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Introduction 

•  Multi-core processors  
• → Software Concurrency Revolution 

• →  renewed interest in parallel programming 
models  

•  Goal: increase productivity of parallel programming 
by both simplifying and generalizing current parallel 
programming models 
•  Simplification → increase classes of developers who 

can write parallel programs 
•  Generalization → increase classes of applications 

that can be supported by a common model 2 



Inverted Pyramid of Parallel 
Programming Skills 
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Concurrency 
Experts 

Java threads, locks, etc. 

Focus of this talk 

CnC-Scala talk later today 

Focus of Rice 
Habanero Project 

http://habanero.rice.edu 



Habanero-Scala 

•  Scala integration of Habanero-Java features 
•  Habanero-Java 

•  developed at Rice University 
•  derived from Java-based version of X10 language 

(v1.5) in 2007 
•  targeted at parallelism-aware developers, not 

necessarily concurrency experts 
•  used in sophomore-level undergraduate course on 

“Fundamentals of Parallel Programming” at Rice 
•  https://wiki.rice.edu/confluence/display/PARPROG/COMP322  
•  Or search for “comp322 wiki” 
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Goals for this talk 

•  Task parallelism 
1.  Dynamic task creation & termination 

•  async, finish, forall, foreach 
2.  Mutual exclusion: isolated 
3.  Coordination 

•  futures, data-driven futures 
4.  Collective and P2P synchronization:  

•  phaser, next 
5.  Locality control for tasks and data: places 

•  Actor extensions and unification with task 
parallelism 
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Async and Finish 

•  async { <stmt> } 
•  creates a new child task that executes <stmt> 
•  parent task proceeds to operation following the async 
•  asyncSeq(<cond>) { S } ≡ if (<cond>) S else async { S } 

•  finish { <stmt> } 
•  execute <stmt>, but wait until all (transitively) spawned 

asyncs in <stmt>’s scope have terminated 
•  Implicit finish between start and end of main program 

•  Async-Finish programs cannot create a deadlock cycle 
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Async-Finish Example 
1.  // imports	
2.  object SeqApp extends App {	

3.    println("Task O")	
4.    	
5.      println("Task A")	

6.      println("Task B")	
7.        println("Task B1")	
8.        println("Task B2")	

9.    println("Task C")	

10.  }	
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Async-Finish Example (contd) 
1.  // imports	
2.  object ParApp extends HabaneroApp {	

3.    println("Task O")	
4.    finish {	
5.      async { 	
6.        println("Task A") 	
7.      }	
8.      async {	
9.        println("Task B")	
10.        async { println("Task B1") }	
11.        async { println("Task B2") }	
12.      }	
13.    }	
14.    println("Task C")	

15.  }	
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Forall and Foreach 

•  forall(start, end) { f(i) } ≡ 
   finish { for(i <- start until end) async { f(i) } } 

•  foreach(start, end) { f(i) } ≡ 
    for(i <- start until end) async { f(i) } 
•  scala.collection.Iterables support asyncForall and 

asyncForeach as extension methods 
•  E.g. 

1 to 20 asyncForeach {	
    i =>	
      println(" i = " + i)	
}	
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Synchronized access - isolated 

•  isolated { <stmt> } 
•  Two tasks executing isolated statements with interfering 

accesses must perform the isolated statement in mutual 
exclusion 

•  isolated statements can be nested (redundant) 
•  support weak isolation, i.e. atomicity is guaranteed only 

with respect to other statements also executing inside 
isolated scopes 
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Parallel DFS - example 

1.  object DepthFirstSearchApp extends HabaneroApp {	
2.    ...	
3.    finish { root.parent = root; root.compute() }	
4.  }	

5.  class Node() {	
6.    def tryLabelling(p: Node): Boolean = {	
7.      isolated {	
8.        if (parent eq null)	
9.          parent = p	
10.      }	
11.      (parent eq p)	
12.    }	

13.    def compute(): Unit = {	
14.      neighbors foreach { child =>	
15.          if (child.tryLabelling(this)) async {	
16.            child.compute()	
17.  } } } }	
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Futures – Tasks with Return Values 

•  asyncFuture[T] { <stmt> } 
•  creates a new child task that executes <stmt> 
•  parent task proceeds to operation following the async 
•  return value of <stmt> must be of type T 
•  asyncFuture expression returns a reference to a 

container of type habanero.Future[T]	
•  aFuture.get() blocks if value is unavailable 
•  aFuture.get() only waits for specified async 

