
Habanero-Scala: Async-Finish
Programming in Scala

Scala Days
April 17, 2012

Shams Imam and Vivek Sarkar
Rice University

Introduction

•  Multi-core processors
• → Software Concurrency Revolution

• → renewed interest in parallel programming
models

•  Goal: increase productivity of parallel programming
by both simplifying and generalizing current parallel
programming models
•  Simplification → increase classes of developers who

can write parallel programs
•  Generalization → increase classes of applications

that can be supported by a common model 2

Inverted Pyramid of Parallel
Programming Skills

3

Parallelism oblivious
developers

Parallelism
aware
devs

Concurrency
Experts

Java threads, locks, etc.

Focus of this talk

CnC-Scala talk later today

Focus of Rice
Habanero Project

http://habanero.rice.edu

Habanero-Scala

•  Scala integration of Habanero-Java features
•  Habanero-Java

•  developed at Rice University
•  derived from Java-based version of X10 language

(v1.5) in 2007
•  targeted at parallelism-aware developers, not

necessarily concurrency experts
•  used in sophomore-level undergraduate course on

“Fundamentals of Parallel Programming” at Rice
•  https://wiki.rice.edu/confluence/display/PARPROG/COMP322
•  Or search for “comp322 wiki”

4

Goals for this talk

•  Task parallelism
1.  Dynamic task creation & termination

•  async, finish, forall, foreach
2.  Mutual exclusion: isolated
3.  Coordination

•  futures, data-driven futures
4.  Collective and P2P synchronization:

•  phaser, next
5.  Locality control for tasks and data: places

•  Actor extensions and unification with task
parallelism

5

Async and Finish

•  async { <stmt> }
•  creates a new child task that executes <stmt>
•  parent task proceeds to operation following the async
•  asyncSeq(<cond>) { S } ≡ if (<cond>) S else async { S }

•  finish { <stmt> }
•  execute <stmt>, but wait until all (transitively) spawned

asyncs in <stmt>’s scope have terminated
•  Implicit finish between start and end of main program

•  Async-Finish programs cannot create a deadlock cycle

6

Async-Finish Example
1.  // imports	
2.  object SeqApp extends App {	

3.  println("Task O")	
4.  	
5.  println("Task A")	

6.  println("Task B")	
7.  println("Task B1")	
8.  println("Task B2")	

9.  println("Task C")	

10.  }	

7
[image adapted from: http://www.coopsoft.com/ar/ForkJoinArticle.html]

Async-Finish Example (contd)
1.  // imports	
2.  object ParApp extends HabaneroApp {	

3.  println("Task O")	
4.  finish {	
5.  async { 	
6.  println("Task A") 	
7.  }	
8.  async {	
9.  println("Task B")	
10.  async { println("Task B1") }	
11.  async { println("Task B2") }	
12.  }	
13.  }	
14.  println("Task C")	

15.  }	

8
[image adapted from: http://www.coopsoft.com/ar/ForkJoinArticle.html]

Forall and Foreach

•  forall(start, end) { f(i) } ≡
 finish { for(i <- start until end) async { f(i) } }

•  foreach(start, end) { f(i) } ≡
 for(i <- start until end) async { f(i) }
•  scala.collection.Iterables support asyncForall and

asyncForeach as extension methods
•  E.g.

1 to 20 asyncForeach {	
 i =>	
 println(" i = " + i)	
}	

9

Synchronized access - isolated

•  isolated { <stmt> }
•  Two tasks executing isolated statements with interfering

accesses must perform the isolated statement in mutual
exclusion

•  isolated statements can be nested (redundant)
•  support weak isolation, i.e. atomicity is guaranteed only

with respect to other statements also executing inside
isolated scopes

10

Parallel DFS - example

1.  object DepthFirstSearchApp extends HabaneroApp {	
2.  ...	
3.  finish { root.parent = root; root.compute() }	
4.  }	

5.  class Node() {	
6.  def tryLabelling(p: Node): Boolean = {	
7.  isolated {	
8.  if (parent eq null)	
9.  parent = p	
10.  }	
11.  (parent eq p)	
12.  }	

13.  def compute(): Unit = {	
14.  neighbors foreach { child =>	
15.  if (child.tryLabelling(this)) async {	
16.  child.compute()	
17.  } } } }	

