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Abstract. General purpose computing on GPUs (GPGPU) can enable
significant performance and energy improvements for certain classes of
applications. However, current GPGPU programming models, such as
CUDA and OpenCL, are only accessible by systems experts through low-
level C/C++ APIs. In contrast, large numbers of programmers use high-
level languages, such as Java, due to their productivity advantages of
type safety, managed runtimes and precise exception semantics. Current
approaches to enabling GPGPU computing in Java and other managed
languages involve low-level interfaces to native code that compromise the
semantic guarantees of managed languages, and are not readily accessible
to mainstream programmers.
In this paper, we propose compile-time and runtime technique for ac-
celerating Java programs with automatic generation of OpenCL while
preserving precise exception semantics. Our approach includes (1) auto-
matic generation of OpenCL kernels and JNI glue code from a Java-based
parallel-loop construct (forall), (2) speculative execution of OpenCL
kernels on GPUs, and (3) automatic generation of optimized and paral-
lel exception-checking code for execution on the CPU. A key insight in
supporting our speculative execution is that the GPU’s device memory
is separate from the CPU’s main memory, so that, in the case of a mis-
speculation (exception), any side effects in a GPU kernel can be ignored
by simply not communicating results back to the CPU.
We demonstrate the efficiency of our approach using eight Java bench-
marks on two GPU-equipped platforms. Experimental results show that
our approach can significantly accelerate certain classes of Java programs
on GPUs while maintaining precise exception semantics.

1 Introduction

Programming models for general-purpose computing on GPUs (GPGPU), such
as CUDA and OpenCL, can enable significant performance and energy improve-
ments for certain classes of applications. However, these programming models
provide system experts with low-level C/C++ APIs and require programmers
to write, maintain, and optimize a non-trivial amount of application code.

In constrast, large numbers of programmers use high-level languages, such
as Java, because these languages provide high-productivity features including
type safety, a managed runtime, and precise exception semantics. However, the
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performance of an application can often suffer due to runtime overheads caused
by the additional logic required to enforce these guarantees. In addition, using
heterogeneous systems to accelerate applications in these high-level languages
is a difficult and error-prone task. Accessing OpenCL or CUDA’s C/C++ API
from Java requires the use of the Java Native Interface (JNI) API, immediately
removing many of the programmability benefits of Java software development.

In our recent work [6], we introduced Habanero-Java [3] with OpenCL gen-
eration (HJ-OpenCL), an extension to the parallel HJ programming language.
HJ-OpenCL enables execution of parallel forall loops on any heterogeneous
processor in an OpenCL platform without any code change to the original HJ
source. However, this approach requires programmers to use a safe language
construct to explicitly specify conditions which are required to preserve Java ex-
ception semantics. With the safe construct, the programmer provides a boolean
condition that ensures a parallel loop is not expected to throw an exception and
can be safely executed outside of the JVM. However, the use of safe construct
requires additional development effort. The runtime overhead of manual excep-
tion checking is not negligible when running applications which have indirect
array access and non-affine array access.

In this work, we propose extensions to the compile-time and runtime tech-
niques introduced in HJ-OpenCL which preserve precise exception semantics
when executing a parallel forall loop outside the JVM. Unlike our previous
work, the compiler automatically translates a forall loop into two parallel rou-
tines. The first routine contains an equivalent OpenCL implementation of the
original forall loop, including all initialization, communication, and compu-
tation code required to transfer execution to an OpenCL device. The second
routine is a transformation and subset of the instructions in the original forall
loop which guarantees any runtime exception thrown by the original loop will
also be thrown by the transformed version. If an exception occurs during execu-
tion of this specialized exception-checking code, execution transfers to a JVM-
only implementation of the parallel loop. The runtime speculatively executes
the specialized-checking code and the full OpenCL implementation in parallel
to reduce the overhead of exception checking.