• Assignment of future references to final variables 
guarantees deadlock freedom with get() operations 

•  In addition, no data races are possible on future 
return values 
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Futures – example 

1.   def fib(n: Int): Int = {	
2.      if (n < 2) {	
3.        n	
4.      } else {	
5.        val x = asyncFuture {	
6.          fib(n - 1)	
7.        }	
8.        val y = asyncFuture {	
9.          fib(n - 2)	
10.        }	

11.        x.get() + y.get()    	
12.      }	
13.    }	
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Data-Driven Futures (DDFs) 

•  separation of classical “futures” into data (DDF) and 
control (asyncAwait) parts 

•  Operations: 
•  ddf[T](): new instance using factory method 
•  put(someValue): only a single put() is allowed on the DDF   
•  asyncAwait(): declare data/control dependency in an async	
•  get(): returns the value associated with the DDF 

•  Accesses to values inside the DDF are guaranteed 
to be race-free  and deterministic 
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DDF – Fib example 
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1.  finish {	
2.    val res = ddf[Int]()	
3.    async {	
4.      fib(N, res)	
5.    }	
6.  }	
7.  println("fib(" + N + ") = " + res.get())	

8.  def fib(n: Int, v: DataDrivenFuture[Int]): Unit = {	
9.      if (n < 2) { 	
10.        v.put(n)	
11.      } else {	
12.        val (res1, res2) = (ddf[Int](), ddf[Int]())	
13.        async {	
14.          fib(n - 1, res1)	
15.        }	
16.        async {	
17.          fib(n - 2, res2)	
18.        }	
19.        asyncAwait(res1, res2) {	
20.          v.put(res1.get() + res2.get())	
21.  } } }	



Phasers 

•  Support Collective and Point-to-Point 
synchronization 

•  Tasks can register in 
•  signal-only/wait-only mode for producer/consumer 

synchronization  

•  signal-wait mode for barrier synchronization   
•  next operation is guaranteed to be deadlock-free 
•  HJ programs with phasers, finish, async, async-

await (but not isolated) are guaranteed to be 
deterministic if they are data-race-free 
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Phasers – Iterative Averaging example 

1.    finish {	
2.      val myPhasers = Array.tabulate[Phaser](n + 2)(i => phaser())	
3.      for (index <- 1 to n) {	
4.        val (me, left, right) = (index, index – 1, index + 1)	
5.        val leftPhaser = myPhasers(left).inMode(PhaserMode.WAIT)	
6.        val selfPhaser = myPhasers(me).inMode(PhaserMode.SIG)	
7.        val rightPhaser = myPhasers(right).inMode(PhaserMode.WAIT)	

8.        asyncPhased(leftPhaser, selfPhaser, rightPhaser) {	
9.          for (iter <- 0 until N) {	
10.            val loopVal = 0.5 * (dataArray(left) + dataArray(right))	
11.            // Allow others to proceed and modify dataArray	
12.            next	
13.            // update the ‘owning’ element	
14.            dataArray(me) = loopVal	
15.            // notify others that value has been updated	
16.            next	
17.    } } } }	 17 



Phaser Accumulators 

•  A parallel reduction construct which separates 
reduction computations into the parts of  
•  sending data,  
•  performing the computation itself, and  
•  retrieving the result  

•  Support two logical operations:  
•  send(value): to send a value for accumulation in the 

current phase 
•  result(): to receive the accumulated value from the 

previous phase 
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Sum Reduction example 
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1.    finish {	
2.      val ph = phaser()	
3.      val sumAccum = intAccumulator(Operator.SUM, ph)	

4.      for (i <- 1 to 30) asyncPhased(ph.inMode(PhaserMode.SIG)) {	
5.        sumAccum.send(i) 	
6.        sumAccum.send(i + 30) 	
7.        sumAccum.send(i + 60)    	
8.      }	

9.      asyncPhased(ph.inMode(PhaserMode.WAIT)) {	
10.       // wait for the tasks from for to complete	
11.       next	
12.       val resVal: Int = sumAccum.result()	
13.       println("Sum(1..90) = " + resVal)	
14.     }	
15.   }	



Places 

•  Logical location where tasks are run 
•  enables locality control and load balancing among 

worker threads 
•  async(<some-place>) { <stmt> } launches an 

async at the specified place 
•  Current place can be obtained by invoking here()	
•  Set of places are ordered and aPlace.next() and  
•  aPlace.prev() may be used to cycle through them 
•  System property, -Dhs.places p:w, allows the user 

to specify how many places (p) and workers per 
place (w) the runtime should be initialized with.  
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Actors and Async/Finish Tasks 
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•  Actors interact seamlessly with async and finish 
compliant constructs in Habanero-Scala 

