand in more detail how HYDOOSO’s estimation strategies affect bi-

nary prediction accuracy, we look at trends in the eleven best estimation strategies

(which each achieved 86.21% accuracy) and the ten worst estimation strategies (which

each achieved 22.41%). Tables 5.6, 5.7, 5.8, and 5.9 shows these trends for the re-

peat guess, block latency estimation, OpenMP divergence estimation, and CUDA

divergence estimation tunables.

It is important to point out that the correct estimation strategy is both architec-

ture and application dependent. For example, an application demonstrating highly

divergent threads on a GPU might benefit from using SUM as its divergence estima-

tion strategy so as to model the execution of multiple branches by a single divergent

warp. More regular applications might prefer MIN, MAX, or MEAN. Hence, we do

not expect a single strategy to perform perfectly across all kernels. It is still interest-

ing to study trends in the accuracy of each strategy.

Table 5.6 is relatively uninteresting, and suggests that the choice of repeat guess

is unimportant in binary performance prediction. This is primarily because the HY-

DOSO framework is able to compute accurate runtime loop counts for most kernels

using either compile-time constants or runtime values.

185

Estimation Class OpenMP Block Latency CUDA Block Latency
MIN MAX MEAN MIN MAX MEAN

Best 0.00% 100.00% 0.00% 100.00% 0.00% 0.00%
Worst 100.00% 0.00% 0.00% 0.00% 100.00% 0.00%

Table 5.7 : Percentage of the best and worst estimation strategies which used block

latency estimation strategies of MIN, MAX, and MEAN.

Estimation Class OpenMP Divergence
MIN MAX MEAN SUM

Best 18.19% 27.27% 27.27% 27.27%
Worst 60.00% 20.00% 20.00% 0.00%

Table 5.8 : Percentage of the best and worst estimation strategies which used diver-

gence estimation strategies of MIN, MAX, MEAN, and SUM for OpenMP.

Table 5.7 shows that block latency estimation strategy is a major differentiator

between accurate and inaccurate binary performance prediction strategies. For both

the best and worst binary performance predictors, all predictors in the same class

agree on the OpenMP Block Latency and CUDA Block Latency estimation strategy

to use.

Relative Performance Estimate Accuracy

Next, we consider how accurately the HYDOSO framework is able to estimate the rel-

ative computational performance of multiple platforms for a given kernel and dataset.

A HYDOSO relative performance prediction between two devices is determined by

Estimation Class CUDA Divergence
MIN MAX MEAN SUM

Best 72.73% 0.00% 27.27% 0.00%
Worst 0.00% 20.00% 20.00% 60.00%

Table 5.9 : Percentage of the best and worst estimation strategies which used diver-

gence estimation strategies of MIN, MAX, MEAN, and SUM for CUDA.

186

 0

 20

 40

 60

 80

 100

%
 E

rr
o

r
o

f
R

e
la

ti
v
e

 P
re

d
ic

ti
o

n
s

Kernels

Figure 5.21 : The accuracy of relative performance predictions from HYDOSO, plot-

ted on a linear scale and with a y-axis limited to 100.00%. The horizontal line marks

25%.

dividing the predicted execution rate of one by the predicted execution rate of the

other. Like in Section 5.2.3, this section evaluates the accuracy of HYDOSO across

all kernels.

Figures 5.21 and 5.22 plot the accuracy of HYDOSO’s relative performance pre-

dictions across all kernels using the Full Sample Database, sorted by accuracy. Fig-

ures 5.21 and 5.22 plot the same data, but Figure 5.21 has a linear y-axis limited to

100.00% in order to highlight the accurate data points. Figure 5.22 has a log-scale

y-axis and is not limited. For ∼42% of all tested kernels, HYDOSO achieves an ac-

curacy of 10% or better in its prediction of relative performance for CPU and GPU.

For ∼50% of all tested kernels, an accuracy of 25% or better is achieved.

However, Figure 5.22 also shows that HYDOSO’s accuracy at relative predictions

is poor on some kernels. To explain why, we studied the three kernels which achieved

the lowest accuracy and how HYDOSO’s alignment approach failed to properly ac-

count for their performance characteristics. For simplicity, we refer to these kernels

as A, B, and C with A being the least accurate.

The majority of the computation performed in Kernel A is included in a call to

cosf followed by a call to sinf, and so predicting the latency of these operations

187

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

10.000000

100.000000

%
 E

rr
o

r
o

f
R

e
la

ti
v
e

 P
re

d
ic

ti
o

n
s

Kernels

Figure 5.22 : The accuracy of relative performance predictions from HYDOSO, plot-

ted on a log scale. The horizontal line marks 25%.

at runtime is key to accurate performance predictions. However, we believe that the

LLVM representation of these trigonometric functions that we are predicting on is

different from the version actually being compiled and executed. Recall that we use

the LLVM infrastructure to analyze the kernels, but we must use NVIDIA’s propri-

etary compiler toolchain (nvcc) to generate executable programs. It appears that the

implementations of these trigonometric functions significantly differ between the two

infrastructures. Indeed, as expected NVIDIA’s implementation appears to be much

more efficient as we are predicting a processing rate of 1.542152 iterations/ms but

observe 23.749224 iterations/ms. This reveals a drawback to the current implemen-

tation, in that there are cases where the LLVM representation of a program and the

actual instructions executed may differ significantly.

Kernel B, on the other hand, is a heavily divergent with nested conditions in a

short-lived kernel. The control flow of a single parallel iteration is data-dependent,

and so on GPUs we can expect unpredictable performance as warps diverge to dif-

fering degrees. Indeed, looking closer at the predicted performance for CUDA we

observe that on a given kernel execution HYDOSO predicted a processing rate of

258,854.27 iterations/ms but observed 596,623,113.18 iterations/ms, a large error in

GPU predicted performance. However, for OpenMP running on an architecture that

188

is more suited to divergent threads and irregular control flow the predictions are much

more accurate. HYDOSO predicts 434,567.90 iter/ms for OpenMP on Kernel B and

observes 412,225.50 iterations/ms.

Finally, the bulk of computation in Kernel C is contained in a tight loop which

repeats thousands of times for each parallel iteration. Today, HYDOSO does not

explicitly account for the cost of branch instructions. For kernels where many branch

instructions are executed and account for a significant amount of execution time,

larger prediction errors can be observed.

Absolute Performance Estimate Accuracy

The most difficult form of performance prediction is absolute: cycle- or second-

accurate estimation of the performance of kernels. To date, only programmer-

provided and simulator-based performance predictors have been successfully used

to produce accurate absolute performance predictions.

Figures 5.23 and 5.24 plot the percent error in absolute performance predictions

for OpenMP and CUDA using a Full Sample Database, relative to the measured

performance of each parallel region. As described in Section 5.2.2 HYDOSO absolute

performance predictions are made in terms of iterations per millisecond.

Figure 5.23 clearly demonstrates that while HYDOSO is able to achieve accu-

rate absolute predictions on a small number of kernels (∼6% of all CUDA kernels

and ∼16% of all OpenMP kernels show less than 25% error), for the vast majority

HYDOSO is unable to produce cycle-accurate performance predictions.

Accuracy Changes With a Subsetted Sample Database

The experiments described in Sections 5.2.3, 5.2.3, and 5.2.3 were run with the Full

Sample Database, which included samples from the same kernels as were being eval-

uated. In this section, we explore how removing samples collected from the same

application being evaluated affects the accuracy of performance predictions (Exclu-

189

 0

 20

 40

 60

 80

 100

 120

 140
%

 E
rr

o
r

o
f

A
b

s
o

lu
te

 P
re

d
ic

ti
o

n
s

Kernels

CUDA
OpenMP

Figure 5.23 : The accuracy of absolute performance predictions from HYDOSO plot-

ted on a linear y-axis. The horizontal line marks 25%.

0.0000010

0.0001000

0.0100000

1.0000000

100.0000000

10000.0000000

1000000.0000000

100000000.0000002

10000000000.0000401

1000000000000.0025635

%
 E

rr
o

r
o

f
A

b
s
o

lu
te

 P
re

d
ic

ti
o

n
s

Kernels

CUDA
OpenMP

Figure 5.24 : The accuracy of absolute performance predictions from HYDOSO plot-

ted on a logscale y-axis. The horizontal line marks 25%.

