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Abstract—Habanero is a task parallel language that pro-
vides correctness guarantees. Even so, programs can be non-
deterministic due to deadlock or data-race. This paper presents
a verification specific library for Habanero intended to assist
in discovering deadlock and data-race. The library has been
extensively tested with Java Pathfinder (JPF) to ensure its
correctness. This paper further presents an implementation of
gradual permission regions in JPF to find deadlock and data-
race in Habanero programs. JPF detects sharing, and the user
annotates such sharing with permission regions or isolation.
Verification only schedules on permission regions or isolation to
illicit data-race and deadlock. The approach is sound with respect
to proving programs free of such behavior. The results from an
empirical study show significant reductions in verification cost,
which cost is controlled with the size of the permission regions at
the risk of rejecting programs that are actually free of data-race
and deadlock.

I. INTRODUCTION

Despite the explosion in multi-core hardware for general
purpose computing, writing programs to take advantage of
the available processing power is a task reserved for expert
developers. Parallel programming models are nuanced with
non-trivial language semantics, and the first programs from
the uninitiated have more in common with sequential execution
than parallel performance due to excessive synchronization, or
worse, those programs are fraught with concurrency errors due
to an absence of needed synchronization. Parallel semantics is
not the normal mental model for most programmers, and as a
result, parallelism is employed little, deployed incorrectly, or
exclusively reserved for the expert users which are not found
in abundance.

The Habanero extreme scale software research project
intends to bring multi-core programming to the masses by
providing languages, compilers, run-time systems, and tools
to support programmers that are not expert in concurrency.
Habanero itself is a task-parallel programming model built
around lightweight asynchronous tasks and data transfers. As
such, rather than manipulating processes, threads, and synchro-
nization for concurrent execution, the programmer identifies
sections of the program that can run concurrently as tasks
using simple annotations in the sequential code. An imple-
mentation of Habanero would then shoulder the complexity
of the parallel execution and absolve the programmer of that
responsibility. The programmer now focuses on the high-level
task constructs while an implementation worries about how to
correctly implement and synchronize those constructs.

Aside from the simplified task-parallel programmer model,
Habanero gives some limited correctness guarantees. It defines
safe subsets of the language that preserve correctness in regards
to concurrent interactions. For example, programs that only
create tasks and join on their termination are free of deadlock,
support serialization (i.e., removing all the annotations yields
a sequential program that gives the same computation), and
in the absence of data-race (i.e., conflicting concurrent access
to shared memory), those same programs are deterministic. In
a safe subset, a programmer does not need to worry about
concurrent interactions between tasks beyond data-race.

Habanero Java (HJ) is the most widely deployed implemen-
tation of the Habanero model, and it has been adopted as a
pedagogical language for teaching concurrency [1]; however,
there is a gap between the theory of the language with its
safe subsets and the implementation in regards to test and
validation. When operating within a safe subset of the language
or outside for performance, there is no easy way to determine
when and if a program is free of data-race—a necessary con-
dition for determinism. Even debugging computation is non-
trivial as the HJ implementation is complex, so a user has no
obvious method to track a task, let alone control its execution,
using a conventional debugger. As a result, inefficient code
inspection, run-time failures, and printf -debugging are the
primary techniques for test and validation.

This paper presents research to address debugging, test,
and validation for task parallel programming models such as
Habanero. The first contribution is a new implementation of
Habanero for Java in the form of a library (HJ-V). The imple-
mentation trades performance for simplicity and correctness. It
does this by using Java threads for each task, and using global
locks with conditions for features of Habanero that require mu-
tual exclusion and complex synchronization. As such, it is well
suited for test and validation since a conventional debugger is
able to inspect and control the execution of tasks (e.g., Java
threads). Additionally, weighing in with only 32 classes and
around 1,300 lines of code, the library is an order of magnitude
less complex than even the most simple implementations in
the HJ distribution. Careful manual inspection of the code
base, which is conveniently small, with extensive testing and
verification, reasonably establish its correctness and supports
the claim that HJ-V preserves all behaviors allowed by the
Habanero semantics. That said, finding deadlock and data-
race in an input program is still a difficult challenge as is
enumerating behavior for test in non-deterministic programs.

The HJ-V library enables model checking for HJ programs.



Model checking exhaustively enumerates program behavior,
and in the case of task-parallel programming models, it
reasons over task schedules to prove the absence of errors.
The Java Pathfinder model checker (JPF) is able to directly
verify freedom of deadlock and data-race in HJ programs
using HJ-V as the Habanero implementation because HJ-V
employs a one-to-one mapping between tasks and threads. The
verification leverages the native support for threads and locks
in JPF to automatically explore all possible ways to schedule
concurrent tasks. Such an approach is not possible using the
other Habanero implementations in the HJ distribution because
JPF does not know where to schedule. The model checking
is effective for verifying the HJ-V implementation beyond
manual inspection and proving small programs correct, but it
does not scale to larger programs.

The second contribution to debugging, test, and validation
is an implementation in JPF of a sound algorithm for the vali-
dation of task-parallel programming models such as Habanero
that is able to detect programs that are free of deadlock and
data-race (JPF-HJ). It also enumerates all outcomes that arise
from non-determinism in sequencing isolated atomic blocks.
The algorithm still employs model checking with the HJ-V
library as before; however, to scale to larger input programs,
the algorithm uses permission regions to annotate atomic
blocks of read/write operations on shared memory. These
atomic blocks effectively reduce the number of schedules that
must be considered to prove a program correct.

Permission regions are program annotations that announce
how a task interacts with shared memory (i.e., reading or
writing), and over what region of code that interaction takes
place [2], [3]. During execution, auxiliary data structures
track access on those memory regions and signal an error on
any conflicting access. Permission regions have been shown
effective in dynamically detecting data-race at run-time.