•  Simplifies termination detection 
•  wrap actors in a finish scope 

•  Parallelize message processing inside actors 
•  Two actor implementations: 

•  compliant with Standard Scala actors, extend from 
HabaneroActor instead of Actor 

•  a more efficient implementation, that extends from the 
HabaneroReactor class 



Example of detecting Actor 
Termination using finish 
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1.  object LightActorApp extends HabaneroApp {	
2.    finish {	
3.      val pong = new PongActor().start()	
4.      val ping = new PingActor(msgs, pong).start()	
5.      ping ! StartMessage()	
6.    }	
7.    println("Both actors terminated")	
8.  }	
9.  // class PingActor not displayed	
10.  class PongActor extends HabaneroActor {	
11.    var pongCount = 0	
12.    def act() {	
13.      loop { react {	
14.          case PingMessage =>	
15.            sender ! PongMessage	
16.            pongCount = pongCount + 1	
17.          case StopMessage =>	
18.            exit('stop)	
19.  } } } }	



Pause/Resume extension 
for Actors 
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•  paused state 
– actor will no longer process messages sent to it 

•  new operations: 
–  pause(): move from started to paused state 
–  resume(): move from paused to started state 

•  Pausing an actor prevents it from processing the 
next message until it is resumed 



Non-blocking receives 
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•  Simulates synchronous communication without 
blocking 

 

 1.  class ActorPerformingReceive extends HabaneroReactor {	
2.    override def behavior() = {	
3.      case msg: SomeMessage =>	
4.        ...	
5.        val theDdf = ddf[ValueType]()	
6.        anotherActor ! new Message(theDdf)	
7.        pause() // delay processing next message	
8.        asyncAwait(theDdf) {	
9.          val responseVal = theDdf.get()	
10.          // process the current message	
11.          ...	
12.          resume() // enable next message processing	
13.        }	
14.        // return in paused state	
15.      ...  	
16.  } }	



Stateless Actors 
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•  Actors with no state, can actively process multiple 
messages without violating actor constraints  

 

 

1.  class StatelessActor() extends Habanero-Rea/A-ctor {	
2.    ...	
3.    override def behavior() = {	
4.      case msg: SomeMessage =>	
5.        async { 	
6.          processMessage(msg) 	
7.        }	
8.        if (enoughMessagesProcessed) { 	
9.          exit() 	
10.       }	
11.       // return immediately to process next message	
12. } }	



Experimental Setup 
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•  12-core (two hex-cores) 2.8 GHz Intel Westmere 
SMP  

•  48 GB memory, running Red Hat Linux (RHEL 6.0) 
•  Hotspot JDK 1.7 
•  Scala version 2.9.1-1 
•  Habanero-Scala 0.1.3 
•  Arithmetic mean of last thirty iterations from 

hundred iterations on ten separate JVM invocations 



Sudoku – Constraint Satisfaction 
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•  measures cost of synchronization 
•  Actors use Master-Worker style and perform similarly 

•  Async-Isolated version 7% faster than the actor solutions,  
about 10% faster than other HS solutions. 



Chameneos Benchmark 
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•  Measures effects of contention – adding messages to mailbox 
•  HS light actors performs best 



Prime Sieve Benchmark 
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•  Example of a dynamic pipeline, good fit for actors. 
•  HS places and thread binding benefits 



Hierarchical Facility Location 
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•  Hybrid solution fastest, about 27% faster than any of the other Actor solutions 



Summary 
•  HS is a safe and powerful mid-level parallel language 

•  programmers with a basic knowledge of Scala to get started quickly 
with expressing a wide range of parallel patterns 

•  Deadlock freedom for programs using finish, async, futures, phasers, 
isolated 

•  Data-race freedom for values accessed through futures and data-
driven futures 

•  Simplifies writing actor programs 

•  Runs on standard JRE’s and delivers good performance on 
multicore SMPs 

•  Available for download at:  

  http://habanero-scala.rice.edu/ 
31 



Acknowledgments 

•  Habanero Group 
– Vincent Cavé   
– Dragos Sbirlea 
– Sagnak Tasirlar 

32 



Thank you! 

33 [image source: http://www.jerryzeinfeld.com/tag/question-of-the-day/] 