This paper makes the following contributions:

1. Automatic generation of OpenCL code from Habanero-Java for speculative
execution on GPUs

2. Automatic generation of optimized and parallel exception-checking code for
execution on the multiple CPU cores.

3. Performance evaluation of the proposed scheme on multiple heterogeneous
platforms with CPU and GPU cores.

2 Motivation

While past evaluation of GPUs on extremely parallel and computationally heavy
applications have demonstrated clear performance benefits for appropriate ap-
plications [18][22], there still remain application domains which could make use
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of GPUs but do not. This missed opportunity is primarily caused by the sub-
par programmability offered by existing GPU programming models: CUDA and
OpenCL. In addition, these programming models are still only accessible from
low-level programming languages, out of the scope of most high-level program-
mers’ experience. To make the performance benefits of GPUs available to a wide
range of developers it is necessary to build interfaces which are similar to and
compatible with the managed languages in widespread use today. Arguably, the
most pervasive example of this category of programming languages is Java.

Today, Java programmers can manually utilize GPUs using CUDA and OpenCL
through JNI. However, native, OpenCL, or CUDA execution through JNI elim-
inates one of the primary safety benefits of the Java development environment:
exceptions. Java’s precise exception semantics provide a Java programmer with
safety guarantees in regards to the correct execution of their application code.
For example, these guarantees include checks for null pointer references, out-of-
bounds array accesses, and division-by-zero. On the other hand, many natively
compiled language provide no guarantees that a reference does not jump into a
completely separate array, or object. As a result, incorrect application behavior
can be difficult to diagnose in the absence of precise exception semantics.

As an illustrative example we consider the case of sparse matrix-matrix mul-
tiplication. Executing this computation the JVM would ensure that the row and
column indices stored to represent a sparse matrix are within the bounds of a
full output matrix. However, if the Java programmer took advantage of JNI to
achieve improved performance through native execution all exception semantics
would be forfeit. To maintain the same guarantees, the programmer would have
to manually insert exception checking code in their Java or native code which
checked the stored row and column indices against the bounds of the output
matrix before submitting the kernel to the GPU. Doing so would increase code
complexity and future maintainability.

This work addresses the problem of melding the performance characteristics
of native GPU execution with the safety guarantees of JVM execution. It does
so by enabling execution of a parallel Java application on any OpenCL hard-
ware platform without any hand-written native code. This approach removes the
pain points of JVM-OpenCL applications while providing the benefits of both
managed and native execution.

3 Habanero Java Language

This section describes features of the Habanero-Java (HJ) parallel programming
language and compilation flow for supporting OpenCL code generation.

3.1 Overview of HJ language

The Habanero Java (HJ) parallel programming language under development at
Rice University [3] provides an execution model for multicore processors that
builds on four orthogonal constructs, and was derived from early experiences
with the X10 [5] language:
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Fig. 1: Compilation and Runtime Flow

1. Lightweight dynamic task creation and termination using async and finish,
future and forall constructs [19].

2. Locality control with task and data distributions using the place construct
[15].

3. Mutual exclusion and isolation among tasks using the isolated construct [21].
4. Collective and point-to-point synchronization using the phasers construct

[10] along with their accompanying phaser accumulators [11].

In HJ-OpenCL, programmers use the forall language feature to identify
parallel loops as candidates for OpenCL execution. The statement “forall(point
p : region) 〈stmt〉” indicates a parallel loop whose iteration space is defined by
a region. The region can be one- or multi-dimensional space, e.g., [0:M-1,0:N-1]
for a 2-D iteration space. Each iteration instance executes the loop body 〈stmt〉
for a distinct point in the iteration space. All forall loops end with an implicit
barrier. In addition, HJ-OpenCL supports all-to-all synchronization points in
those parallel loops [6] through the next statement. The HJ-OpenCL compiler
and runtime trust these annotations when generating and executing code on
GPUs.

3.2 Compilation Flow

Fig. 1 illustrates the HJ compilation and runtime flow for HJ-OpenCL. The HJ-
OpenCL compiler leverages APARAPI [1] , a comprehensive, open-source frame-
work for executing computational kernels from Java applications on OpenCL
devices. For this work we extended the APARAPI component that generates
OpenCL code from Java bytecode. In addition to OpenCL kernels, glue code
must be automatically generated to transfer execution and data from the JVM
to the OpenCL device and back. This functionality is provided internally by the
HJ-OpenCL compiler, and includes the generation of JNI functions, OpenCL
API calls, and transformed bytecode.

In summary, the HJ-OpenCL compiler takes an HJ program as input, and
produces:
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Fig. 2: The execution model of speculative exception checking

1. Java CLASS files for execution on the JVM;
2. JNI glue code to mediate between the JVM and OpenCL kernels;
3. A Java CLASS file which contains the bytecode to be translated to OpenCL

kernels by the APARAPI bytecode translator.

