
OpenMP as a High-Level Specification Language
for Parallelism

And its use in Evaluating Parallel Programming Systems

Max Grossman, Jun Shirako, and Vivek Sarkar

Rice University
Department of Computer Science

{max.grossman,shirako,vsarkar}@rice.edu

Abstract. While OpenMP is the de facto standard of shared mem-
ory parallel programming models, a number of alternative programming
models and runtime systems have arisen in recent years. Fairly evalu-
ating these programming systems can be challenging and can require
significant manual effort on the part of researchers. However, it is im-
portant to facilitate these comparisons as a way of advancing both the
available OpenMP runtimes and the research being done with these novel
programming systems.

In this paper we present the OpenMP-to-X framework, an open source
tool for mapping OpenMP constructs and APIs to other parallel pro-
gramming systems. We apply OpenMP-to-X to the HClib parallel pro-
gramming library, and use it to enable a fair and objective comparison of
performance and programmability among HClib, GNU OpenMP, and In-
tel OpenMP. We use this investigation to expose performance bottlenecks
in both the Intel OpenMP and HClib runtimes, to motivate improve-
ments to the HClib programming model and runtime, and to propose
potential extensions to the OpenMP standard. Our performance analy-
sis shows that, across a wide range of benchmarks, HClib demonstrates
significantly less volatility in its performance with a median standard
deviation of 1.03% in execution times and outperforms the two OpenMP
implementations on 15 out of 24 benchmarks.

1 Motivation

The OpenMP specification offers a high-level way of expressing shared-memory
parallelism. The level of abstraction offered by OpenMP provides a number of
benefits, and has contributed significantly to OpenMP’s success in three ways.
First, OpenMP offers users a high-level programming model to work in, by de-
fault only requiring that they express the parallelism in their application and
not the low-level details of how to exploit the parallelism on a given hardware
platform. Second, OpenMP’s abstractions offer runtime builders flexibility in
the optimizations and techniques they can use to produce a well-performing

2 Max Grossman, Jun Shirako, and Vivek Sarkar

OpenMP implementation. Third, OpenMP’s abstractions map well across hard-
ware platforms and generations, offering both backwards compatibility and the
promise of portability to future platforms.

However, there are an increasing number of alternative shared memory paral-
lel programming systems, including HClib [10], Cilk [4], TBB [16], C++ language
extensions for parallelism [13], Kokkos [8], Raja [12], X10 [6], and more. None
of these models has experienced the widespread acceptance of OpenMP, but fa-
cilitating comparisons among them and OpenMP helps move the entire parallel
programming models community forward.

To encourage and improve the rigor of these comparisons, this paper looks
at OpenMP as a high-level specification of parallelism, a format that is uni-
versally understood and applicable and can be mapped to other programming
models and runtimes through source-to-source transformations. In this way we
can validate both the performance and programmability of these novel paral-
lel programming systems. If a novel parallel programming model is sufficiently
flexible to support a reasonable subset of the latest OpenMP standard, we can
assume it has the potential for broad applicability. We can also say that if a
novel parallel runtime is sufficiently well-performing to match the performance
of the various OpenMP runtimes, we can assume that it has the potential to
handle real world applications. Otherwise, this comparison can help to identify
performance bottlenecks in current runtime efforts.

While these comparisons can clearly motivate improvements to the novel
parallel programming system being evaluated, they can also benefit the devel-
opment of the OpenMP standard. For example, recently the OpenMP standard
underwent a massive expansion in the programming constructs and hardware
platforms supported, e.g. task-parallel programming and accelerator program-
ming. However, these constructs were not new and unique in their introduction
to OpenMP: all were based on existing implementations in existing programming
models.

When proposing, defining, and building these new OpenMP features it is im-
portant to be able to provide an early prototype of the extension, and then verify
that production implementations of accepted extensions are well implemented.
The OpenMP-to-X framework solves both of these problems for new OpenMP
features by facilitating their construction on top of, and direct comparison to,
existing programming systems.

This work contributes the OpenMP-to-X framework for implementing the
OpenMP standard on top of other parallel programming models. We see two
primary contributions of this work:

1. Using OpenMP as a high level specification of parallelism enables a more
direct and fair performance and programmability comparison among pro-
gramming models, both OpenMP vs. X and X vs. Y.

