
DAMMP: A Distributed Actor Model for Mobile Platforms
Arghya Chatterjee∗

School of Computer Science,
Georgia Institute of Technology

Atlanta, Georgia, USA
arghya@gatech.edu

Srđan Milaković
Department of Computer Science,

Rice University
Houston, Texas, USA
sm108@rice.edu

Bing Xue
Department of Computer Science,

Rice University
Houston, Texas, USA

bx3@rice.edu

Zoran Budimlić
Department of Computer Science,

Rice University
Houston, Texas, USA

zoran@rice.edu

Vivek Sarkar
School of Computer Science,

Georgia Institute of Technology
Atlanta, Georgia, USA
vsarkar@gatech.edu

ABSTRACT
While mobile computing has seen a trend towards miniaturiza-
tion and energy savings for a number of years, the available hard-
ware parallelism in mobile devices has at the same time continued
to increase. Overall, mobile devices remain resource constrained
on power consumption and thermal dissipation. Aggregating the
computing capabilities of multiple mobile devices in a distributed
and dynamic setting, opens the possibilities for performance im-
provements, longer aggregate battery life and novel dynamic and
distributed applications.

In this paper, we propose a Distributed Actor Model for Mobile
Platforms (DAMMP), which includes a) a mobile extension to the
actor-based Distributed Selector (DS) programming model, along
with a new implementation for mobile Android devices, b) an exten-
sion to the DS programming model that enables the programmer
to react and adapt to dynamic changes in device availability, c) an
adaptive mobile-to-server and mobile-to-mobile computation of-
floading model and its implementation on the Android platform,
and d) creation of a dynamic network of heterogeneous Android
devices using both Wi-Fi Soft AP and Wi-Fi Direct’s peer to peer
(P2P) network.

We evaluate the DAMMP framework under ideal thermally-
controlled usage conditions to show promising scalability and
performance, and analyze the communication overhead of both
Wi-Fi and Wi-Fi Direct when used as the communication layer
for DAMMP. We also evaluate the impact of adaptive offload on
device-level thermal dissipation in more realistic usage scenarios,
thereby demonstrating possibilities for thermal control and power
management that can be achieved at the application level with a
distributed actor model. To the best of our knowledge, this work is
the first cross-platform distributed actor/selector runtime system
that can span mobile devices and distributed servers.

∗Also with Computer Science and Mathematics Division, ORNL.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ManLang 2017, Prague, Czech Republic
© 2017 ACM. 978-1-4503-5340-3/17/09. . . $15.00
DOI: 10.1145/3132190.3132205

CCS CONCEPTS
• Computing methodologies → Parallel programming lan-
guages; Distributed programming languages;

KEYWORDS
Actor Model, Selector Model, Mobile Computing, Android Platform,
Distributed Selectors, Remote Messaging, Remote Synchronization.

1 INTRODUCTION
The computational demands on mobile devices are increasing at a
rapid pace that is hard to sustain with current device-level energy
capacities. In this paper, we make a case for using a Distributed
Actor Model for Mobile Platforms (DAMMP) to harness the pro-
cessing power of multiple supporting mobile devices, and (when
available) supporting servers, so as to increase the responsiveness
and reduce the energy consumption of specific mobile devices that
need to process compute-intensive jobs.

While mobile devices are not usually associated with distributed
and high-performance computing, past projects including distribut-
ed peer-to-peer file sharing for mobile applications [20] and off-
the-grid agricultural distributed mobile applications [21], have
demonstrated real-world impact with distributed mobile applica-
tions. However, while most such projects are based on specialized
hardware, we aim to provide a portable and more extensible frame-
work with DAMMP. Some popular scenarios from past work on
image recognition [9, 24] and GPS triangulation [17, 27, 32, 33] help
motivate our model in dynamic and heterogeneous settings:

• Law enforcement agencies in the field may not have ac-
cess to high-performance computing resources to run a
facial-recognition application, and may have to rely on
the computing power of their hand-held mobile devices
instead. These compute intensive jobs may not be possible
to run on a single device, but with the use of DAMMP they
can transparently create a distributed network of multiple
devices to collaboratively implement the face-recognition
algorithm [9].

• Hikers are at a remote location without Internet connec-
tivity and with a set of devices with different computing
power, battery states and temperatures. A DAMMP ap-
plication can enable them to share GPS data among their
devices and triangulate their position using the collective

ManLang 2017, September 27–29, 2017, Prague, Czech Republic A. Chatterjee, S. Milaković, B. Xue, Z. Budimlić, V. Sarkar

computing power of their devices, while at the same time
managing the power consumption and heat dissipation to
maximize the collective usability and longevity of their
ad-hoc distributed system of heterogeneous devices [17].

Scenarios such as these illustrate a need for a programming
model and system that would allow an easy distribution and redis-
tribution of work that needs to be done, a convenient mechanism
for the application to adapt to dynamic changes in network topol-
ogy (such as devices leaving or joining the group), and an effortless
model for offloading computation to another device as a reaction to
dynamic environment changes (such as battery running low or tem-
perature running high on a device). We believe that the DAMMP
programming model and runtime is well suited to addressing this
need. DAMMP combines the distributed asynchrony inherent in
the Actor model (which greatly facilitates migration), the expres-
siveness of the Selector model (which can express a wider range of
coordination protocols), distributed execution on ad-hoc networks
using Wi-Fi Direct, and an Actor-friendly interface between the
runtime and the application that allows for an easy implementation
of adaptation mechanisms that react to dynamic changes in the
system (devices joining/leaving, battery running low, temperature
rising too high, OS throttling the CPU, etc.).

To the best of our knowledge, this work is the first cross-platform
distributed actor/selector runtime system that can span mobile
devices and distributed servers. The specific contributions of this
paper are as follows:

(1) We present a Distributed Actor Model for Mobile Platforms
(DAMMP), a Java library that extends the Distributed Se-
lector model [8] to include support for mobile platforms
as well as support for dynamic topology changes and re-
configuration.

(2) DAMMP includes a clean and intuitive interface for the user
to implement reactions to changes in the system topology
and configuration.

(3) An implementation of this programming model on modern
Android devices.

(4) We introduce an adaptive model for offloading computa-
tions from a mobile device on to nearby mobile devices,
and (when available) nearby servers.

(5) We demonstrate and evaluate the programming model
based on a range of use cases and metrics (performance
and energy) for heterogeneous Android devices.

The rest of the paper is organized as follows. Section 2 summa-
rizes background on the general Selector Model, the Distributed
Selector (DS) model and Wifi-Direct, Section 3 describes the tech-
nical approaches that we used to adapt and extend a Distributed
Actor runtime for Mobile Platforms, followed by the evaluation of
our Android implementation of DAMMP in Section 4. Section 5
summarizes related work in distributed computing with the use
of the Actor programming model. Finally, in Section 6 we briefly
conclude with some possible directions for future work.

2 BACKGROUND
Throughout this paper, we will use the term, Selector, for entities
defined by DAMMP users, and the term, Actor, for entities internal

to the DAMMP runtime (which happen not to require the multiple-
mailbox functionality available in selectors).

2.1 Selector Model
The Selector model [14] is an extension of the Actor programming
model [1] that supports multiple guarded mailboxes (which can be
enabled or disabled independently) along with the priority-based
processing of messages. It overcomes known difficulties in imple-
menting synchronization and coordination patterns using the pure
actor model. The idea of guarded mailboxes in selectors is inspired
by classical condition variables, in which a thread checks whether
a condition is true before continuing execution in a critical section.
The results in [14] show that Selectors can also be implemented
efficiently, since that work includes performance comparisons with
Scala, Akka, Jetlang, Scalaz, Functional-Java and Habanero actor li-
braries. However, the implementation described in [14] was limited
to a single-node (shared-memory) implementation of the Selector
model in the Habanero Java Library [12].

2.2 Distributed Selector Model
The Habanero Java Distributed Selector (HJDS) runtime library [8]
extended the design and implementation of the single-node Selector
library from [14] to work across multiple distributed server nodes
(with one or more JVM instances per node). HJDS makes it possible
to use selectors as a single unified programming model for both
shared-memory and distributed multi-node execution of a program.