4 Speculative Exception Checking Scheme

In the approach introduced in this paper, the HJ-OpenCL compiler from [6] is
extended to automatically generate exception checking code and OpenCL kernel
code for the forall loops in an HJ program. The exception checking code is
a specialized version of the original forall loop which replaces all stores with
loads. By enclosing this specialized loop with a Java try-catch block, HJ-OpenCL
can detect all runtime exceptions generated by the original forall loop. The
details of the code transformation algorithm for generating this exception loop
is shown in Section 4.2. The exception checking loop is run in parallel on CPU
cores in parallel with a speculatively and optimistically launched OpenCL kernel
running on the GPU. Optimizing the exception checking code is important for
cases where it is on the critical path of the application, i.e. where the exception
checking code in the JVM finishes later than the OpenCL kernel.

The rest of this Section is organized as follows: Section 4.1 introduces the
HJ-OpenCL runtime design. Section 4.2 describes optimizations applied to the
exception checking loop by the HJ-OpenCL compiler.

4.1 Speculative Exception Checking Runtime

Fig. 2 illustrates the runtime interactions between the HJ runtime, the JVM,
the OpenCL runtime on the host, and the OpenCL kernel on the device. The
following steps (illustrated by the example generated code in Fig. 3) explain
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the basic workflow of speculatively executing a forall loop on the GPU while
running exception checking code in the JVM.

Step 1: The HJ runtime invokes the first JNI function. In the callee, the OpenCL
API is called to perform host-to-device data transfer and asynchronously
launch the corresponding OpenCL kernel on a device. The host application
immediately returns to JVM execution. Blocking data transfers are neces-
sary so that Java objects can be released before returning to the JVM. This
step is done in the native method call to openCL Kernel0 first() on line 9 of
Fig. 3.

Step 2: The exception checking loop is run in the JVM, as seen on lines, seen
on lines 12-16 of Fig. 3. This loop is a transformation of the original forall
loop which:
1. Reduces computational load.
2. Reduces I/O load and eliminates any externally visible state change

caused by the loop
3. Guarantees the same exceptions thrown by the original loop would also

be thrown by the transformed version.
Step 3: The HJ runtime invokes a second JNI call (line 21 of Fig. 3 which

waits for the completion of computation on the OpenCL device1, transfers
data from the device, and performs OpenCL cleanup. If an exception occurs
during execution of the exception checking loop, the OpenCL runtime does
not transfer any state back to the host and the HJ runtime executes the
original forall loop in the JVM, thus maintaining Java exception semantics.

4.2 Generation and Optimization of Exception Checking Code

This section describes how to generate and optimize the exception checking
code. The generated exception checking code must meet two requirements. It
must be side-effect free, i.e. have no memory store operations and no invocation
of system APIs. It must also preserve all exceptions which would be triggered
from the original forall loop. If either of these requirements cannot be met, the
HJ-OpenCL compiler aborts code generation and reverts to parallel execution
within the JVM.

The basic workflow of the generation and optimization of exception checking
code is described in Algorithm 1. It takes the original forall loop (L) as input
and generates the optimized exception checking code (OCC) as output. Before
applying Algorithm 1, some analysis and transformations are performed to verify
the correctness of running the forall loop with speculative exception checking:

1. Side-effect analysis to identify procedures which potentially have side-effects.

1 The OpenCL runtime has to wait for the completion of the kernel execution even in
the event of an exception because there is no OpenCL API to terminate kernel on
device currently.
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1 public c lass Example {
2 stat ic { System . loadLibrary ( ‘ ‘ l i bCa l c ’ ’ ) ; }
3 public stat ic native void openCL Kerne l0 f i r s t ( . . . ) ;
4 public stat ic native void openCL Kernel0 second ( . . . ) ;
5 public stat ic void main ( St r ing [ ] a rgs ) {
6 . . .
7 boolean excpFlag = fa l se ;
8 /∗ (1) Specu la t i ve GPU execut ion through JNI ∗/
9 openCL Kerne l0 f i r s t ( . . . ) ;

