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Abstract—As the scale of high performance computing sys-
tems grows, three main challenges arise: the programmability,
reliability, and energy efficiency of those systems. Accomplishing
all three without sacrificing performance requires a rethinking
of legacy distributed programming models and homogeneous
clusters. In this work, we integrate Hadoop MapReduce with
OpenCL to enable the use of heterogeneous processors in a
distributed system. We do this by exploiting the implicit data-
parallelism of mappers and reducers in a MapReduce system.
Combining Hadoop and OpenCL provides 1) an easy-to-learn
and flexible application programming interface in a high level
and popular programming language, 2) the reliability guarantees
and distributed filesystem of Hadoop, and 3) the low power
consumption and performance acceleration of heterogeneous
processors. This paper presents HadoopCL: an extension to
Hadoop which supports execution of user-written Java kernels
on heterogeneous devices, optimizes communication through
asynchronous transfers and dedicated I/O threads, automatically
generates OpenCL kernels from Java bytecode using the open
source tool APARAPI, and achieves nearly 3x overall speedup
and better than 55x speedup of the computational sections for
example MapReduce applications, relative to Hadoop.

I. INTRODUCTION

As hardware becomes more affordable, the scale of dis-
tributed systems and the range of applications used on them
is rapidly increasing. Large clusters of machines are being
used for data-intensive and high performance applications in
science, finance, and medicine. The scale of these systems is
not the only thing increasing. Heterogeneous systems which
combine both a CPU and GPU [1] to gain advantages in
performance and energy efficiency for suitable classes of
applications have increased the complexity of large scale sys-
tems. As the use of these heterogeneous, distributed systems
broadens they have come into the use domain of software
developers whose skills and experience vary widely. This
increases the burden on programmers to achieve efficient
execution for their workloads, hence the need for expressive
and efficient programming environments.

A. Challenges to High Performance in Large Scale and Het-
erogeneous Systems

One challenge with ever-growing systems is the dramatic
increase in complexity. Programmers not only need to dis-

tribute their workloads across cores and be aware of intra-
node issues such as cache misses and thread-level parallelism,
but also be conscious of system level issues during inter-node
parallelization. Without awareness of these factors and their
effect on each other, performance suffers. The added layer of
complexity from multi-node execution makes conceptualizing
a system much more difficult for developers. This problem
is exacerbated when designing applications that may need
to run on multiple different systems with different processor
architectures and interconnect topologies.

Closely related to complexity is programmability. Pro-
grammability measures the ability of a programmer to express
their logic without solving problems unrelated to the actual
task being performed (such as network bandwidth utilization
or load balancing). In many existing distributed programming
models (such as MPI), programmers are forced to perform ex-
plicit transfers between processes and use an additional thread-
level programming model, such as OpenMP. Programmers also
need to take into account the distinct processing requirements
of their workloads and adapt them to the architectures in het-
erogeneous systems. This approach not only adds difficulties
for the programmer, but also produces code that must be re-
tweaked for every new platform it is used on. As systems
become larger and more complex, even the tried-and-true
programming models will cease to be sufficient for efficient
execution, in terms of both programmability and performance.
New programming models which use higher abstractions to
hide complexity without restricting freedom of expression are
necessary.

Another challenge in large scale systems which has received
interest lately is reliability. As systems scale up, the time
between hardware failures will decrease. Therefore, it is neces-
sary to detect these failures and adapt around them at runtime
without wasting execution time or unnecessarily terminating
jobs. Reliability was the main driver for constructing our
system, HadoopCL, on top of Hadoop. Hadoop has a robust
job management system which uses replication and error
detection to schedule around failures.

Finally, energy efficiency is a major concern with large
scale systems. The combined cost of powering and cooling the
hardware will make increasing beyond existing cluster sizes



infeasible. Power-efficient processors consume less energy,
produce less heat, and as a result make running larger sys-
tems feasible. Using power-efficient processors often implies
adding heterogeneity to a system, increasing its complexity
and decreasing programmability. This work addresses energy
efficiency by offloading computation to GPUs, though we
lacked the infrastructure to directly measure energy efficiency.

Complexity, programmability, reliability, and energy con-
sumption all represent significant obstacles to achieving high
performance and data throughput in distributed systems. This
work presents modifications to the existing Hadoop distributed
system which improve on performance and energy consump-
tion by executing the computation of a Hadoop MapReduce
job on heterogeneous processors without sacrificing the ex-
isting benefits of Hadoop. The contributions of HadoopCL
include:

1) Extension of Hadoop Mapper and Reducer classes to
support execution of user-written Java kernels on hetero-
geneous devices, with a focus on minimizing required
modifications for legacy code.