190

 0

 20

 40

 60

 80

 100

%
 E

rr
o

r
o

f
R

e
la

ti
v
e

 P
re

d
ic

ti
o

n
s

Kernels

Full
Exclusive
Singleton

Figure 5.25 : The accuracy of relative performance predictions from HYDOSO when

using a Full, Exclusive, or Singleton Database.

sive Sample Database). We also investigate how using a database trained only with

samples from the same application performs (Singleton Sample Database). In both

comparisons, we focus on any change in the relative performance predictions made,

as first described in Section 5.2.3.

Figure 5.25 plots the percent error in relative performance predictions for tests

run with the a Full, Exclusive, and Singleton Sample Database. For Exclusive tests,

applications are run with databases that are not trained with any latency samples

taken from that application. For Singleton tests, applications are run with databases

that include only latency samples taken from that same application. Figure 5.25

demonstrates that the least accurate method for performing relative performance

predictions is to use a Singleton Sample Database and that the most accurate is to

use an Exclusive Database.

From Figure 5.25 we can conclude two things. First, that one of the benefits of

a block-centric approach to performance characterization is a reduced search space

in terms of the instruction sequences that must be trained. As a result, the relative

performance of unseen applications is still predictable when using an Exclusive Sample

Database. Indeed, it appears that it is more important to carefully curate your kernels

than it is to train on the exact kernels you will be testing on.

191

Second, as we expect, training a performance model for a single application with

only that application can also be accurate, but that the reduced number of samples

make it less preferrable. With a smaller sample set (even when it is a more focused

sample set), small errors in data collection yield large mispredictions during runtime.

In general, a Singleton Sample Database performs a worse characterization of the

behavior of hardware.

Comparison to Past Work

In [73], the authors trained a Support Vector Machine (SVM) to perform binary

performance predictions based on the composition of a kernel. We reproduce these

results on the kernels and datasets used in this work, and compare the accuracy of

HYDOSO to the SVM-based approach.

In particular, we train an SVM on the following features of each kernel:

1. Number of parallel loop iterations

2. Total instructions

3. Percentage of memory instructions

4. Percentage of arithmetic instructions (e.g. divide, add, subtract, etc)

5. Percentage of special math operations (e.g. cos, sin, tan, sqrt, pow)

6. Percentage of branches performed

7. Percentage of other instructions

8. Percentage of memory accesses that are coalesced memory accesses

9. Percentage of memory accesses that are strided memory accesses

10. Percentage of memory accesses that are other accesses

192

We then re-apply that SVM to the experimental data to see if it accurately predicts

the faster device based on the observed performance.

In our tests, using the above features to train an SVM yielded 91.5% accuracy in

binary performance predictions when choosing between OpenMP and CUDA. These

results mirror the results presented in [73] and the binary performance prediction

accuracy achieved by HYDOSO in Section 5.2.3. However, note that the approach

in [73] is limited to providing binary performance predictions while HYDOSO sup-

ports binary, relative, and absolute performance predictions.

5.2.4 HYDOSO Discussion and Future Work

Section 5.2.3 demonstrated that HYDOSO is able to achieve similar accuracy for

binary performance predictions to previous work [73] while also offering accurate

predictions of relative performance between multiple devices. However, Section 5.2.3

also demonstrates that the HYDOSO framework is not achieving accurate absolute

performance predictions, but that doing so may be possible.

One approach to improving HYDOSO’s accuracy on unseen blocks would be

through improvements to the block alignment process. In particular, today the align-

ment process uses Needleman-Wunsch which decomposes to scoring alignments of

individual instructions. In the current implementation alignments of identical instruc-

tions are given a score of 10. Otherwise, the alignment of two instructions is given a

score of -5. Experimenting with changing these scores, or customizing scores based

on the two mismatched instructions being aligned might produce more meaningful

alignments for unseen blocks. For example, we might configure these alignment scores

to encourage arithmetic instructions to be aligned with other arithmetic instructions

(e.g. a subtraction aligned to an addition) rather than penalizing all mis-alignments

equally. Intuitively, this makes sense as these instructions would use similar hardware

resources.

HYDOSO also does not explicitly account for the cost of branches, as latency

193

measurements only include the body of each basic block. Again, this could introduce

errors to the absolute performance predictions. Similar to accounting for instrumen-

tation overheads, adding a training stage that uses a micro-benchmark to measure

the latency cost of various branch instructions and then including this information in

the predictions made would address this inaccuracy.

In the description of this work we were careful to not constrain the use of HY-

DOSO to any specific application or use case, and only focus on the accuracy of

the generated performance predictions. However, in future work it would be impor-

tant to evaluate the efficacy of the HYDOSO framework by integrating it with a

higher-level compilation framework. For example, we are currently considering two

use cases. First, HYDOSO could be integrated with the OSCAR compiler to re-

place the programmer-provided performance predictions [115] it uses for scheduling

with auto-generated performance predictions. Second, HYDOSO could be integrated

with a polyhedral framework for automatic loop and data layout transformation, us-

ing HYDOSO performance predictions as a cost function to guide automatic code

optimization.

5.3 Related Work

5.3.1 Related Work to Checkpointing

Arguably the most well-known tool for checkpointing is Berkeley Lab’s Linux Check-

point/Restart tool (BLCR) [123]. In [123], the authors of BLCR present three design

choices for every checkpointing system: user-level vs. kernel-level, the amount of user-

and kernel-level state that can be checkpointed, and the level of integration with other

components in the platform (e.g. MPI). BLCR uses kernel-level checkpointing to sup-

port pausing and resuming of MPI applications. BLCR is implemented as a Linux

kernel module and supports checkpointing a wide range of user-level and kernel ap-

plication state. BLCR uses custom callbacks to enable integration with other tools

or libraries. BLCR takes a stop-the-world approach to checkpointing, pausing all

194

threads until a checkpoint is fully persisted to disk.

DMTCP[124] takes a similarly low-level approach to checkpointing. Instead of

adding a kernel module, DMTCP uses the fork and abort system calls to create a

core dump of application state that can be restored from. To support checkpointing

of additional program state not captured in this core dump (e.g. file descriptors),

DMTCP wraps system calls as well and tracks their usage. Like BLCR, DMTCP

dumps all application state with each checkpoint, leading to multi-second checkpoint

times for applications with working sets in the megabytes[124].

IGOR[125] uses dirty page tracking to reduce the size of checkpoints by only check-

pointing heap regions that have been modified. An application image is constructed

from the pages written to disk to enable resume of the application. On resume, the

user can select a point to resume from and IGOR will restore from the preceding

checkpoint before using interpreted execution to move program state to the desired

point in the program.

The work presented in [126] and [127] is the most similar to our work. The authors

use a combined compile- and run-time approach to checkpoint OpenMP applications.

At compile-time, the application code is analyzed to determine which arrays have been

“dirtied” since the last checkpoint and need to be checkpointed. This information

is propagated inter-procedurally at compile time. This analysis allows checkpointing

of arrays to be started early, immediately after the last write to an array prior to a

checkpoint being taken.

Power-Check [128] focuses on limiting the impact of checkpointing on power con-

sumption. Assuming a checkpoint model that requires global synchronization and

quiescing of application threads, they note that checkpointing periods are I/O inten-

sive but not compute-intensive, offering the chance for power throttling techniques to

be effective. They design an energy-aware I/O subsystem that can either sit under

other checkpointing libraries (e.g. BLCR, DMTCP, CHIMES) or be used directly for

application-specific checkpointing. In our work, we do not consider the opportuni-

195

ties for energy saving during checkpointing as our CHIMES system tries to overlap

I/O intensive checkpointing with compute-intensive application execution, limiting

the opportunities to throttle power without significantly degrading application per-

formance.

Each of these checkpointing implementations has contributed to the state-of-the-

art. However, each is limited in how it satisfies the motivation in Section 5.1.1. All

five previous works lack in transparency: checkpoints are mostly opaque containers

whose contents are not easily mapped back to developer-visible constructs such as

variables or functions.

BLCR, DMTCP, IGOR, and Power-Check pause all running threads in an appli-

cation when creating a checkpoint and do not continue until the full checkpoint is

flushed to disk, increasing overheads. The lack of source code analysis in these ap-

proaches exacerbates the efficiency problem even further. From BLCR [123], “large

user applications often already do their own checkpointing for fault tolerance, and

can often do it much more efficiently than an automated checkpoint system can,

since they know exactly which parts of their application need to be saved and which

can be discarded or regenerated”. Only by analyzing application source code can we

gain the insights necessary for efficient checkpointing.

