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Abstract. Despite its age, SPMD (Single Program Multiple Data) par-
allelism continues to be one of the most popular parallel execution mod-
els in use today, as exemplified by OpenMP for multicore systems and
CUDA and OpenCL for accelerator systems. The basic idea behind the
SPMD model, which makes it different from task-parallel models, is that
all logical processors (worker threads) execute the same program with
sequential code executed redundantly and parallel code executed coop-
eratively. In this paper, we extend the polyhedral model to enable anal-
ysis of explicitly parallel SPMD programs and provide a new approach
for static detection of data races in SPMD programs using the extended
polyhedral model. We evaluate our approach using 34 OpenMP programs
from the OmpSCR and PolyBench-ACC 1 benchmark suites.
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1 Introduction

It is widely recognized that computer systems anticipated in the 2020 time frame
will be qualitatively different from current and past computer systems. Specif-
ically, they will be built using homogeneous and heterogeneous many-core pro-
cessors with 100’s of cores per chip, and their performance will be driven by
parallelism, and constrained by energy and data movement [21]. This trend to-
wards ubiquitous parallelism has forced the need for improved productivity and
scalability in parallel programming models. Historically, the most successful run-
times for shared memory multiprocessors have been based on bulk-synchronous
Single Program Multiple Data (SPMD) execution models [10]. OpenMP [18]
represents one such embodiment in which the programmer’s view of the runtime
is that of a fixed number of threads executing computations in “redundant” or
“work-sharing” parallel modes.

As with other imperative parallel programming models, data races are a
pernicious source of bugs in the SPMD model. Recent efforts on static data

1 PolyBench-ACC derives from the PolyBench benchmark suite and provides
OpenMP, OpenACC, CUDA, OpenCL and HMPP implementations.



race detection include approaches based on symbolic execution, e.g., [23,15], on
polyhedral analysis frameworks, e.g., [3,24]. Past work on data race detection
using polyhedral approaches have either focused on loop level parallelism, as
exemplified by OpenMP’s parallel for construct, or on task parallelism, as
exemplified by X10’s async and finish constructs, but not on general SPMD
parallelism.

In this paper, we introduce a new approach for static detection of data races
by extending the polyhedral model to enable analysis of explicitly parallel SPMD
programs.2 The key contributions of the paper are as follows:

1. An extension of the polyhedral model to represent SPMD programs.
2. Formalization of the May Happen in Parallel (MHP) relation in the extended

polyhedral model.
3. An approach for static detection of data races in SPMD programs.
4. Demonstration of our approach on 34 OpenMP programs from the OmpSCR

and the PolyBench-ACC OpenMP benchmark suites.

The rest of the paper is organized as follows. Section 2 summarizes the back-
ground for this work. Section 3 motivates the proposed approach for race detec-
tion with an example. Section 4 includes limitations of the existing polyhedral
model, and the details of our extensions to the polyhedral model to represent
SPMD programs. Section 5 shows how the MHP relation can be formalized in
the extended model and describes our approach to compile-time data race detec-
tion. Section 6 contains our experimental results for data race detection. Finally,
Section 7 summarizes related work, and Section 8 contains our conclusions and
future work.

2 Background

This section briefly summarizes the SPMD execution model using OpenMP con-
structs as an exemplar, as well as an introduction to data race detection, that
provides the motivation for our work. Then, we briefly summarize the polyhedral
model since it provides the foundation for our proposed approach to static data
race detection.

2.1 SPMD Parallelism using OpenMP

SPMD (Single Program Multiple Data) parallelism [9,10] continues to be one
of the most popular parallel execution models in use today, as exemplified by
OpenMP for multicore systems and CUDA, OpenCL for accelerator systems.
The basic idea behind the SPMD model is that all logical processors (worker
threads) execute the same program, with sequential code executed redundantly
and parallel code (worksharing, barrier constructs, etc.) executed cooperatively.

