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Introduction

@ Software with explicit parallelism is on rise
@ Two major compiler approaches for program optimizations
@ AST-based
¢ Polyhedral-based
@ Past work on transformations of parallel programs using
AST-based approaches
s E.g., [Nicolau et.al 2009], [Nandivada et.al 2013]

@ Polyhedral frameworks for analysis and transformations of
explicitly parallel programs 7?7
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Introduction

@ Explicit parallelism is different from sequential execution
o Partial order instead of total order

@ No execution order among parallel portions — no dependence

@ For the compiler, explicit parallelism can mitigate imprecision
that accompanies unanalyzable data accesses from a variety of
sources.

o Unrestricted pointer aliasing
@ Unknown function calls
o Non-affine constructs

@ Non-affine expressions in array subscripts
@ Indirect array subscripts

@ Non-affine loop bounds

@ Use of Structs
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© Explicit Parallelism and Motivation

5/42

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar



Explicit Parallelism

o Logical parallelism is a specification of a partial order,
referred to as a happens-before relation
s HB(S1, S2) = true & S1 must happen before S2

o Currently, we focus on explicitly parallel programs that satisfy
serial-elision property
o Doall parallelism
o Doacross parallelism
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Explicit Parallelism - Doall (OpenMP)

@ In case of OpenMP, Doall parallelism is equivalent to the
parallel for clause.

@ Happens-before relations exist only among statements in the
same iteration
@ Guarantees no cross-iteration dependence

|=1 |:2 |: |:N
1 #pragma omp parallel for 81 81 81 81
2 for (i-loop) {
3 S1;
s sz S2 $S2 $S2 §S2
6

S3 S3 S3 #S53
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Explicit Parallelism - Doall (OpenMP) - Example

@ LU Decomposition - Rodinia benchmarks [Shuai et.al 09]

for (i = 0; i < size; i++) {
#pragma omp parallel for
for (j = i; j < size; j++) {
f#tpragma omp parallel for reduction(+:a)
for (k = 0; k < i; k++4) {
a[ixsize+j] —= a[ixsizetk] * a[kxsize+j];
}

COO~NOU A WN R
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9 j,k-loops are annotated as parallel loops and k-1oop is
parallel with a reduction on array a

@ Poor spatial locality because of access pattern k*size+j for
array a

@ With happens-before relations from doall, loop permutation
can be applied to improve spatial locality.
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Explicit Parallelism - Doall (OpenMP) - Example

o Permuted kernel

for (i = 0; i < size; i++) {
#pragma omp parallel for reduction(+:a) private(j)
for (k = 0; k < i; k++4) {
for (j = i; j < size; j++) {
a[ixsizet+j] —= a[i*size+k] * a[k*size+j];
}
}

O~NOU A WN

©

¥
@ 1.25X performance on Intel Xeon Phi coprocessor with 228

threads and input size as 2K

@ Array subscripts are non-affine (but can be made affine with
delinearization and perform permutation) [Tobias et.al 15]
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Explicit Parallelism - Doacross (OpenMP)

@ In case of OpenMP, Doacross parallelism is equivalent to
proposed extension [Shirako et.al 13] to the ordered clause
(appears in OpenMP 4.1).

@ To specify cross-iteration dependences of a parallelized loop

|=1 |:2 |: |=N
1 #pragma omp parallel for ordered(1)
2 for (i-loop) {
3 s1. S1 S S1 S1
4 #pragma omp ordered depend(sink: i-1)
5 52; S2 S2 S2 32

6 #pragma omp ordered depend(source: i)
7 S3;

} 33 s3 S3 ¥s3
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Explicit Parallelism - Doacross (OpenMP) - Example

1 // Assume array A is a nested array
2 #pragma omp parallel for ordered(3)
for (t = 0; t <= _PB_TSTEPS — 1; t++) {
for (i = 1; i<= _PB_N - 2; i++) {
for (j = 1; j <= _PB_N - 2; j++) {
#pragma omp ordered depend(sink: t,i-1,j+1) depend(sink: t,i,j-1) \
depend(sink: t-1,i+1,j+1)
AL31[3] = (A[1-11(3-1] + A[i-1][5] + A[i-1][3+1] + A[i][3-1]
9 +OA[LI13] + A[A][341] + A[i+1][5-1] + A[i+1][3]
10 + A[i+1][5+1]) / 9.0;
11 #pragma omp ordered depend(source: t,i,j)
12
13}
14 }

0w~ U AW

@ 2-dimensional 9 point Gauss Seidel computation - [PolyBench]

@ Annotated as 3-D Doacross loop nest

@ Even though loop nest has affine accesses, C's unrestricted
aliasing semantics for nested arrays can prevent a sound
compiler analysis from detecting exact cross iteration

dependences.
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Explicit Parallelism - Doacross (OpenMP) - Example