The HJDS runtime allows the programmer to focus on imple-
menting algorithms for solving a problem without worrying about
whether the application should run on a shared-memory or distribu-
ted-memory system. The runtime also provides automated system
bootstrap and distributed global termination by terminating the
entire distributed system when all selectors in the user code have
been successfully terminated.

For a single HJDS program, each computing node is set up with
a configuration file which can be customized by the user to adjust
the number of computing nodes, and JVM processes per node, used
by the program. The master node sets the program executables on
all remote nodes and starts up a process on each node to initiate
distributed program execution. The global termination is initiated
by the master node and is performed in stages to detect when the
user program becomes quiescent.

The contributions of [8] include a) transparent creation of selec-
tors on remote nodes, and b) seamless message delivery system for
both local and remote nodes, while keeping the functional differ-
ences between local/remote communication transparent to the pro-
grammer.With the high-level abstraction and location transparency
of the programming model, the HJDS runtime library demonstrates
high programming productivity for distributed applications.

2.3 Wireless communication
With the IEEE 802.11 standard becoming one of the most successful
wireless protocols for accessing the Internet, Wi-Fi technology has
also been extended to accommodate P2P device connections beyond
the traditional approach of using Access Points (APs). Specifically,
the Wi-Fi Direct technology is developed by the Wi-Fi Alliance
to expand the use cases of Wi-Fi technology for device-to-device

DAMMP: A Distributed Actor Model for Mobile Platforms ManLang 2017, September 27–29, 2017, Prague, Czech Republic

communication [6]. It builds upon the IEEE 802.11 infrastructure
mode and uses devices as logical SoftAP (Software-enabled Access
Point) for connectivity, without relying on external AP support as
in ad-hoc networking. Device-to-device communication in a typical
Wi-Fi network has to be supported by the external APs. However, in
a Wi-Fi Direct P2P network, the logical role of AP can be specified
dynamically, and can exist on any client device. Devices with Wi-Fi
Direct capabilities can communicate by forming P2P groups.

The group formation process has several phases. Before group
establishment, devices are in a discovery phase, which is performed
by a traditional Wi-Fi scan. A device can either discover an existing
P2P Group, or some devices can discover each other. When a device
discovers an existing P2P group, it may choose to query the set of
current services on the group and join based on the information. A
device that did not discover any existing P2P group, or other devices
to form a group can autonomously create a group and become the
Group Owner (GO). When devices discover each other, they may
enter a negotiation phase to determine which device would be the
Group Owner (GO) and serve as a Soft-AP [15]. Once the GO role
is established, clients can choose to join the P2P group through the
discovery of the GO.

Compared with traditional device-to-device connectivity tech-
nologies such as Bluetooth and ZigBee [26, 36], with nominal ranges
from 10 meters to 100 meters, and transfer speed between 250 kbps
to 25 Mbps, Wi-Fi Direct, inherits all the capabilities from IEEE
802.11 standards, and claims to provide a nominal range up to 200
meters and transfer speed up to 250Mbps [19]. Power saving support
and extended QoS capabilities; Wi-Fi Direct can be considered one
of the most promising candidates for wide range device-to-device
communication, and suitable for our goal of distribution across
mobile devices.

Android 4.0 and later versions comply with the Wi-Fi Direct
certification program and allows applications to interact with other
devices without using an external network connection [3]. The
Android Wi-Fi Direct interface (WifiP2pManager) allows develop-
ers to discover, request and connect to peers, and provides listener
methods that detect the success or failure of connected/dropped
connections and newly discovered peers. The Android API does
not implement any particular GO negotiation algorithm, and each
client can only belong to one P2P group at a given time.

After the maturation of client-server based wireless communica-
tions, energy efficient and high bandwidth direct device-to-device
communication, will be the new challenge faced by mobile plat-
forms in creating more secure and more accessible distributed ap-
plications and systems. Since Wi-Fi Direct technology is not as
yet widely available, in this work, we also consider Wi-Fi Hotspot
(Soft AP) on Android as a proxy due to its commonly available
hardware support. The use of Wi-Fi direct can significantly reduce
the network level complexity that needs to be handled by the end-
user, such as discovering new devices in the network, connecting
these devices and even notifying the connected devices when any
particular device drops from the network.

3 TECHNICAL APPROACH
In this section, we discuss the technical contributions of this paper.
First, we describe the extensions made to the Distributed Selec-
tor model to support mobile platforms [Section 3.1]. Next, we de-
scribe how our approach can enable user-level adaptation based on
changes in system topologies and configurations [Section 3.2]. Then,
we discuss how our approach can enable resilient and adaptive
computation offloading with heterogeneous devices [Section 3.3].
Finally, we summarize how our approach can enable a unified dis-
tributed computing model across mobile devices and distributed
servers [Section 3.4].

3.1 Extension of Distributed Selector model for
mobile platforms

Our work extends the HJDS execution model [8] to mobile plat-
forms. There are several challenges that had to be addressed in this
extension including dealing with unpredictable periods of unavail-
ability for different devices, and ensuring that a reliable runtime
system can be implemented across mobile devices. Our mobile im-
plementation fully supports the lightweight location-transparent
actor creation and actor-based runtime control mechanisms de-
scribed in [8]. In this work, we limit a single physical device to host
exactly one place (the logical unit for a shared-memory runtime in-
stance that can host multiple actors). Our approach extends HJDS’s
non-resilient high-performance runtime into more decentralized
mobile platforms through the following innovations:

• We introduce a fully decoupled communication middle-
ware layer for the mobile platform,

• We can optionally expose and delegate some of the runtime
control to the application level, and, finally,

• In order to support the distributed actor runtime on volatile
mobile networks, we have replaced the automated boot-
strap and global termination feature in HJDS that assume
stable network connectivity by a new communication man-
ager that is more suitable for mobile computing.

The cluster-based implementation of HJDS assumes network
stability and low communication costs. However, those assumptions
usually do not hold on volatile mobile platforms such as the one
we are considering in this paper. Over-the-air data transmission is
a lot more expensive relative to that of wired connections, and the
volatile nature of mobile networks due to devices joining, leaving,
dropping out, going out of range or running out of power makes
the automated bootstrap and global termination features in HJDS to
be of limited use for the mobile platforms that we are considering.
In addition, automated bootstrap and global termination require a
monolithic application model that limits the expressibility of the
Actor model in many peer-to-peer applications. Instead, our mobile-
oriented approach encourages a decentralized programming pattern
that we further enhance by delegation of limited runtime control
to applications on single devices.

An overview of a single place (device) in the selector system
is shown in Figure 1. One may consider each device to be a local
selector system. A local selector system in a single place (or device)
consists of 1) a runtime system with a System Actor (SA), a Proxy
Actor (PA) and Mobile Communication manager, and, 2) a developer

ManLang 2017, September 27–29, 2017, Prague, Czech Republic A. Chatterjee, S. Milaković, B. Xue, Z. Budimlić, V. Sarkar

Figure 1: Overview of the distributed selector system. On each
hand-held device, we have a single selector system with the Mobile
Communication Manager of each device exposed to the entire dis-
tributed network.All communications to external handheld devices
are performed by the Mobile Communication Manager.

view with one or more user-defined selectors. As shown in Fig-
ure 1, the user-defined selectors can only communicate with each
other and the runtime system of the place that hosts the selectors.
All communications to other handheld devices (places) must be
managed by the Mobile Communication manager.

We introduce the IMobileCommunicationManager interface (see
Listing 1), fully decoupled from the HJDS runtime using a runtime-
userspace callback system, based on the Actor model. The IMobile-
CommunicationManager includes a system callback handle that is
invoked after any change in network status. Upon creation of a
selector system instance, the selector systemwill call start() to ini-
tiate the communication manager, and the communication manager
will call ISystemCallback.onConnectionReady once the device
is ready to join a network.
1 public interface IMobileCommunicationManager {

2 interface ISystemCallback {

3 void onConnectionReady(Place localNode);

4 void onMessage(Message message);

5 void onPlaceJoin(Place place);

6 void onPlaceLeft(Place place);

7 }

8 void start();

9 void stop();

10 boolean send(Place place , Message message);

11 void setSystemCallback(ISystemCallback callback);

12 }

Listing 1: The communication API for mobile platform.