10 /∗ (2) Exception Checking Code on JVM ∗/
11 try {
12 f o ra l l ( po int [ i ] : [ 0 : N−1]) {
13 int dummy1 = A[ i ] ;
14 int dummy2 = B[ i ] ;
15 int dummy3 = C[ i ] ;
16 }
17 } catch ( Exception e ) {
18 excpFlag = true ;
19 }
20 /∗ (1) Second JNI Cal l ∗/
21 openCL Kernel0 second ( excpFlag , . . . ) ;
22 i f ( excpFlag ) {
23 /∗ (3) Orig ina l Implementaion ∗/
24 f o ra l l ( po int [ i ] : [ 0 : N−1]) {
25 A[ i ] = B[ i ] + C[ i ] ;
26 }
27 }
28 }

Fig. 3: Generated code for Vector Addition by the HJ-OpenCL compiler

2. Function inlining applied for all non-recursive functions invoked within the
forall loop.

3. Alias analysis which works out may or must equality between any two object
references.

4. Data dependence analysis which calculates def-use chains.

After pre-analysis and transformation, if the forall loop still contains unana-
lyzable array or procedures which may have side-effects, then it is not suitable for
speculative OpenCL execution and the HJ-OpenCL compiler aborts exception
code generation(Line 1).

Algorithm 1 begins by inspecting all array access statements in the forall

loop to retain any statements which may throw an ArrayIndexOutOfBoundsException.
For each array store statement aStore, the HJ-OpenCL compiler replaces the
statment by an array read statement aLoad (lines 6-20) and traverses the de-
f/use chain (built by pre-analysis) to check its users. In the case that the stored
value is loaded by successors within the same loop iteration, the compiler applies
scalar replacement on the load statement with the stored value and marks it as
keep (lines 13-15). For the case that the store value is loaded in the successors
which cross loop iterations, the HJ-OpenCL the compiler sets excpFlag with
true (line 10-12) and aborts code generation. For the array load statement, the
HJ-OpenCL compiler marks it as keep (line 24-27). The last step is to mark
statements which derive denominator of division statement to keep statement,
as they may trigger an ArithmeticException.
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Algorithm 1: Exception Checking Code Generation and Optimization
input : L: One Forall Loop
output: OCC: Optimized Checking Code

1 if loop has unanalyzable array references or method calls then
2 abort
3 end
4 // For Array Bounds Check;
5 A← getAllArrayAccessStatement(loop);
6 foreach aStmt in A do
7 // Get All Loop Index at Current Loop Nest;
8 I ← getOuterLoopIndices();
9 if aStmt is ArrayStore(A[i1, i2, ..., in]← x) then

10 transform aStmt to dummy ← A[i1, i2, ..., in];
11 markedList← aStmt;
12 if A[i1, i2, ..., in] is used in followed statements then
13 if A[i1, i2, ..., in] drives array subscript in the future iteration then
14 abort
15 end
16 else
17 rename A[i1, i2, ..., in] to x in each statement (as in scalar replacement);
18 end

19 end
20 foreach ip such that 1 ≤ p ≤ n ∧ ip /∈ I do
21 S ← statements which derive ip (considering control flow);
22 markedList← S ;

23 end

24 end
25 else if aStmt is ArrayLoad (x← A[i1, i2, ..., in]) then
26 markedList← aStmt ;
27 foreach ip such that 1 ≤ p ≤ n ∧ ip /∈ I do
28 S ← statements which derive ip (considering control flow);
29 markedList← S;

30 end

31 end

32 end
33 // For ArithmeticException;
34 markedList← ∀stmt such that stmt derives denominator;
35 // Delete not marked statement;
36 OCC ← ∀stmt in L such that stmt ∈ markedList;

After applying Algorithm 1 to generate conservative exception checking code,
HJ-OpenCL compiler performs two optimizatioin on the generated code to elim-
inate redundancy: loop invariant code motion (LICM) and redundant load elim-
ination.

Fig. 4 provides an example of HJ-OpenCL code generation and optimzation.
Fig. 4 (a) contains the forall loop of a sparse matrix multiply application in 3-
address code. Fig. 4 (b) shows the same 3-address code, but optimized by the HJ-
OpenCL compiler for exception checking. Because there are indirect accesses of
arrays row, Av, Aj and x, the HJ-OpenCL compiler does not remove statements
which derive array subscripts of these arrays.