2 An earlier version of this paper was presented at the IMPACT’16 workshop [6], a
forum that does not include formal proceedings.
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In this paper, we focus on OpenMP [18] as an exemplar of SPMD parallelism.
The OpenMP parallel construct indicates the creation of a fixed number of par-
allel worker threads to execute an SPMD parallel region. The OpenMP barrier

construct specifies a barrier operation among all threads in the current parallel
region. In this paper, we restrict our attention to textually aligned barriers, in
which all threads encounter the same textual sequence of barriers. Each dynamic
instance of the same barrier operation must be encountered by all threads, e.g.,
it is not permisible for a barrier in a then-clause of an if statement executed by
(say) thread 0 to be matched with a barrier in an else-clause of the same if
statement executed by thread 1. We plan to address textually unaligned barri-
ers as part of the future work. However, many software developers believe that
textually aligned barriers are better from a software engineering perspective.

The OpenMP for construct indicates that the immediately following loop
can be parallelized and executed in a work-sharing mode by all the threads in
the parallel SPMD region. An implicit barrier is performed immediately after
a for loop, while the nowait clause disables this implicit barrier. Further, a
barrier is not allowed to be used inside a for loop. When the schedule(kind,
chunk size) clause is attached to a for construct, its parallel iterations are
grouped into batches of chunk size iterations, which are then scheduled on the
worker threads according to the policy specified by kind.

The OpenMP master construct indicates that the immediately following re-
gion of code is to be executed only by the master thread of the parallel SPMD
region. Note that, there is no implied barrier associated with this construct.

2.2 Data Race Detection

Data races are a major source of semantic errors in shared memory parallel
programs. In general, a data race occurs when two or more threads perform
conflicting accesses (such that at least one access is a write) to a shared loca-
tion without any synchronization among threads. Complicating matters, data
races may occur only in some of the possible schedules of a parallel program,
thereby making them notoriously hard to detect and reproduce. A large vari-
ety of static and dynamic data race detection techniques have been developed
over the years with a wide range of guarantees with respect to the scope of the
checking (schedule-specific, input-specific, or general) and precision (acceptable
levels of false negatives and false positives) supported. Among these, the holy
grail is static checking of parallel programs with no false negatives and minimal
false positives. This level of static data race detection has remained an open
problem for SPMD programs, even though there has been significant progress
in recent years on race detection for restricted subsets of fork-join and OpenMP
programs [16,23,15], as well as for higher-level programming models [3,24,4,2].

2.3 Polyhedral model

The polyhedral model is a flexible representation for arbitrarily nested loops [12].
Loop nests amenable to this algebraic representation are called Static Control
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Parts (SCoP’s) and represented in the SCoP format, which includes four el-
ements for each statement, namely, iteration domains, access relations, depen-
dence polyhedra/relations and the program schedule. In the original formulation
of polyhedral frameworks, all array subscripts, loop bounds, and branch condi-
tions in analyzable programs were required to be affine functions of loop index
variables and global parameters. However, decades of research since then have
led to a significant expansion of programs that can be considered analyzable by
polyhedral frameworks [8].
Iteration domain, DS : A statement S enclosed by m loops is represented by
an m-dimensional polytope, referred to as the iteration domain of the state-
ment. Each point in the iteration domain is an execution instance i ∈ DS of the
statement.
Access relation, AS(i): Each array reference in a statement is expressed
through an access relation, which maps a statement instance i to one or more
array elements to be read/written. This mapping is expressed in the affine form
of loop iterators and global parameters; a scalar variable is considered to be a
degenerate (zero-dimensional) array.
Dependence relation, DS→T : Program dependences in polyhedral frameworks
are represented using dependence relations that map instances between two
statement iteration domains, i.e., i ∈ S to j ∈ T . These relations are then
leveraged to compute a new program schedule that respects the order of the
statement instances in the dependence.
Schedule, ΘS(i): The execution order of a program is captured by the schedule,
which maps instance i to a logical time-stamp. In general, a schedule is expressed
as a multidimensional vector, and statement instances are executed according to
the increasing lexicographic order of their timestamps.

3 Motivation

To motivate the proposed approach for static detection of data races, we discuss
an explicitly parallel SPMD kernel as an illustrative example.

