
Unifying Barrier and Point-to-Point
Synchronization in OpenMP with Phasers

IWOMP Workshop
June 14th, 2011

Jun Shirako, Kamal Sharma, and Vivek Sarkar
Rice University

Introduction
•  Synchronization in a parallel program

–  Thread / task termination (worker to master synchronization)
•  Join operation

–  Directed synchronization
•  Collective-barrier, point-to-point synchronization

–  Undirected synchronization (mutual exclusion)
•  Lock, transactional memory

•  Directed synchronization in OpenMP
–  OpenMP barrier

•  All-to-all synchronization
•  Overkill for a certain class of applications

•  Optimizing directed synchronization in OpenMP
–  Phasers: Unified synchronization construct to support

various synchronization patterns 2

Introduction
•  Habanero-Java

–  Task parallel language at Rice University
–  http://habanero.rice.edu/hj

•  Phasers in HJ
–  Synchronization among "
"dynamically created tasks"

–  Various synchronization pattern"
•  Barriers, point-to-point sync"

–  Reduction"
–  Single statement"
–  Some functionalities were"
"added to Java 7 library "

3

•  Introduction
•  Case study for synchronization patterns

–  Iterative averaging
–  Stencil algorithm

•  Phasers for optimized synchronization in OpenMP
–  Thread-level phaser
–  Iteration-level phaser

•  Implementation
–  Spin-lock with shared variable

•  Experimental results
•  Conclusions

Outline

4

5

Review of Some OpenMP Constructs

•  OpenMP barrier
–  All threads synchronize with other threads
–  Not allowed to be in parallel for loops

set_omp_num_threads(n); // Set # threads for parallel regions

#pragma omp parallel // Start parallel region by n threads
{
 foo(); // All n threads execute foo

 #pragma omp barrier // All-to-all synchronization by n threads
 ...
 #pragma omp for // Parallel loop
 for (i = 0; i < m; i++) {
 ...
 #pragma omp barrier // Illegal usage of barrier
 ...
 }
 ...
} // End of parallel region

6

Iterative Averaging
 1: #pragma omp parallel private(iter) firstprivate(newA, oldA)
 2: {
 3: for (iter = 0; iter < NUM_ITERS; iter++) {
 4: #pragma omp for schedule(static) nowait
 5: for (j = 1; j < n-1; j++) {
 6: newA[j] = (oldA[j-1] + oldA[j+1]) / 2.0;
 7: }
 8: double *temp = newA; newA = oldA; oldA = temp;
 9: #pragma omp barrier
10: } }

7

Stencil with Pipeline Parallelism
 // Sequential version
 1: for (i = 1; i < n-1; i++) {
 2: for (j = 1; j < m-1; j++) {
 3: A[i][j] = stencil(A[i][j], A[i][j-1], A[i][j+1],
 4: A[i-1][j], A[i+1][j]);
 5: }
 6: } i-loop is parallelized

8

Stencil with Wavefront Parallelism
 1: #pragma omp parallel private(i2)
 2: {
 3: for (i2 = 2; i2 < n+m-3; i2++) { /* Loop skewing */
 4: #pragma omp for nowait
 5: for (j = max(1,i2-n+2); j < min(m-1,i2); j++) {
 6: int i = i2 - j;
 7: A[i][j] = stencil(A[i][j], A[i][j-1], A[i][j+1],
 8: A[i-1][j], A[i+1][j]);
 9: }
10: #pragma omp barrier
11: } }

j-loop is
parallelized

•  Polyhedral model
–  Powerful mathematical model for loop transformations

•  Integrate loop fusion, skewing, interchange, etc.
–  Polyhedral parallelization framework

•  Pluto, Ptile

•  Loop tiling to extract locality and parallelism
–  Fully permutable loop nest with (≤, ≤, …, ≤) dependence vector
–  Naturally have (at least) 1-level pipeline parallelism