JPF-HJ includes an implementation of permission regions
and a specialized scheduling algorithm to reduce the number
of explored schedules needed to show a program free of
deadlock and data-race. The new algorithm only preempts at
the entrance to permission regions and isolated atomic blocks
to schedule threads. As stated previously, the new algorithm is
sound, meaning that it may reject programs that are actually
correct if the permission regions are too big, but effective at
controlling state explosion. The algorithm does report a witness
to any discovered deadlock or data-race violation which can
be used to validate the error with the debugger. If the error is
a false report due to the size of the regions, then the witness
provides insight on how to refine the permission regions to be
smaller. This new algorithm together with the simplified run-
time provide needed support for debug, test, and validation of
task parallel programs.

The principle contributions described in this paper are
summarized as

• HJ-V: a verification specific implementation of Habanero
for Java as a Java library that is extensively tested
through model checking with JPFand ins amenable to
conventional debugging;

• JPF-HJ: an implementation of permission regions in the
JPF model checker with a sound algorithm that only
schedules on permission regions and isolated atomic

//Task T0(Parent) 

finish {   //Begin finish 

  async  

    STMT1; //T1(Child) 

  //Continuation  

  STMT2;   //T0 

} //Continuation //End finish 

STMT3;     //T0 

STMT2 

async 

STMT1 

terminate 
wait 

T1 T0 

STMT3 

Fig. 1. An example with async and finish.

blocks to prove a program free of deadlock and data-race;
and

• an empirical study showing the impact of permission
regions on the complexity of model checking over a set
of benchmarks.

The HJ-V library and JPF-HJ specialization are available for
download at: http://javapathfinder.org/jpf-hj/.

II. HABANERO PROGRAMMING MODEL

The core of Habanero is briefly presented here as it is
important to the remainder of the paper [1]. The Habanero
programming model is built around a task-parallel view of
concurrency. Figure 1, included for convenience from [1],
illustrates Habanero in its simplest form.

The async-construct is a mechanism for creating a new
asynchronous task: async 〈stmt〉 causes the calling task (i.e.,
the parent) to create a new child task to execute 〈stmt〉
(logically) in parallel with the parent task. 〈stmt〉 can read
or write any data in the heap and can read (but not write) any
local variable belonging to the parent task’s lexical scope. The
task created by any async-construct is scheduled at the point
it is declared in the program.

The finish-construct is a generalized join operation
for collective synchronization: finish 〈stmt〉 causes the
parent task to execute 〈stmt〉 and then wait until all tasks
created within 〈stmt〉 have completed, including transitively
created tasks. Each dynamic instance of a task has a unique
immediately-enclosing-finish (IEF) during program execution.
That IEF is the innermost finish-construct containing the
task. There is an implicit finish-construct surrounding the
entry point of the program so the program only terminates after
all tasks have completed.

A computation graph illustrating the semantics of the
async and finish constructs is on the right side of Figure 1.
In the graph, task T0 enters the finish-construct, creates task
T1 at the async-construct, and then continues on to STMT2.
After STMT2, T0 waits for T1 to complete before moving on
to STMT3. Note that STMT1 and STMT2 are not ordered by
the semantics and represent parallel execution.

Habanero supports more advanced forms of tasking be-
yond creation and collective synchronization. The isolated-
construct, isolated 〈stmt1〉, ensures that 〈stmt1〉 is evalu-
ated in mutual exclusion with all other isolated-constructs.
There are two subtle nuances in the Habanero model for the
isolated-construct:

http://javapathfinder.org/jpf-hj/


1) The construct ensures mutual exclusion between
isolated-constructs and not mutual exclusion on
a particular memory location. Mutual exclusion on a
particular memory location is implemented by wrapping
operations on that memory location in isolated-
constructs.

2) Any Habanero implementation may relax mutual-
exclusion between isolated-constructs as long as the
constructs do not interfere with one another. Interference
in this context means that multiple isolated-constructs
access a common memory location and at least one of
those accesses is a write.

The future-construct lets tasks return values to other
tasks: future f = async 〈expr〉 creates a new child task to
evaluate 〈expr〉. The local variable f contains a future handle
to the newly created task that can be used to obtain the value
produced by 〈expr〉. The blocking operation f.get() returns that
value when the child task completes.

The most complex construct in the Habanero model is the
phaser [4]. A phaser is a form of a barrier that provides point-
to-point fine-grain synchronization between tasks to coordinate
their movement through phases of computation. Like barriers,
phasers order execution of portions of the program into phases
and restrict tasks from entering the next phase until the current
phase is complete. Unlike barriers though, phasers allow tasks
to specify point-to-point relationships on multiple phasers, and
tasks can dynamically join or leave the phaser.

Tasks register with an instance of a phaser, and on registra-
tion, declare one of four possible modes that control how that
task synchronizes relative to other tasks registered on the same
barrier. Synchronization takes place with the next-construct
which may blocking depending on the state of the phaser, and
how the task is registered with the phaser.

• SIG: signal registration means all tasks that have des-
ignated themselves as signalers must signal the phaser
in order for the phase to advance. The next-construct
for a signal-only task signals the phaser and immediately
advances to the next phase. The phaser remembers each
phase completed by any task.

• SIG_WAIT: signal-wait registration means the task sig-
nals the phaser and then waits for other tasks to complete
the phase. This registration mode functions like a tradi-
tional barrier. The next-construct for a signal-wait task
reports phase completion and then blocks for the other
signalers to complete the phase too.

• WAIT: wait registration means that the task blocks at the
next-construct until the phase advances.