2. By enabling the OpenMP standard on top of other parallel programming
models, we facilitate the extension of OpenMP with experimental abstrac-
tions on top of a pre-existing implementation.

OpenMP as a High-Level Specification Language for Parallelism 3

In particular, we target the HClib [10] parallel programming library and
compare its performance and feature set against the GNU and Intel OpenMP
implementations.

The rest of this paper is structured as follows. In Section 2 we provide back-
ground on the HClib parallel programming library that we experiment with
in this work. In Section 3 we describe the design and implementation of our
OpenMP-to-X framework. In Section 4 we use this framework to directly com-
pare HClib and various OpenMP implementations. In Section 5 we discuss the
qualitative benefits and potential applications of our OpenMP-to-X framework.
We conclude this paper in Section 6.

2 HClib

HClib is a C/C++ library for programming multi-core and heterogeneous sys-
tems. It uses a task-based programming model, and supports constructs such as
parallel-for, finish-async, promises, and atomic variables.

HClib sits on top of a lightweight work-stealing runtime that load balances
user-created tasks across persistent worker threads. Locality is a first-class citizen
in the HClib runtime and programming model.

The HClib runtime scheduler is built around the concept of places. A single
place represents a single hardware component, e.g. an L1 cache, a GPU’s mem-
ory, the DRAM attached to a socket. Locales are bi-directionally connected to
each other so as to emulate the structure of the underlying hardware. For exam-
ple, a user might configure an L1 place to be connected to an L2 place, rather
than being connected directly to system memory because this would more accu-
rately represent the hardware component connectivity.

When making load balancing decisions at runtime, the HClib scheduler uses
this graph of places to encourage locality-aware scheduling decisions. These
places are also exposed through the programming model so that users can choose
to explicitly pin task execution to a particular set of places, or allow more flexi-
bility in their scheduling, thereby improving load balancing opportunities.

HClib tasks consist of an executable body and a closure (lambda) capturing
any context from the task’s creation point. HClib tasks can block on certain
operations, in which case HClib uses runtime-managed stacks to switch the task
off of its worker thread, allowing that worker thread to pick up more useful work
to complete. The blocked task is automatically made eligible to execute again
once its dependencies have been satisfied.

HClib shares many constructs with OpenMP, such as parallel-for, asyn-
chronous task creation, and accelerator offload. However, each programming
model also includes constructs that are unique to it; for example, HClib’s fu-
tures do not require an underlying sequential ordering in the way that OpenMP’s
task dependencies do. Hence, there are sufficient similarities between HClib and
OpenMP that a fair and one-to-one performance comparison can be made at the
programming model level, but also enough difference in both their programming
constructs and runtime implementation to make that comparison interesting.

4 Max Grossman, Jun Shirako, and Vivek Sarkar

3 Methods

In this section, we describe our OpenMP-to-X source-to-source compilation frame-
work, provide more details on the HClib APIs that this framework currently tar-
gets, and describe the mapping from OpenMP APIs to HClib APIs. OpenMP-
to-X source code and tests are available open source at https://github.com/

agrippa/omp-to-x.

3.1 OpenMP-to-X Compile-Time Mechanics

OpenMP-to-X is constructed on top of Clang LibTooling [1], a framework for
traversing and transforming the AST of a C/C++ program.

OpenMP-to-X iterates over each function in the source program. Inside each
function, OpenMP-to-X constructs a representation of the nesting of OpenMP
pragmas. At the same time, OpenMP-to-X also tracks visible variables at each
OpenMP pragma to enable later closure creation if necessary.

Once the full OpenMP pragma tree is constructed, OpenMP-to-X traverses
it from the leaves to the root and applies a pragma-specific transformation at
each node. At the completion of this postorder traversal of the OpenMP pragma
tree, the current function will have been entirely converted from OpenMP to a
different parallel programming model.

3.2 The HClib APIs Targeted by OpenMP-to-X

In this work, we use the HClib parallel programming library as a case study of
the OpenMP-to-X framework. Most of this work was performed using HClib’s
C APIs. However, below we discuss the equivalent C++ APIs as they are more
concise.