2) The use of dedicated communication threads and asyn-
chronous communication to maximize utilization of
available bandwidth and limit blocking on communica-
tion.

3) Automatic translation of Java bytecode to OpenCL ker-
nels using APARAPI [2], and extensions to APARAPI’s
existing features.

4) Evaluation of HadoopCL’s performance in two multi-
node clusters containing multi-core CPUs, GPUs, and
APUs (CPU & GPU on a die with physically shared
memory).

B. Hadoop

One of the industry leaders in addressing some of the
issues in large scale systems as described in Section I-A is
Hadoop [3], built based on Google’s MapReduce [4] model
and distributed file system. Hadoop is a Java-based system
which provides reliability guarantees, reduces the software
complexity perceived by the programmer, and provides an
easily programmable interface in a popular programming
language.

The MapReduce model contains two high-level compu-
tational stages: map and reduce. In the map stage, input
(key,value) pairs are passed to a mapper which generates 0 or
more output (key,value) pairs. These (key,value) pairs output
from the mapper act as input to the reducer stage. In the reduce
stage, outputs of the map stage which share the same key are
passed to the same reducer. The reducer then generates 0 or
more (key,value) pairs based on this input as the final output of
the job. Both the map and reduce computation are therefore
implicitly data parallel across (key,value) pairs and have no
data-dependencies across inputs, trivially mapping to many-
or multi-core hardware.

While Hadoop is popular for its simplicity, it also demon-
strates inefficiencies which decrease its usefulness for certain

problems due to sub-par computational performance and net-
work utilization. Mapper and reducer tasks run inside of poten-
tially short-lived Java virtual machines. Creating, managing,
and executing inside these JVMs incurs processor and memory
overhead and may reduce the effectiveness of JIT compilation.
However, using separate JVMs provides a significant reliability
advantage by isolating the Hadoop system from mapper and
reducer failures. Using JVMs also provides the programmer
with a powerful programming language and useful libraries
to work with. Therefore, it is important to optimize the
performance of these JVMs. Additionally, Hadoop includes
a distributed file system, HDFS. Our own evaluations show
that HDFS I/O operations consume a significant percentage of
total execution time in most applications, but HDFS provides
data reliability via replication as well as a number of other
desirable features. As a result, optimizing communication to
and from HDFS is important for improved performance.

C. OpenCL & APARAPI

OpenCL [5] is an industry standard, SIMD, heterogeneous
programming platform, tackling many of the same problems as
Hadoop but with a different approach. While OpenCL is not
a distributed programming model, it addresses many of the
programmability issues of working in heterogeneous systems
by providing a standard API for different architectures. This
decreases the complexity visible to the programmer and makes
code easily portable between different processor architectures
(CPUs, GPUs, APUs, etc).

OpenCL uses a hierarchical, batched threading model.
Threads are grouped into thread groups, which share some
local memory and are able to synchronize with each other.
Generally, multiple thread groups are launched in a single
kernel invocation by an OpenCL programmer. All threads in
a single thread invocation execute the same kernel, just as the
same function is applied to all inputs in the map and reduce
stages of a Hadoop job. OpenCL also has a separate address
space from the host program, and requires explicit writes and
reads into this conceptually (and possibly physically) separate
memory.

APARAPI [2] is an open source tool developed at AMD
which provides JIT compilation of Java bytecode to OpenCL
kernels and execution of those kernels on the heterogeneous
devices available in an OpenCL platform. It only supports
a subset of the bytecode specification, most notably not
supporting any objects but this and only allowing primitive
types or single-dimensional arrays of primitives to be used in
the kernel. Otherwise, compilation and execution of OpenCL
kernels is efficient and straightforward. APARAPI handles
kernel translation, OpenCL memory allocation, data transfers,
and kernel invocation completely transparent to the Java
programmer. In short, APARAPI provides a quick path from
executing inside a JVM to executing in native threads on
heterogeneous devices.



II. APPROACH

This section will cover the techniques and algorithms used
in executing Hadoop Mappers and Reducers on heterogeneous
hardware.

A. Heterogeneous Mapper and Reducer

As described in Section I-B, the computation in Hadoop
jobs is encapsulated in user-implemented mappers and re-
ducers. Mappers transform an input (key,value) pair to zero
or more output (key,value) pairs. Reducers take as input the
outputs of the mappers as (key,value-list) pairs, where the
value list is composed of all values associated with the same
key in the output of the mappers. Reducers then generate an
output of 0 or more (key,value) pairs. Mappers and reducers
are therefore inherently data parallel, and exhibit high degrees
of parallelism for data intensive applications.