Phasers may also be bounded to specify slack in number of
phases that may separate waiters and signalers so signalers can
work ahead of waiters up to a bound.1

Habanero includes several other constructs such as
foreach-constructs, forall-constructs, data driven fu-
tures, actors, etc. most of which are syntactic sugar for the
presented constructs.

public static void main(final String[] argv) {
Stack stk = initStack();

launchHabaneroApp(() -> {
finish(() -> {

async(() -> {
X.push(5);

});

X.peek();
});

});
}

Fig. 2. An HJ program snippet using the async and finish statements
and also showing how to start the Habanero environment.

public static double
parArraySumFutures(final double[] X) {
final HjFuture<Double> sum1 = future(() -> {
// Return sum of lower half of array
double lowerSum = 0;
for (int i = 0; i < X.length/2; i++) {
lowerSum += 1 / X[i];}

return lowerSum;});

final HjFuture<Double> sum2 = future(() -> {
// Return sum of upper half of array
double upperSum = 0;
for (int i = X.length/2; i < X.length; i++) {
upperSum += 1 / X[i];}

return upperSum;});

// Combine sum1 and sum2
final double sum = sum1.get() + sum2.get();
return sum;

}

Fig. 3. HJ program snippet using the future-statement to sum an array in
parallel.

III. HABANERO JAVA IMPLEMENTATION

HJ-V is a Java library implementation of the Habanero
model designed specifically for test and validation. It consists
of roughly 1,300 lines of code in 32 classes. Most of the
classes address the programmer interface rather than the library
internals. Figure 2 is an example of the interface using Java 8
lambdas. The interface in this implementation is identical to
other Java library implementations of the Habanero model [5],
so this library is interchangeable with those libraries.

The launchHabaneroApp call is the entry point into the
library. Its parameter is a function that defines the Habanero
program to run. The finish and async calls have their usual
meanings, and like the launchHabaneroApp call, they take
functions as their parameter. In the example in Figure 2, two
tasks are created: the main task at the launch, and a child task

1Omitted in this presentation of phasers is the ability to execute constructs
by a single task after the end of one phase and before the start of the next
phase.



public static void main(String[] args) {
launchHabaneroApp(() -> {

finish(() -> {
final HjPhaser ph = newPhaser(SIG_WAIT);
HjPhaserPair mode(ph.inMode(SIG_WAIT));

asyncPhased(mode, () -> {
char[] buffer = bufferTwo;
while (true) {
produce(buffer);
buffer = toggle(buffer);
next();

}
});

asyncPhased(mode, () -> {
char[] buffer = bufferOne;
while (true) {
consume(buffer);
buffer = toggle(buffer);
next();

}
});

});
});

}

Fig. 4. An HJ program snippet using a phaser to synchronize a producer
and consumer.

on the async call. Both tasks interact with a shared stack
stk. The finish call does not complete until both tasks have
completed.

The implementation of the async and finish constructs
uses Java threads and the ability to join those threads. Flat-
tening the lambda function in the Java 8 interface to an
anonymous inner class elucidates the structure of the library.
That code for the async call in Figure 2 using an anonymous
inner-class is shown below:

async(new HjRunnable() {
public void run() {
X.push(5);

}
});

The parameter for the call is an instance of an HjRunnable
object, and an HjRunnable is an extension to the standard
Java thread. The run method for the thread is specialized
in the anonymous inner-class. A programmer may use either
syntax with HJ-V: lambda or anonymous inner-class.

Staying at a high-level view of the implementation, tasks
are threads with extra information to implement the Habanero
model. To support the finish-construct, that thread includes
the notion of a finish-scope. A finish-scope holds references
to any child thread created within a finish-construct, and a
stack of finish-scopes tracks the nesting of finish-constructs
within a task. When a task is created, it is added to the current
running thread’s active finish-scope. In this way, when a parent
reaches the end of a finish-construct, it is able to join on
all threads in the current finish-scope. After joining, the finish-

scope is popped from the stack making the next outer finish-
scope the active scope.

The program in Figure 2 has a somewhat obvious data-
race that is unsafe. Data-race intended by the programmer is
made safe, or protected, using the isolated-construct. For
the referenced example program, the access to the stk object
by the main task should be wrapped as follows:

isolated(() -> {
X.peek();

});

The access in the child task should be wrapped similarly. The
two access are now purely sequential being run in mutual
exclusion. The isolated-construct serializes atomic blocks
of code relative to other isolated blocks.

The implementation of the isolated-construct is trivial.
Every task has access to a RunTime object created with
the call to launchHabaneroApp. That object contains a
single lock that is used to force isolated constructs to be
sequential atomic statements.

Figure 3 is an example of a program using future-
constructs. The program creates two future tasks to sum the
lower and upper halves of an array in parallel. The parent
task uses those future tasks, blocking until they complete, to
combine the two sums into a final result.

The implementation of the future-construct is again
accomplished with a thread. The thread is similar to the
thread for the async-construct only it has the added ability
to suspend. Suspension is made possible using a condition on
a Java lock. A caller to the get method blocks if the function
passed into the future-construct has not yet completed. Once
the function completes, the lock condition is signaled to free
any threads blocked in the associated get method.

The example in Figure 4 is more complex utilizing a phaser
to coordinate a producer task and consumer task. Unlike the
other constructs, the asyncPhased call takes two arguments:
the mode for the single participating phaser (or a list of modes
for each of the participating phasers), and a function defining
the body of the task. The phaser generates the objects to
indicate modes using the inMode method. There are 3 tasks
in this example. The main task creates and registers itself
with the phaser in the SIG_WAIT mode. It then creates the
producer and consumer tasks. When the main task reaches the
end of the finish call, it automatically de-registers with the
phaser and blocks for the producer and consumer tasks. Each
call to next() interacts with every phaser passed in on the
asyncPhased call, so all phasers associated with the task
synchronize at the same program location.

As before, the actual task interacting with the phaser is
a Java thread. Similar to how finish-constructs are imple-
mented, the extra information in the thread includes references
to the phasers for the task. The call to next iterates two times
over the phasers. The first iteration signals as appropriate, and
the second iteration waits as appropriate (possibly blocking
along the way). The phaser itself uses a Java lock with
conditions to track threads that signal, threads that wait, to
block waiting threads as needed, and to keep track of the actual
phase.