The async API creates a single-threaded task running asynchronously with
respect to the task which created it:

hc l i b : : async ([=] { . . . }) ;

HClib asynchronous tasks can be chained through the use of futures and
promises. For example, to ensure some work B() is not performed until some
other work A() has completed one could use the async future and async await

APIs:

hc l i b : : f u t u r e t ∗ f u t = async fu tu r e ([] { A() ; }) ;
async await ([] { B() ; } , f u t) ;

Promise and future objects can also be explicitly created, satisfied, and
waited on by the programmer.

Another way to synchronize on tasks is to use start finish and end finish,
whose semantics are the same as those of the finish statement in X10, Habanero-
Java [5], and Habanero-C [7]. end finish waits for all tasks spawned after the
preceding start finish to complete:

OpenMP as a High-Level Specification Language for Parallelism 5

hc l i b : : s t a r t f i n i s h () ;
h c l i b : : async ([] {

hc l i b : : async ([] { B() ; }) ;
A() ;
}) ;
h c l i b : : e n d f i n i s h () ;
// A and B must have completed here .

For convenience, HClib also supports a parallel for construct called forasync.
There is no implicit finish at the end of forasync like there is for an omp

parallel for region. The execution of an forasync parallel region can also
be dependent on a future, and the completion of all iterations can satisfy a
promise.

hc l i b : : f i n i s h ([] {
hc l i b : : forasync1D (n i t e r s , [] (int i t e r) {

std : : cout << ”He l lo from i t e r ” << i t e r << std : : endl ;
}) ;

}) ;

forasync can be combined with HClib places to launch parallel for loops on
accelerators, e.g.:

hc l i b : : p l a c e t ∗ gpu place = hc l i b : : c l o s e s t p l a c e o f t y p e (GPU) ;
h c l i b : : f i n i s h ([] {

hc l i b : : forasync1D at (gpu place , n i t e r s , [] (int i t e r) {
. . .

}) ;
}) ;

Related to accelerators, HClib also supports place-aware memory allocation
and copies, e.g.::

hc l i b : : p l a c e t ∗ gpu place = hc l i b : : g e t c l o s e s t p l a c e o f t y p e (GPU) ;
void ∗ d ptr = hc l i b : : a l l o c a t e a t (nbytes , gpu place) ;
h c l i b : : f i n i s h ([] {

hc l i b : : async copy (gpu place , d ptr , cpu place , h ptr , nbytes) ;
}) ;

3.3 Mapping OpenMP to HClib

Currently, OpenMP-to-X supports the transformation of the OpenMP constructs
listed in Table 1. Where relevant, the private, firstprivate, and shared data
sharing clauses are also supported. The selection of which constructs and clauses
to support was empirically motivated by the constructs used in our benchmarks.

Note that single and master are not supported in the general case, only as
single-threaded task-launching regions. Additionally, the SPMD parallel region
is not supported by our framework. However, in the benchmarks evaluated in this
work these parallel constructs were not used. Our use of OpenMP was partly mo-
tivated by its widespread use, and the fact that supporting OpenMP applications
on top of another programming model was a strong indicator for the generality of
that programming model. However, if in practice particular OpenMP constructs
are not widely used (e.g. SPMD parallel, threadprivate), we do not consider
it important that they be used to evaluate other programming models.

6 Max Grossman, Jun Shirako, and Vivek Sarkar

Construct Clauses Mapping

critical pthread mutexes

atomic Atomic builtins

task depend, if async

taskwait start-finish/end-finish

single

master async-at

parallel for reduction for-async
Table 1. A summary of the OpenMP constructs supported by OpenMP-to-X.

Supporting task and taskwait OpenMP’s task construct has a natural map-
ping to the async HClib API discussed in Section 3.2. To ensure strict adherence
to the OpenMP specification, the OpenMP-to-X framework explicitly constructs
a closure for each async launched. In this closure, a private variable simply has
a field declared for it. A firstprivate variable has a field declared for it which
is initialized from the launching context. A shared variable has a field declared
for it that is initialized with the address of the shared variable in the launching
context.