When a connected device leaves the network, the communica-
tionmanager invokes ISystemCallback.onPlaceLeft() to notify
the selector system, which in turn will alert the application of a
network change via a system message. While there is a callback
available for any place joining the network, the selector system
can ignore network topology changes due to new devices joining
until it is present with a remote selector reference. In other words,
new devices joining the network does not affect the selector system
until an Actor message is exchanged. The onPlaceJoined callback
only gets invoked if the application desires to be notified of such
topological changes. On the other hand, a device leaving the net-
work can cause a known remote selector reference to be invalid
and is immediately reported to the application through the callback
system. We guarantee non-blocking data transmission in a selector
system instance by forcing the communication manager to run on
separate threads.

Communication between two handheld devices. Figure 2
shows a message-sending protocol for a general Ping-Pong applica-
tion using two devices (place). Let’s consider the first device (device
0) to be the Ping-Place and the other device (device 1) to be the
Pong-Place.

Figure 2: Ping-Pong message sending protocol using the communi-
cation manager.

In this scenario, the user-defined Ping-Selector wishes to create
a Pong-Selector on the Pong-Place. To that end, the Proxy Actor at

DAMMP: A Distributed Actor Model for Mobile Platforms ManLang 2017, September 27–29, 2017, Prague, Czech Republic

device 0 creates a remote handle for the Ping-Selector to communi-
cate with the Pong-Selector, and the Communication Manager at
device 0 communicates with the Communication Manager at device
1 to create a Pong-Selector at the Pong-Place. The Proxy Actor at
Pong-Place then creates the user-defined Pong-Selector. All further
ping-pong messages are handled by the Communication Manager
using the remote selector handle.

3.2 User-level adaptation based on changes in
System Topologies and Configurations

Past implementations of distributed actors and distributed selectors
targeted cloud-like distributed servers, and did not account for
the fact that devices can join and leave a mobile network. Due
to this volatile nature of mobile platforms, we have extended our
distributed implementation with a publish-subscribe model that
enables user-level control of adaptation to network changes by
application-level actors. As shown in Listing 2, applications can
subscribe to specific message types (including runtime-generated
alerts) through designated mailboxes.

1 @Subscription(topics = {

2 @Topic(messageClass = NodeJoined.class , mailbox = 0),

3 @Topic(messageClass = NodeLeft.class , mailbox = 0),

4 })

Listing 2: A selector class can subscribe to different alerts from
the runtime system.

Applications can choose to react to different categories of run-
time and communication events in different ways. By assigning
mailbox priorities, developers can implement application-specific
resilience models without changing the underlying actor-based
program semantics.

As an example, Figure 3 shows a dynamic join protocol for adding
new devices to a DAMMP applications. When a new device wishes
to connect and join the network of devices, it first connects to the
Group Owner (GO). Upon successful connection with the GO, the
GO sends information about all the other devices that are already
connected to the network. The new device can then connect to the
other devices in the network as needed.

Figure 3: Dynamic join protocol for new handheld devices.

As an example of adaptation, the application can designate dif-
ferent priority values to different system alerts, e.g., by choosing to
give higher priorities to topological changes for handling partial
failures, and thereby avoid waiting for work-related messages to
complete before topological changes are handled. The subscription
mechanism also allows the communication manager to communi-
cate directly with the application if a specific implementation calls
for user input/interaction. Finally, the communication manager
can send custom messages through the selector’s system callback
and have the messages delivered to any selector subscribed to the
custom message class.

Resilience. Our runtime supports a resilient master-worker
pattern by periodically backing up program snapshots of the mas-
ter selector (a selector instantiated locally without a parent) on
other nodes in the network. Upon a network change, selectors
can continue execution as normal as the runtime will buffer all
outgoing messages and restore a master copy once the network is
re-established. The runtime will halt selector message processing by
disabling any non-subscription mailbox once the out-going buffer
is full, to prevent any further outgoing application-level message
being generated, and alert the application through subscription
mailboxes. Upon network re-establishment, if a master selector
copy is present in the network, the runtime will restore master
selector processing; otherwise, the runtime notifies the application-
level and restarts with a fresh copy of the master selector.

3.3 Adaptive offloading across mobile devices
and servers

The master-worker pattern is a common building block for parallel
and distributed applications, and multiple master-worker patterns
can be composed hierarchically when there’s a danger of a single
master actor becoming a bottleneck.

Typically, the main computation in the master will generate
multiple sub-problems that can be delegated to multiple workers
for parallel processing, for example in divide-and-conquer parallel
algorithms. However, an application written using the DAMMP
framework can easily offload sub-problems to other devices. A
master-worker based paradigm should allow easy computation
offloading through creating workers on more powerful devices
(relative to smartphones), such as tablets, laptops and desktops
(which can play a “server” role relative to smaller mobile devices).

Our runtime library currently supports five types of message
classes, created at the library level (apart from the node joining
and node leaving system messages, discussed in Section 3.2) which
can be used by the user / runtime to automatically offload certain
computations based on a threshold. The message classes are as
follows:

• Battery Status Message: Battery low / Battery okay
• Charging Status Message: Device is connected: AC or

USB / Disconnected: AC or USB
• Battery LevelMessage: Battery percentage when battery

level changes
• Temperature Message: Average temperature in last ‘s’

seconds has changed by ‘d’ degrees in ◦C
• Wifi Signal Strength: Average Wi-Fi signal strength (1

to 10) in last ‘s’ seconds changed by ‘w’

ManLang 2017, September 27–29, 2017, Prague, Czech Republic A. Chatterjee, S. Milaković, B. Xue, Z. Budimlić, V. Sarkar

By subscribing to one or more of the above-mentioned message
classes, the user / runtime can receive relevant information about
the device and the network, and aid in the offloading of the partial
computation. Information about the offloading device, can also be
obtained by subscribing to the offloading device’s message classes.
All messages are sent to the Proxy Actor of that device. To mitigate
additional overhead due to offloading partial computation, we must
observe certain application / network conditions, such as:

• Network bandwidth: Using the Wi-Fi Signal Strength
messages, the user / runtime can get information about the
network and can decide to offload right away or wait for
better network bandwidth.

• Application: The degree to which an application can ben-
efit from offloading depends in part on how much com-
munication is needed between the mobile application and
the offloaded computation. In the ideal case, only two mes-
sages are required, one for offloading and one for the return
value.

• OffloadingDevice:Choosing the correct device to offload
computation on is also important in order to achieve per-
formance without over-burdening the offloading device.
When a new device is connected to the group, our runtime
notifies subscribing applications about the type of the de-
vice (phone / tablet / laptop / desktop) that joined the group.
Using the device-type information and by subscribing to
the Battery Level Message and the Temperature Message
classes of the connected devices, the user / runtime can
choose a suitable device for offloading the computation.

3.4 Unified distributed computing model for
mobile devices and distributed servers

Using the DAMMP runtime, application developers can tap into the
processing power of other devices (e.g., tablets, servers, etc.) by cre-
ating a network of heterogeneous devices. The DAMMP framework
extends the Actor and Selector programming models that have
built-in message-passing semantics, by allowing for natural imple-
mentations of distributed actor-based applications on networks of
heterogeneous devices. It is possible to deploy the same applica-
tion on both the cluster-based HJDS runtime, and our DAMMP
framework with a Wi-Fi based communication layer. Even with
mobile platforms getting faster everyday, there is a strong moti-
vation to enable them to offload computations on to local servers
(such as “fog servers” in [5]). For example, hand-held devices such
as mobile phones and tablets might be the only computing power
that is available within a group of people in some situations. Or, as
illustrated in Section 4.2.6, some mobile hand-held devices might
lack the sustained energy and computing power to complete a task,
and be motivated to use DAMMP to create a heterogeneous mobile
network which could include more powerful devices such as lap-
tops and tablets. Applications can readily harvest these computing
resources to aid application demands that exceed the capability
of on-device chips while also reducing battery consumption and
addressing thermal constraints at the same time.