<T> void acquireR(T xs)
<T> void acquireR(T xs, int idx)
<T> void acquireR(T xs, int start, int end)

<T> void releaseR(T xs)
<T> void releaseR(T xs, int idx)
<T> void releaseR(T xs, int start, int end)

Fig. 5. The permission-region annotation interface for read acquisition and
release in JPF.

Other constructs in the Habanero programming model are
implemented similarly. The direct mapping between tasks
and threads in the library makes a conventional debugger
more feasible for understanding computation as well as for
debugging deadlock and data-race. The debugger is able to
directly control the scheduling of concurrent threads on a
single processor, and because the run-time is relatively small,
it is possible to step through the run-time to understand its
functionality if needed. As an observation, there is a significant
overhead with creating threads for each task, the least of which
impacts run-time performance. The intent is to debug with
HJ-V and use the performance oriented implementations for
deployment.

Aside from conventional debugging, the library enables
direct model checking using JPF. JPF is an extensible imple-
mentation of a Java virtual machine written in Java [6]. Out
of the box JPF is able to model check Java programs for ex-
ceptions, assertion violations, deadlock, and data-race. Model
checking brute-force explores all possible thread schedules
and reports any violating schedule. Although model checking
is expensive, it is effective for reasoning over schedules to
harden multi-threaded programs. The HJ-V implementation
has been extensively model checked by JPF using a set of
test input programs. The test input programs explore the
different constructs in the Habanero model in an effort to illicit
unexpected behavior. The model checking has been extremely
helpful in finding bugs, removing deadlock, and eliminating
data-race both in the library implementation itself and the input
programs.

Model checking does not scale to larger programs, as
expected, and JPF is no exception to that rule. A common
approach to state explosion though is to reduce the number
of schedules that need to be checked in model checking. This
research leverages permission regions to define atomic blocks
so that JPF does not context switch threads at every access to
shared memory. Rather, it is restricted to only schedule at the
entry points of permission regions and isolated-constructs.

IV. GRADUAL PERMISSION REGIONS

Gradual permissions with permission regions is a hybrid
static-dynamic approach to detecting data-race in task-parallel
programs [7], [2]. The programmer annotates regions of the
program text that access shared objects. Those regions are
indicated as accessing shared objects in read mode or write
mode. When the program runs, a state machine is associated
with each shared object to track access permissions on that
object as indicated by the program annotations. If access

public static void main(final String[] argv) {
launchHabaneroApp(() -> {
Stack stk = initStack();

finish(() -> {

async(() -> {
acquireW(stk);
stk.push(5);
releaseW(stk);

});

acquireR(stk);
stk.peek();
releaseR(stk);

});
});

}

Fig. 6. HJprogram snippet using the async and finish statements showing
how to start the environment.
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which contains the state as well as the associated task for private read and private
write; and count, which maintains the nesting of the current state. Similar meth-
ods have been added to the objects implementing array views, which maintain
lists of pieces of an array view in di↵erent states and compute intersections of
array pieces to determine if there are conflicts.

6 Performance Evaluation

In this section we evaluate permission regions along two dimensions, performance
and usability. To do this, we considered 11 benchmarks for HJ, including small-
to large-scale benchmarks from the JavaGrande benchmark suite [39], the NAS
Parallel Benchmark suite [13], the BOTS benchmark suite [11], and a Parallel
Depth First Search application (PDFS). These are listed in Table 1, which also
separates the benchmarks into loop vs functional parallelism

For each benchmark, we performed the following experiment. We first con-
verted any parallel array processing in the benchmark to use array views, as
discussed in Section 3. Table 1 gives the number of lines of code that were mod-
ified in column 5. We then ran the code to determine if there were any false
positives; as discussed above in Section 4, there was exactly one false positive
in the PDFS benchmark. Next, we timed the benchmark with and without per-
mission regions, to measure the slowdown of permission regions. Finally, for the
5 benchmarks with the biggest slowdowns, we added permission method an-
notations to key methods to increase performance and timed the results. The
numbers of reading and writing keywords added to each benchmark are given
in columns 6 and 7 of Table 1, respectively. All timing results were obtained on
a 16-way (quad-socket, quad-core per socket) Intel Xeon 2.4GHz system with
30GB of memory, running Red Hat Linux (RHEL 5) and Sun JDK 1.6 64-bit
version. We used the linux taskset command to physically restrict the number
of cores involved in the experiment, from 1 to 16 cores, to measure scalability.

From a usability perspective, our results were promising. The biggest change
required was modifying the benchmarks to use array views, requiring an average
of 3% of the lines of code to be edited; this resulted from adding explicit creation

Fig. 7. State machine for permission regions operating on a single object

permissions from distinct tasks on the same object conflict,
then a dynamic run-time error is reported.

Permission regions are distinctly different from
isolated-constructs. Foremost, isolated-constructs
define atomic regions that run mutually exclusive to other
regions in isolated-constructs. As such, isolation restricts
concurrency by serializing atomic regions. Permission regions
do not serialize atomic regions to restrict concurrency. They
only check if concurrent accesses to atomic regions are free
of data-race. Isolation is always best avoided given its impact
on speedup in Ahmdal’s law.

Permission regions are annotated for JPF using the in-
terface in Figure 5. Although the figure only shows the
read interface, the write interface follows the same pattern.
The first method on the interface has arguments to manage
permissions on a single object. The second and third methods
have arguments to manage permissions on arrays. Arrays are
somewhat more nuanced. Consider the following code:

f[i] = new C();
f[i].write(j);

The first line is writing to the array location i. The second line



Fig. 8. Different schedules for the program in Figure 2 with the right most
schedule detecting a violation.

is writing to the object stored in the array location i. These two
accesses must be treated separately. As such, the permission
regions interface provides methods to manage permissions on
a specific index in an array or a range of indexes in the
array. Permissions on the actual object in the array use the
first method in the interface. The annotated code snippet from
above is follows.

acquireW(f,i);
f[i] = new C();
releaseW(f,i);

acquireR(f,i);
acquireW(f[i]);
f[i].write(j);
releaseW(f[i]);
releaseR(f,i);

Figure 6 is the permission-region annotated version of the
program in Figure 2 from the previous section. The operations
on the shared object stk are now wrapped in calls to acquire
or release permissions on the shared object. Note that the
permission regions span all the code in the stk.push and
stk.peek methods, so anytime the object is referenced is
covered by the region. In this way, permission regions can be
as large or as small as desired. If the regions are too large,
however, then the approach may report data-race where no
race exists [2], [7].