An OpenMP task is translated to an async call with the same body. The
body of the task must be transformed to unpack private and firstprivate

variables from the closure. Additionally, every reference to a shared variable in
the task body is translated to be a dereference of the corresponding pointer field
in the closure.

HClib has no direct equivalent to OpenMP’s taskwait construct as there is
no implicit tracking of child tasks. Instead, we wrap the body of each async in a
start finish and end finish pair. When a taskwait must be handled, a call
to end finish is emitted to ensure all preceding tasks created by the current
task have completed. Then, a call to start finish is emitted to open a new
task scope. Note that this finish scope does not affect the parallel execution of
the async it is inside of, it only allows the creating async to block on previously
created tasks.

OpenMP-to-X also supports the depend clause on task constructs. While
both depend and HClib promise/future objects are ways of expressing depen-
dencies between tasks, there are subtle differences that make it challenging to
efficiently implement depend on top of promises and futures. depend uses mem-
ory address ranges to specify input and output dependencies, and relies on a
sequential creation of dependent tasks to ensure tasks are ordered properly (i.e.
a task must be created after all of the tasks it is dependent on). On the other
hand, promises and futures are more explicit ways of expressing dependency and
must be handled by the programmer, but do not rely on any creation ordering.

To support depend on top of promises and futures, OpenMP-to-X stores
a mapping from any memory address range designated as an output range of
a created OpenMP task to the future object that dependent tasks should be
registered on. This design is concerning, as for programs that make heavy use
of depend this map could grow to be a space and time bottleneck. Indeed, if we
ignore small opportunities for compile-time dependency resolution among tasks,

OpenMP as a High-Level Specification Language for Parallelism 7

it is hard to see how depend could be implemented in any OpenMP runtime
without an analogous lookup structure. While OpenMP’s design of depend does
offer an intuitive interface to programmers, it seems it also introduces more
overheads than user-managed future and promise objects might.

Supporting single and master As stated earlier, OpenMP-to-X does not
currently support the single and master contructs in the general case, but
only in their use as single-threaded regions inside a wrapping parallel region for
the creation of OpenMP tasks, e.g.:

#pragma omp p a r a l l e l
#pragma omp s i n g l e
{
}

single is trivial to handle in this case, as it is equivalent to removing both
OpenMP pragmas. For master, we use HClib locality abstractions and the
async at API to force the execution of a master region on the main thread
of the program.

Supporting parallel for While OpenMP-to-X does not support SPMD parallel

regions, it does support the translation of the combined parallel for construct
to the forasync future API. For example, the following code:

#pragma omp p a r a l l e l for
for (int i = 0 ; i < N; i++) { . . . }

translates in to:

hc l i b : : f u t u r e t ∗ f u t = hc l i b : : f o r a s yn c f u t u r e (. . .) ;
fut−>wait () ;

Similar code generation could be used to support the new taskloop pragma,
as the semantics of a parallel for are similar in the most common scenario
(e.g., without thread-private data). In the case of thread-private OpenMP data,
OpenMP-to-X would detect a currently unsupported OpenMP command and
exit with an error message.

With the above transformations, a reasonable subset of all OpenMP pro-
grams can be automatically and directly converted to use the HClib APIs. This
conversion enables a more fair and direct performance comparison between ex-
isting OpenMP runtimes and research parallel runtimes (covered in Section 4)
and enables prototyping of novel OpenMP constructs and clauses (discussed in
Section 5).

4 Experimental Evaluation

In this section, we compare the performance of the HClib, Intel OpenMP, and
GNU OpenMP runtimes on a range of benchmarks from the Rodinia, BOTS,

8 Max Grossman, Jun Shirako, and Vivek Sarkar

and Kastors benchmark suites. All HClib benchmark implementations were au-
tomatically generated using the OpenMP-to-X framework. The automatic na-
ture of the OpenMP-to-X framework enables a more fair and comprehensive
performance comparison than would be possible manually.