Illustrative Example. The example shown in Figure 1) is a 2-dimensional Jacobi
computation from the OmpSCR benchmark suite [11]. The computation is paral-
lelized using the OpenMP parallel construct with worksharing directives (lines 5,
11) and synchronization directives (implicit barriers from lines 5, 11). The first
for-loop is parallelized (at line 5) to produce values of the array uold. Similarly,
the second for-loop is parallelized (at line 11) to consume values of the array
uold. The reduced error (from the reduction clause at line 11) is updated by
only the master thread in the region (lines 26-29). Finally, the entire computa-
tion in lines 5–29 is repeated until it reaches the maximum number of iterations
(or) the error is less than a threshold value. This pattern is very common in
many stencil programs, often with multidimensional loops and multidimensional
arrays. Although the worksharing parallel loops have implicit barriers, the pro-
grammer who contributed this code to the OmpSCR suite likely overlooked the
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1 #pragma omp parallel private (resid , i)//tid-thread id
2 {
3 while (k <= maxit && error > tol) { //S1

4 /* copy new solution into old */
5 #pragma omp for

6 for (j=0; j<m; j++)
7 for (i=0; i<n; i++)

8 uold[i + m*j] = u[i + m*j];

10 /* compute stencil , residual and update */

11 #pragma omp for reduction(+:error)
12 for (j=1; j<m-1; j++)

13 for (i=1; i<n-1; i++) {
14 resid =(ax*(uold[i-1+m*j] + uold[i+1+m*j]) + ay*(uold[i+m*(j-1)]
15 + uold[i+m*(j+1)]) + b*uold[i+m*j] - f[i+m*j]) / b;

17 /* update solution */

18 u[i + m*j] = uold[i + m*j] - omega * resid;

20 /* accumulate residual error */
21 error =error + resid*resid;
22 }

24 /* error check */

25 #pragma omp master
26 {
27 k++; //S2

28 error = sqrt(error) /(n*m); //S3
29 }

30 } /* while */
31 } /* end parallel */

Fig. 1. 2-D Jacobi kernel from OmpSCR benchmark suite

fact that a master region does not include a barrier. As a result, data races are
possible in this example since statement S1’s (at line 3) read access of variables
k, error by a non-master thread can execute in parallel with an update of the
same variables performed in statements S2 (at line 27) and S3 (at line 28) by the
master thread. These races can be fixed by inserting another barrier immediately
after the master region.

We observe that existing static race detection tools (e.g., [23,3]) are unable to
identify such races since they don’t model barriers inside of imperfectly nested
sequential loops in the SPMD regions. We also observe that existing dynamic
race detection tools such as Intel Inspector XE (2015 Update 1) in its default
mode miss this true race and hybrid race detection tools such as ARCHER [2]
incurred significant runtime overhead to detect this true race. In contrast, our
proposed approach using the extended polyhedral model can identify such races
at compile-time by effectively capturing execution phases from barrier direc-
tives via static analysis of SPMD regions.

4 Extended Polyhedral Model for SPMD Programs

In this section, we begin with discussing limitations of the polyhedral model for
analyzing SPMD programs. Then, we summarize our extensions to the polyhe-
dral model to support SPMD parallelism.
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4.1 Limitations

The polyhedral model is an algebraic representation used to support compiler
techniques for analysis and transformation of perfectly/imperfectly nested loops
in sequential programs. Recent efforts [5] have extended polyhedral modeling
techniques to explicitly parallel programs, but assuming the “serial-elision” prop-
erty i.e., the property that removal of all parallel constructs results in a sequential
program that is a valid (albeit inefficient) implementation of the parallel program
semantics. Note that SPMD programs don’t satisfy the “serial-elision” property
because (for example) removing a barrier from an SPMD region would alter the
semantics.

An interesting property of an explicitly parallel program is that it specifies
a partial execution order unlike a sequential program, which specifies a total
order. The schedule mapping (defined in Section 2.3) was originally introduced
to represent the total order present in a sequential program. However, it can
also be used to specify parallelism by assigning the same logical timestamp to
multiple statement instances, thereby indicating that they can be executed at the
same time. Still, this mapping is not sufficient to capture the partial order in a
SPMD program. Hence, we extend the schedule with space and phase mappings
(defined in the following sections) to explicitly capture the partial order.