Figure 8 is the state-machine to track permissions on
shared objects and detect violations. That machine is included
here for convenience directly from [7]. The machine starts
in the double-circled Null state. On acquisition or release,
the machine updates to the appropriate state based on its

current state. The machine signals a violation if it ever detects
conflicting accesses by different tasks.

Figure 8 shows two possible schedules for the annotated
program in Figure 6. The solid filled ovals and solid lines
represent the main task and the dotted filled ovals and dashed
lines represent the task created by the async-statement. The
squares indicate the current state of the state machine that is
tracking accesses to the shared object stk.

The left branch of the tree is the schedule where the main
task runs until it is blocked by the finish-statement where
it must join with the tasked created by the async-statement.
The main task acquires and releases private read privileges on
the region before it blocks. After the main task blocks, the
newly created task runs, acquiring and releasing private write
privileges, and it then exists. If this schedule is followed in the
run-time, then no violation is reported even through data-race
exists in the program. The approach is run-time dependent and
not exhaustive.

The right branch is an alternate schedule that is possible in
the program. In this schedule, the newly created task from the
async-statement runs just after the main task acquires private
read privileges on the shared object. When the new task tries
to acquire write privileges, that state-machine that manages
permissions on the shared object moves into the violation state
to report the error.

A. Permission Regions in JPF

The implementation of permission regions in JPF spans
1036 lines of code and covers 11 distinct class objects. It
leverages JPF’s ability to track thread IDs of all accesses to
objects, so it not only reports violations on the permission re-
gions, but also identifies shared accesses that are not annotated
by permission regions or convered by isolated-constructs.
In this way, JPF updates the user when a shared access has
been missed in the annotations.

The implementation uses two key features of JPF: byte-
code listeners and object attributes. It installs a byte-code
listener to watch for instances of the INVOKE-code. The
actual methods for the permission regions interface in Figure 5
are empty stubs. When the listener sees an instance of the
INVOKE-code that calls a method on the interface, it gets the
method’s parameters from the stack and updates the associated
state-machines appropriately.

The state machines themselves reside in an attribute of the
object. Every object in JPF has an associated attribute that can
hold arbitrary information. For example, attributes are used
to implement symbolic execution in JPF [8]. The important
property of attributes is that they follow heap objects through
the entirety of state space exploration. The state machines to
track permission region accesses are stored in those attributes.
For arrays, a separate permissions state-machine is stored for
every index. The program annotations acquire and release
permissions on individual indexes (or a range of indexes) as
mentioned previously.

With or without permission regions, JPF finds the data-
race in Figure 6 using its built-in precise-data-race listener
with HJ-V. Unfortunately, it times-out on larger programs due



to state-explosion as shown in the results section. Permission
regions are utilized to improve this limitation.

Algorithm 1 Permission Region Informed Search
1: function SEARCH(t, h, T )
2: loop: (h, T ) := run(t, h, T )
3:
4: s := status(t, T )
5: data-race = false
6: if s = PR ENTRY then
7: (h, T , data-race) := acquire(t, h, T )
8: else if s = PR EXIT then
9: (h, T ) := release(t, h, T )

10: goto loop
11: end if
12:
13: if data-race then
14: report data-race and exit
15: end if
16:
17: R = runnable(T )
18: if R = ∅ then
19: if blocked(T ) 6= ∅ then
20: report deadlock and exit
21: else
22: report any detected sharing and exit
23: end if
24: end if
25:
26: if (h, T ) 6∈ S then . S is a global variable
27: S = S ∪ {(h, T )}
28: if s = PR ENTRY ∨ s = ISOLATED then
29: for all ti ∈ R do
30: search(ti, h, T )
31: end for
32: else
33: ti := random(R)
34: search(ti, h, T )
35: end if
36: end if
37: end function

V. JPF-HJ SEARCH ALGORITHM

The default model checking algorithm in JPF is too fine
grained to scale beyond small programs even in the specialized
HJ-V implementation. The cause of the state explosion is JPF’s
default scheduling algorithm that interleaves the execution of
all threads at every thread event and on every access to shared
state. For example JPF schedules every thread that can run at
every lock acquire, lock release, thread block, thread unblock,
field access on shared objects etc. to exhaustively enumerate
the program schedule space. As the HJ-V library relies on
locks to synchronize its internal data structures, the fact that
tasks are mapped directly to threads, and the fact that often
there are several byte-codes that access an object when it is
shared, the state explosion is severe.

Permission regions create natural scheduling boundaries
for JPF that can be leveraged to mitigate state explosion
while preserving the essential behaviors of the program that

Algorithm 2 Procedure to Validate a Program
procedure VALIDATE(p)

(h, T ) := init(p)
R := runnable(T )
t := random(R)
S := ∅
search(t, h, T )
while JPF reports sharing do

Add permissions regions or isolation for sharing
(h, T ) = init(p)
S := ∅
search(t, h, T )

end while
end procedure

lead to deadlock or data-race. The intuition is that given a
fixed program input, behavior is only affected by interactions
between tasks on shared memory. As such, it is only necessary
to preempt running threads at the entrance to permission
regions and isolated-constructs. If a program has deadlock
or data-race, such deadlock and data-race exists in one of the
explored schedules from those preemption points.