These experiments were performed on a dedicated 12-core 2.80GHz Intel
X5660 CPU node in the Rice DAVINCI cluster with 48GB of system RAM.
The GNU compiler toolchain v4.8.5 and Intel compiler toolchain v15.0.2 were
used. The version of HClib this work used can be found at https://github.

com/habanero-rice/hclib/tree/resource_workers. All experiments were re-
peated ten times, and the taskset tool was used to pin threads to cores for both
the HClib and OpenMP experiments. The ith software thread is bound to the
ith logical core, and all experiments were run with 12 software threads.

When possible, we compare both “small” and “large” datasets for each
benchmark. For a complete list of benchmarks and configurations, please re-
fer to https://github.com/habanero-rice/hclib/blob/resource_workers/

test/performance-regression/cpu-only/datasets.sh.

4.1 Variance of each Runtime

The first metric to consider is how much variance exists across ten runs of the
same benchmark for a given runtime. The percent standard deviation of each
benchmark and dataset is plotted in Figure 1. We measured a median percent
standard deviation of 10.59%, 3.44%, and 1.03% for IOMP, GOMP, and HClib,
respectively.

Fig. 1. The percent standard deviation of each benchmark and dataset on all runtimes,
sorted from most to least variance on HClib. Higher values indicate more variance from
run to run.

OpenMP as a High-Level Specification Language for Parallelism 9

The main trend of importance is the lower variance offered by the HClib
runtime. Our first thought on seeing these results was that some OpenMP
initialization code was being measured, and that it was causing high over-
heads and high variance. However, even when we investigate the two benchmark
configurations with the highest variance on the IOMP runtime (srad,small
and floorplan.omp-tasks,small) and manually modify them to ensure any
OpenMP initialization must have occured prior to the timed code region, we
continue to see high variance.

Additionally, these two high-variance benchmarks have significantly different
patterns of parallelism: srad consists of an outer sequential loop wrapped around
two inner parallel-for regions, and floorplan uses the task and taskwait con-
structs. This suggests that this volatility is not a localized problem, but rather
one that might be exposed by many applications. Admittedly, these are both
short-running benchmarks so a small amount of volatility can appear as a large
percentage. However, the fact that this volatility is not reflected in the HClib
results suggests that it is not an intrinsic characteristic of these benchmarks.

Further analysis of these two benchmark configurations using HPCToolkit [2]
reveals that HClib does a better job of utilizing worker threads. For exam-
ple, in the srad,small benchmark configuration 45.5% of IOMP execution
time is spent under two IOMP internal functions: kmp fork barrier and
kmp join barrier. In contrast, HClib spends 24.9% of time in runtime in-

ternal functions related to load balancing. These high runtime overheads and
thread idleness might contribute to the observed volatility in IOMP and GOMP
execution times.

4.2 Overall Performance

We also consider the overall performance achieved by HClib, IOMP, and GOMP
for benchmarks where a percent standard deviation below 10% was observed.
Focusing only on benchmarks that achieve reasonably consistent performance
on all runtimes allows us more confidence in any conclusions drawn. Figure 2
plots the median speedup for all consistent benchmarks, normalized to GOMP
performance.

For 15 out of a total 24 consistent benchmarks, HClib outperforms IOMP
and GOMP. For 6, IOMP is the highest performer, and for 3 we see the best
performance from GOMP. While the mean speedup for HClib relative to GOMP
is slightly lower than IOMP at 2.45x and 2.59x respectively, HClib demon-
strates more consistent results by having a median speedup of 1.34x compared
to IOMP’s median of 1.02x.

To better understand the cause of the performance difference between the
two highest performing runtimes, HClib and IOMP, we also investigated var-
ious hardware counters. The main trends we observed for both runtimes was
that higher performance was strongly correlated with 1) fewer last-level cache
misses, and 2) fewer instructions executed. This indicates the importance of lo-
cality, and the importance of keeping overheads to a minimum. For example, on
the Kastors jacobi-block-task benchmark with the large dataset, IOMP’s 70%

10 Max Grossman, Jun Shirako, and Vivek Sarkar

Fig. 2. The speedup of each benchmark and dataset that demonstrated a percent
standard deviation below 10% on all runtimes, normalized to the GOMP results and
sorted from lowest to highest speedup on the HClib runtime. Higher values are better.

performance improvement over HClib was correlated with a 4.5x reduction in
last-level cache misses. On the BOTS sparselu benchmark, HClib demonstrated
a 5.50x and 3.04x speedup on the small and large datasets, respectively. This
was correlated with a 2.94x and 4.25x reduction in instructions executed. These
hardware counter results continue to support the observations from Section 4.1:
HClib’s work-stealing runtime implementation keeps useful computation on the
worker threads, rather than internal runtime logic.

