
1/42

Polyhedral Transformations of Explicitly Parallel
Programs

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar

Habanero Extreme Scale Software Research Group
Department of Computer Science

Rice University

January 19, 2015

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

2/42

Introduction

1 Introduction

2 Explicit Parallelism and Motivation

3 Our Approach

4 Preliminary Results

5 Related Work

6 Conclusions, Future work and Acknowledgments

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

3/42

Introduction

Introduction

Software with explicit parallelism is on rise

Two major compiler approaches for program optimizations

AST-based
Polyhedral-based

Past work on transformations of parallel programs using
AST-based approaches

E.g., [Nicolau et.al 2009], [Nandivada et.al 2013]

Polyhedral frameworks for analysis and transformations of
explicitly parallel programs ??

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

4/42

Introduction

Introduction

Explicit parallelism is different from sequential execution

Partial order instead of total order
No execution order among parallel portions → no dependence

For the compiler, explicit parallelism can mitigate imprecision
that accompanies unanalyzable data accesses from a variety of
sources.

Unrestricted pointer aliasing
Unknown function calls
Non-affine constructs

Non-affine expressions in array subscripts
Indirect array subscripts
Non-affine loop bounds
Use of Structs

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

5/42

Explicit Parallelism and Motivation

1 Introduction

2 Explicit Parallelism and Motivation

3 Our Approach

4 Preliminary Results

5 Related Work

6 Conclusions, Future work and Acknowledgments

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

6/42

Explicit Parallelism and Motivation

Explicit Parallelism

Logical parallelism is a specification of a partial order,
referred to as a happens-before relation

HB(S1, S2) = true ↔ S1 must happen before S2

Currently, we focus on explicitly parallel programs that satisfy
serial-elision property

Doall parallelism
Doacross parallelism

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

7/42

Explicit Parallelism and Motivation

Explicit Parallelism - Doall (OpenMP)

In case of OpenMP, Doall parallelism is equivalent to the
parallel for clause.

Happens-before relations exist only among statements in the
same iteration

Guarantees no cross-iteration dependence

1 #pragma omp p a r a l l e l f o r
2 f o r (i−loop) {
3 S1 ;
4 S2 ;
5 S3 ;
6 }

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

8/42

Explicit Parallelism and Motivation

Explicit Parallelism - Doall (OpenMP) - Example

LU Decomposition - Rodinia benchmarks [Shuai et.al 09]

1 f o r (i = 0 ; i < size ; i++) {
2 #pragma omp parallel f o r
3 f o r (j = i ; j < size ; j++) {
4 #pragma omp parallel f o r reduction (+:a)
5 f o r (k = 0 ; k < i ; k++) {
6 a [i∗size+j] −= a [i∗size+k] ∗ a [k∗size+j] ;
7 }
8 }
9

10 }

j,k-loops are annotated as parallel loops and k-loop is
parallel with a reduction on array a

Poor spatial locality because of access pattern k*size+j for
array a

With happens-before relations from doall, loop permutation
can be applied to improve spatial locality.

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

9/42

Explicit Parallelism and Motivation

Explicit Parallelism - Doall (OpenMP) - Example

Permuted kernel

1 f o r (i = 0 ; i < size ; i++) {
2 #pragma omp parallel f o r reduction (+:a) private (j)
3 f o r (k = 0 ; k < i ; k++) {
4 f o r (j = i ; j < size ; j++) {
5 a [i∗size+j] −= a [i∗size+k] ∗ a [k∗size+j] ;
6 }
7 }
8
9 }

1.25X performance on Intel Xeon Phi coprocessor with 228
threads and input size as 2K

Array subscripts are non-affine (but can be made affine with
delinearization and perform permutation) [Tobias et.al 15]

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

10/42

Explicit Parallelism and Motivation

Explicit Parallelism - Doacross (OpenMP)

In case of OpenMP, Doacross parallelism is equivalent to
proposed extension [Shirako et.al 13] to the ordered clause
(appears in OpenMP 4.1).