Algorithm 1 is the pseudo-code for the algorithm to explore
all thread schedules created at entry to permission regions and
isolated-constructs. The state of the Java virtual machine
in the pseudo-code is simplified for clarity; it is represented by
a heap, h, and a set of threads, T . The lowercase t indicates
a thread ID. Line 2 updates the heap and pool of threads by
running thread t until it blocks, exits, reaches a permission
region boundary (i.e., entry or exit), or reaches an isolated-
construct.

At the entry point of the permission region, Line 7 updates
the state machine for the acquired object in the heap and checks
to see if the acquisition signals a data-race. At the exit point
of the permission region, Line 9 updates the state machine for
the released object in the heap, and the algorithm starts thread
t running anew at Line 2.

Data-race is reported on Line 13. Line 19 reports deadlock.
A deadlock state is indicated when there are no runnable
threads (i.e., R = ∅) and there exists threads that are blocked.
A report for either data-race or deadlock includes a witness
trace for validation and debugging. In the absence of deadlock
or data-race, and when there are simply no more threads to run,
Line 22 terminates the search and reports any detected sharing
that was not annotated by a permission region or covered by
an isolated-construct.

The set S on Line 26 is a global set to track the visited
states. Line 29 does the actual scheduling by considering
all possible runnable threads, including the currently running
thread t, as a next thread to run. Note that in the current state,
if the thread t was preempted because it entered a permission
region, then that state reflects the acquired permissions on that
region. In the case that thread t has been blocked, Line 33
chooses a random runnable thread to schedule next.

Figure 8 is the state space explored by the search algorithm
for the simple example Figure 6. Recall that the example has
two tasks that access a shared stack: one reading and the other
writing. The ovals in the diagram represent scheduling points,



and as before, the blocks represent the state of the machine
tracking permissions. As indicated by the pseudo-code, the
algorithm only preempts running threads at the entrance to
permission regions. In this example, it schedules the child
task after the main task acquires read permissions to illicit the
violation. By observation, if the annotated program in Figure 6
replaces the permission regions with isolated-constructs,
then the explored state space no longer includes the violation,
and it includes another schedule that interleaves the atomic
blocks defined by the isolated regions.

Algorithm 2 is a procedural flow describing the process
of program validation using the new search in Algorithm 1.
The process leverages JPF’s ability to track thread IDs of
accesses to heap locations. When the search algorithm finishes,
JPF reports any heap locations that have been accessed by
more than one distinct thread not in a permission region or an
isolated-construct with the input program location where
that access occurred. Using this information, a user is able to
appropriately annotate that program location, and then repeat
the search. The process terminates when a deadlock or data-
race is discovered, or no more sharing outside of permission
regions or isolated-constructs exists.

Theorem 1. The algorithm in Algorithm 1 is sound in that it
only accepts programs that are deadlock and data-race free for
programs that terminate and that have all sharing annotated
with permission regions or wrapped in isolated-constructs

Proof: The soundness proof reasons over a slightly mod-
ified version of the algorithm that is iterative and takes as an
additional input a search tree which is similar to Figure 8
that captures all possible sequences of release and acquire
statements explored thus far. The algorithm traverses that input
tree and at each leaf node tries to extend that node by one
generation if possible. After the traversal, the algorithm returns
the new tree. The algorithm is called in an iterative manner
until the tree reaches a fix-point (which is guaranteed since
the program terminates).

Let P (n) be the statement that this modified search algo-
rithm returns all interesting sequences of acquire and release
statements of length n or less for a given input program where
interesting means deadlock or data-race.

Basis Step: the algorithm produces all interesting sequences
length n ≤ 1. This case is trivially established with the initial
state of the program that represents a sequence of length n ≤ 1
and cannot deadlock or data-race since the program has not
done anything. As such, it includes all interesting sequences.

Inductive Step: assume the modified algorithm has correctly
generated a tree representing all interesting sequences of n or
less; it is necessary to show that from that tree it is able to
generate all interesting sequences of length n+1 or less. There
are three possible outcomes at any leaf of the input tree:

1) the leaf cannot be extended because it is already an
interesting sequence having a data-race or deadlock;

2) the leaf cannot be extended because there are no more
runnable threads in which case it is not interesting; or

3) the leaf is able to be extended with one or more immediate
descendants.

The first two cases are directly covered by lines 13 through

24 of the algorithm; there is no way to have any descendants
in those situations and the sequences are already classified as
interesting or not.

For the third case, first consider line 28 of the algorithm
that creates the next generation in the tree for permission
regions and isolated blocks. Every runnable thread is scheduled
and each of those threads must reach an immediate successor
which may be a deadlock or data-race making an interesting
sequence, a preemption, a block condition, or exit by the
constraint that the input program must terminate. As such, any
n+ 1 length sequence that exists, is generated.

Further, any interesting n + 1 sequence is generated as
well. To see this outcome, it is important to understand that
the order of acquisition relative to read or write does not matter
in detecting a violation. The state machine in Figure 7 is not
affected by acquisition order; it is only dependent on what
read or write permissions are held at the time of acquisition.
As the algorithm always first acquires a permission and then
schedules other threads, it generates all the interesting n + 1
sequences if any exist that are interesting due to data-race. If
data-race does not exist, then deadlock is detected as usual.

To complete the inductive step, line 32 must be considered
that covers a blocked or exited thread. The input program
has all sharing annotated or isolated by constraint meaning
that any non-determinism due to scheduling is covered already
by line 28 so all reachable program paths are considered. If
an interesting sequence exists because of deadlock, then it is
either found in the n+ 1 step, by having selected the correct
thread, or in a later step when the correct thread is chosen.
If the deadlock depends on a particular sequence of thread
executions, then those sequences are enumerated by line 28. As
such, the deadlock is either deterministic (i.e., independent of
the schedule) or non-deterministic (i.e., a product of data-race
on some shared object). In the former, the choice of thread does
not matter, and in the latter, line 28 enumerates all possible
orders over isolated blocks and permission region blocks that
do not data-race.