4 EVALUATIONS
4.1 Experimental Methodology

4.1.1 Android Implementation. Our Android-based imple-
mentation of DAMMP currently supports two communication lay-
ers, one with standard Wi-Fi and the other with Wi-Fi Direct. We
are using the Android operating system as our research vehicle
because of its open source software stack and Linux kernel roots,
as well as the availability of the Android JVM — Android RunTime
(ART) [2], an efficient and low memory footprint virtual machine
that provides a high-level managed runtime that is well suited for
Actor implementations.

Our implementation was undertaken on Android 5.1.1 and com-
plies with available Wi-Fi and Wi-Fi Direct APIs at level 22. Under
theWi-Fi based communication layer, devices connect to each other
through an external hardware access point. Under the Wi-Fi Di-
rect based communication layer, one device acts as Group Owner
and broadcasts provided service(s), while nearby devices may join
through service discovery to act as Group Member(s). Due to cur-
rent limitations in the Wi-Fi Direct implementation for Android,
there is only one Group Owner per communication group. De-
velopers may also provide application and/or hardware specific
implementations of the IMobileCommunicationManager interface
discussed in Section 3.2.

4.1.2 Hardware Setup. Our tests platform includes five Nexus
5 devices, with a Quad-core 2260 MHz Krait 400 processor and
a Qualcomm Snapdragon 800 MSM8974 system chip, and three
Nexus 4 devices, with a Quad-core 1500 MHz Krait processor and a
Qualcomm Snapdragon S4 Pro APQ8064 system chip. We used a
2010 MacBook Pro, with a 2.66 GHz Intel Core i7 processor and 8
GB DDR3 memory, as the target for offloading computations from
the Nexus 4 and Nexus 5 devices.

4.2 Benchmarks
We provide experimental results and analysis for three sets of bench-
marks:

(1) Two distributed actor benchmarks that measure the scal-
ability of our distributed mobile platform (Sections 4.2.1
and 4.2.2)

(2) Two micro-benchmarks that measure message passing
throughput, and the impact of communication overhead
on application scalability, in different communication en-
vironments (Sections 4.2.3 and 4.2.4)

(3) A distributed actor benchmark that shows the usability of
our adaptive offloading model (Section 4.2.5)

(4) Two distributed actor benchmarks that measure the im-
pact of computation offloading on scalability and thermal
dissipation (Section 4.2.6)

Since these are standard actor benchmarks that do not needmultiple
benchmarks, they are all implemented as selectors with a single
mailbox.

The benchmark execution times exclude Android application
startup and termination times. To reduce variability due to sys-
tem and environmental factors, we minimize log output, disable

DAMMP: A Distributed Actor Model for Mobile Platforms ManLang 2017, September 27–29, 2017, Prague, Czech Republic

background processes, and utilize a temperature controlled test-
ing environment (a refrigerator freezer) for all results except those
presented in Section 4.2.6.

4.2.1 Pi Precision. The Pi precision benchmark [13] computes
the value of Pi to a specified precision using a digit extraction
algorithm. This benchmark uses a finite number of terms in the
following formula to compute an approximation to the value of π :

π =
∞∑
n=0

(4
8n + 1

−
2

8n + 4
−

1
8n + 5

−
1

8n + 6

) (1
16

)n
This benchmark uses a master-worker pattern with dynamic

work distribution, in which the master sends more work (if avail-
able) to a worker that has completed its previous work (and notified
the master accordingly by sending a reply with the result of the
previous work).

Figure 4 shows the execution time of calculating Pi to 15,000
decimal places, for an increasing number of devices. Each device
contains two worker actors, and the total amount of work remains
constant as the number of devices is increased (strong scaling).
These results were obtained using the Wi-Fi Soft AP based com-
munication layer, and only a Nexus 5 device (not a Nexus 4 device)
was used as the Soft AP for all configurations.

The chart in Figure 4 starts with a single Nexus 5 device running
the Pi precision approximation, and each data point shows the exe-
cution time after adding one more device. After five Nexus 5 devices
were added, we introduced three Nexus 4 devices incrementally for
each of the remaining data points. We can observe proportional
scaling with the first five Nexus 5 devices, with the scaling slowing
down with the addition of Nexus 4 devices.

0 1 2 3 4 5 6 7 8 9
Number of Devices

10

20

30

40

50

60

70

E
xe

cu
tio

n
Ti

m
e

(s
ec

s)

Five Nexus 5’s

Five Nexus 5’s and Three Nexus 4’s

Mean Execution Time

Figure 4: Pi Precision Computation: This figure shows the average
execution time (over 20 executions) for computing the value of Pi to
15, 000 decimal places. The x-axis shows the number of devices used
for the computation, and the y-axis shows the execution time. Each
device runs two worker actors, and one device also runs a master
actor. From one device to five devices the results are obtained using
Nexus 5’s, from six to eight devices, the additional devices are Nexus
4’s.

This is because Nexus 4 devices are only half as powerful as
Nexus 5 devices, adding modest increase in computing power, while
still increasing the communication traffic to the AP host device.
In spite of the limited computing capability of Nexus 4’s, due to
the dynamic nature of the generated work and the effective load
balancing technique implemented by the application, the total ex-
ecution time is still improved by adding slower Nexus 4’s to the
computation.

4.2.2 Cannon’s Algorithm. Dense matrix multiplication is
one of the most basic operations in scientific computations and is
often at the core of many image processing algorithms. Cannon’s
Algorithm is a memory-efficient distributed matrix multiplication
usually implemented on toroidal mesh interconnections [11]. It is
designed for execution on a virtual N ×N grid of processors, where
matrices A and B are mapped onto the processors in a block-based
fashion, with sub-blocks Ai j and Bi j mapped to processor pi j .

The algorithm executes in two phases. In the first phase, the sub-
blocks are aligned through an initial skew, where each sub-block
Ai j is shifted left by some number of positions along the row and
each sub-block Bi j is shifted up by some number of positions along
the column. Each processor, pi j receives blocks Ai, (j+i)modN and
B(i+j)modN , j . The second phase is a series of circular shifts and
computation of partial results. During each step, the sub-blocks
are shifted one processor up or left, each processor multiplies the
newly received sub-blocks and add the results to the sub-block Ci j ,
maintained at processor pi j .

The loose coupling among processors and the message-passing
nature of the algorithm makes it a natural candidate for an actor-
based implementation. Our implementation of the Cannon’s algo-
rithm uses one selector to represent one independent processor. The
scaling experiment is done on one to eight phones, with a matrix
size of 1680 × 1680. As before, the first five devices are Nexus 5s,
with three Nexus 4 devices added after that. To implement a N ×N
selector grid, each device hosts the same number of selectors as the
number of devices in the network (e.g., for a three device network,
each device hosts three actors). These results were obtained using
the Wi-Fi Soft AP based communication layer, and only a Nexus
5 device (not a Nexus 4 device) was used as the Soft AP for all
configurations.

Figure 5 shows the experimental results for a matrix size of
1680 × 1680 on one to eight mobile devices. For each experiment
with N devices, each device hosts N actors to make an N × N
processor grid in the original Cannon’s algorithm. For one device,
there will be a single processor, making the matrix multiplication
serial in effect.

We can observe that the two device experiment achieves a 4×
speedup, and the four device experiment achieves a 8× speedup
compared to the serial execution. This is due to the fact that multi-
ple actors on the same device also utilize intra-device multi-core
computing power. As more devices are added to the network the
performance improvement diminishes, due to the increased syn-
chronization from the quadratically increasing number of proces-
sors. Further optimizations can be made with a more generalized
matrix multiplication algorithm.