The work in BLCR, DMTCP, IGOR, and Power-Check are also similar in that

each is closely tied to the underlying platform. For example, BLCR is built as a Linux

kernel module. While a kernel-level approach allows a checkpointing framework to

manage state that user-level approaches do not have access to, this limits flexibility for

future platforms and restricts the environments it can be deployed to. The compiler-

based approach taken in [126] and in our work is more flexible and platform agnostic,

tied only to the semantics of the programming model.

The work in [126] is also limited in several ways:

1. It cannot support multiple compilation units: the full call graph must be avail-

able at compile time.

196

2. It does not support resuming from the checkpoints it creates.

3. The target language is FORTRAN, which simplifies the problem of checkpoint-

ing by not considering pointer aliasing.

5.3.2 Related Work to Performance Prediction

Section 5.2.1 briefly summarized related work in performance prediction by splitting

those works into four categories: programmer-provided, analytical, simulator-based,

and learning-based. This section will go into more detail on how each of the works

touched on there perform or use performance prediction.

Programmer-Provided

In [114], the authors look at using task priority to schedule workloads across het-

erogeneous processing units. By accumulating low-priority tasks for later, batched

execution on a bandwidth-optimized accelerator and immediately executing high-

priority tasks on latency-optimized cores, the authors demonstrate a natural fusion

of message passing and accelerator programming. The authors rely on programmer-

provided task priorities to differentiate between low and high priority tasks. To some

extent, these “priorities” are actually performance prediction proxies for selecting

which tasks will execute well on an accelerator and which will execute well on the

host.

Likewise, in [95] the authors use task “affinities” to indicate the architectures on

which a task is better executed. Rather than use a bi-modal low and high priority

model, like in [114], this work allows affinities to multiple architectures to be specified

on a single task as integers. This allows the programmer to make relative performance

predictions to help the runtime scheduler select the execution platform for a device.

The work presented in [115] adds a hint directive to an existing heterogeneous

compiler which allows the programmer to specify an estimate of the number of clock

197

cycles required to run an annotated kernel on the accelerator. This programmer-

provided, absolute performance prediction is then used to make runtime scheduling

decisions as to when to launch tasks on the accelerator. Note that the accelerator

architecture targeted in [115] is a simpler, embedded architecture. Hence, making

cycle-accurate predictions is a more reasonable task.

Analytical

The work presented in [116] focuses on modeling different layers of parallelism in

modern multi-core systems, e.g. multiple threads in a single SMT core, multiple

cores on a single processor, multiple processors in a SMP node. The authors construct

an analytical model that takes in hardware counters collected at runtime and uses

that information to select either optimal performance or optimal energy-performance

configurations for different layers of parallelism. They then use that information

to tune the parallel structure of each parallel region in an application, based on

the hardware counters from that parallel region. This process is performed entirely

online during application execution, and so does not require an offline training phase

as HYDOSO does.

ANATOMY [129] is a tool for modelling the performance of the main memory of

a system, rather than the processing units. Using an analytical queueing model to

simulate the behavior of DRAM, the authors aim to aid hardware designers in tuning

their hardware configurations based on representative workloads. However, the high

accuracy of this work is a result of its high-fidelity representation of DRAM hardware

features, and so as hardware evolves the analytical model may have to be continually

updated with it.

In [130], the authors use symbolic evaluation of “work flow graphs” (WFG) to

analyze the memory access patterns and synchronization of a given GPU kernel in

order to predict its performance on a target GPU platform. Using knowledge of GPU

architectures and memory hierarchy, the authors focus on precise modeling of low-

198

level hardware behavior such as bank conflicts, coalesced memory accesses, SIMD

divergence, and warp/instruction-level parallelism using compile-time analysis of the

kernel paired with a small performance model generated from micro-benchmarks.

This framework is intended to be used as a guidance for compiler or programmer

optimizations, and as such is able to estimate how certain elements of a kernel (e.g.

thread divergence, synchronization, bank conflicts) contribute to its overall perfor-

mance. This work demonstrates accurate absolute performance estimates across dense

matrix-matrix multiplication, FFT, parallel prefix sum, and sparse matrix-vector mul-

tiplication kernels.

Simulator-Based

Graphite [117] is a parallel architecture simulator that looks to address the main lim-

itations of simulator-based performance prediction (high overheads) by distributing

the simulator workload across nodes and cores of a compute cluster. Graphite has a

pluggable infrastructure which enables the addition of new performance models for

novel architectural features, and demonstrates highly accurate (¡10%) predictions.

While Graphite helps to overcome the limitation which it targets, high overheads

from simulation-based performance modeling, it is still fundamentally an x86-based

simulator. Results presented in [117] show that even using it for similar (but not x86)

architectures introduces larger errors. Hence, Graphite may not be useful for future

heterogeneous platforms.

Learning-Based

In [131], the authors present the DPAPP model: a learning-based performance and

energy model that uses a multi-variate regression process based on hardware counters

to continually learn architecture characteristics at runtime. Like [116], the authors

use their DPAPP model to guide runtime concurrency control at multiple parallelism

layers, with the goal of reducing energy consumption when possible without sacrificing

199

performance. Multi-variate regression is selected as the performance model because

of its low computational overhead for evaluation and prediction at runtime. DPAPP

includes an offline learning phase in which representative, curated benchmarks and

datasets are used to characterize each layer of parallelism on a target architecture.

Then, hardware events are collected at runtime for different parallel phases of a

program and plugged into the generated regression model in order to estimate well-

performing parallelism configurations with possible energy improvements.

In [73], the authors focus explicitly on selecting a target architecture for a kernel,

given multiple options. A Support Vector Machine-based statistical model is trained

offline on kernel features (e.g. percentage of arithmetic operations, percentage of

memory load operations, etc.) which enables efficient selection of a target architec-

ture at runtime. This work focuses on selecting between JVM execution and GPU

execution, and integrates with the IBM J9 JVM [132].

Several past works [24][133][134] describe similar approaches to using performance

prediction to improve scheduling of tasks based on runtime profiling. HadoopCL[24]

aims to auto-select the execution architecture for Hadoop MapReduce tasks. Kaleem

et al.[133] aim to automatically partition a workload across CPUs and GPUs in

an integrated, shared memory system using precise performance prediction for each

device. Qilin[134] uses an adaptive mapping framework to automatically select exe-

cution platforms for data-parallel, stream kernels. These past works use speculative

scheduling of tasks across multiple architectures to characterize the performance of

tasks on each architecture. The end of that speculative scheduling stage is deter-

mined in these frameworks based on convergence of some framework-specific confi-

dence measure that captures how well the framework believes it has characterized the

behavior of each task in an application. Once speculative scheduling is complete, the

framework uses the generated task performance models to guide future scheduling of

tasks. These frameworks are entirely online and base their scheduling on historical

performance of tasks.

200

5.4 Conclusions

This chapter has prevented novel work in HPC tools. In Section 5.1, we motivated,

described, and evaluated the CHIMES framework, a checkpointing tool for use in

debugging performance and correctness bugs in multi-threaded applications. In Sec-

tion 5.2, we described the HYDOSO framework for performance prediction which

combines compile-time, instruction-level analysis with runtime state to improve the

accuracy of predictions for loop-parallel kernels.

Low-overhead and accurate tooling will be key to debugging and addressing cor-

rectness and performance issues on current and future HPC machines. While much

of the past research on the programmability of heterogeneous supercomputers has

focused on 1) the expressiveness and safety of programming models, and 2) the in-

telligence and efficiency of runtimes. However, building programming models and

runtimes that will work efficiently and optimally in every (or even most) situations

seems unlikely. Therefore, identifying inefficiencies in current and future HPC appli-

cations must rely heavily on 1) appropriate tools being available which offer sufficient

insight without significantly impacting the behavior of an application, and 2) appro-

priate tuning knobs in programming models and runtimes that can be used to fix

issues identified using those tools.

201

Chapter 6

Future Work & Conclusions

In the introduction, we identified the following five challenges as being key to solving

heterogeneous programmability:

1. Composing many heterogeneous management libraries.

2. Enabling low-level tunability of accelerator kernels.

3. Managing coherency among heterogeneous and physically discrete address

spaces.

