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Introduction 
•  Synchronization in a parallel program 

–  Thread / task termination (worker to master synchronization) 
•  Join operation 

–  Directed synchronization 
•  Collective-barrier, point-to-point synchronization 

–  Undirected synchronization (mutual exclusion) 
•  Lock, transactional memory 

•  Directed synchronization in OpenMP 
–  OpenMP barrier 

•  All-to-all synchronization 
•  Overkill for a certain class of applications 

•  Optimizing directed synchronization in OpenMP 
–  Phasers: Unified synchronization construct to support 

various synchronization patterns 2 



Introduction 
•  Habanero-Java 

–  Task parallel language at Rice University 
–  http://habanero.rice.edu/hj 

•  Phasers in HJ 
–  Synchronization among "
"dynamically created tasks"

–  Various synchronization pattern"
•  Barriers, point-to-point sync"

–  Reduction"
–  Single statement"
–  Some functionalities were"
"added to Java 7 library "
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•  Introduction 
•  Case study for synchronization patterns 

–  Iterative averaging 
–  Stencil algorithm 

•  Phasers for optimized synchronization in OpenMP 
–  Thread-level phaser 
–  Iteration-level phaser 

•  Implementation 
–  Spin-lock with shared variable 

•  Experimental results 
•  Conclusions 

Outline 
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Review of Some OpenMP Constructs 

•  OpenMP barrier 
–  All threads synchronize with other threads 
–  Not allowed to be in parallel for loops 

set_omp_num_threads(n); // Set # threads for parallel regions 

#pragma omp parallel    // Start parallel region by n threads 
{   
  foo();                // All n threads execute foo 

  #pragma omp barrier   // All-to-all synchronization by n threads 
  ... 
  #pragma omp for       // Parallel loop 
  for (i = 0; i < m; i++) { 
    ... 
    #pragma omp barrier // Illegal usage of barrier 
    ... 
  } 
  ... 
}                       // End of parallel region 
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Iterative Averaging 
 1: #pragma omp parallel private(iter) firstprivate(newA, oldA) 
 2: { 
 3:   for (iter = 0; iter < NUM_ITERS; iter++) { 
 4:     #pragma omp for schedule(static) nowait 
 5:     for (j = 1; j < n-1; j++) { 
 6:       newA[j] = (oldA[j-1] + oldA[j+1]) / 2.0; 
 7:     } 
 8:     double *temp = newA; newA = oldA; oldA = temp;  
 9:     #pragma omp barrier 
10: } } 



7 

Stencil with Pipeline Parallelism 
    // Sequential version 
 1: for (i = 1; i < n-1; i++) { 
 2:   for (j = 1; j < m-1; j++) { 
 3:     A[i][j] = stencil(A[i][j], A[i][j-1], A[i][j+1], 
 4:                       A[i-1][j], A[i+1][j]); 
 5:   }    
 6: } i-loop is parallelized 
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Stencil with Wavefront Parallelism 
 1: #pragma omp parallel private(i2) 
 2: { 
 3:   for (i2 = 2; i2 < n+m-3; i2++) {  /* Loop skewing */ 
 4:     #pragma omp for nowait 
 5:     for (j = max(1,i2-n+2); j < min(m-1,i2); j++) { 
 6:       int i = i2 - j; 
 7:       A[i][j] = stencil(A[i][j], A[i][j-1], A[i][j+1], 
 8:                         A[i-1][j], A[i+1][j]); 
 9:     } 
10:     #pragma omp barrier 
11: } } 

j-loop is 
parallelized 



•  Polyhedral model 
–  Powerful mathematical model for loop transformations 

•  Integrate loop fusion, skewing, interchange, etc. 
–  Polyhedral parallelization framework 

•  Pluto, Ptile 

•  Loop tiling to extract locality and parallelism 
–  Fully permutable loop nest with (≤, ≤, …, ≤) dependence vector 
–  Naturally have (at least) 1-level pipeline parallelism 
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Parallelized Code with Tiling 



•  Introduction 
•  Case study for synchronization patterns 

–  Iterative averaging 
–  Stencil algorithm 

•  Phasers for optimized synchronization in OpenMP 
–  Thread-level phaser 
–  Iteration-level phaser 

•  Implementation 
–  Spin-lock with shared variable 

•  Experimental results 
•  Conclusions 

Outline 
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•  Two levels of phasers 
–  Thread-level phaser: Synchronization among OpenMP threads 
–  Iteration-level phaser: Sync. among iterations of parallel loop 

•  Task: An iteration of parallel loop 
•  Registration 

–  Register thread/task Ti on phaser phj with modei_j 
•  Registration mode: {SIG, WAIT, SIG_WAIT} 
•  Define capability that Ti has on phj 

•  Synchronization 
–  next: Equivalent to signal followed by wait 
–  signal: Non-blocking operation to notify “I reached the sync point” 
–  wait: Blocking operation to wait for other tasks/threads’ notification 