11

Futures – Tasks with Return Values

•  asyncFuture[T] { <stmt> }
•  creates a new child task that executes <stmt>
•  parent task proceeds to operation following the async
•  return value of <stmt> must be of type T
•  asyncFuture expression returns a reference to a

container of type habanero.Future[T]	
•  aFuture.get() blocks if value is unavailable
•  aFuture.get() only waits for specified async

• Assignment of future references to final variables
guarantees deadlock freedom with get() operations

•  In addition, no data races are possible on future
return values

12

Futures – example

1.  def fib(n: Int): Int = {	
2.  if (n < 2) {	
3.  n	
4.  } else {	
5.  val x = asyncFuture {	
6.  fib(n - 1)	
7.  }	
8.  val y = asyncFuture {	
9.  fib(n - 2)	
10.  }	

11.  x.get() + y.get() 	
12.  }	
13.  }	

13

Data-Driven Futures (DDFs)

•  separation of classical “futures” into data (DDF) and
control (asyncAwait) parts

•  Operations:
•  ddf[T](): new instance using factory method
•  put(someValue): only a single put() is allowed on the DDF
•  asyncAwait(): declare data/control dependency in an async	
•  get(): returns the value associated with the DDF

•  Accesses to values inside the DDF are guaranteed
to be race-free and deterministic

14

DDF – Fib example

15

1.  finish {	
2.  val res = ddf[Int]()	
3.  async {	
4.  fib(N, res)	
5.  }	
6.  }	
7.  println("fib(" + N + ") = " + res.get())	

8.  def fib(n: Int, v: DataDrivenFuture[Int]): Unit = {	
9.  if (n < 2) { 	
10.  v.put(n)	
11.  } else {	
12.  val (res1, res2) = (ddf[Int](), ddf[Int]())	
13.  async {	
14.  fib(n - 1, res1)	
15.  }	
16.  async {	
17.  fib(n - 2, res2)	
18.  }	
19.  asyncAwait(res1, res2) {	
20.  v.put(res1.get() + res2.get())	
21.  } } }	

Phasers

•  Support Collective and Point-to-Point
synchronization

•  Tasks can register in
•  signal-only/wait-only mode for producer/consumer

synchronization

•  signal-wait mode for barrier synchronization
•  next operation is guaranteed to be deadlock-free
•  HJ programs with phasers, finish, async, async-

await (but not isolated) are guaranteed to be
deterministic if they are data-race-free

16

Phasers – Iterative Averaging example

1.  finish {	
2.  val myPhasers = Array.tabulate[Phaser](n + 2)(i => phaser())	
3.  for (index <- 1 to n) {	
4.  val (me, left, right) = (index, index – 1, index + 1)	
5.  val leftPhaser = myPhasers(left).inMode(PhaserMode.WAIT)	
6.  val selfPhaser = myPhasers(me).inMode(PhaserMode.SIG)	
7.  val rightPhaser = myPhasers(right).inMode(PhaserMode.WAIT)	

8.  asyncPhased(leftPhaser, selfPhaser, rightPhaser) {	
9.  for (iter <- 0 until N) {	
10.  val loopVal = 0.5 * (dataArray(left) + dataArray(right))	
11.  // Allow others to proceed and modify dataArray	
12.  next	
13.  // update the ‘owning’ element	
14.  dataArray(me) = loopVal	
15.  // notify others that value has been updated	
16.  next	
17.  } } } }	 17

Phaser Accumulators

•  A parallel reduction construct which separates
reduction computations into the parts of
•  sending data,
•  performing the computation itself, and
•  retrieving the result

•  Support two logical operations:
•  send(value): to send a value for accumulation in the

current phase
•  result(): to receive the accumulated value from the

previous phase

18

Sum Reduction example

19

1.  finish {	
2.  val ph = phaser()	
3.  val sumAccum = intAccumulator(Operator.SUM, ph)	

4.  for (i <- 1 to 30) asyncPhased(ph.inMode(PhaserMode.SIG)) {	
5.  sumAccum.send(i) 	
6.  sumAccum.send(i + 30) 	
7.  sumAccum.send(i + 60) 	
8.  }	

9.  asyncPhased(ph.inMode(PhaserMode.WAIT)) {	
10.  // wait for the tasks from for to complete	
11.  next	
12.  val resVal: Int = sumAccum.result()	
13.  println("Sum(1..90) = " + resVal)	
14.  }	
15.  }	

Places

•  Logical location where tasks are run
•  enables locality control and load balancing among

worker threads
•  async(<some-place>) { <stmt> } launches an

async at the specified place
•  Current place can be obtained by invoking here()	
•  Set of places are ordered and aPlace.next() and
•  aPlace.prev() may be used to cycle through them
•  System property, -Dhs.places p:w, allows the user

to specify how many places (p) and workers per
place (w) the runtime should be initialized with.