We also used built-in HClib metrics to analyze these benchmarks. We ob-
serve that for many of the benchmarks where HClib experienced the highest
speedup there is a single worker thread producing most of the tasks in the appli-
cation, with the others all stealing from it. This insight combined with the more
consistent results shown in Section 4.1 and the HPCToolkit investigation above
indicates that HClib’s work-stealing scheduler may be more aggressive about
load balancing while exhibiting lower overhead than IOMP’s or GOMP’s task
schedulers.

It is important to point out that one of the common shortcomings of source-
to-source code generation is that naive techniques can often break compiler op-
timizations by making application source code more difficult to analyze (e.g.,
by taking the address of variables that would normally be stored in registers).
While it is difficult to isolate the performance side effects OpenMP-to-X’s trans-
formations would have, the side effects of the optimization-limiting transfor-
mations (e.g., taking addresses of shared variables, passing function pointers,
adding volatile qualifiers) are fundamentally required for correctly implement-
ing OpenMP semantics, regardless of programming model. For example, while
taking the address of a shared OpenMP variable as part of OpenMP-to-X’s
transformations might force the compiler to allocate stack space for it, that
space must have been allocated in the OpenMP version of the program as well
in order for multiple threads to access it. Therefore, we believe the optimization-

OpenMP as a High-Level Specification Language for Parallelism 11

limiting side effects of OpenMP-to-X transformations would be similar to the
loss of optimization necessary to support OpenMP semantics and would not
significantly affect these performance results.

5 Discussion

In our experience, OpenMP-to-X has proven to be a powerful tool for runtime
comparisons. It can motivate changes and offer insights in to both the current
state of the OpenMP standard and runtimes, as well as current research run-
times.

5.1 Insights Gained into HClib

The comparative analysis enabled by the OpenMP-to-X framework and per-
formed as part of this work identified several bottlenecks in the HClib run-
time. In particular, memory allocations for finish-scope management, runtime-
managed stacks, and future/promise object management were identified as lim-
iting the scalability of the HClib runtime, and addressed. These results validate
the OpenMP-to-X framework as a tool for motivating improvements to parallel
research runtimes.

This work also motivated the addition of atomic variables as a first-class
citizen of HClib, as a result of the heavy usage of omp atomic in many of the
benchmarks used in this work. The use of atomic compiler intrinsics as the target
for omp atomic in the OpenMP-to-X framework was observed as a performance
bottleneck for some generated HClib codes. While HClib atomic variables were
not used in the performance analysis in Section 4, they are an example of how
comparisons enabled by the OpenMP-to-X framework can motivate improve-
ments to the programming model of a research runtime.

As part of these experiments, we identified several features of OpenMP that
are desirable for performance or programmability but which have no analogue
in HClib. For example, static scheduling of parallel for loops is not something
currently supported in HClib, but would reduce runtime overheads further. Tied
task continuations could benefit locality in fork-join style programs. The master
construct is useful when interacting with third-party libraries which have restric-
tions on the calling thread. One interesting note about these constructs is that
while they are distinct entities in OpenMP, they could also be unified if OpenMP
had the concept of locality built in to its programming model (as HClib does with
hierarchical places). A statically scheduled parallel for loop is simply one which
places the constituent tasks of that parallel for at specific cores for execution,
precluding any dynamic load balancing. A tied task is simply a task whose con-
tinuation is launched at the same core as was originally executing it. A master

region is a code block launched at the core on which the master thread resides.
This suggests that a well-defined locality model in the OpenMP standard would
allow for a unification of many constructs that are disjoint today.