•  Deregistration 
–  Drop thread/task Ti from phaser phj 

•  Ti never attends synchronization on phj after deregistration 

Phasers 



•  Synchronization semantics depends on mode 
–  SIG_WAIT: next = signal + wait 
–  SIG:            next = signal + no-op (Don’t wait for any task) 
–  WAIT:         next = no-op + wait (Don’t signal any task) 

next / signal / wait 
next =  •  Notify “I reached next”   = signal / ph.signal() 

•  Wait for others to notify  = wait / ph.wait() 

next 

•  A master task is selected in tasks w/ wait capability 
•  It receives all signals and broadcasts a barrier completion notice 
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Thread-level Phaser API (iterative averaging ex.) 
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 1: /* Phaser allocation in serial region */ 
 2: phaser **ph = calloc(num_threads+2, sizeof(phaser *)); 
 3: for (i = 0; i < num_threads+2; i++) ph[i] = phaser_new(); 
 4:  
 5: /* Registration */ 
 6: for (id = 0; id < num_threads; id++) { 
 7:   phaserRegisterThread(ph[id], id, WAIT);   // Wait left neighbor 
 8:   phaserRegisterThread(ph[id+1], id, SIG); 
 9:   phaserRegisterThread(ph[id+2], id, WAIT); // Wait right neighbor 
10: } 
11: /* Parallel execution with phaser synchronization */ 
12: #pragma omp parallel private(iter) firstprivate(newA, oldA) 
13: { 
14:   for (iter = 0; iter < NUM_ITERS; iter++) { 
15:     #pragma omp for schedule(static) nowait 
16:     for (j = 1; j < n-1; j++) { 
17:       newA[j] = (oldA[j-1] + oldA[j+1])/2.0; 
18:     } 
19:     double *temp = newA; newA = oldA; oldA = temp;  
20:     #pragma omp next 
21: } } 
22: /* Deregistration to change synchronization pattern */ 
23: dropPhasersAll(); 
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Thread-level Phaser API (iterative averaging ex.) 
12: #pragma omp parallel private(iter) firstprivate(newA, oldA) 
13: { 
14:   for (iter = 0; iter < NUM_ITERS; iter++) { 
15:     #pragma omp for schedule(static) nowait 
16:     for (j = 1; j < n-1; j++) { 
17:       newA[j] = (oldA[j-1] + oldA[j+1])/2.0; 
18:     } 
19:     double *temp = newA; newA = oldA; oldA = temp;  
20:     #pragma omp next 
21: } } 



Iteration-level Phaser 
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•  Synchronization among iterations of parallel loop 
–  Higher level of abstraction 

•  Express data dependence among iterations 
•  signal / wait / next directives are used within parallel for loops 

–  Less flexibility in synchronization pattern than thread-level 
•  Direction of synchronization must be one-way (left-to-right) 

–  Avoid deadlock 
–  Loop chunking can relax this constraint 

•  Extension to general OpenMP 3.0 tasks 
–  Synchronization in the presence of dynamic task parallelism 

•  Nature of original phaser in Habanero-Java 
–  Will be addressed in future work 



Iteration-level Phaser API (iterative averaging ex.) 
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 1: /* Phaser allocation in serial region */ 
 2: phaser **ph = calloc(n+1, sizeof(phaser *)); 
 3: for (i = 0; i < n+1; i++) ph[i] = phaser_new(); 
 4:  
 5: /* Registration */ 
 6: for (i = 0; i < n; i++) { 
 7:   /* Sync direction from left to right */ 
 8:   phaserRegisterIteration(ph[i], i, WAIT);  // Wait left neighbor 
 9:   phaserRegisterIteration(ph[i+1], i, SIG); // Signal right neighbor 
10: } 
11:  
12: /* Parallel execution with phaser synchronization */ 
13: #pragma omp parallel 
14: { 
15:   #pragma omp for private(j) schedule(static, 1) 
16:   for (i = 1; i < n-1; i++) { 
17:     for (j = 1; j < m-1; j++) { 
18:       #pragma omp wait 
19:       A[i][j] = stencil(A[i][j], A[i][j-1], A[i][j+1], 
20:                         A[i-1][j], A[i+1][j]); 
21:       #pragma omp signal 
22:   } } 
23: }  
24: dropPhasersAll(); /* Deregistration */ 
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13: #pragma omp parallel for private(j) schedule(static, 1) 
14: for (i = 1; i < n-1; i++) { 
15:   for (j = 1; j < m-1; j++) { 
16:     #pragma omp wait 
17:     A[i][j] = stencil(A[i][j], A[i][j-1], A[i][j+1], 
18:                       A[i-1][j], A[i+1][j]); 
19:     #pragma omp signal 
20: } }  

Iteration-level Phaser API (iterative averaging ex.) 

