
Fine-grained parallelism in probabilistic parsing
with Habanero Java∗

Matthew Francis-Landau∗, Bing Xue†, Jason Eisner∗ and Vivek Sarkar†
Johns Hopkins University Rice University
{mfl,jason}@cs.jhu.edu∗ {bx3,vsarkar}@rice.edu†

Abstract—Structured prediction algorithms—used when ap-
plying machine learning to tasks like natural language parsing
and image understanding—present some opportunities for fine-
grained parallelism, but also have problem-specific serial depen-
dencies. Most implementations exploit only simple opportunities
such as parallel BLAS, or embarrassing parallelism over input
examples. In this work we explore an orthogonal direction: using
the fact that these algorithms can be described as specialized
forward-chaining theorem provers [1], [2], and implementing
fine-grained parallelization of the forward-chaining mechanism.
We study context-free parsing as a simple canonical example, but
the approach is more general.

I. INTRODUCTION

Structured prediction algorithms in machine learning often
exhibit tangled computation graphs, and tasks can be as fine-
grained as filling in individual nodes of the graph. Rather than
requiring the programmer to manually identify parallelizable
procedures of individual algorithms, we explore a general-
purpose strategy for filling in the computation graph. In this
work, we consider parallelizing a canonical algorithm of this
sort. By using fine-grained parallelism, we parallel-process
one input example at a time and thus better utilize fast cache
memory, as well as achieving better latency per example.

In Section II-C we describe Habanero-Java (HJLib), as a
parallelization library which provides powerful primitives for
managing complicated computation graphs. In Sections II-B
and V we mention the Dyna language, as a framework that can
specify the computation graphs for many abstract algorithms.

II. BACKGROUND

A. Probabilistic parsing

Probabilistic parsing is considered one of the core NLP
tasks, and a probabilistic CKY parser exemplifies the sort
of algorithm we are interested in. Given an input sentence,
a probabilistic parser finds its most probable derivation tree,
where a tree’s probability is the product of the probabilities of
the grammar rules in that tree. We use 0 ≤ i < j < k ≤ n to
represent positions in a length-n sentence, and x, y, z ∈ T to
represent non-terminal symbols, so that most grammar rules
have the form x → y z. The basic serial algorithm is an

∗An expanded version of this paper with additional discussion can be found
at http://cs.jhu.edu/∼mfl/papers/fl.xue.sarkar.eisner.2016.pdf.

Production Prob
Sentence→ Laugh Smile 0.5
Laugh→ Laugh Laugh 0.1
Laugh→ baa 0.9
Smile→ Smile Smile 0.2
Smile→ ba 0.8

...
...

Sentence

Smile

Smile

ba

Smile

ba

Laugh

baa

Fig. 1. A toy grammar modified from the SheepNoise grammar [4], with the
optimal parse of the sentence “baa ba ba.” The set of non-terminals is T =
{Sentence, Laugh,Smile}. The tree contains 5 rules and has probability
A[Sentence, 0, 3] = 0.5 × 0.9 × 0.2 × 0.8 × 0.8. Our experiments used
much larger grammars and sentences (for humans, not sheep).

O(n3) dynamic programming algorithm that finds intermedi-
ate quantities A[x, i, k] that are associated with derivations of
substrings. After the entries A[x, k−1, k] are initialized based
on the words of the sentence, Algorithm 1 fills in A[x, i, k]
for increasing values of w = k−i, which corresponds to com-
bining short phrases into longer phrases. A[Sentence, 0, N]
ends up holding the probability of the best derivation, whose
tree can then be recovered with a little extra bookkeeping (not
shown). Many serial speedups to this basic algorithm are used
in practice [3], including heuristic methods to skip cells in A.

Algorithm 1 Typical CKY algorithm for probabilistic parsing
1: for w ∈ [2, N] do . width of constituent
2: for i ∈ [0, N − w] do . starting location
3: k ← w + i . ending location
4: for x ∈ T do . nonterminals at location
5: A[x, i, k] = max

i<j<k
y,z∈T

A[y, i, j] ·A[z, j, k] · P (x→ y z)

B. Agenda parsing

In this paper we focus on an alternate work-list approach to
parsing, which focuses on prioritization of constituents. Our
main motivation for introducing this alternate technique is that
it more directly maps onto general inference procedures.