4.2 Space (Allocation) mapping, ΘS

A
(i)

Space (Allocation) mapping assigns a processor stamp to a statement instance
that indicates a logical processor id on which the instance has to be executed.
As a convenience for computing the space mapping, we 1) Replace the omp

parallel region header by a logical parallel loop that iterates over threads,
2) Enclose the body of static scheduled worksharing loop in an if block with the
condition on the thread iterator to be a function of lower and upper bounds, the
loop chunk size and total number of threads participating in the worksharing loop
(the last two are treated as fixed but unknown program parameters), 3) Insert
an explicit barrier immediately after the worksharing loop (or) single region
if a nowait clause is not specified, 4) Enclose the body of master region in an
if block with the condition on the thread iterator to be zero. (Note that these
transformations are only performed for the purpose of program analysis, and
do not result in changes in the original program.) For the OpenMP program
in Figure 1, the space mappings for statements S1, S2, and S3 are (tid), (0), and
(0) respectively where tid is an iterator from the logical parallel loop (line 1).

4.3 Phase mapping, ΘS

P
(i)

A key property of the SPMD programs is that their execution can be parti-
tioned into a sequence of phases separated by barriers. It has been observed in
past work that statements from different execution phases cannot execute con-
currently [27]. Thus, only pairs of data accesses that execute within the same
phase need to be considered as potential candidates for data races. The phase
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mapping assigns a logical identifier, which we refer to as a phase stamp, to each
statement instance. Thus, statement instances are executed according to increas-
ing lexicographic order of their phase-stamps. We define reachable barriers for
a statement instance ‘S’ as a set of barriers instances that can be executed af-
ter the statement instance ‘S’ without an intervening barrier instance. For the
OpenMP program in Figure 1, reachable barriers for the statement S2 are the
implicit barrier instance (at line 9) in the next iteration of while loop and the
implicit barrier at the end of the parallel region (at line 31). Finally, we com-
pute the phase mapping for a statement instance as the union of the timestamps
of all reachable barriers of the statement instance. There exists only one such
reachable barrier at run-time under the assumption of textually aligned barri-
ers and it would be one (based on the program parameters) from the statically
determined set of reachable barriers.

Algorithm 1: Phase Mapping

Input : SCoP
Output: SCoP with phase mappings

1 begin

/* Extract initial schedules (time stamps) */

2 θS := Statement schedules from SCoP

3 θB := Barrier schedules from SCoP

/* Compute a map from statements to barriers such that elements

of statements are lexicographically strictly smaller than

those of barriers */

4 δS→B := {x → y : θ(x) ≺ θ(y),x ∈ S,y ∈ B}

/* Build a map from time stamps of statements to time stamps of

barriers with lexicographically strictly smaller property */

5 δθ(S)→θ(B) := (θS)−1 ◦ δS→B ◦ θB

/* Extract a map from pairs of statement and barrier timestamps

to their time difference */

6 δ(S,B)→(θ(B)−θ(S)) := {(θ(x) → θ(y)) → (θ(y)− θ(x)) : x ∈ S,y ∈ B}

/* Compute a map from each statement time stamp to the time stamp

of the closest barrier instance for each lexical barrier */

7 β := dom(lexmin(δ(S,B)→(θ(B)−θ(S))))

/* Compute a map (reachable barriers) from each statement

instance to the closest barrier instance, among all lexical

barriers */

8 βS := lexmin(θS ◦ β) ◦ (θB)−1

/* Compute phase mappings by union of timestamp of the reachable

barrier instances to each statement instance */

9 Phase mappings, ΘS
P := βS ◦ θB

10 end
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Algorithm 1 summarizes the overall approach to compute the phase map-
pings for statements in a given SCoP. This approach can handle barriers within
imperfectly nested sequential loops inside the SPMD region.

Initially, Lines 2-3 of the Algorithm 1 extract the schedules (time stamps)
of both the regular statements and the barriers used. Then, Line 4 computes a
map from the regular statements to barriers such that the elements of regular
statements are lexicographically strictly smaller than those of barriers. Line 5
also computes another map from the time stamps of the regular statements to
the time stamps of barriers, and keeping lexicographically strictly smaller prop-
erty. Then, Line 6 essentially computes a set having difference of time stamps
of regular statements and barriers; Line 7 computes the minimum of such differ-
ences and returns a map from the time stamps of regular statement to the time
stamps of barrier having the minimum differences. This is then used in line 8 to
determine the first/immediate barrier reachable for each regular statement in-
stance. Finally, line 9 determines the phase mapping by assigning the timestamp
of the first reachable barrier instance for a given statement instance.