20

Actors and Async/Finish Tasks

21

•  Actors interact seamlessly with async and finish
compliant constructs in Habanero-Scala

•  Simplifies termination detection
•  wrap actors in a finish scope

•  Parallelize message processing inside actors
•  Two actor implementations:

•  compliant with Standard Scala actors, extend from
HabaneroActor instead of Actor

•  a more efficient implementation, that extends from the
HabaneroReactor class

Example of detecting Actor
Termination using finish

22

1.  object LightActorApp extends HabaneroApp {	
2.  finish {	
3.  val pong = new PongActor().start()	
4.  val ping = new PingActor(msgs, pong).start()	
5.  ping ! StartMessage()	
6.  }	
7.  println("Both actors terminated")	
8.  }	
9.  // class PingActor not displayed	
10.  class PongActor extends HabaneroActor {	
11.  var pongCount = 0	
12.  def act() {	
13.  loop { react {	
14.  case PingMessage =>	
15.  sender ! PongMessage	
16.  pongCount = pongCount + 1	
17.  case StopMessage =>	
18.  exit('stop)	
19.  } } } }	

Pause/Resume extension
for Actors

23

•  paused state
– actor will no longer process messages sent to it

•  new operations:
–  pause(): move from started to paused state
–  resume(): move from paused to started state

•  Pausing an actor prevents it from processing the
next message until it is resumed

Non-blocking receives

24

•  Simulates synchronous communication without
blocking

 1.  class ActorPerformingReceive extends HabaneroReactor {	
2.  override def behavior() = {	
3.  case msg: SomeMessage =>	
4.  ...	
5.  val theDdf = ddf[ValueType]()	
6.  anotherActor ! new Message(theDdf)	
7.  pause() // delay processing next message	
8.  asyncAwait(theDdf) {	
9.  val responseVal = theDdf.get()	
10.  // process the current message	
11.  ...	
12.  resume() // enable next message processing	
13.  }	
14.  // return in paused state	
15.  ... 	
16.  } }	

Stateless Actors

25

•  Actors with no state, can actively process multiple
messages without violating actor constraints

1.  class StatelessActor() extends Habanero-Rea/A-ctor {	
2.  ...	
3.  override def behavior() = {	
4.  case msg: SomeMessage =>	
5.  async { 	
6.  processMessage(msg) 	
7.  }	
8.  if (enoughMessagesProcessed) { 	
9.  exit() 	
10.  }	
11.  // return immediately to process next message	
12. } }	

Experimental Setup

26

•  12-core (two hex-cores) 2.8 GHz Intel Westmere
SMP

•  48 GB memory, running Red Hat Linux (RHEL 6.0)
•  Hotspot JDK 1.7
•  Scala version 2.9.1-1
•  Habanero-Scala 0.1.3
•  Arithmetic mean of last thirty iterations from

hundred iterations on ten separate JVM invocations

Sudoku – Constraint Satisfaction

27

•  measures cost of synchronization
•  Actors use Master-Worker style and perform similarly

•  Async-Isolated version 7% faster than the actor solutions,
about 10% faster than other HS solutions.

Chameneos Benchmark

28

•  Measures effects of contention – adding messages to mailbox
•  HS light actors performs best

Prime Sieve Benchmark

29

•  Example of a dynamic pipeline, good fit for actors.
•  HS places and thread binding benefits

Hierarchical Facility Location

30

•  Hybrid solution fastest, about 27% faster than any of the other Actor solutions

Summary
•  HS is a safe and powerful mid-level parallel language

•  programmers with a basic knowledge of Scala to get started quickly
with expressing a wide range of parallel patterns

•  Deadlock freedom for programs using finish, async, futures, phasers,
isolated

•  Data-race freedom for values accessed through futures and data-
driven futures

•  Simplifies writing actor programs

•  Runs on standard JRE’s and delivers good performance on
multicore SMPs

•  Available for download at:

 http://habanero-scala.rice.edu/
31

Acknowledgments

•  Habanero Group
– Vincent Cavé
– Dragos Sbirlea
– Sagnak Tasirlar

32

Thank you!

33 [image source: http://www.jerryzeinfeld.com/tag/question-of-the-day/]