4. Scheduling of workloads across processing units with heterogeneous architec-

tures.

5. Providing tools that improve the ability of programmers to analyze system state

in multi-tenant, heterogeneous applications.

The work presented in Chapters 3, 4, and 5 addresses these challenges in the following

ways.

Composing many heterogeneous programming libraries is challenging, as in the

past it has generally been done by making one library more “aware” of the other

(e.g. GPU-Aware MPI), an unscalable solution. HiPER focuses on enabling the

composition of multiple heterogeneous programming libraries on a multi-core system.

Through a task-parallel programming model, platform abstractions, and a modular

plug-in system for heterogeneous libraries, HiPER makes it simple for library de-

velopers to integrate with other programming systems and exposes a cleaner, more

expressive API for expressing cross-module dependencies.

202

While optimizing compilers and other automatic techniques continue to improve,

low-level and manual tunability of kernel code, workload scheduling, and other opti-

mization knobs remains an important part of HPC and heterogeneous programming.

While HiPER abstracts away many low-level programming concerns, such as multi-

core load balancing, it still offers low-level tunability by enabling programmers to

hand-tune their own kernels and scheduling. For example, HiPER’s platform model

enables fine-grain locality control across runtime threads, its library-based program-

ming system integrates cleanly with existing optimizing/heterogeneous compilers, and

its place paths allow programmers to tune the priority of different task types. HCL2

and SWAT, on the other hand, will auto-generate and auto-optimize low-level kernel

code and scheduling decisions for the programmer, but also expose tunables and the

ability to insert manual modifications into those kernels. This represents a hybrid

human-machine model of tunability.

Coherency in a multi-processor environment can be a burden to programmers and,

when mis-managed, a performance bottleneck. HCL2 and SWAT both automatically

manage multiple discrete address spaces for the programmer (including JVM, native,

and accelerator), while HJ-OpenCL uses runtime program inspection to automatically

remove redundant accelerator transfers. HiPER, on the other hand, allows program-

mers to more naturally express the communication of data between separate address

spaces using a future-based programming model, such that with a single abstraction

an accelerator kernel can be made dependent on accelerator communication which is

dependent on inter-node communication.

HiPER, HCL2, and SWAT all offer unified scheduling of communication and com-

putation on a single runtime system. This provides the runtime system with more

information on the state of the application, enabling more complex scheduling heuris-

tics. Additionally, HYDOSO makes novel contributions in performance prediction

across heterogeneous processing units, which can enable more accurate scheduling

decisions on heterogeneous platforms.

203

Finally, each of these works have explored novel tooling capabilities for heteroge-

neous systems. CHIMES presents a novel exploration of checkpoints as a software

development tool, demonstrating low overhead checkpoint creation and including a

discussion of how checkpoints can be a powerful for application developers. HCL2,

SWAT, and HiPER show how integration of tools and instrumentation into unified

runtime systems can enable powerful HPC tooling. HYDOSO offers a framework

for performance prediction, which can be a useful tool for application developers or

runtime developers when tuning scheduling and energy consumption.

Several of these projects have exciting future directions and ongoing development.

While the HYDOSO framework has demonstrated preliminary effectiveness as a

performance prediction tool, that value can only be practically realized as an un-

derlying layer for a higher level software engineering system. Continuing work with

HYDOSO looks to integrate it into polyhedral, heterogeneous code optimizers and

the OSCAR compiler’s heterogeneous programming support as a guide for both static

code transformations and dynamic runtime scheduling decisions. HYDOSO’s use with

the Epiphany co-processor [36] will also be explored in future work.

Ongoing work with SWAT is exploring its use in larger scale applications, partic-

ularly in genome alignment. The main challenge in working with SWAT remains the

restrictions on the kernels and data structures that can be automatically offloaded

based on what the SWAT-APARAPI code generator can accept. Hence, a three-stage

process of porting existing, complex Spark kernels to SWAT is being explored. In the

first stage, a pre-processing Spark transformation is used to simply convert spark-

formatted data into a format that SWAT can accept. Second, a post-process Spark

transformation is developed which converts from a SWAT-compatible output format

to the format expected by downstream transformations. Finally, additional source

code-level transformations are made to the core computational kernel to use the new

input and output formats as well as support automatic offload. While techniques

like these require more programmer effort and are not entirely automatic, the overall

204

effort to accelerate a Spark application will still be much lower than with hand-coded

accelerator support.

With collaborators on the HiPER project, we are also exploring how new inter-

faces between task-parallel runtimes and communication libraries can enable tighter,

cooperative, and more composable integration between the two. While this work is

primarily motivated by OpenSHMEM, the hope is that the insights gained will be

applicable to other communication libraries as well.

The thesis of this dissertation focused on the use of composable programming

systems, combined runtime and compile-time analysis/optimization, and integrated

resource-aware runtimes to solve all five of the above challenges. Each of the software

components presented in this dissertation makes novel contributions in at least one of

these three solution areas and advances the state-of-the-art in productive program-

ming for heterogeneous supercomputers.

205

Bibliography

[1] Top500, “Top500.” http://www.top500.org.

[2] J. Dongarra, “Report on the Sunway TaihuLight System.” http://www.

netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016-old.

pdf, June 2016.

[3] G. Chrysos, “Intel R© Xeon Phi Coprocessor - The Architecture.” http://gec.

di.uminho.pt/Discip/MInf/cpd1314/SCD/Intel_Xeon-PhiArch.pdf, 2014.

[4] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable Parallel Program-

ming With CUDA,” Queue, vol. 6, no. 2, pp. 40–53, 2008.

[5] Wen-Mei Hwu, “Addressing the Accelerator Programming Challenges in Ex-

ascale Systems.” http://www.mcs.anl.gov/events/workshops/ashes/2016/

slides/session1/Hwu_AsHES-Keynote-Hwu-2016.pdf, The Sixth Interna-

tional Workshop on Accelerators and Hybrid Exascale Systems (AsHES). 2016.

[6] NVIDIA, “Compute Unified Device Architecture Programming Guide.” https:

//docs.nvidia.com/cuda/cuda-c-programming-guide/, 2007.

[7] OpenMP Language Committee, “OpenMP API, Version 4.0.” http://www.

openmp.org/mp-documents/OpenMP4.0.0.pdf, July 2013.

[8] Message Passing Interface Forum, “MPI: A Message-Passing Interface Stan-

dard, Version 3.1.” http://mpi-forum.org/docs/mpi-3.1/mpi31-report.

pdf, 2015.

http://www.top500.org
http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016-old.pdf
http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016-old.pdf
http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016-old.pdf
http://gec.di.uminho.pt/Discip/MInf/cpd1314/SCD/Intel_Xeon-PhiArch.pdf
http://gec.di.uminho.pt/Discip/MInf/cpd1314/SCD/Intel_Xeon-PhiArch.pdf
http://www.mcs.anl.gov/events/workshops/ashes/2016/slides/session1/Hwu_AsHES-Keynote-Hwu-2016.pdf
http://www.mcs.anl.gov/events/workshops/ashes/2016/slides/session1/Hwu_AsHES-Keynote-Hwu-2016.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

206

[9] OpenSHMEM Community, “OpenSHMEM Application Programming In-

terface Version 1.3.” http://openshmem.org/site/sites/default/site_

files/OpenSHMEM-1.3.pdf.

[10] OpenACC Standards Committee, “OpenACC: Directives for Accelerators.”

http://www.openacc.org/About_OpenACC, 2011.

[11] Munshi, Aaftab, “The OpenCL Specification,” in 2009 IEEE Hot Chips 21

Symposium (HCS), pp. 1–314, IEEE, 2009.

[12] NVIDIA, “cuBLAS.” https://developer.nvidia.com/cublas.

[13] NVIDIA, “cuSPARSE.” https://developer.nvidia.com/cusparse.

[14] Intel, “Intel Math Kernel Library.” https://software.intel.com/en-us/

intel-mkl.

[15] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G.

Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, et al., “An

Overview of the Trilinos Project,” ACM Transactions on Mathematical Software

(TOMS), vol. 31, no. 3, pp. 397–423, 2005.

[16] The Apache Software Foundation, “Hadoop.” http://hadoop.apache.org/.

[17] The Apache Software Foundation, “Spark: Lightning-Fast Cluster Computing.”

https://spark.apache.org/.

[18] The Apache Software Foundation, “GraphX.” http://spark.apache.org/

graphx/.

[19] The Apache Software Foundation, “Apache Spark MLlib.” http://spark.

apache.org/mllib/.

[20] C. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Olukotun,

“Map-Reduce for Machine Learning on Multicore,” in NIPS. Vol 6, 2006.

http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.3.pdf
http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.3.pdf
http://www.openacc.org/About_OpenACC
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cusparse
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
http://hadoop.apache.org/
https://spark.apache.org/
http://spark.apache.org/graphx/
http://spark.apache.org/graphx/
http://spark.apache.org/mllib/
http://spark.apache.org/mllib/

207

[21] Y. Jia, “Caffe: An Open Source Convolutional Architecture for Fast Feature

Embedding.” http://caffe.berkeleyvision.org/, 2013.

[22] Y. Zheng, A. Kamil, M. Driscoll, H. Shan, and K. Yelick, “UPC++: A PGAS

Extension for C++,” in Parallel and Distributed Processing Symposium, 2014

IEEE 28th International, pp. 1105–1114, May 2014.

[23] M. Grossman, S. Imam, and V. Sarkar, “HJ-OpenCL: Reducing the Gap Be-

tween the JVM and Accelerators,” in Proceedings of the Principles and Practices

of Programming on The Java Platform, pp. 2–15, ACM, 2015.

[24] M. Grossman, M. Breternitz, and V. Sarkar, “HadoopCL2: Motivating the

Design of a Distributed, Heterogeneous Programming System With Machine-

Learning Applications,” IEEE Transactions on Parallel and Distributed Sys-

tems, vol. 27, no. 3, pp. 762–775, 2016.

[25] M. Grossman and V. Sarkar, “SWAT: A Programmable, In-Memory, Dis-

tributed, High-Performance Computing Platform,” in Proceedings of the 25th

ACM International Symposium on High-Performance Parallel and Distributed

Computing, pp. 81–92, ACM, 2016.

[26] S. Imam and V. Sarkar, “Habanero-Java Library: a Java 8 Framework for

Multicore Programming,” in Proceedings of the 2014 International Conference

on Principles and Practices of Programming on the Java platform: Virtual

machines, Languages, and Tools, pp. 75–86, ACM, 2014.

[27] Max Grossman, Vivek Kumar, Zoran Budimlic, Vivek Sarkar, “Integrating

Asynchronous Task Parallelism with OpenSHMEM,” in OpenSHMEM Work-

shop, 2016.

[28] M. Grossman, J. Shirako, and V. Sarkar, “OpenMP as a High-Level Specifica-

tion Language for Parallelism,” in 12th International Workshop on OpenMP,

2016.

http://caffe.berkeleyvision.org/

208

[29] M. Grossman, V. Kumar, N. Vrvilo, Z. Budimlic, and V. Sarkar, “A Plug-

gable Framework for Composable HPC Scheduling Libraries,” in Submitted for

publication to AsHES 2017, IEEE, 2017.

[30] M. Grossman and V. Sarkar, “Efficient Checkpointing of Multi-Threaded Appli-

cations as a Tool for Debugging, Performance Tuning, and Resiliency,” in IEEE

International Parallel and Distributed Processing Symposium, IEEE, 2016.

[31] NVIDIA, “NVIDIA Tesla P100.” https://images.nvidia.com/content/pdf/

tesla/whitepaper/pascal-architecture-whitepaper.pdf, 2016.

[32] NVIDIA, “NVIDIA NVLink High Speed Interconnect.” http://www.nvidia.

com/object/nvlink.html.

[33] A. Sodani, “Knights Landing (KNL): 2nd Generation Intel R© Xeon Phi Proces-

sor,” in Hot Chips 27 Symposium (HCS), 2015 IEEE, pp. 1–24, IEEE, 2015.

[34] National Energy Research Scientific Computing Center, “CORI Overview.”

http://www.nersc.gov/users/computational-systems/cori/.

[35] Saito, Hideki and Preis, Serge and Panchenko, Nikolay and Tian, Xinmin, “Re-

ducing the Functionality Gap Between Auto-Vectorization and Explicit Vector-

ization,” in International Workshop on OpenMP, pp. 173–186, Springer, 2016.

[36] A. Olofsson, “Epiphany-V: A 1024 processor 64-bit RISC System-On-

Chip.” https://www.parallella.org/wp-content/uploads/2016/10/e5_

1024core_soc.pdf, 2016.

[37] Altera, “Stratix 10 FPGA and SOC.” https://www.altera.com/products/

fpga/stratix-series/stratix-10/overview.html.

[38] OpenMP Architecture Review Board, “OpenMP Application Program Interface

Version 3.0.” http://www.openmp.org/mp-documents/OpenMP3.0.0.pdf.

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
http://www.nvidia.com/object/nvlink.html
http://www.nvidia.com/object/nvlink.html
http://www.nersc.gov/users/computational-systems/cori/
https://www.parallella.org/wp-content/uploads/2016/10/e5_1024core_soc.pdf
https://www.parallella.org/wp-content/uploads/2016/10/e5_1024core_soc.pdf
https://www.altera.com/products/fpga/stratix-series/stratix-10/overview.html
https://www.altera.com/products/fpga/stratix-series/stratix-10/overview.html
http://www.openmp.org/mp-documents/OpenMP3.0.0.pdf

209

[39] OpenMP Architecture Review Board, “OpenMP Application Program Interface

Version 4.0 - July 2013.” http://www.openmp.org/mp-documents/OpenMP4.0.

0.pdf.

[40] I. Karlin, T. Scogland, A. C. Jacob, S. F. Antao, G.-T. Bercea, C. Bertolli, B. R.

de Supinski, E. W. Draeger, A. E. Eichenberger, J. Glosli, et al., “Early Experi-

ences Porting Three Applications to OpenMP 4.5,” in International Workshop

on OpenMP, pp. 281–292, Springer, 2016.

[41] M. Martineau, J. Price, S. McIntosh-Smith, and W. Gaudin, “Pragmatic Perfor-

mance Portability with OpenMP 4. x,” in International Workshop on OpenMP,

pp. 253–267, Springer, 2016.

[42] A. Eichenberger, J. Mellor-Crummey, M. Schulz, N. Copty, J. DelSignore, R. Di-

etrich, X. Liu, E. Loh, and D. Lorenz, “OMPT and OMPD: OpenMP Tools Ap-

plication Programming Interfaces for Performance Analysis and Debugging,” in

International Workshop on OpenMP (IWOMP 2013), 2013.

[43] Computer Science Research Institute of the Sandia National Laboratories,

“Kokkos Github.” https://github.com/kokkos/kokkos.

[44] The Trilinos Project, “Trilinos User Group Meeting 2015.” https://trilinos.

org/community/events/trilinos-user-group-meeting-2015/.

[45] R. Hornung, J. Keasler, et al., “The RAJA Portability Layer: Overview and

Status,” Lawrence Livermore National Laboratory, Livermore, USA, 2014.

[46] Mark Harris, “Inside Pascal: NVIDIAs Newest Computing Platform.” https:

//devblogs.nvidia.com/parallelforall/inside-pascal/.

[47] H. Wang, S. Potluri, D. Bureddy, C. Rosales, and D. K. Panda, “GPU-

Aware MPI on RDMA-Enabled Clusters: Design, Implementation and Evalua-

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
https://github.com/kokkos/kokkos
https://trilinos.org/community/events/trilinos-user-group-meeting-2015/
https://trilinos.org/community/events/trilinos-user-group-meeting-2015/
https://devblogs.nvidia.com/parallelforall/inside-pascal/
https://devblogs.nvidia.com/parallelforall/inside-pascal/

210

tion,” IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 10,

pp. 2595–2605, 2014.

[48] NumPy Developers, “NumPy.” http://www.numpy.org/.

[49] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A Fresh Ap-

proach to Numerical Computing,” CoRR, vol. abs/1411.1607, 2014.

[50] N. Chaimov, A. Malony, S. Canon, C. Iancu, K. Z. Ibrahim, and J. Srinivasan,

“Scaling Spark on HPC Systems,” in Proceedings of the 25th ACM International

Symposium on High-Performance Parallel and Distributed Computing, pp. 97–

110, ACM, 2016.