12 Max Grossman, Jun Shirako, and Vivek Sarkar

One challenge in this work was supporting the task depend clause on HClib.
While HClib supports dependent tasks, it does so through programmer-managed
promise and future objects. In OpenMP, dependencies are programmer-managed,
but there are no explicitly managed dependency objects. While we find both
models easy to work with, we found the underlying sequential semantics re-
quirements of the OpenMP approach somewhat restricting, and have concerns
over the ability to scale this approach to many tasks since large numbers of tasks
will require large numbers of lookups on an ever-growing table of tasks and their
output relations.

Perhaps the largest difference between OpenMP and the HClib runtime is
that the OpenMP approach is able to take advantage of compile-time optimiza-
tions and code transformations, while HClib is purely a library. While in theory
the hybrid compiler-runtime approach should have performance benefits, these
results show that a purely library-based approach can also produce consistent
and well-performing parallel programs.

5.2 Motivating Extensions to OpenMP

As part of this work, we also reflected on the current OpenMP standard and what
features of HClib could lead to potential OpenMP extensions in the future.

As part of our experimental evaluation, we found metrics exposed by the
HClib runtime to be useful when reasoning about the behavior of parallel pro-
grams. However, without matching metrics from the OpenMP runtimes it is dif-
ficult to make strong conclusions. The proposed OpenMP Tools API [9] seems
to be a synergistic project with the OpenMP-to-X framework which could help
provide this missing functionality.

One of the largest differences between HClib and the current OpenMP speci-
fication is the inclusion of locality constructs in the programming model. HClib’s
hierarchical place trees allow programmers to indicate both where tasks may run
and where memory should be allocated. In future systems with deeper memory
hierarchies, this locality support within the programming model itself may be
crucial for productive parallel programming. However, the quantitative benefits
of these constructs were not evaluated as part of this work.

5.3 Other Targets for OpenMP-to-X

While HClib was selected as the target of this work because of the authors’ fa-
miliarity with it, many other shared-memory programming models could benefit
from evaluation using OpenMP-to-X.

Work-in-progress is using OpenMP-to-X to target CUDA as a backend. CUDA’s
constrained, data-parallel programming model and discrete address spaces present
unique challenges to supporting it under OpenMP-to-X. It has necessitated sig-
nificant extensions to OpenMP-to-X, mirroring the developer effort normally re-
quired to convert an OpenMP program to an equivalent CUDA version. Despite
this, the scope of the OpenMP specification that can be supported on CUDA

OpenMP as a High-Level Specification Language for Parallelism 13

is far more limited than for HClib. This work has already demonstrated suc-
cessful automatic conversion of OpenMP parallel for loops to CUDA using
OpenMP-to-X, similar to past works [14][15][3].

One strong candidate for evaluation would be the Kokkos programming
model [8]. While Kokkos has received attention as a fundamental execution layer
for the Trilinos project [11], it has also received criticism in its applicability as
a general-purpose programming model as a result of its restricted programming
model. However, the Kokkos runtime’s focus on performance and low overheads
would also make for an interesting comparison on the subset of the OpenMP
specification it can support.

Both the Intel Thread Building Blocks [16] and Cilk [4] programming models
would be good case studies as well, as they are arguably the next most commonly
used shared-memory parallel programming models after OpenMP.

We note that HClib, Kokkos, TBB, and Cilk are all syntactically C/C++
programming models. Due to its construction on top of the Clang compiler
frontend, targeting C/C++ programming models with OpenMP-to-X is a re-
quirement of the current implementation. While it would be possible to extend
this framework to support targeting significantly different programming models
or languages, this remains future work.

Targeting other programming models that are not syntactically similar to
C/C++ would include all of the usual challenges that come with converting
one programming language to another. Programming languages with a C/C++
compatibility layer (e.g. Java) would reduce these challenges.

Targeting parallel programming models that are syntactically C/C++ but di-
verge significantly from OpenMP in their abstractions (e.g., graph programming
models) may also be possible. However, OpenMP-to-X’s relevance as a tool for
performance or programmability comparison would be lessened. In general, pro-
gramming models with non-overlapping APIs arise from different motivations,
and so the comparison of them might be meaningless.