The main contribution of this work is heterogeneous map-
pers and reducers which, when extended, automatically:

1) Execute user-written map and reduce computation na-
tively on all available devices in a platform.

2) Use multiple input and output buffers, dedicated commu-
nication threads, and asynchronous kernel execution to
maximize utilization of disk and inter-device bandwidth.

Figure 1 is a high-level system diagram of the HadoopCL
system contained in a single node. The TaskRunner manages
the spawning of child JVMs within a node, which execute the
mapper and reducer computation isolated from the Hadoop
sytem. TaskRunner is mostly unmodified, but is responsible
for tracking device usage and assigning a device to each JVM
as it is spawned based on a device management algorithm.

Fig. 1. System diagram for HadoopCL.

Each Child JVM is assigned a single HDFS chunk of keys
and values for processing. These Child JVMs can execute
either map or reduce computation, and much of the HadoopCL
runtime implementation is shared between heterogeneous
mappers and reducers. Each Child JVM contains two Java
threads with different responsibilities. The main Java thread is
responsible for

1) Reading and buffering input keys and values from the
input HDFS chunk.

2) Enqueueing the asynchronous OpenCL commands to 1)
copy buffered data to the assigned device, 2) launch an

asynchronous mapper or reducer kernel to operate on
that input, and 3) retrieve the output of the kernel from
the device when the buffer is full.

3) Feeding the generated outputs to a dedicated communi-
cation thread.

Pseudocode for the algorithm executed by the main thread
can be found in Algorithm 1 below. The child communication
thread is responsible for receiving output data from devices
and writing it back into the HDFS system. The child thread
uses a concurrent queue containing buffers of output data. This
queue is fed by the main thread and read by the child thread.
While only two buffers are shown in use in Algorithm 1, in
practice more than two buffers are used. This leads to potential
accumulation of buffers in the input queue to the I/O thread.

initialize buffers;
while have remaining input (key,value) pairs do

if buffers[preparing] is full then
wait for processing of buffers[executing];
launch kernel on buffers[preparing];
hand off buffers[executing] to child I/O thread;
swap preparing and executing buffers;

end
add current (key,value) to buffers[preparing];

end
Algorithm 1: Algorithm executed by main thread in each
Child JVM.

Using asynchronous kernel launches, asynchronous copies
to device memory, and a dedicated I/O thread maximizes the
overlap of computation and communication, keeps the network
and device bandwidth utilized, and prevents the main thread
from blocking on most operations.

B. Heterogeneous Execution of JIT Compiled OpenCL Kernels

HadoopCL relies on APARAPI [2], an independently devel-
oped tool, to translate the bytecode compiled from user-written
Java to OpenCL kernels. OpenCL kernel code is generated for
both the user-written map and reduce functions, as well as for
HadoopCL glue code which passes keys and values into the
user-written functions. The HadoopCL glue code is written
in such a way as to change its own memory access patterns
and loop iteration chunking for optimal performance on the
executing architecture. It currently supports optimizations for
GPUs and multi-core CPUs.

In order to fully support this work, APARAPI was extended
to support asynchronous kernel execution. This extension
was achieved by modifying the APARAPI C++ runtime to
store references to OpenCL events which are satisfied by
completion of processing a certain buffer. A unique integer ID
is associated with each event. These unique IDs are returned to
the APARAPI Java runtime through JNI, where they are stored
in a FIFO queue. In order to wait on the kernel which was
launched furthest in the past and is therefore the most likedly
to have already completed the next ID in the queue is removed
from the front, passed to the APARAPI C++ runtime, and



used to find the correct OpenCL event to wait on in order to
ensure that execution has completed. This enables concurrent
execution of kernels on all devices available in a platform.

C. Programming Framework

One of the main benefits of Hadoop is its programmability.
It derives this programmability from the high-level abstrac-
tions of MapReduce and the use of Java as a high-level
language. While the primary goal of HadoopCL is improved
performance, it is important to consider the impact these
modifications have on the programming model’s flexibility for
developers.

The use of APARAPI places some limitations on the set of
the Java language constructs that can be used within mappers
and reducers. APARAPI cannot translate arbitrary programs.
It does not support references to arbitrary objects and only
supports variables with primitive or primitive array types.
There is support for translation of some of the more useful Java
librariy calls, such as those in java.util.Math. These limitations
mean that many Java mappers or reducers will need to go
through some modifications to be usable in the HadoopCL
framework. However, the resulting code will still be written
in (a subset of) standard Java.