[51] S. Imam and V. Sarkar, “Habanero-Java Library: A Java 8 Framework for

Multicore Programming,” in 11th International Conference on the Principles

and Practice of Programming on the Java Platform, PPPJ, vol. 14, 2014.

[52] Gary Frost, “APARAPI in AMD Developer Website.” http://developer.amd.

com/tools/heterogeneous-computing/aparapi/.

[53] Luontola, Esko, “Retrolambda: Use Lambdas on Java 7.” https://github.

com/orfjackal/retrolambda, 2013.

[54] S. Che, J. W. Sheaffer, and K. Skadron, “Dymaxion: Optimizing Memory Ac-

cess Patterns for Heterogeneous Systems,” in Proceedings of 2011 international

conference for high performance computing, networking, storage and analysis,

p. 13, ACM, 2011.

[55] J. J. Fumero, M. Steuwer, and C. Dubach, “A Composable Array Function

Interface for Heterogeneous Computing in Java,” in Proceedings of ACM SIG-

PLAN International Workshop on Libraries, Languages, and Compilers for Ar-

ray Programming, p. 44, ACM, 2014.

http://www.numpy.org/
http://developer.amd.com/tools/heterogeneous-computing/aparapi/
http://developer.amd.com/tools/heterogeneous-computing/aparapi/
https://github.com/orfjackal/retrolambda
https://github.com/orfjackal/retrolambda

211

[56] M. Grossman, M. Breternitz, and V. Sarkar, “HadoopCL: MapReduce on Dis-

tributed Heterogeneous Platforms Through Seamless Integration of Hadoop and

OpenCL,” in Proceedings of the 2013 IEEE 27th International Symposium on

Parallel and Distributed Processing Workshops and PhD Forum, IPDPSW ’13,

(Washington, DC, USA), pp. 1918–1927, IEEE, 2013.

[57] Jeffrey Dean, Sanjay Ghemawt, “MapReduce: Simplified Data Processing on

Large Clusters,” Communications of the ACM 51.1 (2008): 107-113.

[58] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez, C. Tenllado, and

F. Catthoor, “Polyhedral Parallel Code Generation for CUDA,” ACM Trans-

actions on Architecture and Code Optimization (TACO), vol. 9, no. 4, p. 54,

2013.

[59] S. Lee, S.-J. Min, and R. Eigenmann, “OpenMP to GPGPU: a Compiler Frame-

work for Automatic Translation and Optimization,” ACM SIGPLAN Notices,

vol. 44, no. 4, pp. 101–110, 2009.

[60] M. M. Baskaran, J. Ramanujam, and P. Sadayappan, “Automatic C-to-CUDA

Code Generation for Affine Programs,” in Compiler Construction, pp. 244–263,

Springer, 2010.

[61] Owens, John D and Houston, Mike and Luebke, David and Green, Simon and

Stone, John E and Phillips, James C, “GPU Computing,” Proceedings of the

IEEE 96.5 (2008): 879-899.

[62] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and

K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Computing,” in

Workload Characterization, 2009. IISWC 2009. IEEE International Symposium

on, pp. 44–54, IEEE, 2009.

[63] Matthew Curtis-Maury, Christos D. Antonopoulos, Dimitrios S. Nikolopoulos,

“Predication-based Power-Performance Adaptation of Multithreaded Scientific

212

Codes,” IEEE Transactions on Parallel And Distributed Systems, Volume 19,

No. 10, Pages 1396-1410.

[64] Matthew Curtis-Maury, Ankur Shah Filip Blagojevic, Dimitrios S. Nikolopou-

los, Bronis R. de Supinski, Martin Schulz, “Prediction Models for Multi-

Dimensional Power-Performance Optimization on Many Cores,” Proceedings

of the 17th International Conference on Parallel Architectures and Compilation

Techniques. ACM, 2008.

[65] H. Mühleisen and C. Bizer, “Web Data Commons-Extracting Structured Data

from Two Large Web Corpora.,” LDOW, vol. 937, pp. 133–145, 2012.

[66] A. Asuncion and D. Newman, “UCI Machine Learning Repository.” http://

archive.ics.uci.edu/ml/, 2007.

[67] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A

Large-Scale Hierarchical Image Database,” in Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 248–255, IEEE, 2009.

[68] Wikimedia Foundation, “Wikipedia Data Dumps.” https://dumps.

wikimedia.org/enwiki/.

[69] P. C. Pratt-Szeliga, J. W. Fawcett, and R. D. Welch, “Rootbeer: Seamlessly

Using GPUs from Java,” in High Performance Computing and Communication

& 2012 IEEE 9th International Conference on Embedded Software and Systems

(HPCC-ICESS), 2012 IEEE 14th International Conference on, pp. 375–380,

IEEE, 2012.

[70] A. Hayashi, M. Grossman, J. Zhao, J. Shirako, and V. Sarkar, “Accelerating

Habanero-Java Programs with OpenCL Generation,” in Proceedings of the 2013

International Conference on Principles and Practices of Programming on the

Java Platform: Virtual Machines, Languages, and Tools, pp. 124–134, ACM,

2013.

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
https://dumps.wikimedia.org/enwiki/
https://dumps.wikimedia.org/enwiki/

213

[71] A. Hayashi, M. Grossman, J. Zhao, J. Shirako, and V. Sarkar, “Speculative

Execution of Parallel Programs with Precise Exception Semantics on GPUs,”

in Languages and Compilers for Parallel Computing, pp. 342–356, Springer,

2014.

[72] K. Ishizaki, A. Hayashi, G. Koblents, and V. Sarkar, “Compiling and Optimiz-

ing Java 8 Programs for GPU Execution,” in 2015 International Conference on

Parallel Architecture and Compilation (PACT), pp. 419–431, IEEE, 2015.

[73] A. Hayashi, K. Ishizaki, G. Koblents, and V. Sarkar, “Machine-Learning-Based

Performance Heuristics for Runtime CPU/GPU Selection,” in Proceedings of

the Principles and Practices of Programming on the Java Platform, pp. 27–36,

ACM, 2015.

[74] W. Zaremba, Y. Lin, and V. Grover, “JaBEE: Framework for Object-Oriented

Java Bytecode Compilation and Execution on Graphics Processor Units,” in

Proceedings of the 5th Annual Workshop on General Purpose Processing with

Graphics Processing Units, pp. 74–83, ACM, 2012.

[75] A. Abbasi, F. Khunjush, and R. Azimi, “A Preliminary Study of Incorporating

GPUs in the Hadoop Framework,” in The 16th CSI International Symposium on

Computer Architecture and Digital Systems (CADS 2012), pp. 178–185, IEEE,

2012.

[76] K. Shirahata, H. Sato, and S. Matsuoka, “Hybrid Map Task Scheduling for

GPU-Based Heterogeneous Clusters,” in Cloud Computing Technology and Sci-

ence (CloudCom), 2010 IEEE Second International Conference on, pp. 733–740,

IEEE, 2010.

[77] A. Sabne, P. Sakdhnagool, and R. Eigenmann, “HeteroDoop: A Mapreduce

Programming System for Accelerator Clusters,” in Proceedings of the 24th In-

214

ternational Symposium on High-Performance Parallel and Distributed Comput-

ing, pp. 235–246, ACM, 2015.

[78] O. Segal, P. Colangelo, N. Nasiri, Z. Qian, and M. Margala, “SparkCL: A

Unified Programming Framework for Accelerators on Heterogeneous Clusters,”

arXiv preprint arXiv:1505.01120, 2015.

[79] P. Li, Y. Luo, N. Zhang, and Y. Cao, “HeteroSpark: A Heterogeneous

CPU/GPU Spark Platform for Machine Learning Algorithms,” in Network-

ing, Architecture and Storage (NAS), 2015 IEEE International Conference on,

pp. 347–348, IEEE, 2015.

[80] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,

C. Von Praun, and V. Sarkar, “X10: An Object-Oriented Approach to Non-

Uniform Cluster Computing,” in ACM SIGPLAN Notices, vol. 40, pp. 519–538,

ACM, 2005.

[81] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier,

S. Thibault, and R. Namyst, “hwloc: A Generic Framework for Managing Hard-

ware Affinities in HPC Applications,” in PDP 2010-The 18th Euromicro Inter-

national Conference on Parallel, Distributed and Network-Based Computing,

2010.