5 Performance Evaluation

This section presents experimental results for HJ-OpenCL on two platforms.
The first platform is an AMD A10-5800K APU. This APU includes an AMD

Radeon HD 7660D GPU with 6 Streaming Multiprocessors(SMs). The CPU of
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1 f o ra l l ( po int [ id ] : [ 0 :M] ) {
2 i 1 = row [ id ] ;
3 row begin = i1
4 i 2 = id + 1 ;
5 i 3 = row [ i 2 ] ;
6 row end = i3 ;
7 i 4 = row end − row begin ;
8 for ( i = 0 ; i < i 4 ; i++) {
9 for ( j = 0 ; j < i n t e r ; j++)

{
10 i 5 = row begin + i ;
11 d1 = Av [ i 5 ] ;
12 i 6 = row begin + i ;
13 i 7 = Aj [ i 6 ] ;
14 d2 = x [ i 7 ] ;
15 d3 = d1 ∗ d2 ;
16 d4 = sum + d3 ;
17 sum = d4 ;
18 }
19 }
20 y [ id ] = sum ;
21 }

(a) Original 3-address Code

1 f o ra l l ( po int [ id ] : [ 0 :M] ) {
2 i 1 = row [ id ] ;
3 row begin = i1
4 i 2 = id + 1 ;
5 i 3 = row [ i 2 ] ;
6 row end = i3 ;
7 i 4 = row end − row begin ;
8 for ( i = 0 ; i < i 4 ; i++) {
9 i 5 = row begin + i ;

10 d1 = Av [ i 5 ] ;
11 i 6 = row begin + i ;
12 i 7 = Aj [ i 6 ] ;
13 d2 = x [ i 7 ] ;
14 }
15 dummy = y [ id ] ;
16 }

(b) Optimized 3-address Code

Fig. 4: Optimization Example for Sparse Matrix Multiply

the A10-5800K includes 4 cores, 16KB of L1 cache per core, and 32MB of L2
cache. Each SM in the GPU has exclusive access to 32 KB of local scratchpad
memory. The CPU and GPU can each access the same system memory, but
share bandwidth when doing so. While physical memory is shared, it is parti-
tioned between devices such that the CPU has 6GB and the GPU has 2GB. We
conducted all experiments on this system using the Java SE Runtime Environ-
ment (build 1.6.0 21-b06) with Java HotSpot 64-Bit Server VM (build 17.0-b16,
mixed mode).

The second platform has two hexacore Intel X5660 CPUs and two NVIDIA
Tesla M2050 discrete GPUs connected over PCIe. There is a total of 48GB within
a single node that is shared by all 12 cores. Each GPU also has approximately
2.5GB of global memory. Only 1 of the 2 available GPUs was used at a time to
evaluate this work. In this platform, we used the Java SE Runtime Environment
(build 1.6.0 25-b06) with Java HotSpot 64-Bit Server VM (build 20.0-b11, mixed
mode).

The eight benchmarks shown in Table 1 were used in our experiments. Note
that SparseMatMult, SAXPY and GEMVER have indirect array access. The
baseline for this evaluation was sequential Java. We tested execution on OpenCL
GPUs using HJ-OpenCL’s code generation and runtime in the following modes:

– No checking: execute the full computation on the GPU without any ex-
ception checking, removing precise Java exception semantics.

– Non-speculative execution: run the unoptimized or optimized exception
checking code in the JVM, followed by the full computation on the GPU.
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Benckmark Summary Data Size
SparseMatmult Sparse matrix multiplication from the Java Grande

Benchmarks [20]
Size C with N = 500,000

Doitgen Multi-resolution analysis kernel from PolyBench[24],
ported to Java

128×128×128

Crypt Cryptographic application from the Java Grande
Benchmarks[20]

Size C with N= 50,000,000

Blackscholes Data-parallel financial application which calculates the
price of European put and call options

16,777,216 virtual options

MRIQ Three-dimensional medical benchmark from Par-
boil[23], ported to Java

large size(64×64×64)

MatMult A standard dense matrix multiplication: C = A.B 1024×1024
SAXPY Sparse version of SAXPY from [12], ported to Java 25,000×25,000

GEMVER Sparse BLAS function from [12], ported to Java 10,000,000

Table 1: Information on the benchmarks used to evaluate HJ-OpenCL

This mode retains precise Java exception semantics but serializes exception
checking and computation, leading to higher overhead.