For copying arrays of primitives to and from the
device, APARAPI uses a number of type-specific
methods. For instance, Kernel.put(int[] arr)
and Kernel.get(int[] arr) are used to copy integer
arrays. This conflicts with Hadoop’s extensive use of generics,
and means that the types of input keys and values must be
known at compile time for mappers and reducers that are
to be executed as OpenCL kernels. As a result the generic
Hadoop Mapper and Reducer classes are replaced by a
number of auto-generated, type-specific HadoopCL Mapper
and Reducer classes which can be automatically replaced by
OpenCL. For instance, extending Mapper<IntWritable,
FloatWritable,IntWritable,FloatWritable>
in Hadoop would be translated to extending
IntFloatIntFloatHadoopCLMapperKernel in
HadoopCL. Because these type-specific OpenCL mapper
and reducer classes are formulaic, auto-generating them for
arbritrary combinations of key and value types is trivial (while
keeping in mind APARAPI only supports a subset of Java
types). However, HadoopCL includes support for commonly
used object types, such as pairs or triples of primitives,
and generates the glue code for converting these objects to
primitive arrays which APARAPI is capable of translating to
OpenCL.

OpenCL does not support dynamic memory allocation.
This implies that HadoopCL must preallocate all memory
for mapper/reducer output keys and values before launching
kernels. The developer must provide the framework with a
limit on the number of output (key,value) pairs that will
be generated from any input pairs passed to mappers and
reducers. This value is then used to calculate the required size
of preallocated memory. Future work would expand on this
approach to make it more flexible for applications which may

generate unbalanced numbers of output (key,value) pairs from
different inputs to prevent over-allocation. In our experience,
this requirement does not hinder application development.

As a case study to concretize the differences described
above, let us compare the Hadoop and HadoopCL imple-
mentations of the mapper computation from a Pi benchmark
which approximates the value of pi using randomly generated
numbers. The original implementation is below:

class PiJavaMapper extends
Mapper<DoubleWritable, DoubleWritable,

IntWritable, IntWritable> {

public void map(DoubleWritable key,
DoubleWritable value,

Context context)
throws IOException,

InterruptedException {
double x = key.get() - 0.5;
double y = value.get() - 0.5;

if(x * x + y * y > 0.25) {
context.write(new IntWritable(0),

new IntWritable(1));
} else {

context.write(new IntWritable(1),
new IntWritable(1));

}
}

}

The HadoopCL-compatible Java implementation is as fol-
lows:

class PiCLMapper extends
DoubleDoubleIntIntHadoopCLMapperKernel {

protected void map(double key,
double val) {

double x = key - 0.5;
double y = val - 0.5;

if(x * x + y * y > 0.25) {
write(0, 1);

} else {
write(1, 1);

}
}

public int getOutputPairsPerInput() {
return 1;

}
}

As described in the text above, the main differences are:

1) Extension of DoubleDoubleIntIntHadoopCL
MapperKernel instead of Mapper<
DoubleWritable,DoubleWritable,
IntWritable,IntWritable>

2) A different map signature, map(double,
double) instead of map(DoubleWritable,
DoubleWritable, Context)

3) A replacement write method which writes to the pre-
allocated output array, replacing context.write().



4) The addition of getOutputPairsPerInput(),
which the application developer uses to indicate to
HadoopCL the maximum number of outputs that will
be emitted per input. This is used for output array
preallocation.

III. RELATED WORK

There have been several previous investigations of using
GPUs to accelerate MapReduce frameworks.

HAPI[6] is a simpler implementation of heterogeneous
MapReduce which also uses APARAPI to transfer the compu-
tationally intensive parts of a Hadoop job to the GPU, but only
applies to mappers. HAPI provides a heterogeneous mapper
class, which includes preprocess(), gpu(), and postprocess()
methods that must be implemented by application developers.
Preprocess() translates input objects to HAPI specific objects
which it is able to convert for use by APARAPI. Gpu() is the
compute intensive part of map computation which is executed
on the device. Postprocess() translates the output objects to
Hadoop objects and outputs them to the Hadoop system. While
the basic approach is similar, HAPI requires much more non-
application code to be written by the developer (in a 50
line example presented in this paper, the actual computational
kernel takes up only 3 lines) and separates out the application
code into three separate methods. HadoopCL uses much more
auto-generated code to provide more flexibility to and require
less glue code from the application developer. While 80x
speedup is achieved from an NBody benchmark, evaluation
is only done on a single node which ignores network com-
munication overheads, a significant part of real-world Hadoop
jobs. There is no current support for multi-devices in HAPI,
and the implementation leaves most of the CPU idle, using a
single core to manage a single GPU. HadoopCL automatically
utilizes all OpenCL devices in a platform, taking into account
device type by optimizing memory accesses and loop chunking
on the device.