[82] S. Treichler, M. Bauer, and A. Aiken, “Realm: An Event-Based Low-Level

Runtime for Distributed Memory Architectures,” in Proceedings of the 23rd

International Conference on Parallel Architectures and Compilation, pp. 263–

276, ACM, 2014.

[83] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey, “HPX: A Task

Based Programming Model in a Global Address Space,” in Proceedings of the

8th International Conference on Partitioned Global Address Space Programming

Models, p. 6, ACM, 2014.

215

[84] K. B. Wheeler, R. C. Murphy, and D. Thain, “Qthreads: An API for Pro-

gramming With Millions of Lightweight Threads,” in Parallel and Distributed

Processing, 2008. IPDPS 2008. IEEE International Symposium on, pp. 1–8,

IEEE, 2008.

[85] M. Adams, “HPGMG 1.0: a Benchmark for Ranking High Performance Com-

puting Systems.” https://bitbucket.org/hpgmg/hpgmg, 2014.

[86] National Energy Research Scientific Computing Center, “Edison.” http://www.

nersc.gov/users/computational-systems/edison/.

[87] Oak Ridge Leadership Computing Facility, “Titan.” https://www.olcf.ornl.

gov/titan/.

[88] U. Hanebutte and J. Hemstad, “ISx: A Scalable Integer Sort for Co-design in

the Exascale Era,” in Partitioned Global Address Space Programming Models

(PGAS), 2015 9th International Conference on, pp. 102–104, Sept 2015.

[89] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan, and C.-W. Tseng,

“UTS: An Unbalanced Tree Search Benchmark,” in Languages and Compilers

for Parallel Computing, pp. 235–250, Springer, 2007.

[90] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing the

Graph 500,” Cray Users Group (CUG), 2010.

[91] M. Grossman, V. Kumar, Z. Budimlic, and V. Sarkar, “Experiences Developing

Regular and Irregular Applications on OpenSHMEM,” in Supercomputing 2016

PGAS Booth Poster, 2016.

[92] S. Chatterjee, S. Tasirlar, Z. Budimlic, V. Cave, M. Chabbi, M. Grossman,

V. Sarkar, and Y. Yan, “Integrating Asynchronous Task Parallelism With MPI,”

in Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th International

Symposium on, pp. 712–725, IEEE, 2013.

https://bitbucket.org/hpgmg/hpgmg
http://www.nersc.gov/users/computational-systems/edison/
http://www.nersc.gov/users/computational-systems/edison/
https://www.olcf.ornl.gov/titan/
https://www.olcf.ornl.gov/titan/

216

[93] V. Kumar, Y. Zheng, V. Cavé, Z. Budimlić, and V. Sarkar, “HabaneroUPC++:

A Compiler-Free PGAS Library,” in Proceedings of the 8th International Con-

ference on Partitioned Global Address Space Programming Models, p. 5, ACM,

2014.

[94] K. Vaidyanathan, D. D. Kalamkar, K. Pamnany, J. R. Hammond, P. Balaji,

D. Das, J. Park, and B. Joó, “Improving Concurrency and Asynchrony in Mul-

tithreaded MPI Applications Using Software Offloading,” in Proceedings of the

International Conference for High Performance Computing, Networking, Stor-

age and Analysis, p. 30, ACM, 2015.

[95] A. Sb̂ırlea, Y. Zou, Z. Budimĺıc, J. Cong, and V. Sarkar, “Mapping a Data-

Flow Programming Model onto Heterogeneous Platforms,” in ACM SIGPLAN

Notices, vol. 47, pp. 61–70, ACM, 2012.

[96] J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell, E. Ayguade, and

J. Labarta, “Productive Programming of GPU Clusters with OmpSs,” in Par-

allel & Distributed Processing Symposium (IPDPS), 2012 IEEE 26th Interna-

tional, pp. 557–568, IEEE, 2012.

[97] T. Gautier, J. V. Lima, N. Maillard, and B. Raffin, “Xkaapi: A Runtime System

for Data-Flow Task Programming on Heterogeneous Architectures,” in Parallel

& Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium

on, pp. 1299–1308, IEEE, 2013.

[98] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing Local-

ity and Independence with Logical Regions,” in Proceedings of the International

Conference on High Performance Computing, Networking, Storage and Analy-

sis, p. 66, IEEE Computer Society Press, 2012.

[99] E. Slaughter, W. Lee, S. Treichler, M. Bauer, and A. Aiken, “Regent: A High-

Productivity Programming Language for HPC with Logical Regions,” in Pro-

217

ceedings of the International Conference for High Performance Computing, Net-

working, Storage and Analysis, p. 81, ACM, 2015.

[100] H. Pan, B. Hindman, and K. Asanovic, “Lithe: Enabling Efficient Composition

of Parallel Libraries,” Proc. of HotPar, vol. 9, 2009.

[101] Wang, Perry H and Collins, Jamison D and Chinya, Gautham N and Jiang,

Hong and Tian, Xinmin and Girkar, Milind and Yang, Nick Y and Lueh, Guei-

Yuan and Wang, Hong, “EXOCHI: Architecture and Programming Environ-

ment for a Heterogeneous Multi-Core Multithreaded System,” ACM SIGPLAN

Notices, vol. 42, no. 6, pp. 156–166, 2007.

[102] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng, “Merge: A Pro-

gramming Model for Heterogeneous Multi-Core Systems,” in ACM SIGOPS

Operating Systems Review, vol. 42, pp. 287–296, ACM, 2008.

[103] Garland, Michael and Kudlur, Manjunath and Zheng, Yili, “Designing A Uni-

fied Programming Model for Heterogeneous Machines,” in High Performance

Computing, Networking, Storage and Analysis (SC), 2012 International Con-

ference for, pp. 1–11, IEEE, 2012.

[104] Bosilca, George and Bouteiller, Aurelien and Danalis, Anthony and Faverge,

Mathieu and Hérault, Thomas and Dongarra, Jack J, “PaRSEC: Exploiting

Heterogeneity to Enhance Scalability,” Computing in Science & Engineering,

vol. 15, no. 6, pp. 36–45, 2013.

[105] Max Grossman, Mauricio Araya-Polo, “Efficient Static and Dynamic Memory

Management Techniques for Multi-GPU Systems,” in Workshop on Runtime

Systems for Extreme Scale Programming Models and Architectures, November

2015.

[106] Max Grossman, Mauricio Araya-Polo, “Distributed, Heterogeneous Scheduling

Techniques Motivated by Production Geophysical Applications,” in Workshop

218

on Many-Task Computing on Clouds, Grids, and Supercomputers, November

2015.

[107] J. Ansel, K. Arya, and G. Cooperman, “DMTCP: Transparent Checkpointing

for Cluster Computations and the Desktop,” in Parallel & Distributed Process-

ing, 2009. IPDPS 2009. IEEE International Symposium on, pp. 1–12, IEEE,

2009.

[108] J. Duell, “The Design and Implementation of Berkeley Lab’s Linux Check-

point/Restart,” Lawrence Berkeley National Laboratory, 2005.

[109] The Clang Team, “Clang LibTooling.” http://clang.llvm.org/docs/

LibTooling.html.

[110] Yann Collet, “xxHash: Extremely Fast Hash Algorithm.” https://github.

com/Cyan4973/xxHash.

[111] K. M. Dixit, “The SPEC Benchmarks,” Parallel computing, vol. 17, no. 10,

pp. 1195–1209, 1991.

[112] I. K. et al., “Lulesh Programming Model and Performance Ports Overview,”

Tech. Rep. LLNL-TR-608824, Lawrence Livermore National Laboratory, De-

cember 2012.

[113] ExMatEx team at Los Alamos National Laboratory and Lawrence Livermore

National Laboratory, “CoMD Proxy Application.” http://www.exmatex.org/

comd.html.

[114] J. Lifflander, G. C. Evans, A. Arya, and L. Kale, “Dynamic Scheduling for

Work Agglomeration on Heterogeneous Clusters,” in Proceedings of (PLC’12)

Multicore and GPU Programming Models, Languages and Compilers Workshop

at IPDPS 2012, May 2012.

http://clang.llvm.org/docs/LibTooling.html
http://clang.llvm.org/docs/LibTooling.html
https://github.com/Cyan4973/xxHash
https://github.com/Cyan4973/xxHash
http://www.exmatex.org/comd.html
http://www.exmatex.org/comd.html

219

[115] A. Hayashi, “Studies on Automatic Parallelization for Heterogeneous and Ho-

mogeneous Multicore Processors,” in Waseda University PhD Dissertation,

2012.