9

Parallelized Code with Tiling

•  Introduction
•  Case study for synchronization patterns

–  Iterative averaging
–  Stencil algorithm

•  Phasers for optimized synchronization in OpenMP
–  Thread-level phaser
–  Iteration-level phaser

•  Implementation
–  Spin-lock with shared variable

•  Experimental results
•  Conclusions

Outline

10

11

•  Two levels of phasers
–  Thread-level phaser: Synchronization among OpenMP threads
–  Iteration-level phaser: Sync. among iterations of parallel loop

•  Task: An iteration of parallel loop
•  Registration

–  Register thread/task Ti on phaser phj with modei_j
•  Registration mode: {SIG, WAIT, SIG_WAIT}
•  Define capability that Ti has on phj

•  Synchronization
–  next: Equivalent to signal followed by wait
–  signal: Non-blocking operation to notify “I reached the sync point”
–  wait: Blocking operation to wait for other tasks/threads’ notification

•  Deregistration
–  Drop thread/task Ti from phaser phj

•  Ti never attends synchronization on phj after deregistration

Phasers

•  Synchronization semantics depends on mode
–  SIG_WAIT: next = signal + wait
–  SIG: next = signal + no-op (Don’t wait for any task)
–  WAIT: next = no-op + wait (Don’t signal any task)

next / signal / wait
next = •  Notify “I reached next” = signal / ph.signal()

•  Wait for others to notify = wait / ph.wait()

next

•  A master task is selected in tasks w/ wait capability
•  It receives all signals and broadcasts a barrier completion notice

12

Thread-level Phaser API (iterative averaging ex.)

13

 1: /* Phaser allocation in serial region */
 2: phaser **ph = calloc(num_threads+2, sizeof(phaser *));
 3: for (i = 0; i < num_threads+2; i++) ph[i] = phaser_new();
 4:
 5: /* Registration */
 6: for (id = 0; id < num_threads; id++) {
 7: phaserRegisterThread(ph[id], id, WAIT); // Wait left neighbor
 8: phaserRegisterThread(ph[id+1], id, SIG);
 9: phaserRegisterThread(ph[id+2], id, WAIT); // Wait right neighbor
10: }
11: /* Parallel execution with phaser synchronization */
12: #pragma omp parallel private(iter) firstprivate(newA, oldA)
13: {
14: for (iter = 0; iter < NUM_ITERS; iter++) {
15: #pragma omp for schedule(static) nowait
16: for (j = 1; j < n-1; j++) {
17: newA[j] = (oldA[j-1] + oldA[j+1])/2.0;
18: }
19: double *temp = newA; newA = oldA; oldA = temp;
20: #pragma omp next
21: } }
22: /* Deregistration to change synchronization pattern */
23: dropPhasersAll();

14

Thread-level Phaser API (iterative averaging ex.)
12: #pragma omp parallel private(iter) firstprivate(newA, oldA)
13: {
14: for (iter = 0; iter < NUM_ITERS; iter++) {
15: #pragma omp for schedule(static) nowait
16: for (j = 1; j < n-1; j++) {
17: newA[j] = (oldA[j-1] + oldA[j+1])/2.0;
18: }
19: double *temp = newA; newA = oldA; oldA = temp;
20: #pragma omp next
21: } }

Iteration-level Phaser

15

•  Synchronization among iterations of parallel loop
–  Higher level of abstraction

•  Express data dependence among iterations
•  signal / wait / next directives are used within parallel for loops

–  Less flexibility in synchronization pattern than thread-level
•  Direction of synchronization must be one-way (left-to-right)

–  Avoid deadlock
–  Loop chunking can relax this constraint

•  Extension to general OpenMP 3.0 tasks
–  Synchronization in the presence of dynamic task parallelism

•  Nature of original phaser in Habanero-Java
–  Will be addressed in future work

Iteration-level Phaser API (iterative averaging ex.)