4.2.3 Trapezoidal Integration. The Trapezoidal benchmark
[10, 13] approximates the integral function over an interval [a,b]

ManLang 2017, September 27–29, 2017, Prague, Czech Republic A. Chatterjee, S. Milaković, B. Xue, Z. Budimlić, V. Sarkar

0 1 2 3 4 5 6 7 8 9
Number of Devices

0

200

400

600

800

1000

1200

E
xe

cu
tio

n
Ti

m
e

(s
ec

s)

Five Nexus 5’s

Five Nexus 5’s and Three Nexus 4’s

Mean Execution Time

Figure 5: Cannon’s algorithm: This figure shows the average time
(over 20 executions) for multiplying two matrices of size = 1680 ×
1680. For each experimentwithN devices, each device hostsN actors
(processors). The first five devices are Nexus 5s, and three Nexus 4
devices are added thereafter, as in Figure 4.

by using the trapezoidal approximation [4, 31]. We approximate
the integral of the function:

f (x) =
1

x + 1
×

√
1 + e

√
2x × sin (x3 − 1)

The parallelism is achieved by dividing up the integral approxima-
tion into a fixed number of intervals, by using a master-worker
pattern. The original algorithm is obtained from [8], in which each
worker is remotely created by the master actor, work is sent to each
worker and the completed results are returned to the master.

We modified this implementation to use a request-reply model,
where work is sent to workers piece by piece, and upon getting
a result, the master will generate another piece of work and send
to the replying worker when work is available. However, unlike
the dynamic workload distribution in Section 4.2.1, the workload
distribution in this benchmark remains fixed. The reason for a fixed
distribution is becausewe use this benchmark to evaluate the impact
of number of messages on performance, without considering the
impact of dynamic load balancing. Since the workload is statically
distributed, this benchmark is an excellent candidate for examining
the tradeoff between the number of messages and workload size
in each message. Note that each interval results in two messages
exchanged between the master and a worker, a work message sent
from the master to the worker and a reply message sent from the
worker to the master.

In our experiments, we use a static network of 4 Nexus 5 devices,
and increase the total number of work messages by powers of two,
starting with 1 work message (serial execution). Figure 6 shows the
number of work messages on the x-axis on a log scale, and shows
the corresponding execution time in its y-axis.

We can observe that for a constant workload, the execution time
becomes consistent once all four devices are involved (4 or more
work messages are sent). For the results shown in Figure 6 (obtained
for 108 intervals), the communication overhead does not affect the
4× speedup until the point when 104 to 105 work messages are

100 101 102 103 104 105

Number of Messages Sent

10

20

30

40

50

60

70

E
xe

cu
tio

n
Ti

m
e

(s
ec

s)

Serial execution

Four work messages

Mean Execution Time

Figure 6: Trapezoidal Approximation: This figure shows the aver-
age time (over 20 executions) with 4 Nexus 5 devices to compute an
approximation with 100, 000, 000 intervals for the integration. The
x-axis (in log scale) shows the number of workmessages sent by the
master toworkers, and the y-axis shows the average times. The total
work remains the same for all experiments. For each workmessage,
a reply message is sent back to the master with result.

sent. This benchmark demonstrates the robustness of our system to
effectively overlap communication latency with message process-
ing, and shows that ideal parallelism can be achieved even with a
relatively large number of communication messages.

4.2.4 Ping-Pong Microbenchmark. The Ping Pong micro-
benchmark involves two actors: a Ping actor sends a message to a
Pong actor, which sends a message back in reply. The benchmark
tests the message passing throughput among multiple devices in
a mobile distributed environment. The original benchmark was
obtained from [13] and implemented as a DAMMP application for
this paper.

For the purpose of evaluating message-passing throughput and
communication overhead, we conducted the experiment on four
different configurations, each with two devices, where one device
hosts a single ping actor, and another hosts a pong actor. (The four
cases relate to whether the Ping and Pong actors are on Nexus 4
vs. Nexus 5 devices.) For this microbenchmark, we performed our
experiment using both Wi-Fi AP and Wi-Fi Direct communication
layers so as to compare their relative performance.

Table 1 shows the round trip delay time for a single pair of
ping-pong messages. To obtain a better estimate of the underlying
message-passing latencies, we measured the round-trip delays by
instrumenting the Communication Manager supporting the Ping
Actor, so as to exclude delays due to processing other messages at
the Ping Actor level. From these numbers, we see that the round
trip latencies are consistently smaller for Wi-Fi AP relative to Wi-Fi
Direct based communications.

Finally, we performed throughput measurements by using a
sliding window of 5,000 messages. The throughput measurements
are taken with multiple configurations with our test devices with
Wi-Fi based based communication layers. The results are shown
in Table 2.

DAMMP: A Distributed Actor Model for Mobile Platforms ManLang 2017, September 27–29, 2017, Prague, Czech Republic

No. of Devices Avg. Msg Round-trip Time (ms)
Nexus 5 Nexus 4 Wi-Fi AP Wi-Fi Direct

2 0 583 7,144
0 2 403 1,696

1(H) 1 2,746 4,249
1 1(H) 105 892

Table 1: Average round trip latency for a single pair of ping-pong
messages. The measurement is taken as the time between a ping
message sent by the Communication Manager for the Ping actor
and its corresponding pong message (marked by the same message
ID) is received back in the Communication Manager. The average
was performed over 250 round trip message pairs. The (H) suffix
identifies which device acts as the Soft AP (host device) and imple-
ments the Ping actor.

No. of Devices Wi-Fi AP
Throughput (msg/sec)

Nexus 5 Nexus 4 Arith. Mean Best Worst
2 0 4898.745 5202.433 4640.597
0 2 3239.891 3382.106 3037.053
1(H) 1 3279.514 3500.460 3118.071
1 1(H) 3680.513 3827.222 3550.441

Table 2: Wi-Fi AP throughput: this benchmark tests the message
throughput in distributed Android applications with Wi-Fi AP
based communication layer. The ping actor sends a total of 50, 000
messages with a sliding window of 5, 000 messages and terminates
after it receives the 50, 000 corresponding pong messages. Through-
put is calculated by dividing the total number of messages sent
(100, 000) by the benchmark execution time.

In theWi-Fi based environment (see Table 2, rows 1 and 2), where
the ping actor acts as a Soft AP host and devices connect to each
other through direct TCP/IP links, the message throughput remains
consistent over networks with multiple homogenous devices. The
Nexus 5 message throughput is expectedly 2× better than Nexus 4
given its more powerful SoC. However, in a heterogeneous setup
(see Table 2, rows 3 and 4) where one model acts as the Soft AP
and hosts a ping actor and the other device hosts a pong actor, we
observe some discrepancies. Even with less powerful hardware, the
Nexus 4 device exhibits a better throughput when acting as a Soft
AP host.

4.2.5 Computation offloading. To illustrate the usability of
our adaptive offloading model and how it can benefit the applica-
tion performance, we provide an experimental evaluation using a
two player strategy board game, Othello. We evaluated this game
on a Nexus 5 mobile device with a MacBook Pro laptop available
for computation offloading.

Othello. A two player (Player 1 and Player 2) strategy board
game, played on a 8 × 8 uncheckered board. Each player has a
designated color or symbol 1 for discs placed on the board. For
example, lets say that Player 1 is assigned the symbol ‘X’ and Player
2 is assigned the symbol ‘O’. Each player takes a turn by placing

1We will use the terms, “color” and “symbol” interchangeably in this description

an ‘X’ or ‘O’ on the board based on it’s assigned symbol. During
the game, any discs of the opponent player’s color which are in
a straight line, and bounded by the disc just placed on the board
and another colored disc of the current player, are switched to the
current player’s color. The objective of the game is for a majority of
the discs to display your color when the last playable empty square
is filled [34]. For our evaluation, we mimic one player as a human
and the other player as an AI algorithm. The AI can look ahead
upto six steps to decide it’s next move. Computing all the board
combinations with a look ahead of six can be very-time consuming
on a mobile device.

6 5 4 3 2
Sequential Threshold

0

50

100

150

200

250

300

350

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Nexus 5
Nexus 5 and MacBook

Figure 7: Execution time of theAI to find the bestmovewith a looka-
head depth of six. Evaluations have been performed on without of-
floading on a Nexus 5, and with offloading to a MacBook, while the
game was being played on the Nexus 5. Lower is better.