[116] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D. S. Nikolopou-

los, “Online Power-Performance Adaptation of Multithreaded Programs Using

Hardware Event-Based Prediction,” in Proceedings of the 20th Annual Interna-

tional Conference on Supercomputing, pp. 157–166, ACM, 2006.

[117] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Ce-

lio, J. Eastep, and A. Agarwal, “Graphite: A Distributed Parallel Simulator

for Multicores,” in HPCA-16 2010 The Sixteenth International Symposium on

High-Performance Computer Architecture, pp. 1–12, IEEE, 2010.

[118] S. B. Needleman and C. D. Wunsch, “A General Method Applicable to the

Search for Similarities in the Amino Acid Sequence of Two Proteins,” Journal

of molecular biology, vol. 48, no. 3, pp. 443–453, 1970.

[119] L.-N. Pouchet, “Polybench: The Polyhedral Benchmark Suite.” http://www.

cs.ucla.edu/pouchet/software/polybench, 2012.

[120] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark Suite:

Characterization and Architectural Implications,” in Proceedings of the 17th

International Conference on Parallel Architectures and Compilation Techniques,

pp. 72–81, ACM, 2008.

[121] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari,

G. D. Liu, and W.-m. W. Hwu, “Parboil: A Revised Benchmark Suite for

Scientific and Commercial Throughput Computing,” Center for Reliable and

High-Performance Computing, vol. 127, 2012.

[122] Bailey, David H and Barszcz, Eric and Barton, John T and Browning, David

http://www. cs. ucla. edu/pouchet/software/polybench
http://www. cs. ucla. edu/pouchet/software/polybench

220

S and Carter, Robert L and Dagum, Leonardo and Fatoohi, Rod A and Fred-

erickson, Paul O and Lasinski, Thomas A and Schreiber, Rob S and others,

“The NAS Parallel Benchmarks,” International Journal of High Performance

Computing Applications, vol. 5, no. 3, pp. 63–73, 1991.

[123] J. Duell, “The Design and Implementation of Berkeley Lab’s Linux Check-

point/Restart,” Lawrence Berkeley National Laboratory, 2005.

[124] J. Ansel, K. Aryay, and G. Coopermany, “DMTCP: Transparent Checkpointing

for Cluster Computations and the Desktop,” in Parallel & Distributed Process-

ing, 2009. IPDPS 2009. IEEE International Symposium on, pp. 1–12, IEEE,

2009.

[125] S. I. Feldman and C. B. Brown, “Igor: A System for Program Debugging via

Reversible Execution,” in ACM SIGPLAN Notices, vol. 24, pp. 112–123, ACM,

1988.

[126] G. Bronevetsky, D. Marques, K. Pingali, S. McKee, and R. Rugina, “Compiler-

Enhanced Incremental Checkpointing for OpenMP Applications,” in Parallel &

Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on,

pp. 1–12, IEEE, 2009.

[127] G. Bronevetsky, K. Pingali, and P. Stodghill, “Experimental Evaluation of

Application-Level Checkpointing for OpenMP Programs,” in Proceedings of

the 20th Annual International Conference on Supercomputing, pp. 2–13, ACM,

2006.

[128] R. R. Chandrasekar, A. Venkatesh, K. Hamidouche, and D. K. Panda, “Power-

Check: An Energy-Efficient Checkpointing Framework for HPC Clusters,” in

Cluster, Cloud and Grid Computing (CCGrid), 2015 15th IEEE/ACM Inter-

national Symposium on, pp. 261–270, IEEE, 2015.

221

[129] N. Gulur, M. Mehendale, R. Manikantan, and R. Govindarajan, “ANATOMY:

An Analytical Model of Memory System Performance,” in ACM SIGMETRICS

Performance Evaluation Review, vol. 42, pp. 505–517, ACM, 2014.

[130] Baghsorkhi, Sara S and Delahaye, Matthieu and Patel, Sanjay J and Gropp,

William D and Hwu, Wen-mei W, “An Adaptive Performance Modeling Tool for

GPU Architectures,” in ACM SIGPLAN Notices, vol. 45, pp. 105–114, ACM,

2010.

[131] M. Curtis-Maury, F. Blagojevic, C. D. Antonopoulos, and D. S. Nikolopoulos,

“Prediction-Based Power-Performance Adaptation of Multithreaded Scientific

Codes,” IEEE Transactions on Parallel and Distributed Systems, vol. 19, no. 10,

pp. 1396–1410, 2008.

[132] IBM Corporation, “IBM J9 JVM.” https://www.ibm.com/support/

knowledgecenter/SSYKE2_7.0.0/com.ibm.java.lnx.70.doc/user/java_

jvm.html.

[133] R. Kaleem, R. Barik, T. Shpeisman, B. T. Lewis, C. Hu, and K. Pingali, “Adap-

tive Heterogeneous Scheduling for Integrated GPUs,” in Proceedings of the 23rd

International Conference on Parallel Architectures and Compilation, pp. 151–

162, ACM, 2014.

[134] C.-K. Luk, S. Hong, and H. Kim, “Qilin: Exploiting Parallelism on Het-

erogeneous Multiprocessors with Adaptive Mapping,” in 2009 42nd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 45–

55, IEEE, 2009.

https://www.ibm.com/support/knowledgecenter/SSYKE2_7.0.0/com.ibm.java.lnx.70.doc/user/java_jvm.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_7.0.0/com.ibm.java.lnx.70.doc/user/java_jvm.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_7.0.0/com.ibm.java.lnx.70.doc/user/java_jvm.html

	Abstract
	Acknowledgments
	List of Illustrations
	Introduction
	The Cost of Hardware Heterogeneity
	Our Envisioned User Workflow
	Thesis Statement
	Contributions
	Outline

	Background
	Emerging Heterogeneous Architectures
	NVIDIA Pascal and Volta
	Intel Knights Landing Xeon Phi
	Sunway MPP
	Epiphany-V
	FPGAs

	Production Programming Models for Emerging Supercomputers
	OpenMP
	Kokkos
	Raja
	CUDA
	GPU-Aware MPI

	Summary

	High-Level Programming Systems for Data Analytics Workloads on Heterogeneous HPC Systems
	Motivation
	The Challenge of Managed Runtimes on Accelerators
	Offloading Shared-Memory Parallel Java Programs Using HJ-OpenCL
	HJ-OpenCL Code Generation and Data Serialization
	HJ-OpenCL Runtime
	HJ-OpenCL Performance Evaluation

	Accelerating Distributed Data Analytics Platforms Using HCL2 and SWAT
	Background: Hadoop MapReduce and Apache Spark
	APIs for Accelerated Data Analytics
	Runtime Code Generation
	Runtime Accelerator Memory Management
	Runtime Coordination
	Performance Prediction in HCL2
	Framework-Specific Tooling
	HCL2 and SWAT Performance Evaluation

	Related Work
	Past Work in Shared-Memory Programming Frameworks
	MapReduce-based Frameworks
	Functional, Spark-Based Frameworks

	Discussion of Selectively Supporting JVM Features
	Summary

	Improving the Scalability, Programmability, and Composability of HPC Libraries on Heterogeneous Systems
	Motivation
	HiPER Design and Implementation
	HiPER Platform Model
	Generalized Work-Stealing Runtime
	Pluggable Software Modules
	Example HiPER Usage

	HiPER Evaluation
	Experimental Setup
	Regular Workloads
	Irregular Workloads

	HiPER Related Works
	Composable Frameworks
	Heterogeneous Programming Frameworks

	HiPER Discussion and Conclusions

	Supporting HPC Programmers with Novel Tooling
	Background: Checkpointing
	Motivation
	CHIMES Design and Implementation
	CHIMES Performance Evaluation

	Decomposition-Based Performance Prediction
	Background
	HYDOSO Design and Implementation
	HYDOSO Performance Evaluation
	HYDOSO Discussion and Future Work

	Related Work
	Related Work to Checkpointing
	Related Work to Performance Prediction

	Conclusions

	Future Work & Conclusions
	Bibliography