5 Static Data Race Detection

In this section, we begin with our workflow for static data race detection. Then,
we explain the formalization of MHP relations in the extended polyhedral model
and describe our approach to compile-time data race detection.

5.1 Our workflow (PolyOMP)

Fig. 2. Overview of PolyOMP

The overall workflow is summarized
in Figure 2, which is implemented as
an extension to the Polyhedral Extrac-
tion Tool (PET) [22], and consists of
the following components: 1) Conversion
from input OpenMP-C program to Clang
AST with the help of Clang-omp (ver-
sion: 3.5) [7] and LLVM (version: 3.5.svn),
2) Conversion from Clang AST to PET
AST (defined in [22]) (with the sup-
port for omp parallel, for, parallel

for, barrier, single, master direc-
tives and nested parallel regions), 3) Ex-
tract SCoP from the PET AST, 4) Gen-
erate Extended SCoP (SCoP with space
and phase mappings) from the PET AST
and the SCoP, 5) Perform static race detection to detect races with the help of
MHP relations from extended SCoP.
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5.2 Computation of MHP Relations

MHP analysis statically determines if it is possible for execution instances of two
statements (or the same statement) to execute in parallel [1]. In general, two
statement instances S and T in a parallel region can execute in parallel iff both
of them are in the same phase of computation (not ordered by synchronization)
and are executed by different threads in the region. Algorithm 2 summarizes the
overall steps to compute the MHP relations on a given pair of statements S, T
in the SCoP. Non-affine and unknown functions appear in the space mapping
(physical thread distribution) of statement instances while handling OpenMP
worksharing loops with the static schedules, parametric chunk size and total
number of threads. However, we conservatively compare name and arguments
of space mapping of a thread with other threads to distinguish as two different
threads.

Algorithm 2: MHP algorithm

Input : Statements S, T from the SCoP
Output: MHP Relations between S and T

1 begin

/* Extract space and phase mappings of statements S and T */

2 ΘS
A, Θ

T
A := Space mappings of S, T

3 ΘS
P , Θ

T
P := Phase mappings of S, T

/* Compute a map from S to T such that they are in same phase */

4 δS→T
SamePhase := ΘS

P ◦ (ΘT
P )

−1

/* Compute a map from S to T such that they are on same thread */

5 δS→T
SameThread := ΘS

A ◦ (ΘT
A)

−1

/* Compute the cross product of S and T */

6 δS→T
CrossProduct := dom(ΘS

A)× dom(ΘT
A)

/* Compute a map from S to T such that they are run on different

threads */

7 δS→T
DiffThreads := δS→T

CrossProduct - δ
S→T
SameThreads

/* Compute MHP relations by intersecting the same phase and

different thread maps of S and T (same map domain and range)

*/

8 δS→T
MHP := δS→T

DiffThreads ∩ δS→T
SamePhase

9 end

5.3 Computation of Data Races

Detecting read-write and write-write data races becomes straightforward with
the availability of MHP relations. In general, there exists a race between state-
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ments S and T on memory location x iff MHP(S, T) is true, access relations of
S and T intersect each other on memory location x and at-least one of them is
a write. Our approach considers all possible pairs of the statements and builds
data race conditions as per the above criteria and solves for the existence of
solutions. Our approach is guaranteed to be exact (with neither false positives
nor false negatives) if the input program satisfies all the standard preconditions
of the polyhedral model (without any non-affine constructs). Thanks to the PET
framework’s [22] ability to handle non-affine constructs (in both data subscripts
and control flow) elegantly in the form of may-write access relations, our ap-
proach now incorporates may-write access relations while computing data races
and hence it may induce false positives (but not false negatives) for non-affine
programs.

5.4 Limitations of PolyOMP

The current implementation supports OpenMP constructs such as omp parallel

for, parallel for, barrier, single, master directives and nested paral-
lel regions. Our tool currently does not perform pointer based analysis. However,
any previous works on pointer analysis can be added as a pre-pass to our race
detection stage. The support for analyzing SPMD programs with lock-based
synchronization and task-based constructs are left as future work.