A. JPF Implementation

The JPF implementation of Algorithm 1 exploits another
aspect of the extensible nature of the tool by providing a
new scheduling-factory. A scheduling-factory is activated on
preemption, when a thread is no longer able to run, or if there is
input non-determinism. JPF uses scheduling-factories to decide
what threads are scheduled by having the scheduling factory
insert choice-generators into the state search. The choice-
generator enumerates the available choices, and the search
iterates over those choices starting a new search for each
choice.

The default scheduling-factory in JPF is replaced with
a new factory that does not insert any choices on thread
actions, locks, synchronization, or shared access to objects.
Anything related to concurrency is turned off by the new
scheduling-factory except for forced context switches such
as a thread exiting or a thread blocking. In those cases, the
new scheduling-factory inserts a choice generator with a single
choice that represents a random thread that is runnable.

To insert the preemption points for permission regions
and isolated-constructs, the byte-code listener from the



implementation of permission regions is extended to also listen
for the INVOKE-bytecode calls to isolated. At the entrance
to permission regions, the permission regions’ state-machine
for the object is updated as before, but after the update,
a choice-generator is inserted into the search that includes
choices for all runnable threads. Similarly, a choice-generator
is inserted at the isolated call. The entire implementation
is only a few hundred lines of code but has a significant impact
on the verification cost.

VI. RESULTS

To verify the correctness of HJ-V test cases were created
that utilize specific features of the runtime. Each of these
test cases are run within JPF with full scheduling enabled.
Thus for each case JPF is utilized to determining that HJ-Vis
free of deadlock/data-race. In total 22 test cases were created
consisting of approximately 1000 lines of source code.

For comparison between JPF ’s PreciseRaceDetector and
permission regions a series of measurements is collected
that perform work in parallel. These benchmarks contain a
wide variety of HJ features, including: async, isolated, finish,
futures, and phasers. Many of these benchmarks also including
the use of shared arrays.

The Error Note column describes the result of the verifi-
cation attempt. A note accompanied by an * signifies that the
operation was incorrect (i.e. race is reported for a program that
is free of race).

Each benchmark was run for up to 30 minutes. After 30
minutes the program was terminated and the result is reported
as N/A. As table I shows, JPF was unable to complete in time
for many of the benchmarks. This highlights the challenge
of trying to model check all but the most basic of programs.
JPF-HJ performs exceptionally well on the following class of
programs: programs without shared state and programs that
use arrays to store shared state, but generally access disjoint
portions of the array. For the latter case JPF-HJ performs
an scheduling optimization. If it can be easily determined
by the user that the access to the array will be performed
on disjoint portions than a modified form of the permission
regions annotation may be used to signal to the runtime to
insert just a single scheduling point instead of a scheduling
point for each array access. If the programmer is incorrect is
their assessment then JPF-HJ will claim the program contains
a race when in reality it may not.

It is a bit challenging to predict how the use of specific
concurrency primitives will affect the size of the state space.
Certainly, shared state produces a larger state space, because
of the need to schedule on permission region boundaries.
PrimeNumCounter and its variants highlight the effect of
shared state on the verification problem as seen in listing 9.
Although this program only has a single piece of shared state
it is shared between all 15 tasks.

JPF-HJ also shines when many accesses are performed on a
single piece of shared state in a row as seen in listing 10. This
program is simple case for JPF-HJ to verify because only a
single scheduling point is needed for every access on ”shared-
state”. This is in contrast to vanilla JPF which would insert a
scheduling point at each bytecode access.

public class PrimeNumCounter {
private final static int COUNT = 17;
private static int[] primes = {0};
public static boolean isPrime(int num) {
//Determine if number is prime

}
public static void main(String[] args) {
launchHabaneroApp(() -> {
finish(() -> {
for (int i = 2; i < COUNT; i++) {
final int j = i;
async(() -> {
if (isPrime(j)) {
isolated(() -> {
acquireW(primes, 0);
primes[0]++;
releaseW(primes, 0);

});
}

});
}

});
});

}
}

Fig. 9. A Naive Method to Count Prime Numbers in Parallel

In summary, JPF-HJ shows a great deal of progress over
JPF for a specific class of programs. For the programs for
which a side-by-side comparison can be made, Table I shows
that JPF-HJ ’s optimizations reduce the state space by at least
two orders of magnitude (PrimitiveArrayRace, PrimitiveAr-
rayNoRace, VectorAdd, etc).

VII. RELATED WORK

There is an existing extension for JPF for the X10 Lan-
guage [9], [10]. Habanero is closely related to X10 in many
of its constructs. In the extension, JPF operates directly on the
actual X10 runtime system. To accomplish the integration, JPF
is modified, the X10 runtime is modified, the X10 compiler
is extended, and a new static analysis is presented to help
control state explosion. The extension represents a significant
effort that affects all aspects of the X10 framework to enable
JPF verification.

There is a formal model for the Chapel language with an
accompanying model checker that employs symbolic execution
[11]. The formal model is an intermediate representation (IR)
suitable for concurrent constructs. The approach compiles
Chapel programs into the IR and the model checker then
verifies the IR for deadlock and data-race freedom. Creating
a compiler and model checker is a significant undertaking
beyond the approach in this paper. More critically, the ver-
ification tool models the runtime including the number of
available worker threads to service tasks; thus, the verification
results are dependent on the number of worker threads in the
configuration rather than the semantics of the Chapel language.

Another approach to verifying concurrent languages is
to leverage the production level language runtime system
itself [12], [13], [14], [15]. These approaches typically require



TABLE I. BENCHMARKS OF HJ PROGRAMS: JPF-HJ VS. PRECISERACEDETECTOR

Permission Regions PreciseRaceDetector
Test ID SLOC Tasks States Time Regions Error Note States Time Error Note

PrimitiveArrayNoRace 29 3 5 0:00:00 0 No Race 11,852 0:00:00 No Race
PrimitiveArrayRace 39 3 5 0:00:00 2 No Race 220 0:00:00 Detected Race

TwoDimArrays 30 11 15 0:00:00 0 No Race 597 0:00:00 DetectedRace*
ForAllWithIterable 38 2 9 0:00:00 0 No Race N/A N/A N/A

IntegerCounterIsolated 54 10 1,013,102 0:05:53 3 No Race N/A N/A N/A
PipelineWithFutures 69 5 34 0:00:00 1 No Race N/A N/A N/A

SubstringSearch 83 59 8 0:00:00 2 Detected Race N/A N/A N/A
BinaryTrees 80 525 632 0:00:03 0 No Race N/A N/A N/A

PrimeNumCounter 51 25 231,136 0:01:08 2 No Race N/A N/A N/A
PrimeNumCounterForAll 52 25 6 0:00:00 2 Detected Race* N/A N/A N/A

PrimeNumCounterForAsync 44 11 449,511 0:02:51 2 No Race N/A N/A N/A
ReciprocalArraySum 58 2 32 0:00:06 2 No Race N/A N/A N/A

Add 67 3 62,374 0:00:33 6 No Race 4,930 0:00:03 Detected Race*
ScalarMultiply 55 3 55,712 0:00:30 2 No Race 826 0:00:01 Detected Race*

VectorAdd 50 3 17 0:00:00 4 No Race 46,394 0:00:19 No Race
AsyncTest1 23 51 54 0:00:00 0 No Race N/A N/A N/A
AsyncTest2 32 3 4 0:00:00 2 Detected Race 11,534 0:00:04 Detected Race
FinishTest1 32 3 6 0:00:00 0 No Race 2,354 0:00:02 No Race
FinishTest2 33 3 5 0:00:00 0 No Race 25,243 0:00:09 No Race
FinishTest3 44 4 7 0:00:00 0 No Race 34,459 0:00:12 No Race

ClumpedAccess 30 3 15 0:00:00 2 No Race N/A N/A N/A

public class ClumpedAcess {
private static final int[] shared-state =

{0};
public static void main(String[] args) {
launchHabaneroApp(() -> {
async(() -> {
isolated(() -> {
acquireW(shared-state, 0);
for (int i = 0; i < 1000; i++) {
shared-state[0]++;

}
releaseW(shared-state, 0);

});
});
async(() -> {
isolated(() -> {
acquireR(shared-state, 0);
for (int i = 0; i < 1000; i++) {
System.out.println(shared-state[0]);

}
releaseR(shared-state, 0);

});
});

});
}

}

Fig. 10. Block Access vs. Bytecode Access

instrumentation of the source program, wrappers to intercept
calls into the runtime, and a way to control runtime behavior.
Although they are typically able to generate states faster than
JPF, verification results are dependent on the employed runtime
correctly implementing the language semantics.

Many tools for dynamic race detection have been developed
[16], [17], [18]. These tools track the set of locks held by
each task during execution and use these sets to determine
if a shared resource is insufficiently protected. These tools
produced results that were independent of thread interleav-
ings. This was an improvement to previous tools that were
dependent upon the thread interleavings of the current exe-

cution [19], [20], [21]. Race detection algorithms have also
been developed for task-parallel languages [22], [23]. These
approaches utilize the structured parallelism of the language
to quickly detect race. However, the results of this approach
are also limited to a single execution.

Many different approaches have been developed to stati-
cally detect race conditions in programs [24], [25], [26], [27].
Each of these techniques require varying levels of instrumenta-
tion by the user. RacerX infers the resources each lock protects,
code contexts which are multithreaded, and race conditions that
have a ”dangerous” effect upon the running program. RacerX
relies upon the user to annotate the location of the method for
performing the lock/unlock operations. Any other annotations
by the user are acceptable, but not required.

Relay performs a static lockset analysis. The Relay algo-
rithm computes relative locksets that belong to each function
in the program. This bottom-up approach scales very nicely,
however, this approach remains unsound.

General permission regions is another static analysis strat-
egy that infers the location of program annotations [3]. Once
the annotations have been statically injected a dynamic analysis
is run to detect the presence of race conditions. Unlike,
RacerX, GPR doesn’t require any user annotations, although
it will honor any annotations introduced by the user. GPR
correctly detects race conditions for most common parallel
programming paradigms.

Recent work proves the problem of state-reachability to be
decidable and EXPSPACE hard for finite-valued programs in
languages such as X10/Habanero [28]. The result is limited
to a subset of the powerful task constructs in such languages
and justifies a model checking effort. The computability and
complexity of the more advanced constructs such as phasers
is yet to be determined.

VIII. CONCLUSIONS & FUTURE WORK

This paper presents an approach for the test and validation
of task-parallel languages using the Habanero programming
model as an example. The approach creates a specialized im-
plementation of Habanero that is purposed for validation. The



implementation is not only much simpler than performance
oriented implementations, it facilitates a conventional debugger
to control the scheduling order of concurrent tasks. More
importantly, the implementation lends itself to model checking
to prove an input program is free of deadlock and data-race.
As model checking does not scale to larger programs, this
paper presents a sound algorithm for proving a program free
of deadlock and data-race that uses permission regions to
mitigate state explosion. The algorithm reduces the number of
schedules it must consider by only preempting at the entrance
to permission regions. If the regions are too large though,
the algorithm may reject a program that is actually free of
deadlock and data-race. Since the model checker provides a
witness to any detected violation, it is possible to manually
validate the witness to refine the permission regions as needed.
The approach is illustrated with a full implementation in the
JPF model checker and results on several input programs.

Future work includes automating the annotation of permis-
sion regions based on the sharing detection in JPF; automating
the validation of the counter-example to see if it is real or an
artifact of the permission regions being too big; developing
techniques that use the counter-example to automatically refine
permission regions; and incorporating into the verification
process static-analysis to prevent scheduling on regions that
statically cannot race.
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