Figure 7 shows the execution time for the Othello game, where
the y-axis shows the execution time in seconds and the x-axis is
the sequential threshold for the lookahead computation. Since each
move is processed in parallel in a recursive call, there can be a lot
of overhead incurred in the creation of and execution of leaf-level
fine-grained tasks. To optimize this algorithm, we introduce a se-
quential threshold, and upon reaching that threshold all moves
will be processed sequentially. We start with threshold set to six,
hence all six recursive calls for the look ahead will be performed
sequentially. The blue bar denotes the execution time of the AI,
when both players are running on the Nexus 5 and the green bar
denotes the execution time (calculated on the phone) of the AI
computation, after the completion of the offloaded computation
to the MacBook with the same lookahead. In this evaluation, the
offloading has been done based on the sequential threshold. We
observe a significant speedup due to offloading of around 7× - 10×
with threshold values ranging from six to four. Smaller threshold
values of two and three do not show an improvement due to of-
floading because the offloading overheads dominate any potential
benefits in those cases.

4.2.6 Thermal effect of adaptive offloading. Weperformed
two experiments with: a) the trapezoidal benchmark (Section 4.2.3),
and, b) the Pi Precision benchmark (Section 4.2.1), without tempera-
ture control (i.e., without placing the devices in a freezer) in a more

ManLang 2017, September 27–29, 2017, Prague, Czech Republic A. Chatterjee, S. Milaković, B. Xue, Z. Budimlić, V. Sarkar

realistic usage scenario for mobile hand held devices, to show the
impact of thermal dissipation on the application performance and
the device.

Trapezoidal Benchmark. For the trapezoidal benchmark, we
used the same implementation as in Section 4.2.3 to calculate the
area of the integral function with 100, 000, 000 intervals for the
integration.

Figure 8 shows the effect of running the benchmark on one
Nexus 5. The y-axis shows the throughput (calculated for every
32768 points per sec) and the mean temperature (calculated using
11 on-device sensors [28]) of the device. The shared x-axis shows
the execution time for the completion of the benchmark.

0 100 200 300 400 500 600 700 800
Execution time (secs)

30

35

40

45

50

55

60

65

70

T
hr

ou
gh

pu
t

30

35

40

45

50

55

60

65

70

Te
m

pe
ra

tu
re

(◦
C

)
Throughput
Temperature

Figure 8: Trapezoidal approximation: Computing the area of an in-
tegral function with 100, 000, 000 intervals for the integration on a
single Nexus 5 device.

One must note, that the throughput of the application constantly
drops when the device reaches approximately 60◦C as the operat-
ing system on Nexus 5 downclocks the processor to prevent the
device from overheating. Since the compute intensive application
continues running on the phone, the temperature holds at 60◦C but
the throughput keeps dropping.

Figure 9 shows the effect or running the same trapezoidal ap-
proximation benchmark with the same configuration, but using one
Nexus 5 and the MacBook Pro for offloading. We used our adaptive
offloading model to offload the entire computation automatically
to a powerful device (MacBook Pro in our case), when the tempera-
ture reaches 60◦C . We used the temperature message to obtain the
temperature of the current device and all other devices connected
to our ad-hoc network, and offloaded the computation (usingWi-Fi)
when it reached the user-defined threshold.

One must note, that in this case, the throughput increases after
we offload the computation at 55◦C . All measurements are per-
formed on the Nexus 5 device. It is also important to note that
as the computation proceeds on the offloaded device, the Nexus 5
device reaches the normal temperature threshold (40◦C − 50◦C).
We observe almost a 5× speedup on offloading the computation to

0 20 40 60 80 100 120 140 160
Execution time (secs)

50

100

150

200

250

300

350

400

T
hr

ou
gh

pu
t

30

35

40

45

50

55

60

65

70

Te
m

pe
ra

tu
re

(◦
C

)

Throughput
Temperature

Figure 9: Trapezoidal approximation: Computing the area of the in-
tegral function with 100, 000, 000 intervals for the integration on a
Nexus 5 device. Computation is automatically offloaded to a Mac-
Book Pro when the temperature on the Nexus 5 reaches 60◦C , using
our adaptive offload model.

the MacBook Pro (even though the execution time of the applica-
tion includes the network overhead for offloading the computation).

Pi Precision Benchmark. The Pi precision benchmark com-
putes an approximation of the value of Pi to a specified precision
using a digit extraction algorithm as explained in Section 4.2.1.

Table 3 shows the thermal difference on the master device for
five iterations of the Pi precision benchmark, with the value of Pi
calculated to 15, 000 decimal points. The total execution time for
five iterations are recorded and the temperature difference shown
in the table. We use a total of five Nexus 5 and three Nexus 4 device
which are fully charged and at room temperature at the beginning
of each experiment. The temperature data are taken at the begin
and end of each experiment on the device that hosts the Soft AP and
master actor, on the 11 on-chip thermal sensors in the devices. The
arithmetic mean is calculated by the difference between average of
11 sensors at beginning and end of the experiment, the maximum
and minimum temperature difference are calculated with individual
sensor data [28].

We can observe the temperature increase goes down for the
host device, as more devices are added to the network for work
offloading, showing that offloading across multiple devices reduces
the thermal impact of compute-intensive applications.

As discussed in [35], the thermal behavior of the mobile SoC
demonstrates complex behavior affected by both the application
processor and the battery. The power consumption on mobile de-
vices, can also be heavily impacted by thermal dissipation [25].
As multiple scheduling and power management techniques are
developed with the thermal limit in consideration, past work has
concentrated on thermal dissipation control through software based
task scheduling [7], and architecture based improvements [16]. Our
experiments show a new possibility for thermal-aware applications
by offloading computationally intensive tasks to nearby devices
with a small communication cost.

DAMMP: A Distributed Actor Model for Mobile Platforms ManLang 2017, September 27–29, 2017, Prague, Czech Republic

Nexus 5 Nexus 4 Total
Exec. Time
on Host (sec)

Temperature on
the host device (°C)
Arith.
Mean Max Min

1 0 448.259 16.82 – –
2 0 253.818 13.205 22.18 12.91
3 0 163.376 15.850 22.27 13.91
4 0 124.659 16.113 19.73 13.73
5 0 104.100 16.144 20.64 14.73
5 1 91.793 14.940 19.64 12.00
5 2 88.566 13.817 19.45 10.27
5 3 75.202 12.906 15.00 10.45

Table 3: Pi Precision benchmark under a realistic usage scenario.
Each experiment is executed with 5 iterations and total execution
time is recorded on the Soft AP host device (Nexus 5).

5 RELATEDWORK
Ever since its inception, the logical isolation, and asynchrony in-
herent in the actor model has made it an attractive candidate for
distributed computing for decades, with more recent explorations
of the actor model for distributed mobile platforms. We briefly sum-
marize some related work on using the actor model for distributed
mobile computing in recent years.

AmbientTalk. The language is an actor-based programming
language designed specifically for mobile ad hoc networks [29,
30] It features λ calculus based functional elements with local
and remote actor-based reductions, and object-oriented elements
with both parameter pass-by-value (isolated objects) and pass-by-
reference “regular” objects) semantics. It utilizes the Actor model
for its concurrency and distributed computation. Actors in the
AmbientTalk VM are used as containers to hold a set of regular
objects, rather than regular “active objects”. The virtual machine
hostsmultiple actors that can execute concurrently, while each actor
itself represents a communicating event loop that uses the run-to-
completion semantics for method invocation on its host objects.
While the AmbientTalk model has similarities with the traditional
actor model, one difference is that it can break the pure message-
passing model through the use of far references introduced in the E
language [22].

The AmbientTalk language has both cluster-based and early
Android implementations that focus on high-level abstractions for
distributed programming with both message passing mechanisms
and remote accesses through far references. In our work, on the
other hand, the focus is on supporting a pure actor/selector model at
the high-level, with distributed mechanisms supported in configu-
rations that are decoupled from the programming application logic.
Further, our model does not limit ourselves to mobile ad-hoc net-
works since it can also support communications within and across
mobile devices and server devices with a single model. Finally, to
the best of our knowledge, AmbientTalk’s implementation targets
an outdated version of Android (prior to Android 4.0) that is no
longer supported on current mobile devices, thereby preventing
us from performing experimental comparisons with Ambient Talk.