[7] presents a single-node MapReduce Framework. While
not built on Hadoop, it executes user-written mapper and
reducer CUDA kernels on a GPU and so is able to avoid the
problem of automated kernel generation. It also uses parallel
reduction on the GPU to improve reducer performance, an
optimization which could be added to HadoopCL in future
work. The main difference between this work and HadoopCL
are that HadoopCL 1) is multi-node and deals with commu-
nication challenges as a result, 2) cleanly integrates into the
existing Hadoop framework, 3) uses APARAPI to translate
Java kernels rather than requiring complete rewrites of existing
kernels. In general, HadoopCL is applicable to a larger set of
data-intensive applications due to its distributed nature, and
enables more rapid porting of existing Hadoop applications.

GPMR [8] presents a high performance, standalone dis-
tributed mapreduce implementation in C++ and CUDA which
uses the GPUs to execute mappers, reducers, and a number of
intermediate stages added to the MapReduce pipeline. These
intermediate stages take advantage of the GPU’s parallelism
to minimize inter-node communication. Similar to our work,

Map In Map Out/Reduce In Reduce Out
Pi (double,double) (int,int) (int,int)

Blackscholes (int,float) (int,float) (int,float)
KMeans (double,double) (int,pair) (double,double)

Sort (long,long) (int,long) (int,long)

TABLE I
INPUT AND OUTPUT TYPES FOR EACH BENCHMARK

much of the work presented in this paper is on optimizing
or hiding communication. Several substages are added to the
MapReduce pipeline to minimize communication costs, in
a way that wouldn’t be possible in HadoopCL because of
its construction on top of Hadoop. They support data sets
that do not fit into a single GPU’s memory, a feature that
was a design consideration in HadoopCL from the start.
This work tries to expose many features of CUDA (such
as local synchronization) to the application developer, which
HadoopCL does not permit. GPMR also supports multiple
GPUs per node with dedicated processes for each GPU,
similar to HadoopCL. However, no application computation
is executed on the CPU which may lead to underutilized
hardware, something HadoopCL does support.

Mars [9] is another standalone MapReduce implementation,
with added-in support for execution on GPUs. This work
predates and is similar to GPMR, but only supports execution
on a single GPU, does not consider inputs that do not fit into
a single GPU’s memory, and places more restrictions on the
feature set in CUDA that is exposed to application developers.
As with the framework presented in [7] and GPMR [8], Mars
application code is written in low level CUDA or C++, rather
than Java.

Chen et al [10] [11] did work on advanced optimizations to a
MapReduce implementation executing on a heterogeneous ar-
chitecture including modifications to the MapReduce schedul-
ing algorithm, improvements in usage of GPU scratchpad
memory, intermediate/immediate reduction, and runtime tun-
ing. The evaluations in these papers show good load balancing
and speedups of up to 28.68× relative to sequential execution.
While the implementation and performance evaluations in this
paper were not done on top of Hadoop, many of the ideas
could be used to improve HadoopCL performance in future
work.

IV. EXPERIMENTAL SETUP

To evaluate HadoopCL’s performance, we use 4 bench-
marks: Pi, KMeans, Sort, and Blackscholes. Though small in
size, these benchmarks are representative of high-performance
data-intensive computing. This section will describe the func-
tion and implementation of each benchmark as well as the
methodology used in gathering results.

A. Pi

The Pi implementation used in this work is based on the
example provided with Hadoop. Pi is a common Hadoop
benchmarking workload which estimates the value of pi by



randomly placing 2D points and classifying them as inside or
outside the unit circle.

The map computation takes as input a pair of Doubles,
representing the 2D coordinates of a point. It calculates this
point as either inside or outside the unit circle, and outputs two
integers. The first integer indicates whether the point is inside
the circle (0 or 1). The second integer is always 1, indicating
that this is the data for a single 2D point.

The reduce computation counts the number of values asso-
ciated with each key (in Pi there are only two reduce input
keys, 0 and 1) and outputs an accumulated sum. Once the
Hadoop job has completed, it is trivial to check the results
against the true value of pi.

400,000,000 2D points were used as input to all Pi jobs in
the results.

B. KMeans

KMeans is an iterative clustering algorithm and also a
common Hadoop benchmarking workload. In our tests, we
applied KMeans to 2D points whose coordinates were double
floating point values.

The map stage of kmeans takes a pair of Doubles, rep-
resenting a 2D point. The map function iterates through the
current known centroids and finds the closest centroid to the
input point. Finally, it outputs an integer indicating the closest
cluster/centroid, and a pair containing the coordinates of the
point.

The reduce stage of kmeans consumes all of the points
which have been classified as belonging to a certain cluster,
and recalculates the centroid of the cluster by finding the point
which is closest to the average of all points’ positions. The new
centroid is then output as a pair of doubles.

The implementation of KMeans required adding the abil-
ity to retrieve global data from arbitrary devices. This was
accomplished by allowing the creation of specially named
system properties whose values are automatically interpreted
as floating point and made accessible from OpenCL kernels.

In our tests, a single iteration of the KMeans algorithm is
tested on 20,000,000 points and 10,000 clusters.

C. Blackscholes

Blackscholes is a common data-parallel financial applica-
tion, but is not generally executed in Hadoop because it has
essentially no required reduction.

The map stage takes as input a unique integer ID and
floating point value. The Blackscholes financial algorithm is
executed on the input value. Then two pairs are output: the
integer ID paired with a put value, and the integer ID paired
with the call value.

The reduce stage is essentially a no-op, simply passing the
outputs of the map stage as the final output of the job.

In the Blackscholes tests, 401920000 input pairs were used.

D. Sort

Our sort benchmark is a distributed radix sort of 64-bit long
integers, which maps well to MapReduce.

The map stage takes as input a pair of longs, both of which
are values to be sorted. It outputs a radix for each paired with
the input value. In our implementation we use the top 32 bits
of each 64-bit long as the radix.

The reduce stage then performs a local sort on all values
which share a radix and outputs the sorted results.

In these distributed sort tests 400,000,000 values are sorted.

E. Methodology

Results were gathered on two heterogeneous clusters, the
DAVINCI cluster at Rice University and an AMD APU cluster
at AMD-Austin.

Each node in DAVINCI contains two six-core Intel X5660
CPUs running at 2.80GHz and two discrete NVIDIA Tesla
M2050 GPUs, connected by PCIe. Each GPU has access to
2.5GB of global memory. There is 48GB of system memory
accessible from the CPUs. All tests were run using two nodes
in the cluster: 1 NameNode and 1 DataNode.

Each node in the AMD APU cluster contains a single AMD
A10-5800K APU (3.8Ghz) with Radeon(tm) HD Graphics
on an ASUS FM2-A85XA-G65 motherboard with 16GB of
RAM. The interconnect for these nodes is 1Gb Ethernet.
Tests in the AMD APU cluster were run using 2 nodes (like
DAVINCI) and 10 nodes.

Each test on the DAVINCI cluster at Rice University was
run 5 times. Each test on the AMD APU cluster was run
3 times. The minimum time for each system (Hadoop and
HadoopCL) is reported in our results. OpenCL v1.2 and Java
Hotspot v1.6.0 25 were used. For OpenCL, 196 threads per
thread group were used on the multi-core CPU and 256 threads
per thread group on the GPU. For tests with Hadoop, an HDFS
chunk size of 64MB was used. For tests with HadoopCL, an
HDFS chunk size of 256MB was used. The larger chunk size
for HadoopCL reflects the fact that individual Child JVMs in
Hadoop are generally only responsible for keeping a single
CPU core occupied, while HadoopCL Child JVMs feed an
entire device. These values were arrived at after evaluating
several different configurations for Hadoop and HadoopCL.

As results were collected, we were able to quickly draw
the conclusion that I/O was a major bottleneck for some of
these applications. The I/O bottleneck became more apparent
with OpenCL-accelerated computation. As a result, tests on
DAVINCI were also run in Hadoop and HadoopCL with
compression enabled for the initial inputs in HDFS and
the intermediate outputs of the mapper stage. These tests
were run with all of the same parameters and configurations
as uncompressed tests. While many different compression
codecs can be used in Hadoop, exhaustive tests with the Sort
benchmark on the BZip2, GZip, Default, Snappy, and LZO
codecs indicated that the best combination was to use the
Default(ZLib) compression codec for the initial inputs, and
LZO compression for the mapper outputs. Though further
investigation may reveal different optimal combinations for the
other benchmarks, time constraints meant that all compression
tests were run with these codecs.



Benchmark Speedup w/o compression Speedup w/ compression
Pi 1.50x 2.41x

Blackscholes 2.47x 2.91x
KMeans 2.25x 2.74x

Sort 1.54x 1.49x

TABLE II
OVERALL SPEEDUP OF THE HADOOPCL IMPLEMENTATION OF THE

BENCHMARKS ON THE DAVINCI CLUSTER WITH AND WITHOUT
COMPRESSION, RELATIVE TO HADOOP WITHOUT COMPRESSION.

