
1

An Extended Polyhedral Model for SPMD Programs
and its use in Static Data Race Detection

Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar

Habanero Extreme Scale Software Research Group
Department of Computer Science

Rice University

The 29th International Workshop on Languages and Compilers for Parallel Computing (LCPC 2016)

September 29, 2016

Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar



2

Introduction

Productivity and scalability in parallel programming models

Demand for new compilation techniques

Our earlier work focused on optimizing loop-level & task-level parallelism with
Polyhedral compilation techniques [PACT’15]

In this work, we focus on SPMD-style parallelism

All logical processors (worker threads) execute the same program, with sequential
code executed redundantly and parallel code (worksharing constructs, barriers, etc.)
executed cooperatively

OpenMP for multicores, CUDA/ OpenCL for accelerators, MPI for distributed

Data races, deadlocks are common issues in SPMD programs

Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar



3

Data races in shared memory SPMD models

Conflicting access to shared memory location without synchronization

#pragma omp parallel shared(U, V, k)

{

while (k <= Max) // S1

{

#pragma omp for nowait

for(i = 0 to N)

U[i] = V[i];

#pragma omp barrier

#pragma omp for nowait

for(i = 1 to N-1)

V[i] = U[i-1] + U[i] + U[i+1];

#pragma omp barrier

#pragma omp master

{ k++;} // S2

}

}

1-dimensional jacobi from OmpSCR

Race b/w S1 and S2 on variable ’k’

Our Goal: Detect such races in SPMD
programs at compile-time

Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar



3

Data races in shared memory SPMD models

Conflicting access to shared memory location without synchronization

#pragma omp parallel shared(U, V, k)

{

while (k <= Max) // S1

{

#pragma omp for nowait

for(i = 0 to N)

U[i] = V[i];

#pragma omp barrier

#pragma omp for nowait

for(i = 1 to N-1)

V[i] = U[i-1] + U[i] + U[i+1];

#pragma omp barrier

#pragma omp master

{ k++;} // S2

}

}

1-dimensional jacobi from OmpSCR

Race b/w S1 and S2 on variable ’k’

Our Goal: Detect such races in SPMD
programs at compile-time

Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar



3

Data races in shared memory SPMD models

Conflicting access to shared memory location without synchronization

#pragma omp parallel shared(U, V, k)

{

while (k <= Max) // S1

{

#pragma omp for nowait

for(i = 0 to N)

U[i] = V[i];

#pragma omp barrier

#pragma omp for nowait

for(i = 1 to N-1)

V[i] = U[i-1] + U[i] + U[i+1];

#pragma omp barrier

#pragma omp master

{ k++;} // S2

}

}

1-dimensional jacobi from OmpSCR

Race b/w S1 and S2 on variable ’k’

Our Goal: Detect such races in SPMD
programs at compile-time

Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar



4

Data races in shared memory SPMD models

Assumption: Textually aligned barriers

SPMD execution can be partitioned into a sequence of phases separated by barriers.

There exists a race between S & T iff

Access same memory location and at-least one is write

May happen in parallel

Run by different threads
In the same phase of computation

Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar



4

Data races in shared memory SPMD models

Assumption: Textually aligned barriers

SPMD execution can be partitioned into a sequence of phases separated by barriers.

There exists a race between S & T iff

Access same memory location and at-least one is write

May happen in parallel

Run by different threads
In the same phase of computation

Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar



5

Data races in shared memory SPMD models

Conflicting access to shared memory location without synchronization

#pragma omp parallel shared(U, V, k)

{

while (k <= Max) // S1 (loop-x)

{

#pragma omp for nowait

for(i = 0 to N)

U[i] = V[i];

#pragma omp barrier

#pragma omp for nowait

for(i = 1 to N-1)

V[i] = U[i-1] + U[i] + U[i+1];

#pragma omp barrier

#pragma omp master

{ k++;} // S2

}

}

Access same memory location and write ??

Yes, on variable ’k’

Run by different threads ??

Yes, if thread (S1) != 0

In same phase of computation ??

Yes, S2(x) and S1(x+1) where x is iteartor
of while loop.

Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar



5

Data races in shared memory SPMD models

Conflicting access to shared memory location without synchronization

#pragma omp parallel shared(U, V, k)

{

while (k <= Max) // S1 (loop-x)

{

#pragma omp for nowait

for(i = 0 to N)

U[i] = V[i];

#pragma omp barrier

#pragma omp for nowait

for(i = 1 to N-1)

V[i] = U[i-1] + U[i] + U[i+1];

#pragma omp barrier

#pragma omp master

{ k++;} // S2

}

}

Access same memory location and write ??

Yes, on variable ’k’

Run by different threads ??

Yes, if thread (S1) != 0

In same phase of computation ??

Yes, S2(x) and S1(x+1) where x is iteartor
of while loop.

Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar



5

Data races in shared memory SPMD models

Conflicting access to shared memory location without synchronization

#pragma omp parallel shared(U, V, k)

{

while (k <= Max) // S1 (loop-x)

{

#pragma omp for nowait

for(i = 0 to N)

U[i] = V[i];

#pragma omp barrier

#pragma omp for nowait

for(i = 1 to N-1)

V[i] = U[i-1] + U[i] + U[i+1];

#pragma omp barrier

#pragma omp master

{ k++;} // S2

}

}

Access same memory location and write ??

Yes, on variable ’k’

Run by different threads ??

Yes, if thread (S1) != 0

In same phase of computation ??

Yes, S2(x) and S1(x+1) where x is iteartor
of while loop.

Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar



6

Phase computation

How to compute phases for a given statement (S) ??

Numbering is hard !

We compute phase of S in terms of“Reachable barriers”:

Set of barrier instances that can be executed after S without an intervening barrier

Two statements are in same phase iff they have same reachable barrier instances

Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar



6

Phase computation

How to compute phases for a given statement (S) ??

Numbering is hard !

We compute phase of S in terms of“Reachable barriers”:

Set of barrier instances that can be executed after S without an intervening barrier

Two statements are in same phase iff they have same reachable barrier instances

Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar



6

Phase computation

How to compute phases for a given statement (S) ??

Numbering is hard !

We compute phase of S in terms of“Reachable barriers”:

Set of barrier instances that can be executed after S without an intervening barrier

Two statements are in same phase iff they have same reachable barrier instances

Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar



7

Reachable barriers

#pragma omp parallel shared(U, V, k)

{

while (k <= Max) // S1 (loop-x)

{

#pragma omp for nowait

for(i = 0 to N)

U[i] = V[i];

#pragma omp barrier // B1

#pragma omp for nowait

for(i = 1 to N-1)

V[i] = U[i-1] + U[i] + U[i+1];

#pragma omp barrier // B2

#pragma omp master

{ k++;} // S2

}

} // B3

Reachable barriers of S1(x)

B1(x) if x lies in loop range

B3 else

Reachable barriers of S2(x)

B1(x+1) if x+1 lies in loop range

B3 else

Hence, S1(x+1) & S2(x) in same phase

Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar



7

Reachable barriers

#pragma omp parallel shared(U, V, k)

{

while (k <= Max) // S1 (loop-x)

{

#pragma omp for nowait

for(i = 0 to N)

U[i] = V[i];

#pragma omp barrier // B1

#pragma omp for nowait

for(i = 1 to N-1)

V[i] = U[i-1] + U[i] + U[i+1];

#pragma omp barrier // B2

#pragma omp master

{ k++;} // S2

}

} // B3

Reachable barriers of S1(x)

B1(x) if x lies in loop range

B3 else

Reachable barriers of S2(x)

B1(x+1) if x+1 lies in loop range

B3 else

Hence, S1(x+1) & S2(x) in same phase

Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar



7

Reachable barriers

#pragma omp parallel shared(U, V, k)

{

while (k <= Max) // S1 (loop-x)

{

#pragma omp for nowait

for(i = 0 to N)

U[i] = V[i];

#pragma omp barrier // B1

#pragma omp for nowait

for(i = 1 to N-1)

V[i] = U[i-1] + U[i] + U[i+1];

#pragma omp barrier // B2

#pragma omp master

{ k++;} // S2

}

} // B3

Reachable barriers of S1(x)

B1(x) if x lies in loop range

B3 else

Reachable barriers of S2(x)