ActorDroid. This project is based on SCALA actors and focuses
on a distributed application framework which follows the stream
processing paradigm inherited from SCALA [23]. The framework’s
basic units are services, each independently a SCALA actor that
runs in its execution environment. It uses a publish-subscribe model
for service discovery and join, while each mobile device can host
one-to-many services.

The ActorDroid work described an implementation based on
external Wi-Fi Access Points with dynamic network maintained by
a Master-Worker scheme. We also use a decentralized structure in
our runtime to enable support for dynamic topologies. However,
unlike ActorDroid, the hardware dependent communication layer
is completely decoupled from the application-level actor communi-
cation in our approach. Instead of relying on a pre-defined strategy
for dynamic topological changes, we expose a minimal amount of
information to application-level actors that can provide the user-
level application with the ability to adapt to runtime events. As
with Ambient Talk, to the best of our knowledge, ActorDroid’s
implementation targets an outdated version of Android (prior to
Android 4.0) that is no longer supported on current mobile devices,
thereby preventing us from performing experimental comparisons
with ActorDroid.

ActorNet. This project is an actor-based mobile agent platform
for wireless sensor networks (WSNs) [18]. This project aims to
create a high-level abstraction for concurrent and asynchronous
programming for WSNs to adapt to the limited hardware resources
available on mobile sensors. The ActorNet project implements a
Scheme interpreter that is assumed to be better suited to the lim-
ited processing power and memory available on wireless sensors
than stack based virtual machines, and introduces new language
primitives that enable actor-based message passing, queries, and
access to program continuation.

The ActorNet project also focuses on higher level language
abstractions to aid parallel and asynchronous programming on
mobile networks. Compared to the emphasis on optimization for
limited hardware specifically for wireless sensors, our work focuses
more on adaptability on a wider range of mobile devices by creating
a more general distributed runtime system. Our design goes beyond
sensor networks and supports rich combinations of mobile devices
and cluster-based services. Compared to ActorNet, our design is
better suited for use with more powerful consumer mobile devices
such as high-end tablets and smartphones. Finally, since ActorNet
provides an implementation specific to wireless sensors, we were
unable to perform experimental comparison with ActorNet.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we designed and implemented multiple extensions
to the Java-based HJDS distributed-selector runtime for servers,
so as to obtain the DAMMP library for distributed Android de-
vices. Our work focuses on decentralized distributed applications
using the actor / selector model by supporting a highly decou-
pled and customizable communication middleware, and support for
application-level runtime event handling. We provide a hierarchical,
heterogeneous concurrency and distribution model by extending
the actor model from HJDS to support mobile devices. We also

ManLang 2017, September 27–29, 2017, Prague, Czech Republic A. Chatterjee, S. Milaković, B. Xue, Z. Budimlić, V. Sarkar

introduced a task offloading pattern based on the selector model
and the Master-Worker paradigm.

We demonstrated the scalability of computationally intensive
applications on distributed mobile platforms, examined the mes-
sage passing overheads with two promising off-the-grid wireless
communication technologies, and showed decreased thermal dissi-
pation from offloading, while maintaining scalability for compute-
intensive applicatons in a realistic ad-hoc mobile network environ-
ment.

For future work, with the empirical results in mind, we plan to
explore real-world heuristics in thermal-aware dynamic distribu-
tion on heterogeneous mobile networks that involve devices with
various computing powers, including wireless sensors, tablets, and
laptops. We also plan to explore dynamic load-balancing across
devices by having the runtime automatically migrate Actors when
needed for various reasons (maximizing overall performance, max-
imizing combined system battery life, etc.).

REFERENCES
[1] Gul Agha. 1986. Actors: a model of concurrent computation in distributed systems.

MIT Press, Cambridge, MA, USA.
[2] Android Developers. 2014. ART and DALVIK. (2014). https://source.android.

com/devices/tech/dalvik/
[3] Android Developers. 2017-01-24. Wi-Fi Peer-to-Peer. (2017-01-24). https://

developer.android.com/guide/topics/connectivity/wifip2p.html
[4] John Ayres and Susan Eisenbach. 2009. Stage: Python with Actors. In Proceedings

of IWMSE ’09. IEEE Computer Society, Washington, DC, USA, 25–32.
[5] Arani Bhattacharya and Pradipta De. 2017. A survey of adaptation techniques in

computation offloading. Journal of Network and Computer Applications 78 (2017),
97–115.

[6] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano. 2013. Device-to-device
communications withWi-Fi Direct: overview and experimentation. IEEEWireless
Communications 20, 3 (June 2013), 96–104. DOI:https://doi.org/10.1109/MWC.
2013.6549288

[7] Thidapat Chantem, Robert P. Dick, and X. Sharon Hu. 2008. Temperature-aware
Scheduling and Assignment for Hard Real-time Applications on MPSoCs. In
Proceedings of the Conference on Design, Automation and Test in Europe (DATE
’08). ACM, New York, NY, USA, 288–293. DOI:https://doi.org/10.1145/1403375.
1403446

[8] Arghya Chatterjee, Branko Gvoka, Bing Xue, Zoran Budimlic, Shams Imam, and
Vivek Sarkar. 2016. A Distributed Selectors Runtime System for Java Applications.
In Proceedings of the 13th International Conference on Principles and Practices of
Programming on the Java Platform: Virtual Machines, Languages, and Tools (PPPJ
’16). ACM, New York, NY, USA, Article 3, 11 pages. DOI:https://doi.org/10.1145/
2972206.2972215

[9] Charalampos Doukas and Ilias Maglogiannis. 2010. A fast mobile face recognition
system for android OS based on Eigenfaces decomposition. In IFIP International
Conference on Artificial Intelligence Applications and Innovations. Springer, 295–
302.

[10] EPCC. 2001. The Java Grande Forum Multi-threaded Benchmarks.
(2001). http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/
threads/s1contents.html

[11] H. Gupta and P. Sadayappan. 1994. Communication Efficient Matrix-Multiplication
on Hypercubes. Technical Report 1994-25. Stanford Infolab. http://ilpubs.stanford.
edu:8090/59/

[12] Shams Imam and Vivek Sarkar. 2014. Habanero-Java Library: A Java 8 Framework
for Multicore Programming. In Proceedings of the 2014 International Conference
on Principles and Practices of Programming on the Java Platform: Virtual Machines,
Languages, and Tools (PPPJ ’14). ACM, New York, NY, USA, 75–86. DOI:https:
//doi.org/10.1145/2647508.2647514

[13] Shams Imam and Vivek Sarkar. 2014. Savina - An Actor Benchmark Suite. In
Proceedings of the 4th International Workshop on Programming based on Actors,
Agents, and Decentralized Control (AGERE! 2014).

[14] Shams M. Imam and Vivek Sarkar. 2014. Selectors: Actors with Multiple Guarded
Mailboxes. In Proceedings of the 4th International Workshop on Programming
Based on Actors Agents and Decentralized Control (AGERE! ’14). ACM, New York,
NY, USA, 1–14. DOI:https://doi.org/10.1145/2687357.2687360

[15] K. Jahed, O. Farhat, G. Al-Jurdi, and S. Sharafeddine. 2016. Optimized group
owner selection in WiFi direct networks. In 2016 24th International Conference

on Software, Telecommunications and Computer Networks (SoftCOM). 1–5. DOI:
https://doi.org/10.1109/SOFTCOM.2016.7772169

[16] O. Khan and S. Kundu. 2009. Hardware/software co-design architecture for
thermal management of chip multiprocessors. In 2009 Design, Automation Test in
Europe Conference Exhibition. 952–957. DOI:https://doi.org/10.1109/DATE.2009.
5090802

[17] Mikkel Baun Kjærgaard, Jakob Langdal, Torben Godsk, and Thomas Toftkjær.
2009. EnTracked: Energy-efficient Robust Position Tracking for Mobile Devices.
In Proceedings of the 7th International Conference on Mobile Systems, Applications,
and Services (MobiSys ’09). ACM, New York, NY, USA, 221–234. DOI:https:
//doi.org/10.1145/1555816.1555839