– Speculative execution: run the unoptimized or optimized exception check-
ing code in the JVM in parallel with the full computation on the GPU. This
mode retains precise Java exception semantics while minimizing overhead.

In the following sections, these five variants are referred to as HJ OpenCL
GPU(No checking), HJ OpenCL GPU(Non-speculative, unoptimized), HJ OpenCL
GPU(Non-speculative, optimized), HJ OpenCL GPU(Speculative, unoptimized)
and HJ OpenCL GPU(Speculative, optimized) respectively. We run each bench-
mark 10 times and report the median value as the result. Note that we exclude
the overhead of the OpenCL context and command queue creation from these
measurements for precise measurements because we see timing in variation.

5.1 Performance on AMD A10-5800K

Fig 5 shows the speedup numbers on the AMD A10-5800K APU relative to
the sequential Java version. On the AMD APU system, exception checking is
done in parallel on 4 cores. OpenCL(Speculative, optimized) approach shows
speedups of up to 21.1× relative to sequential Java, while maintaining Java
exception semantics. Only one benchmark (Polybench.doitGen) showed a slow-
down due to OpenCL execution on this platform, though (as we will see later) it
showed a speedup on the Westmere+Tesla platform. Performance differences be-
tween OpenCL(No Checking) and OpenCL(Speculative, optimized) range from
0.5%(Polybench.Doitgen) to 18.6%(JGF-Crypt). JGF-Crypt, BlackScholes, MRIQ
and GEMVER each show significant improvement from exception checking code
optimization. For these applications, exception checking takes longer than OpenCL
execution. Additionally, deleting java.lang.Math method calls which does not
derive array index dramatically accelerates exception checking code for BlackSc-
holes and MRIQ.

Polybench Doitgen, MatMult, and SAXPY exception checking code, these
benchmarks do not show speedup from optimization because the checking code
is not on the critical path.
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Fig. 5: Performance improvements relative to sequential Java on the A10-5800K

0.0E+00	
   1.0E+08	
   2.0E+08	
   3.0E+08	
   4.0E+08	
   5.0E+08	
   6.0E+08	
  

transfer|h-­‐d|pending|dt1	
  
transfer|h-­‐d|pending|dt2	
  
transfer|h-­‐d|pending|dt3	
  

kernel|pending	
  
transfer|h-­‐d|running|dt1	
  
transfer|h-­‐d|running|dt2	
  
transfer|h-­‐d|running|dt1	
  

kernel|running	
  
transfer|d-­‐h|pending|dt1	
  
transfer|d-­‐h|pending|dt2	
  
transfer|d-­‐h|pending|dt3	
  
transfer|d-­‐h|running|dt1	
  
transfer|d-­‐h|running|dt2	
  
transfer|d-­‐h|running|dt3	
  

Time	
  (ns)	
  

A
pp

lic
a/

on
	
  S
ta
ge
	
  

Fig. 6: Sample timeline of the Black-Scholes application on the A10-5800K

Fig. 6 shows a timeline of OpenCL exection on the AMD APU. Fig. 6 was
gathered using the OpenCL clGetEventProfilingInfo function to get information
on when commands are submitted to the device for execution, when commands
actually begin execution, and when commands complete execution. Each row in
the figure is categorized as either a pending operation, which shows the time be-
tween a command being submitted and starting, or a running operation, which
shows the time between a command starting and finishing. Each operation is
also categorized as either a kernel or transfer operation, and transfer operations
are broken down by the variable being transferred the direction of transfer. h-d
indicates a copy from the host system to the GPU, and d-h indicates a copy
from the GPU to the host. On the AMD APU, pending time accounts for a sig-
nificant amount of execution time for both transfers and kernels. That is why no
application shows speedup with speculative execution unlike NVIDIA GPU. For
example, the AMD OpenCL runtime does not start three data transfers for the
first 2.0E+08 (ns). This seems to be an issue with the AMD OpenCL libraries.
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Fig. 7: Performance improvements relative to sequential Java on Westmere
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Fig. 8: Sample timeline of the Black-Scholes application on Westmere

Despite this, we see a gap between the completion of the kernel—running op-
eration and the start of transfer—d-h—pending—dt1 operation. This indicates
that the critical path on the AMD APU for Black-Scholes is the exception check-
ing code, which explains the significant improvements from optimized exception
checking in Fig. 5.