16

 1: /* Phaser allocation in serial region */
 2: phaser **ph = calloc(n+1, sizeof(phaser *));
 3: for (i = 0; i < n+1; i++) ph[i] = phaser_new();
 4:
 5: /* Registration */
 6: for (i = 0; i < n; i++) {
 7: /* Sync direction from left to right */
 8: phaserRegisterIteration(ph[i], i, WAIT); // Wait left neighbor
 9: phaserRegisterIteration(ph[i+1], i, SIG); // Signal right neighbor
10: }
11:
12: /* Parallel execution with phaser synchronization */
13: #pragma omp parallel
14: {
15: #pragma omp for private(j) schedule(static, 1)
16: for (i = 1; i < n-1; i++) {
17: for (j = 1; j < m-1; j++) {
18: #pragma omp wait
19: A[i][j] = stencil(A[i][j], A[i][j-1], A[i][j+1],
20: A[i-1][j], A[i+1][j]);
21: #pragma omp signal
22: } }
23: }
24: dropPhasersAll(); /* Deregistration */

17

13: #pragma omp parallel for private(j) schedule(static, 1)
14: for (i = 1; i < n-1; i++) {
15: for (j = 1; j < m-1; j++) {
16: #pragma omp wait
17: A[i][j] = stencil(A[i][j], A[i][j-1], A[i][j+1],
18: A[i-1][j], A[i+1][j]);
19: #pragma omp signal
20: } }

Iteration-level Phaser API (iterative averaging ex.)

Pipeline parallelism: Better synchronization efficiency & data locality

•  Introduction
•  Case study for synchronization patterns

–  Iterative averaging
–  Stencil algorithm

•  Phasers for optimized synchronization in OpenMP
–  Thread-level phaser: SPMD-style
–  Iteration-level phaser: High-level abstraction

•  Implementation
–  Spin-lock with shared variable

•  Experimental results
•  Conclusions

Outline

18

Local-spin Implementation

19

 1: typedef struct _phaser { 14: typedef struct _sig {
 2: int id; 15: int id; // Thread/task
 3: // Contains Sig/Wait objects 16: mode md;
 4: List *sigList, *waitList; 17: volatile int phase;
 5: 18: volatile int isActive;
 6: volatile int mSigPhase; 19: } Sig;
 7: int mWaitPhase; 20:
 8: int masterId; 21: typedef struct _wait {
 9: 22: int id; // Thread/task
10: // Customized for single signaler 23: mode md;
11: int numSig, singleSigId; 24: int phase;
12: } phaser; 25: int isActive;
13: 26: } Wait;

!"#$%&'('

)*+

)*,

)*-

)*.

)*/

)*0

1+ 1, 1- 1.

23"1$%&'(

)*+

)*,

)*-

)*.

)*/

)*0

1+ 1, 1- 1.

)*4"!1'(')*+)*,)*-)*.)*/)*0

5'6%7891

5':;44

Local-spin Implementation

20

1: void waitOne(phaser *ph, int id) {
2: Wait *w = waitTbl[ph->id][id+offset];
3: if (isMasterTask(ph, id)) {
4: for (i = 0; i < num_tasks; i++) {
5: Sig *s = sigTbl[ph->id][i];
6: if (s != NULL) while (s->phase <= ph->mWaitPhase);
7: }
8: ph->mWaitPhase++;
9: ph->mSigPhase++;
10: } else { // Process for workers (non-master task)
11: while (ph->mSigPhase <= w->phase);
12: }
13: w->phase++;
14: }

1: void signalOne(phaser *ph, int id) {
2: Sig *s = sigTable[ph->id][id+offset];
3: if (s != NULL) s->phase++;
4: }

Experimental Setup
•  Platforms

–  Intel Nehalem
•  2.4GHz 8-core (2 Core i7)
•  Intel compiler v11.1 with –O3 option

–  Intel Xeon E7330
•  2.4GHz 16-core (4 Core-2-Quad)
•  Intel compiler v11.0 with –O3 option

–  IBM Power7
•  3.55GHz 32-core (SMT turned off)
•  IBM XLC v10.1 with –O5 option