[18] YoungMin Kwon, Sameer Sundresh, Kirill Mechitov, and Gul Agha. 2006. Ac-
torNet: An Actor Platform for Wireless Sensor Networks. In Proceedings of
the Fifth International Joint Conference on Autonomous Agents and Multia-
gent Systems (AAMAS ’06). ACM, New York, NY, USA, 1297–1300. DOI:https:
//doi.org/10.1145/1160633.1160871

[19] J. S. Lee, Y. W. Su, and C. C. Shen. 2007. A Comparative Study of Wireless
Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In IECON 2007 - 33rd Annual
Conference of the IEEE Industrial Electronics Society. 46–51. DOI:https://doi.org/
10.1109/IECON.2007.4460126

[20] C. Lindemann and O. P. Waldhorst. 2002. A distributed search service for peer-
to-peer file sharing in mobile applications. In Proceedings. Second International
Conference on Peer-to-Peer Computing,. 73–80. DOI:https://doi.org/10.1109/PTP.
2002.1046315

[21] Richard K. Lomotey, Yiding Chai, Ashik K. Ahmed, and Ralph Deters. 2013.
Distributed Mobile Application for Crop Farmers. In Proceedings of the Fifth
International Conference on Management of Emergent Digital EcoSystems (MEDES
’13). ACM, New York, NY, USA, 135–139. DOI:https://doi.org/10.1145/2536146.
2536174

[22] Mark S. Miller, E. Dean Tribble, and Jonathan Shapiro. 2005. Concurrency Among
Strangers. Springer Berlin Heidelberg, Berlin, Heidelberg, 195–229. DOI:https:
//doi.org/10.1007/11580850_12

[23] Pierre-André Mudry and Romain Cherix. 2012. ActorDroid - A distributed
computing framework for mobile devices based on SCALA actors. ScalaDays
(2012).

[24] Abdul Mutholib, Teddy Surya Gunawan, and Mira Kartiwi. 2012. Design and
implementation of automatic number plate recognition on android platform. In
Computer and Communication Engineering (ICCCE), 2012 International Conference
on. IEEE, 540–543.

[25] Umit Y. Ogras, Raid Z. Ayoub, Michael Kishinevsky, and David Kadjo. 2013.
Managing Mobile Platform Power. In Proceedings of the International Conference
on Computer-Aided Design (ICCAD ’13). IEEE Press, Piscataway, NJ, USA, 161–162.
http://dl.acm.org/citation.cfm?id=2561828.2561861

[26] C Muthu Ramya, M Shanmugaraj, and R Prabakaran. 2011. Study on ZigBee
technology. In Electronics Computer Technology (ICECT), 2011 3rd International
Conference on, Vol. 6. IEEE, 297–301.

[27] Carlo Ratti, Dennis Frenchman, Riccardo Maria Pulselli, and Sarah Williams.
2006. Mobile landscapes: using location data from cell phones for urban analysis.
Environment and Planning B: Planning and Design 33, 5 (2006), 727–748.

[28] Sujith Thomas, Zhang Rui. 2014. Generic Thermal Sysfs driver How To. (2014).
https://www.kernel.org/doc/Documentation/thermal/sysfs-api.txt

[29] Tom Van, Cutsem Christophe, Scholliers Dries Harnie, and Wolfgang De Meuter.
An Operational Semantics of Event Loop Concurrency in AmbientTalk. Technical
Report.

[30] Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers, Andoni Lombide
Carreton, Dries Harnie, Kevin Pinte, and Wolfgang De Meuter. 2014. Ambi-
entTalk: programming responsive mobile peer-to-peer applications with actors.
Computer Languages, Systems & Structures 40, 3 (2014), 112–136.

[31] Carlos Varela and Gul Agha. 2001. Programming Dynamically Reconfigurable
Open Systems with SALSA. ACM SIGPLAN Notices 36, 12 (2001), 20–34.

[32] Ming-Heng Wang Ph D and others. 2012. Feasibility of using cellular telephone
data to determine the truckshed of intermodal facilities. (2012).

[33] Sarah E Wiehe, Aaron E Carroll, Gilbert C Liu, Kelly L Haberkorn, Shawn C
Hoch, Jeffery S Wilson, and JDennis Fortenberry. 2008. Using GPS-enabled cell
phones to track the travel patterns of adolescents. International journal of health
geographics 7, 1 (2008), 22.

[34] Wikipedia. June 2017. Othello/Reversi. (June 2017). https://en.wikipedia.org/
wiki/Reversi

[35] Qing Xie, Jaemin Kim, Yanzhi Wang, Donghwa Shin, Naehyuck Chang, and
Massoud Pedram. 2013. Dynamic Thermal Management in Mobile Devices
Considering the Thermal Coupling Between Battery and Application Processor.
In Proceedings of the International Conference on Computer-Aided Design (ICCAD
’13). IEEE Press, Piscataway, NJ, USA, 242–247. http://dl.acm.org/citation.cfm?
id=2561828.2561877

[36] Li Zheng. 2006. ZigBee wireless sensor network in industrial applications. In
SICE-ICASE, 2006. International joint conference. IEEE, 1067–1070.

https://source.android.com/devices/tech/dalvik/
https://source.android.com/devices/tech/dalvik/
https://developer.android.com/guide/topics/connectivity/wifip2p.html
https://developer.android.com/guide/topics/connectivity/wifip2p.html
https://doi.org/10.1109/MWC.2013.6549288
https://doi.org/10.1109/MWC.2013.6549288
https://doi.org/10.1145/1403375.1403446
https://doi.org/10.1145/1403375.1403446
https://doi.org/10.1145/2972206.2972215
https://doi.org/10.1145/2972206.2972215
http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/threads/s1contents.html
http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/threads/s1contents.html
http://ilpubs.stanford.edu:8090/59/
http://ilpubs.stanford.edu:8090/59/
https://doi.org/10.1145/2647508.2647514
https://doi.org/10.1145/2647508.2647514
https://doi.org/10.1145/2687357.2687360
https://doi.org/10.1109/SOFTCOM.2016.7772169
https://doi.org/10.1109/DATE.2009.5090802
https://doi.org/10.1109/DATE.2009.5090802
https://doi.org/10.1145/1555816.1555839
https://doi.org/10.1145/1555816.1555839
https://doi.org/10.1145/1160633.1160871
https://doi.org/10.1145/1160633.1160871
https://doi.org/10.1109/IECON.2007.4460126
https://doi.org/10.1109/IECON.2007.4460126
https://doi.org/10.1109/PTP.2002.1046315
https://doi.org/10.1109/PTP.2002.1046315
https://doi.org/10.1145/2536146.2536174
https://doi.org/10.1145/2536146.2536174
https://doi.org/10.1007/11580850_12
https://doi.org/10.1007/11580850_12
http://dl.acm.org/citation.cfm?id=2561828.2561861
https://www.kernel.org/doc/Documentation/thermal/sysfs-api.txt
https://en.wikipedia.org/wiki/Reversi
https://en.wikipedia.org/wiki/Reversi
http://dl.acm.org/citation.cfm?id=2561828.2561877
http://dl.acm.org/citation.cfm?id=2561828.2561877

	Abstract
	1 Introduction
	2 Background
	2.1 Selector Model
	2.2 Distributed Selector Model
	2.3 Wireless communication

	3 Technical Approach
	3.1 Extension of Distributed Selector model for mobile platforms
	3.2 User-level adaptation based on changes in System Topologies and Configurations
	3.3 Adaptive offloading across mobile devices and servers
	3.4 Unified distributed computing model for mobile devices and distributed servers

	4 Evaluations
	4.1 Experimental Methodology
	4.1.1 Android Implementation
	4.1.2 Hardware Setup

	4.2 Benchmarks
	4.2.1 Pi Precision
	4.2.2 Cannon's Algorithm
	4.2.3 Trapezoidal Integration
	4.2.4 Ping-Pong Microbenchmark
	4.2.5 Computation offloading
	4.2.6 Thermal effect of adaptive offloading

	5 Related Work
	6 Conclusions and Future Work
	References