1 // Assume array A is a nested array

2 #pragma omp parallel for ordered(3)

3 for (t = 0; t <= _PB_TSTEPS - 1; t++) {

4 for (i = 1; i<= _PB_N - 2; i++) {

5 for (j = 1; j <= _PB_N — 2; j++) {

6 #pragma omp ordered depend(sink: t,i-1,j+1) depend(sink: t,i,j-1) \
7 depend(sink: t-1,i+1,j+1)

8

A[i][3] = (A[i-1][5-1] + A[i-1][3] + A[i-1][j+1] + A[i][j-1]
9 + A[i][3] + A[a][3+1] + A[i+41][5-1] + A[i+1][]]
10 + A[i+1][j+1]) / 9.0;
11 #pragma omp ordered depend(source: t,i,j)
12
13}
14}

@ Through cross-iteration dependences via doacross, loop
skewing and tiling can be performed to improve both locality
and parallelism granularity.

@ 2.2X performance on Intel Xeon Phi coprocessor with 228

threads and input for 100 time steps on a 2K X 2K matrix.
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e Our Approach
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Approach - Idea

@ Overestimate dependences based on the sequential order
@ ignore parallel constructs
@ Improve dependence accuracy via explicit parallelism

@ obtain happens-before relations from parallel constructs
@ intersect HB relations with conservative dependences

@ Transformations via polyhedral optimizers
s PLuTo [Bondhugula et.al 2008]
@ Poly+AST [Shirako et.al 2014]

@ Code generation with parallel constructs

@ Focus on

o Doall and Doacross constructs
@ Non-affine subscripts and Indirect arrays subscripts
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Algorithm - Framework

Source to ASTIR AST ASTwith dummy variables| AST to
AST Modifier SCoP
SCoP with
dummy
SCoP + 3 variables
Conservative
iiﬁ:;rva‘tive dependences
s with dummy 4
Intersection with | dependences d Ellmmatloln l;)lf variables CANDL
Happens-Before ummy variables i dependence
relation using FM (dep
elimination analyzer)
SCoP+
Accurate
dependences
Optimized SCoP ASTIR
ot P SCoP to AST ASTto
primizer Converter Target
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Algorithm - Motivation

@ Conservative dependence analysis
o May-information on access range of non-affine array subscripts
@ Our existing implementation uses scoplib format for
convenience (rather than openscop)

@ No support for access relations in scoplib format (to the best
of our knowledge)

@ What could potentially represent possible access range of
non-affine subscript in polyhedral model?
o lterator ?
@ Cannot be part of loops
o Parameter 7
@ Cannot be loop invariant
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Approach - Dummy vector

@ Approach use dummy variables to overestimate access range
of non-affine subscripts
o A dummy corresponds to a non-affine expression
@ Compute conservative dependences via dummy variables

@ Dummy vector = vector of dummy variables from same scop

@ Each dynamic instance of a statement S is uniquely identified
by combination of:

JEN

@ its iteration vector (is)
o dummy vector (ds)
o parameter vector (B)
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Approach - Dummy vector - Example

1int A[N][N], x[N][N], y[N][n]
2 #pragma omp parallel for

3 for (i =0; i < N; i++)

4 for (j = 0; j < N;

c++)
5 A[3]04 ]—A[ =311 1 [yl b

@ Non-affine: Two indirect array subscripts (x[j] [i],
y[j1[il)

@ Replace non-affine constructs with dummy variables

@ lteration vector (is) = (i, j), Parameter vector (3) = (N)

o Dummy vector (ds) = (dmyz, dmys) = (x[j1[i],
y[310iD
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Algorithm - Conservative Analysis

@ Replace non-affine expressions in array subscripts with dummy
variables as part of pre-processing

@ Create affine inequalities for dummy variables based on
array declarations and incorporate them into iteration domain

@ In case of indirect array subscripts, also associate the index
arrays into read array list

@ Forward the SCoP to CANDL (dependence analyzer)
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Algorithm - Conservative Analysis - Example

Lint A[NJ[N], x[N][N], y[N][N];
2 #pragma omp parallel for
3 for (i = 0; i < N; i++)

4 for (j = 0; j < N; c++)

5 Al3101] = Alamyt]{any2]; // S

P55 (Depth = 1) P55 (Depth = 2)
i<i’-1 i=ij<j -1
j = dmyl, i = dmy2 _j = dmyl, i = dmy2
0<ij.ij <(N-1) 0<ij.ij <(N-1)
0 < dmyy, dmy, < (N -1) 0 < dmyy, dmy, < (N —1)
0 < dmyj,dmy; < (N -1) 0 < dmyj,dmy; < (N -1)