6 Experimental Evaluation

In this section, we present the evaluation of our approach for static race detection
using the extended polyhedral model. Table 1 and Table 2 list the number of
races discovered by our PolyOMP tool in the OmpSCR and PolyBench-ACC suites,
along with the number of different OpenMP constructs in each benchmark.

6.1 OmpSCR Benchmarks suite

OmpSCR, an OpenMP Source Code Repository [11], is composed by a set of
OpenMP applications written in C, C++ and Fortran. There are 18 OpenMP-
C benchmarks in this repository, in which 6 benchmarks use C structs and
pointer arithmetic. Since we defer support for C structs and pointer arithmetic
to future work in our current tool chain, our results focus on the remaining 12
OpenMP-C benchmarks in OmpSCR, which are listed in Table 1. These results
have been obtained on a quad core-i7 (2.2 GHz) machine with 16 GB main
memory.

This benchmark suite contains known races, as reported in prior work on
dynamic datarace detection in the ARCHER tool [2]. Our evaluation shows
that PolyOMP is able to detect all of the documented races in the follow-
ing applications using the static analysis algorithm in this paper: Jacobi03,
LoopA.bad, LoopB.bad1, LoopB.bad2. All reported races (column Reported)
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Table 1. Data races in subset of OmpSCR benchmark suite. Columns: Number of SPMD
regions(#SPMD), Number of worksharing directives in a SPMD region(#WS), Num-
ber of barriers including implicit in a SPMD region (#Barriers), PolyOMP: race de-
tection time, number of reported races, and number of false positives. ARCHER/ Intel
Inspector XE (2015 Update 1 with default mode): Number of races reported.

Benchmark #SPMD #WS #Barriers
PolyOMP

ARCHER
Intel

Inspector
XE

Detec
tion
Time
(Sec)

Reported False+ves

Jacobi01 2 1 1 1.38 2 2 0 0

Jacobi02 1 2 2 3.91 2 2 0 0

Jacobi03 1 3 3 1.54 4 2 2 0

Lud 1 1 1 0.30 0 0 0 1

LoopA.bad 1 1 1 0.20 1 0 1 2

LoopA.sol1 2 1 2 0.44 0 0 0 2

LoopA.sol2 1 0 2 1.21 7 7 0 0

LoopA.sol3 1 0 2 1.19 7 7 0 0

LoopB.bad1 1 1 1 0.20 1 0 1 2

LoopB.bad2 1 1 1 0.21 1 0 1 2

LoopB.pipe 1 0 2 2.40 7 7 0 0

C pi 1 1 1 0.05 0 0 0 1

Total 14 12 19 13.03 32 27 5 10

were manually verified. (Note: each reported data race corresponds to a static
pair of conflicting accesses). The False +ves column shows the number of re-
ported races that actually are false positives. In addition, we compared our
reported races with those reported by ARCHER3. Our tool computes races con-
servatively when unanalyzable control flow or data accesses are present and
result in false positive races. This has been evident (27 false positives) in case
of benchmarks Jacobi01, Jacobi02, Jacobi03, LoopA.sol2, LoopA.sol3,

LoopB.pipe since these benchmarks contain linearized array subscripts. How-
ever, when the parallel region fully satisfies all the assumptions of standard
polyhedral frameworks (e.g., all array accesses and branch conditions must be
affine functions of the loop variables) then all reported races are true races.
Even though Intel Inspector XE was able to identify some races, it has missed
an important true race in case of Jacobi03 (explained in Section 3) and it also
reported additional FALSE ??races on iterators of parallel loops in case of Lud,
LoopA.bad, LoopA.sol1, LoopB.bad1, LoopB.bad2, C pi benchmarks.

6.2 PolyBench-ACC Benchmark Suite

We also use PolyBench-ACC, another benchmark suite partially derived from the
standard PolyBench benchmark suite [13]. There are 32 OpenMP-C benchmarks
in this suite, for which we were unable to compile 10 benchmarks due to compile-
time errors arising from the usage of OpenMP directives in those codes. Thus, our
results focus on the remaining 22 OpenMP-C benchmarks in PolyBench-ACC.