•  Benchmarks
–  EPCC syncbench microbenchmark

•  All-to-all barrier performance
–  JGF multithread v1.0 SOR

•  Ported from Java to C
•  Thread-level phaser

–  Polybench 2d-fdtd and 2d-seidel
•  Parallelized with loop tiling by PTile (polyhedral framework)
•  Iteration-level phaser 21

All-to-all Barrier Performance on
Intel Nehalem, Xeon and IBM Power7

22

•  All-to-all barrier performance by OpenMP and Phasers
•  Vender implementation of OpenMP barrier is very efficient

0.53 0.7 0.9 0.85 1.13
1.75

2.38

0.3 0.43 0.64

1.61

2.9

0.53 0.75 0.71 0.87
1.43

2.96

4.44

0.2 0.37 0.52

2.01

3.39

0

2

4

6

2 4 8 2 4 8 16 2 4 8 16 32

Nehalem Xeon Power7

Ti
m

e
pe

r
ba

rr
ie

r
[u

-s
ec

]

OpenMP Phasers

Speedup for Application Benchmarks
2.4GHz 8-core Intel Nehalem

23

•  SOR: 1.1x speedup with 8-core (thread-level)
•  Fdtd-2d / Seidel-2d: 1.7x / 1.5x speedup with 8-core (iteration-level)

1.7 1.8 1.7
1.2

2.1

3.4

1.4

2.7

4.9

1.6 1.9 1.9 1.7

3.2

5.9

1.7

3.6

7.1

0

2

4

6

8

2 4 8 2 4 8 2 4 8

SOR Fdtd-2d Seidel-2d

Sp
ee

du
p

vs
. s

er
ia

l

OpenMP Phasers

Speedup for Application Benchmarks
2.4GHz 16-core Intel Xeon

24

•  SOR: 1.02x speedup with 16-core (thread-level)
•  Fdtd-2d / Seidel-2d: 1.6x / 1.4x speedup with 16-core (iteration-level)

2.0

3.8

6.2 6.2

1.2
2.3

3.4
5.0

1.5
2.8

4.8

8.4

2.0

3.8

6.2 6.3

1.9
3.7

6.0

8.0

2.0
3.8

7.1

12.1

0

2

4

6

8

10

12

14

2 4 8 16 2 4 8 16 2 4 8 16

SOR Fdtd-2d Seidel-2d

Sp
ee

du
p

vs
. s

er
ia

l

OpenMP Phasers

Speedup for Application Benchmarks
3.55GHz 32-core IBM Power7

25

•  SOR: 1.06x speedup with 32-core (thread-level)
•  Fdtd-2d / Seidel-2d: 1.2x / 1.3x speedup with 32-core (iteration-level)

1.9 2.6

5.3

11.2

16.0

1.4
2.7

4.6
6.6

9.7

1.6
3.0

5.5

9.9

14.9

1.9 2.7

5.5

11.4

16.9

1.5
2.9

5.4
6.6

11.3

2.0
3.9

7.8

12.8

18.7

0
2
4
6
8

10
12
14
16
18
20

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

SOR Fdtd-2d Seidel-2d

Sp
ee

du
p

vs
. s

er
ia

l

OpenMP Phasers

Conclusion
•  Phasers for unified synchronization in OpenMP

–  Collective barrier
–  Point-to-point synchronizations

•  Experimental results on three platforms
–  8-core Intel Core i7

•  1.1x faster for SOR, 1.7x for Fdtd-2d and 1.5x on Seidel-2d
–  16-core Intel Xeon

•  1.02x faster for SOR, 1.6x for Fdtd-2d, and 1.4x for Seidel-2d
–  32-core IBM Power7

•  1.06x faster for SOR, 1.2x for Fdtd-2d, and 1.3x for Power7
•  Future work

–  Synchronization support for dynamic task parallelism
–  Support of reduction and single statement
–  Compiler support of loop chunking with barrier operations

26