Source vector: (i, j, dmyy, dmys, N)
Sink vector: (i’, ), dmy;, dmy;, N)
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Algorithm - Conservative Analysis - Elimination

After computation of conservative dependences from CANDL, we
eliminate dummy variables using Fourier-Motzkin elimination from

@ Conservative dependences

@ |teration domain
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Algorithm - Conservative Analysis - Elimination - Example

1}

2 F

0

Depth-1 dependences
i<i’-1

?ﬁs‘*s :0<i,j<(N-1)
0</,j/<(N-1)

1 F

2}

0

Depth-2 dependences

i=ij<j -1
P 0<i,j< (N-1)
0</,j/<(N-1)

Source vector: (i, j, N)
Sink vector: (1/,), N)
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Algorithm - Reflection of happens-before relations

o Let Cy4 denote happens-before relations on loop at depth = d
o Cg4 : constraint under which a dependence can exist
o If there are no explicit parallel constructs on a loop, then
sequential order would be happens-before relations on that
loop
@ Happens-before relations in the following program

Lint A[N][N], x[N][N], y[N][N]
2 #pragma omp parallel for

3 for (i =0; i < N; i++)

4 for (j = 0; j < N; c++)

5 AT3T0E] = Alx(310 010y (510200: // S

Ci:i=1
Cr:i=1i,j=j-1
Source vector: (i, j, N) Sink vector: (i',;’, N)
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Algorithm - Reflection of happens-before relations

: Input: conservative dependences £’ and constraints C
. for each dependence polyhedron P:f"ﬁsj in £’ do
for each constraint C2¥~* in C do
if i =5.& S5 =5 & d = e then
PUSTSI . PIOT (O3S,
end if
end for
Add the reflected polyhedron PZS’_)SJ to P”;
end for

. Qutput: dependence polyhedra after reflection "

© e NT B~ w bR

1

o
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Algorithm - Reflection of happens-before relations -

Example - (Depth = 1)

I I I

w | N|esesese o o o @

9—>0—>0—>0 - o 0 -0 -0

2 2 [ o—>0—>0—>0 - ® -0 -0 -0

1 o O [ ] 1 9—0—0—0 (ool oo (Jooa()

N

0 102 e N J 0 1 02 e N 1 2 e N
Conservative Happens-Before Final
Dependences Relations Dependences
7S—S . 1S—S . 15—S .

P1 . Cl . Pl .
i<ir-1 i= 1)

Source vector: (i, j, N) Sink vector: (i',/", N)
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Algorithm - Reflection of happens-before relations -

Example - (Depth = 2)
1 T 1
N|oesese—se e>e>0—>e e>o>0—>0
*—>0—>0—>0 *—>0—>0—>0 - *—>0—>0—>0
2 [ o—>e0—>0—>0 *—>0—>0—>0 *—>0—>0—>0 -
1 0—>0—0—0 *—0—0—0 *—0—0—0
0 1 2 ----- N 1 2 ----- N 1 2 ----- N J
Conservative Happens-Before Final
Dependences Relations Dependences
7S—S . 1S—S . 115—S .
P2 . CQ . P2 .
i=ij<j -1 i=ij=j-1 i=ij=j-1
Source vector: (i, j, N) Sink vector: (i',)", N)
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Algorithm - Code generation

@ Transformed kernel after loop permutation

Lint A[NJ[N], x[N][N], y[N][N];
2 for (j = 0; j <N; i++4)
3 #pragma omp parallel for
4 for (i =0; i <N
5

;octH)
A[GI04] = Al=[3]1[2]]1 [y [31021): // S
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Algorithm - Implementation

@ Implementation is in-progress
o Completed modules:

o AST Modifier, AST to SCoP converter, Elimination of dummy
variables
@ Intersection with Happens-before relations
@ AST to Target
@ In-progress modules:

o Integration with optimizers such as PLuTo, Poly+AST
@ Code generation for do-across
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@ Preliminary Results
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Rodinia Benchmarks

@ Studied 18 explicitly parallel OpenMP-C Rodinia benchmarks
o Identified non-affine constructs used in the benchmarks that
limit the use of polyhedral frameworks
o Indirect Array Subscript (IAS), Non-affine Array
Subscript(NAS), Use of Structs (S), Functions (F)
@ Potential opportunities for polyhedral loop transformations
that can be enabled through our approach

o Loop permutation, Fusion, Skewing, Tiling, Doacross
parallelism, Vectorization
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Rodinia Benchmarks