This benchmark suite is relatively new and is perhaps still in development
compared to other benchmark suites. All of the benchmarks in this suite have

3 ARCHER is known to not have any false positives or false negatives for a given
input, but may have false negatives for inputs that it has not seen.
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Table 2. Data races in subset of PolyBench-ACC (22) benchmark suite. Columns:
Number of SPMD regions(#SPMD), Number of worksharing directives in a SPMD
region(#WS), Number of barriers including implicit in a SPMD region (#Barriers),
PolyOMP: race detection time, number of reported races, and number of false positives.
Races reported by Intel Inspector XE tool (2015 Update 1 with default mode): Hang
up (H), Application exception (A).

Benchmark #SPMD #WS #Barriers
PolyOMP Intel

Inspector
XE

Detection
Time (Sec)

Reported False +ves

Correlation 1 4 4 2.30 0 0 H

Covariance 1 3 3 1.04 0 0 H

2mm 1 2 2 0.64 0 0 0

3mm 1 3 3 1.13 0 0 0

Atax 1 2 2 0.37 2 0 2

Bicg 1 2 2 0.43 2 0 2

Cholesky 1 1 1 0.49 28 0 8

Doitgen 1 1 1 0.54 0 0 0

Gemm 1 1 1 0.34 0 0 0

Gemver 1 4 4 0.75 0 0 0

Gesummv 1 1 1 0.52 0 0 0

Mvt 1 2 2 0.32 0 0 0

Symm 1 1 1 0.64 5 0 5

Syrk 1 2 2 0.39 0 0 0

Syr2k 1 2 2 0.52 0 0 0

Trmm 1 1 1 0.28 1 0 1

Durbin 1 2 2 0.73 6 0 0

Gramschmidt 1 1 1 0.36 12 0 8

Lu 1 1 1 0.33 5 0 5

Convolution-2 1 1 1 0.25 0 0 0

Convolution-3 1 1 1 0.42 0 0 A

Fdtd-ampl 1 1 1 1.62 0 0 0

Total 22 39 39 14.41 61 0 31

statically analyzable control flow, affine subscripts and completely fit the as-
sumptions of the polyhedral model without any conservative estimates. We man-
ually verified the reported races and found the races to be real. It also verifies our
claim that our approach is guaranteed to be exact (with neither false positives
nor false negatives) if the input program satisfies all the standard preconditions
of the polyhedral model (without any non-affine constructs).

Currently, we are not aware of any prior work reporting data races in this
benchmark suite. Hence, we compared our reported races with those reported
by the Intel Inspector XE tool (with default mode), which (unlike ARCHER) is
known to have false negatives even for a given input. Overall, our tool reported
a total of 61 races in this PolyBench-ACC benchmark suite out of which Intel
Inspector XE could only find 31 races. The details are presented in Table 2.
A table entry marked with the letter “H” indicates that the Intel Inspector
XE tool would get into a hang mode for that benchmark, while a table entry
marked with the letter “A” indicates that the Intel Inspector XE tool encoun-
tered an Application exception for that benchmark. The explanations for the
races in the PolyBench-ACC benchmark suite are: 1) Majority of data races in
Cholesky, Gramschmidt are on the non-privatized scalar variables in the work-
sharing loops, 2) Data races in Atax, Bicg are on the common array elements
which are updated in a sequential loop of the SPMD region, 3) Remaining data
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races in other benchmarks are because of dependences across the worksharing
loops.

7 Related work

In this section, we discuss past work related to compile-time detection of data
races, and the analysis of barriers in SPMD programs.

7.1 Static Race Detection

There is an extensive literature on identifying races in explicitly parallel pro-
grams (at compile-time [16,23,15,3,24,4], run-time [20], and hybrid combinations
of both [19]). We focus our discussion on past work of static analysis techniques
for identifying data races in SPMD-style parallel programs.

Symbolic approaches have received a lot of attention in analyzing parallel
programs, mainly in the context of OpenMP. Yu et al’s [23] work checks the
consistency of multi-threaded programs with OpenMP directives using extended
thread automata (with a tool called Pathg). However, their race detection is only
guaranteed for a fixed number of worker threads. Ma et al. [15] use a symbolic
execution-based approach (running the program on symbolic inputs and fixed
number of threads) to detect data races in OpenMP codes, based on constraint
solving using an SMT solver. The data races reported from this toolkit (called
OAT) are applicable only to a fixed number of input threads, unlike our approach
which allows the number of threads to be unknown.