Benchmark Speedup on 2 nodes Speedup on 10 nodes
Pi 1.53x 3.79x

Blackscholes 1.25x 1.38x
KMeans 2.07x 5.05x

Sort 1.07x 0.90x

TABLE III
OVERALL SPEEDUP OF THE HADOOPCL IMPLEMENTATION OF THE

BENCHMARKS ON THE AMD APU CLUSTER USING 2 AND 10 NODES,
RELATIVE TO HADOOP ON 2 NODES.

V. RESULTS

In this section we present performance results of the bench-
marks described in Section IV and perform more detailed
analysis to explain the reasons for performance improvement
or loss.

A. Overall Performance

The overall performance of all applications tested on the
DAVINCI cluster running in Hadoop and HadoopCL with and
without compression is shown in Figure 2. Table II shows
the actual speedups achieved on DAVINCI using HadoopCL
with and without compression. These measurements include
overhead from all network and inter-device I/O.

On the AMD APU cluster, tests were only run without
compression but were run on both 2 and 10 nodes. The results
are shown in Figure 3, and actual speedup values are in
Table III.
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We studied more detailed metrics on DAVINCI for the
applications with consistently best and worst performance
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Fig. 3. Overall speedup of all benchmarks on the AMD APU cluster without
compression, normalized to Hadoop without compression.

relative to Hadoop. All of the below tests were gathered
without compression enabled.

HadoopCL demonstrated the worst relative performance on
the distributed sort benchmark. We observed that removing
all computation from the Sort benchmark but producing the
same communication patterns led to near-identical perfor-
mance in HadoopCL, and only a drop in execution time of
10-20% on Hadoop. In addition we can observe that adding
compression to Hadoop Sort caused execution time to nearly
match HadoopCL performance. From this, we are able to
conclude that 1) the Sort benchmark is I/O bound and the
benefits of improved computation are therefore negligible, and
2) as expected the overheads in HadoopCL have increased
relative to Hadoop though the I/O optimization strategies
seem to be effective and the cause of any Sort speedup. The
increased overhead in HadoopCL is most likely caused by the
added communication between discrete devices and overhead
incurred from APARAPI’s translation mechanism.

KMeans’s performance was also investigated. Kmeans
demonstrated a speedup of 2.25x without compression and
2.74x with compression on DAVINCI. The command line tools
’ps’ and ’nvidia-smi’ were used to collect statistics on CPU
and GPU utilization in the child node for a larger input size.
The collected data can be seen in Figure 4. Note that the time
scales start at 4000 seconds. Prior to that, no activity was
seen in the node. We infer this to mean that time was entirely
spent performing I/O. Figure 4(a) shows that Hadoop is able
to keep all 12 cores utilized, but we can see that it takes much
longer for it to complete the work due to inefficiencies in
virtual machine execution. The HadoopCL results show that
the CPU and GPUs are fully utilized for much briefer periods.
Executing in native threads on both devices clearly leads to
the input data being processed in a much shorter time span.
We can also observe 2 trailing threads in Figure 4(b), most
likely dedicated I/O threads completing writes to HDFS.

B. Mapper Performance

Statistics on mapper performance in Hadoop and HadoopCL
were also collected, including information on how long the



Benchmark Improvement in proessing bandwidth
Pi 1.67x

Blackscholes 5.19x
KMeans 55.41x

Sort 1.59x

TABLE IV
PROCESSING BANDWIDTH IMPROVEMENT OF HADOOPCL MAPPERS AS A

FACTOR OF HADOOP MAPPER PERFORMANCE IN MB/S.

Benchmark Percent Time Blocked on I/O
Pi Mapper 23.28%
Pi Reducer 0.00%

Blackscholes Mapper 19.19%
Blackscholes Reducer 58.12%

KMeans Mapper 8.06%
KMeans Reducer 23.68%

Sort Mapper 59.41%
Sort Reducer 42.51%

TABLE V
MEAN PERCENT OF TOTAL EXECUTION TIME MAPPERS AND REDUCERS
SPENT BLOCKED WAITING FOR BUFFERS TO BE WRITTEN TO HADOOP.

main thread spent blocked on different operations and how
long the processing of an entire HDFS chunk took. Fig-
ure 5 shows a histrogram of the processing bandwidth in
MB/s Hadoop and HadoopCL mappers were able to achieve
while executing the Blackscholes benchmark. Please note
the difference in scale on the vertical axis. Table IV shows
the improvement in average processing bandwidth for all
benchmarks of HadoopCL mappers as a factor of Hadoop
mappers, in MB/s. This shows the significant computational
performance improvement from executing in native threads
on heterogeneous devices. With improved I/O performance,
much higher speedups of the overall application would be
achievable.