To specify cross-iteration dependences of a parallelized loop

1 #pragma omp p a r a l l e l f o r o r d e r ed (1)
2 f o r (i−loop) {
3 S1 ;
4 #pragma omp o rde r ed depend (s i n k : i −1)
5 S2 ;
6 #pragma omp o rde r ed depend (s ou r c e : i)
7 S3 ;
8 }

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

11/42

Explicit Parallelism and Motivation

Explicit Parallelism - Doacross (OpenMP) - Example

1 // Assume a r r a y A i s a ne s t ed a r r a y
2 #pragma omp p a r a l l e l f o r o r d e r ed (3)
3 f o r (t = 0 ; t <= _PB_TSTEPS − 1 ; t++) {
4 f o r (i = 1 ; i<= _PB_N − 2 ; i++) {
5 f o r (j = 1 ; j <= _PB_N − 2 ; j++) {
6 #pragma omp o rde r ed depend (s i n k : t , i −1 , j +1) depend (s i n k : t , i , j −1) \
7 depend (sink : t−1 ,i+1,j+1)
8 A [i] [j] = (A [i −1] [j−1] + A [i −1] [j] + A [i −1] [j+1] + A [i] [j−1]
9 + A [i] [j] + A [i] [j+1] + A [i+1][j−1] + A [i+1][j]

10 + A [i+1][j+1]) / 9 . 0 ;
11 #pragma omp o rde r ed depend (s ou r c e : t , i , j)
12 }
13 }
14 }

2-dimensional 9 point Gauss Seidel computation - [PolyBench]

Annotated as 3-D Doacross loop nest

Even though loop nest has affine accesses, C’s unrestricted
aliasing semantics for nested arrays can prevent a sound
compiler analysis from detecting exact cross iteration
dependences.

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

11/42

Explicit Parallelism and Motivation

Explicit Parallelism - Doacross (OpenMP) - Example

1 // Assume a r r a y A i s a ne s t ed a r r a y
2 #pragma omp p a r a l l e l f o r o r d e r ed (3)
3 f o r (t = 0 ; t <= _PB_TSTEPS − 1 ; t++) {
4 f o r (i = 1 ; i<= _PB_N − 2 ; i++) {
5 f o r (j = 1 ; j <= _PB_N − 2 ; j++) {
6 #pragma omp o rde r ed depend (s i n k : t , i −1 , j +1) depend (s i n k : t , i , j −1) \
7 depend (sink : t−1 ,i+1,j+1)
8 A [i] [j] = (A [i −1] [j−1] + A [i −1] [j] + A [i −1] [j+1] + A [i] [j−1]
9 + A [i] [j] + A [i] [j+1] + A [i+1][j−1] + A [i+1][j]

10 + A [i+1][j+1]) / 9 . 0 ;
11 #pragma omp o rde r ed depend (s ou r c e : t , i , j)
12 }
13 }
14 }

Through cross-iteration dependences via doacross, loop
skewing and tiling can be performed to improve both locality
and parallelism granularity.

2.2X performance on Intel Xeon Phi coprocessor with 228
threads and input for 100 time steps on a 2K X 2K matrix.

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

12/42

Our Approach

1 Introduction

2 Explicit Parallelism and Motivation

3 Our Approach

4 Preliminary Results

5 Related Work

6 Conclusions, Future work and Acknowledgments

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

13/42

Our Approach

Approach - Idea

Overestimate dependences based on the sequential order

ignore parallel constructs

Improve dependence accuracy via explicit parallelism

obtain happens-before relations from parallel constructs
intersect HB relations with conservative dependences

Transformations via polyhedral optimizers

PLuTo [Bondhugula et.al 2008]
Poly+AST [Shirako et.al 2014]

Code generation with parallel constructs

Focus on

Doall and Doacross constructs
Non-affine subscripts and Indirect arrays subscripts

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

14/42

Our Approach

Algorithm - Framework

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

15/42

Our Approach

Algorithm - Motivation

Conservative dependence analysis

May-information on access range of non-affine array subscripts

Our existing implementation uses scoplib format for
convenience (rather than openscop)

No support for access relations in scoplib format (to the best
of our knowledge)

What could potentially represent possible access range of
non-affine subscript in polyhedral model?

Iterator ?

Cannot be part of loops

Parameter ?

Cannot be loop invariant

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

16/42

Our Approach

Approach - Dummy vector

Approach use dummy variables to overestimate access range
of non-affine subscripts

A dummy corresponds to a non-affine expression
Compute conservative dependences via dummy variables

Dummy vector = vector of dummy variables from same scop

Each dynamic instance of a statement S is uniquely identified
by combination of:

its iteration vector (~iS)

dummy vector (~dS)
parameter vector (~p)

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

17/42

Our Approach

Approach - Dummy vector - Example

1 i n t A [N] [N] , x [N] [N] , y [N] [N] ;
2 #pragma omp p a r a l l e l f o r
3 f o r (i = 0 ; i < N ; i++)
4 f o r (j = 0 ; j < N ; c++)
5 A [j] [i] = A [x [j] [i]] [y [j] [i]] ;