Polyhedral based approaches have gained significant interest in analyzing
parallel programs due to its ability to perform exact analysis on affine programs.
Basupalli et al. [3] presented an approach (ompVerify) to detect data races in-
side a given worksharing loop using polyhedral dependence analysis. However,
this approach handled only affine constructs and was limited to worksharing
loops, rather than to general SPMD parallel regions. Yuki et al. [24] presented
an adaptation of array data-flow analysis to X10 programs with finish/async par-
allelism. In this approach, the happens-before relations are first analyzed, and
the data-flow is computed based on the partial order imposed by happen-before
relations. This extended array dataflow analysis is used to certify determinacy
in X10 finish/ async parallel programs by identifying the possibility of multi-
ple sources of writes for a given read. Their extended work [25] formulated the
happens-before relations with X10 clocks in a polyhedral context. This approach
provides the race-free guarantee of clocked X10 programs by disproving all pos-
sible races. But, it doesn’t provide races present in the input program since
computing happens-before relations involves polynomials in a general case.

Atzeni et al. [2] introduced a hybrid static+dynamic approach (ARCHER) to
achieve high accuracy, low overheads on large applications to detect data races.
The static part of ARCHER tool leverages an existing polyhedral dependence
analyzer to identify races in a given worksharing loop. Our static approach can
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be complemented with the dynamic analysis of ARCHER tool to further reduce
dynamic overheads as observed for the benchmark in Figure 1.

Among the verification techniques, Betts et al. [4] presented a technique
for verifying race and divergence freedom of GPU kernels that are written in
mainstream kernel programming languages such as OpenCL and CUDA. This
tool (called GPUVerify) first translates a given GPU kernel into a sequential
Boogie program that models the lock-step execution of two threads using a two-
thread reduction method. The correctness of this sequential Boogie program
implies race freedom of the original GPU kernel.

7.2 Barrier Analysis

The work by Yelick et al on concurrency analysis [14] computes MHP relations
using a graph-based approach over single-valued expressions. Concurrent state-
ments are identified using a depth-first search from a given statement. Their
computed MHP information is conservative since it doesn’t analyze statements
and barriers at the instance level when they are enclosed in loops, in contrast
to the exactness of our approach for affine programs. It also doesn’t consider
thread-mapping information when computing MHP.

Zhang et al. [26] proposed a barrier matching analysis for textually unaligned
barriers, and introduced a phase partitioning concurrency algorithm in follow-
on work [27]. While this approach can handle textually unaligned barriers for
structurally correct programs, the papers do not discuss how to handle barriers
nested in loops.

8 Conclusions & Future Work

This work is motivated by the observation that software with explicit parallelism
is on the rise, and that SPMD parallelism is a common model for explicit par-
allelism as evidenced by the popularity of OpenMP, OpenCL and CUDA. As
with other imperative parallel programming models, data races are a pernicious
source of bugs in the SPMD model and may occur only in few of the possible
schedules of a parallel program, thereby making them extremely hard to detect
dynamically.

In this paper, we introduced a new approach for static detection of data races
by extending the polyhedral model to enable analysis of explicitly parallel SPMD
programs. We evaluated our technique using 34 OpenMP programs from the
OmpSCR and PolyBench-ACC benchmark suites. We formalize the May Happen
in Parallel (MHP) relations by adding “space” and “phase” dimensions to the
schedule, and is guaranteed to be exact (with neither false positives nor false
negatives) for identifying data races if the input program satisfies all the standard
preconditions of the polyhedral model.

In summary, our contributions include the following: 1) An extension of the
polyhedral model to represent SPMD programs, 2) Formalization of the May
Happen in Parallel (MHP) relation in the extended model, 3) An approach
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for static detection of data races in SPMD programs, and 4) Demonstration of
our approach on 34 OpenMP programs from the OmpSCR and PolyBench-ACC

benchmark suites.
As future work, we plan to leverage our framework to address problems such

as redundant barrier optimization, detection of false sharing patterns, deadlock
identification and coupling it with dynamic analysis techniques to prune false
positives arising from unanalyzable data accesses, as done in [2,17].
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