To quantify the cost of writing to the Hadoop system from
HadoopCL, we recorded the time the main Java thread spent
blocked on a buffer being written to the Hadoop system for
HadoopCL mappers and reducers. The main thread is required
to block at this point to ensure all information has been written
to the Hadoop system from that buffer before the buffer is
re-used for storing input. Note that this does not account
for most of the I/O overhead in the overall application, as
those operations are performed external to the mapper and
reducer. Rather, these measurements indicate an avenue of
future improvement in HadoopCL itself. Table V shows the
average time each benchmark’s mappers and reducers spent
blocked. There is a clear relationship between the time spent
blocked on I/O and a benchmark’s overall performance. While
KMeans mappers only spent 8.06% of their time blocked, Sort
mappers spent 59.41%. If we recall from Figure 2, KMeans
performed the best relative to Hadoop, while Sort was the
only benchmark that demonstrated no improvement. While the
focus of this work was executing MapReduce computation
on heterogeneous hardware, it is clear that there must be
future work in the I/O techniques used in order for the full
performance benefit of heterogeneous hardware to be realized.

VI. CONCLUSION

As distributed systems become larger, more pervasive, and
more heterogeneous, the experience and knowledge required to
efficiently execute complex and critical applications to them
has risen higher than what most application developers and
domain experts are capable of. This change in high perfor-
mance computing has led to a higher demand for high level
distributed and heterogeneous programming models which
hide hardware complexity from the user and allow tuning
experts to manipulate platform configurations in order to
optimize performance, energy efficiency, and reliability.

The strengths of Hadoop and OpenCL naturally com-
plement each other. Hadoop provides a robust and proven
distributed system with a MapReduce execution model and
distributed file system. However, our tests show that its com-
putational performance is lacking. OpenCL enables execution
of Hadoop computation in native threads on heterogeneous
high-performance, low-power architectures. APARAPI allows
the seamless integration of these two prevalent programming
models to provide a high performance distributed system with
usability on par with Hadoop. Our experimental results support
this claim on common Hadoop workloads with minimal code
change required.

There are several avenues of future work available in the
area of heterogeneous MapReduce. Our analysis of the bench-
marks shows that while heterogeneous processors provide a
significant performance benefit, overhead from I/O limits the
possible gains. Not only does I/O place a high lower bound on
execution time, but it also causes underutilization of available
hardware as the input data bandwidth is smaller than the
processing bandwidth available. Perhaps a deeper dive into the
Hadoop implementation or a modified HadoopCL communica-
tion algorithm would help to minimize this overhead. Current
work at AMD investigating using GPUs to efficiently compress
HDFS blocks prior to network communication may help to fix
this problem. This work is also related to a future collaboration
between AMD and Oracle via OpenJDK, Project Sumatra.
Sumatra aims to allow the Java Virtual Machines JIT (Just In
Time Compiler) to generate GPU ISA code directly, this will
result in optimized GPU execution and allow the JVM to target
only code which seems suited to GPU offload. While our work
with APARAPI within Hadoop applies only to data-parallel
mapper and reducer computation, Sumatra’s scope will include
a number of parallel operations available in the language as
well tight coupling with the JVM for optimal performance.
Additional future work specific to HadoopCL would include
extensions to the APARAPI runtime and translator which may
decrease code changes required for porting to HadoopCL and
improve performance. More test configurations of Hadoop and
HadoopCL (such as multi-node or on different systems) may
produce interesting results, though we expect HadoopCL to
maintain a performance advantage so long as the interconnect
is sufficient to prevent network communication from dom-
inating execution time. Detailed analysis of the benefits of



shared memory systems (such as the AMD APUs used in our
evaluation) would also be useful.
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(c) HadoopCL GPU 0
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(d) HadoopCL GPU 1

Fig. 4. Processor utilization for Hadoop and HadoopCL collected using
ps and nvidia-smi during a KMeans execution on 400,000,000 points. CPU
utilization goes up to 1200% as it was run on a 12-core CPU. GPU utiliation
only goes up to 100%. Note that the time scales on all graphs are kept the
same for easier comparison.
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Fig. 5. Processing bandwidth of Hadoop and HadoopCL mappers in MB/s
running the Blackscholes benchmark. Each bar represents a single mapper
processing a single chunk. Note the difference in scale on the vertical axis.