Pipeline parallelism: Better synchronization efficiency & data locality 



•  Introduction 
•  Case study for synchronization patterns 

–  Iterative averaging 
–  Stencil algorithm 

•  Phasers for optimized synchronization in OpenMP 
–  Thread-level phaser: SPMD-style 
–  Iteration-level phaser: High-level abstraction 

•  Implementation 
–  Spin-lock with shared variable 

•  Experimental results 
•  Conclusions 

Outline 
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Local-spin Implementation 
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 1: typedef struct _phaser {                14: typedef struct _sig { 
 2:   int id;                               15:   int id; // Thread/task 
 3:   // Contains Sig/Wait objects          16:   mode md; 
 4:   List *sigList, *waitList;             17:   volatile int phase; 
 5:                                         18:   volatile int isActive; 
 6:   volatile int mSigPhase;               19: } Sig; 
 7:   int mWaitPhase;                       20: 
 8:   int masterId;                         21: typedef struct _wait { 
 9:                                         22:   int id; // Thread/task 
10:   // Customized for single signaler     23:   mode md; 
11:   int numSig, singleSigId;              24:   int phase; 
12: } phaser;                               25:   int isActive; 
13:                                         26: } Wait; 

!"#$%&'('

)*+

)*,

)*-

)*.

)*/

)*0

1+ 1, 1- 1.

23"1$%&'(

)*+

)*,

)*-

)*.

)*/

)*0

1+ 1, 1- 1.

)*4"!1'(' )*+ )*, )*- )*. )*/ )*0

5'6%7891

5':;44



Local-spin Implementation 
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1:   void waitOne(phaser *ph, int id) { 
2:     Wait *w = waitTbl[ph->id][id+offset]; 
3:     if (isMasterTask(ph, id)) { 
4:       for (i = 0; i < num_tasks; i++) { 
5:         Sig *s = sigTbl[ph->id][i]; 
6:         if (s != NULL) while (s->phase <= ph->mWaitPhase); 
7:       } 
8:       ph->mWaitPhase++; 
9:       ph->mSigPhase++; 
10:    } else { // Process for workers (non-master task) 
11:      while (ph->mSigPhase <= w->phase); 
12:    } 
13:    w->phase++; 
14:  } 

1:   void signalOne(phaser *ph, int id) { 
2:     Sig *s = sigTable[ph->id][id+offset]; 
3:     if (s != NULL) s->phase++; 
4:   } 



Experimental Setup 
•  Platforms 

–  Intel Nehalem 
•  2.4GHz 8-core (2 Core i7) 
•  Intel compiler v11.1 with –O3 option 

–  Intel Xeon E7330 
•  2.4GHz 16-core (4 Core-2-Quad) 
•  Intel compiler v11.0 with –O3 option 

–  IBM Power7 
•  3.55GHz 32-core (SMT turned off) 
•  IBM XLC v10.1 with –O5 option 

•  Benchmarks 
–  EPCC syncbench microbenchmark 

•  All-to-all barrier performance 
–  JGF multithread v1.0 SOR 

•  Ported from Java to C 
•  Thread-level phaser 

–  Polybench 2d-fdtd and 2d-seidel 
•  Parallelized with loop tiling by PTile (polyhedral framework) 
•  Iteration-level phaser 21 



All-to-all Barrier Performance on 
Intel Nehalem, Xeon and IBM Power7 
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•  All-to-all barrier performance by OpenMP and Phasers 
•  Vender implementation of OpenMP barrier is very efficient 
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Speedup for Application Benchmarks 
2.4GHz 8-core Intel Nehalem 
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•  SOR: 1.1x speedup with 8-core (thread-level) 
•  Fdtd-2d / Seidel-2d: 1.7x / 1.5x speedup with 8-core (iteration-level) 
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Speedup for Application Benchmarks 
2.4GHz 16-core Intel Xeon 
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•  SOR: 1.02x speedup with 16-core (thread-level) 
•  Fdtd-2d / Seidel-2d: 1.6x / 1.4x speedup with 16-core (iteration-level) 
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Speedup for Application Benchmarks 
3.55GHz 32-core IBM Power7 
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•  SOR: 1.06x speedup with 32-core (thread-level) 
•  Fdtd-2d / Seidel-2d: 1.2x / 1.3x speedup with 32-core (iteration-level) 
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Conclusion 
•  Phasers for unified synchronization in OpenMP 

–  Collective barrier 
–  Point-to-point synchronizations 

•  Experimental results on three platforms 
–  8-core Intel Core i7 

•  1.1x faster for SOR, 1.7x for Fdtd-2d and 1.5x on Seidel-2d 
–  16-core Intel Xeon 

•  1.02x faster for SOR, 1.6x for Fdtd-2d, and 1.4x for Seidel-2d 
–  32-core IBM Power7 

•  1.06x faster for SOR, 1.2x for Fdtd-2d, and 1.3x for Power7 
•  Future work 

–  Synchronization support for dynamic task parallelism 
–  Support of reduction and single statement 
–  Compiler support of loop chunking with barrier operations 
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