Non-affine: Two indirect array subscripts (x[j][i],
y[j][i])

Replace non-affine constructs with dummy variables

Iteration vector (~iS) = (i, j), Parameter vector (~p) = (N)

Dummy vector (~dS) = (dmy1, dmy2) = (x[j][i],

y[j][i])

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

18/42

Our Approach

Algorithm - Conservative Analysis

Replace non-affine expressions in array subscripts with dummy

variables as part of pre-processing

Create affine inequalities for dummy variables based on
array declarations and incorporate them into iteration domain

In case of indirect array subscripts, also associate the index
arrays into read array list

Forward the SCoP to CANDL (dependence analyzer)

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

19/42

Our Approach

Algorithm - Conservative Analysis - Example

1 i n t A [N] [N] , x [N] [N] , y [N] [N] ;
2 #pragma omp p a r a l l e l f o r
3 f o r (i = 0 ; i < N ; i++)
4 f o r (j = 0 ; j < N ; c++)
5 A [j] [i] = A [dmy1] [dmy2] ; // S

PS→S
1 (Depth = 1)

i ≤ i ′ − 1

j = dmy1, i = dmy2

0 ≤ i , j , i ′, j ′ ≤ (N − 1)

0 ≤ dmy1, dmy2 ≤ (N − 1)

0 ≤ dmy ′1, dmy ′2 ≤ (N − 1)

PS→S
2 (Depth = 2)

i = i ′, j ≤ j ′ − 1

j = dmy1, i = dmy2

0 ≤ i , j , i ′, j ′ ≤ (N − 1)

0 ≤ dmy1, dmy2 ≤ (N − 1)

0 ≤ dmy ′1, dmy ′2 ≤ (N − 1)

Source vector: (i, j, dmy1, dmy2, N)
Sink vector: (i ′, j ′, dmy ′1, dmy ′2,N)

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

20/42

Our Approach

Algorithm - Conservative Analysis - Elimination

After computation of conservative dependences from CANDL, we
eliminate dummy variables using Fourier-Motzkin elimination from

Conservative dependences

Iteration domain

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

21/42

Our Approach

Algorithm - Conservative Analysis - Elimination - Example

j

i

N

N b b b b

b b b b

b b b b

b b b brs

0 1 2

1

2

j

i

N

N b b b b

b b b b

b b b b

b b b b

0 1 2

1

2

Depth-1 dependences Depth-2 dependences

P′S→S
1 :

i ≤ i ′ − 1

0 ≤ i , j ≤ (N − 1)

0 ≤ i ′, j ′ ≤ (N − 1)

P′S→S
2 :

i = i ′, j ≤ j ′ − 1

0 ≤ i , j ≤ (N − 1)

0 ≤ i ′, j ′ ≤ (N − 1)

Source vector: (i, j, N)
Sink vector: (i ′, j ′,N)

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

22/42

Our Approach

Algorithm - Reflection of happens-before relations

Let Cd denote happens-before relations on loop at depth = d

Cd : constraint under which a dependence can exist

If there are no explicit parallel constructs on a loop, then
sequential order would be happens-before relations on that
loop

Happens-before relations in the following program

1 i n t A [N] [N] , x [N] [N] , y [N] [N] ;
2 #pragma omp p a r a l l e l f o r
3 f o r (i = 0 ; i < N ; i++)
4 f o r (j = 0 ; j < N ; c++)
5 A [j] [i] = A [x [j] [i]] [y [j] [i]] ; // S

C1 : i = i ′

C2 : i = i ′, j = j ′ − 1
Source vector: (i, j, N) Sink vector: (i ′, j ′,N)

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

23/42

Our Approach

Algorithm - Reflection of happens-before relations

1: Input: conservative dependences P′ and constraints C

2: for each dependence polyhedron P
′Si→Sj
d

in P′ do

3: for each constraint CSk→Sl
e in C do

4: if Si = Sk & Sj = Sl & d = e then

5: P
′′Si→Sj
d

:= P
′Si→Sj
d

∩ C
Sk→Sl
e ;

6: end if
7: end for
8: Add the reflected polyhedron P

′′Si→Sj
d

to P′′;
9: end for

10: Output: dependence polyhedra after reflection P′′

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

24/42

Our Approach

Algorithm - Reflection of happens-before relations -
Example - (Depth = 1)

j

i

N

N b b b b

b b b b

b b b b

b b b brs

0 1 2

1

2

Conservative
Dependences
P′S→S
1 :

i ≤ i ′ − 1

∩
j

i

N

N b b b b

b b b b

b b b b

b b b b

0 1 2

1

2

Happens-Before
Relations
C′S→S
1 :

i = i ′

=
j

i

N

N b b b b

b b b b

b b b b

b b b b

0 1 2

1

2

Final
Dependences
P′′S→S
1 :
φ

Source vector: (i, j, N) Sink vector: (i ′, j ′,N)