Limitations
Kernel NAS | IAS | S F Transformations
b+ tree v |V
backprop v perm, fuse, vect
bfs v |V
cfd v v
heartwall v
hotspot v doacross, fuse, skew, tile, vect
kmean v perm, fuse, vect
lavaMD v v |V
leukocyte v fuse, vect

Table: Limitations and possible transformations in Rodinia benchmarks

(NAS: Non-affine Array Subscript, IAS: Indirect Array Subscript, S:

Struct, F: Function, and perm/fuse/skew/tile/doacross/vect: loop

permutation /fusion/skewing/tiling/doacross parallelism/vectorization) 30/42
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Rodinia Benchmarks (Continued)

Limitations
Kernel NAS | IAS | S F Transformations
lud v perm, vect
mummergpu v Y
myocyte v v
nn v v
nw v v' | doacross, skew, perm
particle filter | v v fuse, vect
path finder doacross, skew, tile
srad v
streamcluster | v’ v |V Y

Table: Limitations and possible transformations in Rodinia benchmarks
(NAS: Non-affine Array Subscript, I1AS: Indirect Array Subscript, S:
Struct, F: Function, and perm/fuse/skew/tile/doacross/vect: loop
permutation /fusion /skewing/tiling/doacross parallelism /vectorization)
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Preliminary results

Exec time of optimized parallel code

Speedup = Exec time of input parallel code
Kernel Benchmark | Best Speedup Transformation
Backprop Rodinia 28X Permutation, Vect
Hotspot Rodinia 2.25X Skewing, Tiling, Doacross
Lud Rodinia 1.15X Permutation, Vect
Particlefilter Rodinia 1.05X Fusion

Table: Performance improvements on Intel Xeon Phi with 228 threads!

1Some steps (e.g., code gen) were done manually.
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© Related Work
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Related Work - Explicitly parallel programs

@ Extension of array data-flow analysis to data-parallel and/or
task-parallel languages [Collard et.al 96]

@ Adaptation of array data-flow analysis to the X10 programs
with finish/async parallelism [Yuki et.al 13]

@ In these approaches, happens-before relations are first
analyzed and data-flow is computed based on the partial order
imposed by happens-before relations.

@ Our approach first overestimates dependences based on the
sequential order and intersect with the happens-before
relations from explicitly parallel constructs.

@ Our work focuses on transformation of explicitly parallel
programs for improved performance where as above works are

focused on analysis.
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Compile time Approaches for non-affine constructs

@ Pugh et.al 91, Maslov et.al 94, ....

@ Uses uninterpreted function symbols to represent non-affine
constructs

@ Generates dependence relations by approximating with affine
dependence relations

@ We prune conservative dependences using happens-before
relations from explicit parallel constructs
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Run time Approaches for non-affine constructs

@ Doerfert et.al 13, Simburger et.al 14, ....

@ Speculative polyhedral optimization techniques, Auto tuning

@ Modeling using semi-algebraic sets and real algebra (POLLY)

@ Worst case doubly exponential complexity

@ Inspector/ Executor: Strout et.al 03, Basumallik et.al 06,
Venkat et.al 14, ...

@ Integration into Polyhedral compiler collection chain

@ We perform analysis and transformations at compile time
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Related Work - PENCIL

@ Platform Neutral Compute Intermediate Language

@ Automatic parallelization on multi-threaded SIMD hardware
for DSL's

@ Provides extensions and directives that allow users to supply
dependence information

@ We are interested in leveraging happens-before relations from
programs written in general purpose languages like OpenMP,
X10, Habanero-C whereas PENCIL is focused on supporting
DSL's in which certain coding rules are enforced related to
pointer aliasing, recursion and unstructured control flow.
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© Conclusions, Future work and Acknowledgments
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Conclusions

@ Introduced an approach that reflects happens-before
relations from explicitly parallel constructs in the dependence
polyhedra to mitigate conservative dependence analysis.

@ Studied 18 explicitly-parallel OpenMP benchmarks from
Rodinia suite.

@ Shown that the use of explicit parallelism enables larger set of
polyhedral transformations, compared to what might have
been possible if the input program was sequential.
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Future work and Acknowledgments

@ Future work

o Incorporate additional explicit parallel constructs such as
barrier and task parallelism
@ Additional transformations for explicit parallel programs

@ Acknowledgments

o Rice Habanero Extreme Scale Software Research Group
o IMPACT 2015 chairs, reviewers and shepherd
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Backup - Conservative Analysis

@ Access relations [Wonnacott thesis| and uninterpreted
function symbols [Omega library| could have been used
instead of dummy variables, but our implementation is heavily
dependent on scoplib format instead of openscop format.

@ Our existing implementation uses scoplib format for
convenience (rather than openscop)

@ No support for access relations in scoplib format (to the best
of our knowledge)
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