B1(x+1) if x+1 lies in loop range

B3 else

Hence, S1(x+1) & S2(x) in same phase

Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar



8

Extensions to Polyhedral Model

For each statement ‘S’ in polyhedral representation

Domain - Set of statement instances
Access relations - Memory location touched
Schedule - execution time stamp

Existing“Schedule” is not sufficient for SPMD programs

Captures only serial execution order

We add the following to each statement ‘S’ :

Space - executing thread id
Phase - execution time stamp of reachable barriers

Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar



9

Overall workflow (PolyOMP)

Polyhedral Extraction Tool (PET)

CLANG 3.5 with support of OpenMP 4.0

Integer Set Library (ISL)

Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar



10

Race conditions

#pragma omp parallel shared(U, V, k)

{

while (k <= Max) // S1 (loop-x)

{

#pragma omp for nowait

for(i = 0 to N)

U[i] = V[i];

#pragma omp barrier // B1

#pragma omp for nowait

for(i = 1 to N-1)

V[i] = U[i-1] + U[i] + U[i+1];

#pragma omp barrier // B2

#pragma omp master

{ k++;} // S2

}

} // B3

Race condition b/w S1(xS1) & S2(xS2)

Thread(S1) != 0 and

xS1 = xS2 + 1

TRUE (same memory location)

Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar



11

Experiments - OmpSCR Benchmark suites

Benchmarks 12

Documented races 5

Static: PolyOMP
Overall Detection time1 (sec) 13.03
Reported races 32
False Positives 27

Dynamic: Intel Inspector XE Reported races 10

Hybrid: ARCHER Reported races 5

False positives in case of PolyOMP : Linearized subscripts

False negatives in case of Inspector : Races on worksharing loop iteartors

1On a quad core-i7 machine (2.2GHz) with 16GB memory
Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar



12

Experiments - PolyBench-ACC Benchmark suites

Benchmarks 22

Static: PolyOMP
Overall Detection time2 (sec) 14.41
Reported races 61
False Positives 0

Dynamic: Intel Inspector XE Reported races 31

NO False positives in case of PolyOMP : Affine programs

Majority of races are from :

Non-privatized scalar variables inside the worksharing loops
Updating common array elements in sequential loops of SPMD

2On a quad core-i7 machine (2.2GHz) with 16GB memory
Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar



13

Recent static approaches for race detection in case of OpenMP

Supported Constructs Approach Guarantees False +Ves False -Ves

Pathg
(Yu et.al)
LCTES’12

OpenMP worksharing loops,
Simple Barriers,

Atomic

Thread
automata

Per number
of threads

Yes No

OAT
(Ma et.al)
ICPP’13

OpenMP worksharing loops,
Barriers, locks,

Atomic, single, master

Symbolic
execution

Per number
of threads

Yes No

ompVerify
(Basupalli et.al)

IWOMP’11
OpenMP ‘parallel for’

Polyhedral
(Dependence
analysis)

Per ‘parallel for’
loop

No - (Affine subscripts) No - (Affine subscripts)

Our Approach
OpenMP worksharing loops,

Barriers in arbitrary nested loops,
Single, master

Polyhedral
(MHP relations)

Per SPMD region
No - (Affine subscripts)

Yes - (Non affine)
No

Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar



14

Conclusions

Extensions to the polyhedral compilation model for SPMD programs

Formalization of May Happen in Parallel (MHP) relations in the extended model

An approach for static data race detection in SPMD programs

Demonstration of our approach on 34 OpenMP programs from the OmpSCR and
PolyBench-ACC benchmark suites.

Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar



15

Future work

Debugging:

Deadlock detection in MPI (SPMD-Style)
Hybrid Race detection for OpenMP

Optimizations:

Redundant barrier removal optimization
Fusion of SPMD regions in the context of CUDA/ OpenCL

Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar



16

Finally,

Compiler Analysis for Debugging and Optimizations of explicitly parallel programs
is an important direction to improve productivity and scalability of parallel
programs.

Acknowledgments

Rice Habanero Extreme Scale Software Research Group
LCPC 2016 Program Committee
IMPACT 2016 Program Committee
PACT 2015 ACM SRC Committee

Thank you!

Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar