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

25/42

Our Approach

Algorithm - Reflection of happens-before relations -
Example - (Depth = 2)

j

i

N

N b b b b

b b b b

b b b b

b b b b

0 1 2

1

2

Conservative
Dependences
P′S→S
2 :

i = i ′, j ≤ j ′ − 1

∩
j

i

N

N b b b b

b b b b

b b b b

b b b b

0 1 2

1

2

Happens-Before
Relations
C′S→S
2 :

i = i ′, j = j ′ − 1

=
j

i

N

N b b b b

b b b b

b b b b

b b b b

0 1 2

1

2

Final
Dependences
P′′S→S
2 :

i = i ′, j = j ′ − 1

Source vector: (i, j, N) Sink vector: (i ′, j ′,N)

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

26/42

Our Approach

Algorithm - Code generation

Transformed kernel after loop permutation

1 i n t A [N] [N] , x [N] [N] , y [N] [N] ;
2 f o r (j = 0 ; j < N ; i++)
3 #pragma omp p a r a l l e l f o r
4 f o r (i = 0 ; i < N ; c++)
5 A [j] [i] = A [x [j] [i]] [y [j] [i]] ; // S

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

27/42

Our Approach

Algorithm - Implementation

Implementation is in-progress

Completed modules:

AST Modifier, AST to SCoP converter, Elimination of dummy
variables
Intersection with Happens-before relations
AST to Target

In-progress modules:

Integration with optimizers such as PLuTo, Poly+AST
Code generation for do-across

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

28/42

Preliminary Results

1 Introduction

2 Explicit Parallelism and Motivation

3 Our Approach

4 Preliminary Results

5 Related Work

6 Conclusions, Future work and Acknowledgments

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

29/42

Preliminary Results

Rodinia Benchmarks

Studied 18 explicitly parallel OpenMP-C Rodinia benchmarks

Identified non-affine constructs used in the benchmarks that
limit the use of polyhedral frameworks

Indirect Array Subscript (IAS), Non-affine Array
Subscript(NAS), Use of Structs (S), Functions (F)

Potential opportunities for polyhedral loop transformations
that can be enabled through our approach

Loop permutation, Fusion, Skewing, Tiling, Doacross
parallelism, Vectorization

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

30/42

Preliminary Results

Rodinia Benchmarks

Limitations

Kernel NAS IAS S F Transformations

b+ tree X X

backprop X perm, fuse, vect
bfs X X

cfd X X

heartwall X

hotspot X doacross, fuse, skew, tile, vect
kmean X perm, fuse, vect
lavaMD X X X

leukocyte X fuse, vect

Table: Limitations and possible transformations in Rodinia benchmarks
(NAS: Non-affine Array Subscript, IAS: Indirect Array Subscript, S:
Struct, F: Function, and perm/fuse/skew/tile/doacross/vect: loop
permutation/fusion/skewing/tiling/doacross parallelism/vectorization)

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

31/42

Preliminary Results

Rodinia Benchmarks (Continued)

Limitations

Kernel NAS IAS S F Transformations

lud X perm, vect
mummergpu X X

myocyte X X

nn X X

nw X X doacross, skew, perm
particle filter X X fuse, vect
path finder doacross, skew, tile
srad X

streamcluster X X X X

Table: Limitations and possible transformations in Rodinia benchmarks
(NAS: Non-affine Array Subscript, IAS: Indirect Array Subscript, S:
Struct, F: Function, and perm/fuse/skew/tile/doacross/vect: loop
permutation/fusion/skewing/tiling/doacross parallelism/vectorization)

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

32/42

Preliminary Results

Preliminary results

Speedup =
Exec time of optimized parallel code
Exec time of input parallel code

Kernel Benchmark Best Speedup Transformation

Backprop Rodinia 28X Permutation, Vect
Hotspot Rodinia 2.25X Skewing, Tiling, Doacross
Lud Rodinia 1.15X Permutation, Vect

Particlefilter Rodinia 1.05X Fusion

Table: Performance improvements on Intel Xeon Phi with 228 threads1

1Some steps (e.g., code gen) were done manually.
Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

33/42

Related Work

1 Introduction

2 Explicit Parallelism and Motivation

3 Our Approach

4 Preliminary Results

5 Related Work

6 Conclusions, Future work and Acknowledgments

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

34/42

Related Work

Related Work - Explicitly parallel programs

Extension of array data-flow analysis to data-parallel and/or
task-parallel languages [Collard et.al 96]

Adaptation of array data-flow analysis to the X10 programs
with finish/async parallelism [Yuki et.al 13]

In these approaches, happens-before relations are first
analyzed and data-flow is computed based on the partial order
imposed by happens-before relations.

Our approach first overestimates dependences based on the
sequential order and intersect with the happens-before
relations from explicitly parallel constructs.

Our work focuses on transformation of explicitly parallel
programs for improved performance where as above works are
focused on analysis.

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

35/42

Related Work

Compile time Approaches for non-affine constructs

Pugh et.al 91, Maslov et.al 94,

Uses uninterpreted function symbols to represent non-affine
constructs

Generates dependence relations by approximating with affine
dependence relations

We prune conservative dependences using happens-before
relations from explicit parallel constructs

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

36/42

Related Work

Run time Approaches for non-affine constructs

Doerfert et.al 13, Simburger et.al 14,

Speculative polyhedral optimization techniques, Auto tuning

Modeling using semi-algebraic sets and real algebra (POLLY)

Worst case doubly exponential complexity

Inspector/ Executor: Strout et.al 03, Basumallik et.al 06,
Venkat et.al 14,

Integration into Polyhedral compiler collection chain

We perform analysis and transformations at compile time

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

37/42

Related Work

Related Work - PENCIL

Platform Neutral Compute Intermediate Language

Automatic parallelization on multi-threaded SIMD hardware
for DSL’s

Provides extensions and directives that allow users to supply
dependence information

We are interested in leveraging happens-before relations from
programs written in general purpose languages like OpenMP,
X10, Habanero-C whereas PENCIL is focused on supporting
DSL’s in which certain coding rules are enforced related to
pointer aliasing, recursion and unstructured control flow.

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

38/42

Conclusions, Future work and Acknowledgments

1 Introduction

2 Explicit Parallelism and Motivation

3 Our Approach

4 Preliminary Results

5 Related Work

6 Conclusions, Future work and Acknowledgments

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

39/42

Conclusions, Future work and Acknowledgments

Conclusions

Introduced an approach that reflects happens-before
relations from explicitly parallel constructs in the dependence
polyhedra to mitigate conservative dependence analysis.

Studied 18 explicitly-parallel OpenMP benchmarks from
Rodinia suite.

Shown that the use of explicit parallelism enables larger set of
polyhedral transformations, compared to what might have
been possible if the input program was sequential.

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

40/42

Conclusions, Future work and Acknowledgments

Future work and Acknowledgments

Future work

Incorporate additional explicit parallel constructs such as
barrier and task parallelism
Additional transformations for explicit parallel programs

Acknowledgments

Rice Habanero Extreme Scale Software Research Group
IMPACT 2015 chairs, reviewers and shepherd

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

41/42

Conclusions, Future work and Acknowledgments

Backup - Conservative Analysis

Access relations [Wonnacott thesis] and uninterpreted
function symbols [Omega library] could have been used
instead of dummy variables, but our implementation is heavily
dependent on scoplib format instead of openscop format.

Our existing implementation uses scoplib format for
convenience (rather than openscop)

No support for access relations in scoplib format (to the best
of our knowledge)

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

42/42

Conclusions, Future work and Acknowledgments

Backup - References

Nicolau et.al 2009 : Alexandru Nicolau, Guangqiang Li,
Alexander V. Veidenbaum, and Arun Kejariwal. 2009.
Synchronization optimizations for efficient execution on
multi-cores. In Proceedings of the 23rd international
conference on Supercomputing (ICS ’09). ACM, New York,
NY, USA, 169-180. DOI=10.1145/1542275.1542303
http://doi.acm.org/10.1145/1542275.1542303

Nandivada et.al 2013 : A Transformation Framework for
Optimizing Task-Parallel Programs . V. Krishna Nandivada,
Jun Shirako, Jisheng Zhao, Vivek Sarkar. ACM Transactions
on Programming Languages and Systems (TOPLAS), Volume
35, May 2013.

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar IMPACT Workshop, 19 Jan 2015

	Introduction
	Explicit Parallelism and Motivation
	Our Approach
	Preliminary Results
	Related Work
	Conclusions, Future work and Acknowledgments