6 Conclusions and Future Work

In this work, we used the OpenMP-to-X source-to-source code generation frame-
work to enable a variety of experiments. We compared various parallel runtimes,
using OpenMP as an intermediate representation for parallelism. We performed
feature comparisons by studying how OpenMP operations could be mapped to
other parallel programming models, and used that information to motivate ex-
tensions to both OpenMP and other parallel programming models. Through
these studies, we have improved on the flexibility and performance of the HClib
runtime and demonstrated overheads in the Intel and GNU OpenMP runtimes
that merit further investigation.

While many past studies have compared OpenMP to other parallel program-
ming models and runtimes, this is the first attempt we are aware of to standarize
that process by using the same input OpenMP programs to evaluate different
runtimes. By building a framework for consistent and automated generation of

14 Max Grossman, Jun Shirako, and Vivek Sarkar

parallel programs from OpenMP programs, we enable more comprehensive and
fair performance comparisons between parallel programming models in the fu-
ture, as well as a path to rapid prototyping of novel OpenMP functionality.

7 Acknowledgments

This work was supported in part by the Data Analysis and Visualization Cyber-
infrastructure funded by NSF under grant OCI-0959097 and Rice University.

The authors would also like to acknowledge the contributions of Vivek Ku-
mar, Nick Vrvilo, and Vincent Cave to the HClib project.

References

1. Clang libtooling. http://clang.llvm.org/docs/LibTooling.html.
2. L. Adhianto. Hpctoolkit: Tools for performance analysis of optimized parallel

programs. Concurrency and Computation: Practice and Experience, 2010.
3. M. M. Baskaran, J. Ramanujam, and P. Sadayappan. Automatic c-to-cuda code

generation for affine programs. In Compiler Construction, pages 244–263. Springer,
2010.

4. R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and
Y. Zhou. Cilk: An efficient multithreaded runtime system. Journal of parallel and
distributed computing, 37(1):55–69, 1996.

5. V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-java: the new adventures
of old x10. In Proceedings of the 9th International Conference on Principles and
Practice of Programming in Java, pages 51–61. ACM, 2011.

6. P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. Von Praun, and V. Sarkar. X10: an object-oriented approach to non-uniform
cluster computing. Acm Sigplan Notices, 40(10):519–538, 2005.

7. S. Chatterjee, S. Tasirlar, Z. Budimlic, V. Cave, M. Chabbi, M. Grossman,
V. Sarkar, and Y. Yan. Integrating asynchronous task parallelism with mpi. In
Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th International Sympo-
sium on, pages 712–725. IEEE, 2013.

8. H. C. Edwards, C. R. Trott, and D. Sunderland. Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns. Journal of
Parallel and Distributed Computing, 74(12):3202–3216, 2014.

9. A. Eichenberger, J. Mellor-Crummey, M. Schulz, N. Copty, J. DelSignore, R. Diet-
rich, X. Liu, E. Loh, and D. Lorenz. Ompt and ompd: Openmp tools application
programming interfaces for performance analysis and debugging. In International
Workshop on OpenMP (IWOMP 2013), 2013.

10. Habanero Research Group. Hclib: a library implementation of the habanero-c
language. http://hc.rice.edu, 2013.

11. M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda,
R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, et al. An overview
of the trilinos project. ACM Transactions on Mathematical Software (TOMS),
31(3):397–423, 2005.

12. R. Hornung and J. Keasler. The raja portability layer: overview and status. 2014.
13. International Organization for Standardization. The C++ Programming Language

Standard. https://isocpp.org/std/the-standard, 2014.

OpenMP as a High-Level Specification Language for Parallelism 15

14. S. Lee, S.-J. Min, and R. Eigenmann. Openmp to gpgpu: a compiler framework
for automatic translation and optimization. ACM Sigplan Notices, 44(4):101–110,
2009.

15. S. Ohshima, S. Hirasawa, and H. Honda. Ompcuda: Openmp execution framework
for cuda based on omni openmp compiler. In International Workshop on OpenMP,
pages 161–173. Springer, 2010.

16. J. Reinders. Intel threading building blocks: outfitting C++ for multi-core processor
parallelism. ” O’Reilly Media, Inc.”, 2007.