5.2 Performance on Westmere

Fig. 7 shows the speedups on the Westmere platform with two NVIDIA Tesla
GPUs (of which we currently only use one) and two hexacore Intel CPUs.

On this platform, exception checking is done by 12 cores. The proposed
OpenCL(Speculative, optimized) mode shows speedups of up to 331.0× rela-
tive to sequential Java while maintaining Java’s exception semantics. Perfor-
mance differences between OpenCL(No Checking) and OpenCL(Speculative, op-
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timized) vary from -2.4%(MatMult)2 to 27.9%(JGF-Crypt). JGF-SparseMatMult,
Polybench Doitgen, JGF-Crypt, BlackScholes, MRIQ and GEMVER shows speedups
from optimization because exception checking is on the application’s critical
path. Further, there is no difference in time between command submission and
actually starting work on it(See Table 8). Additionally, more cores enable a
shorter exception checking time. As a result speculative execution enables per-
formance improvement in the range of 2.0% to 24.7%.

6 Related Work

The GPU code generation has been widely supported in high level language
compilation systems.

Lime [7] is a JVM compatible language which generates OpenCL code au-
tomatically. Lime provides language extensions that express coarse grain tasks,
SIMD parallelism. Its compiler generates Java bytecode, JNI glue code, and
OpenCL kernels.

RootBeer [13] compiles Java to CUDA by specifying the code region within
gpuMethod. The RootBeer compiler translates gpuMethod() method in Kernel
interface into CUDA kernel.

JCUDA [17] provides programming interface which can be used by Java
programmers to invoke CUDA kernels. Programmers can write Java codes that
call CUDA kernels with special interface and JCUDA compiler generates the
JNI glue code between the JVM and CUDA runtime by using this interface.

Android RenderScript [4] provides C-like programming model for GPUs. Pro-
grammer manually write a kernel and invoke it by using provided Java APIs.

To the best of our knowledge, none of these three systems (Lime, RootBeer,
JCUDA, RenderScript) preserve Java’s precise exception semantics with specu-
lative execution, as in our work.

There also been related work on eliminating redundant checks for null pointer
and array bound exceptions by generating dual version code. In Artigas et al. [2]
and Moreira et al. [9], Their work generates dual-version code which consists
of exception-safe regions and -unsafe regions. In exception-safe regions the com-
piler can perform aggressive loop optimization such as loop tiling. In contrast,
the automatically generated exception-checking code in our approach that sets
excpFlag can express more general conditions than in this past work e.g., see
Fig. 3.

There has also been related past work on array bounds check elimination.
Würthinger et al. [16] proposed an algorithm for Static Single Assignment(SSA)
form for the JIT compiler which eliminates unnecessary bounds checking. ABCD [14]
provides powerful array bounds checking elimination algorithm by creating an
SSA-based inequality graph. Jeffery et al. [8] proposed an static annotation
framework to reduce the overhead of dynamic checking in the JIT compiler.
These past results complement our work since the exception checking code gen-
erated by our compilation system can be further optimized by these techniques.
2 Theoretically this is unlikely, This is due to variation in timing.
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In the context of speculative execution for parallel processing GPGPU, Paragon [12]
runs the C/C++ loop speculatively, while monitoring the dependencies. The
runtime transfers the execution to the CPU in case a conflict is detected. In
contrast, we generate exception checking code that is executed on the CPU.

7 Conclusions

In this paper, we introduce a new compile-time and runtime approach for acceler-
ating Java programs through automatic generation of OpenCL while maintaining
precise exception semantics. To maintain precise exception semantics, the HJ-
OpenCL compiler automatically generates code for the speculative execution of
OpenCL kernels on GPUs alongside optimized and parallel exception checking
code for execution on the CPUs.

On an AMD APU, our results show speedups of up to 21.1× relative to
sequential on the integrated GPU, only 0.8% slower than unsafe execution on the
GPU. For a system with an Intel Xeon CPU and a discrete NVIDIA Fermi GPU,
the speedups relative to sequential Java are up to 331.0× on the GPU, equivalent
performance to unsafe execution. These experiments show that our approach can
automatically and effectively accelerate the execution of Java programs on GPUs
while maintaining precise exception semantics.
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