Agenda parsing [5] schedules all its work through a priority
queue (Algorithm 2), rather than visiting cells of A in a fixed
order (Algorithm 1). This approach is based on a view of
our parser as a forward-chaining theorem prover [1] that is
trying to prove A[Sentence, 0, n] > 0 (meaning that the
sentence has a derivation). Discovering A[x, i, k] > 0 proves
a lemma, and we try to derive new conclusions first from the
highest-probability lemmas. It turns out that the actual value
of A[Sentence, 0, n] has converged when we first pop it fromIA3 2016; Salt Lake City, Utah, USA; November 2016

978-1-5090-3867-1/16/$31.00 ©2016 IEEE

http://cs.jhu.edu/~mfl/papers/fl.xue.sarkar.eisner.2016.pdf

Algorithm 2 Agenda Parsing Algorithm
1: while not ISEMPTY(agenda) do
2: (x, i, k, score)← POP(agenda) . prioritized by score
3: if score > A[x, i, k] then
4: A[x, i, k]← score
5: EXPANDFRONTIER(x, i, k, score)
6: if (x, i, k) = (Sentence, 0, n) then . built a complete parse
7: return score . return early
8: return 0 . no positive-probability parse was found
9: function EXPANDFRONTIER(y, i, j, childScore)

10: . Combine this popped constituent with previously popped
constituents to left and right

11: for all x, z ∈ T s.t. P (x→ y z) > 0 do
12: for all k ∈ (j, n] do
13: if (siblingScore← A[z, j, k]) > 0 then
14: parentScore← childScore · siblingScore · P (x→ y z)
15: PUSH(agenda, (x, i, k, parentScore))
16: for all x, z ∈ T s.t. P (x→ z y) > 0 do
17: for all h ∈ [0, i) do
18: if (siblingScore← A[z, h, i]) > 0 then
19: parentScore← siblingScore · childScore · P (x→ z y)
20: PUSH(agenda, (x, h, j, parentScore))

our agenda, allowing us to stop early and save work.1

Many other structured prediction problems can be regarded
as theorem proving, with various proof rules, and computed
via an agenda. The Dyna programming language [9] allows
easy high-level specification of such schemes via a Prolog-like
notation for defining named values in terms of other named
values, something like a task graph. Aggregations such as
our running maximum are directly supported using a pattern-
matching notation. CKY can be expressed declaratively in
Dyna as Algorithm 3 (where line 2 covers Algorithm 1), with-
out committing to any serial order or parallelization scheme.

Algorithm 3 CKY expressed in Dyna
a(X,I,K) max= word(W,I,K) * rule_prob(X,W).
a(X,I,K) max= a(Y,I,J) * a(Z,J,K) * rule_prob(X,Y,Z).
goal = a("Sentence", 0, n).

C. Habanero Java

Habanero-Java (HJLib), developed at Rice University, im-
plements the Habanero execution model [10]. HJLib imple-
ments the Async-Finish model [11], in which async represents
a general primitive for creating asynchronous computation and
data transfer tasks. HJLib APIs include async, forasync,
and finish as general primitives for creating and awaiting
the completion of asynchronous computation and data trans-
fer tasks. These Async-Finish primitives enable any (block)
statement to be executed as a parallel task, including for-loop
iterations and method calls [10]. HJLib also supports object-
based isolation [12] and distributed program execution [13]
for actors and selectors [14]. HJLib implements a priority-
based lock-free work-stealing algorithm [15] with multiple
thread pools to support priority scheduling of tasks. In this
paper, we will mainly focus on using the async and finish
primitives for creating and coordinating asynchronous tasks,
with fine-grained atomic synchronization among tasks.

1As noted in [6], [7], this is just Dijkstra’s shortest-path algorithm, or rather
Knuth’s generalization of it to weighted hypergraphs [8].

III. PARALLELIZATION APPROACHES

In this paper, we are mainly concerned with using multi-core
single-node parallelism to reduce the latency of parsing a sin-
gle sentence in agenda-based parsers. The irregular nature of
probabilistic parsing makes this more challenging than simply
parsing multiple sentences at once (embarrassing parallelism)
to improve throughput. To maintain parser accuracy while
processing multiple items on the agenda in parallel, we must
consider the impact of read-write and write-write conflicts. We
refer to both types of conflicts as interference.

A general interference pattern for a parser is as shown in
Figure 2: i is the starting location in Algorithm 1, k is the
ending location in Algorithm 1, each increases in the direction
of their respective arrow. Each V shape highlights entries
that are dependent on the base of the V. The cell shared by
both V’s could be concurrently computed and thus subject to
interference.

In the scenario shown, a write-write conflict can occur for
the overlapping entry, since two scheduled updates can try to
concurrently update the cached score. A read-write conflict
can occur when the bottom blue entry has been processed and
queues the purple entry to the agenda.

i k

Fig. 2. Interference pattern in parallel parsing.

A. Parallel agenda parsing

Our overall approach to parallelization of agenda parsing
involves asynchronous execution of multiple agenda items,
while addressing two fundamental issues to maintain parser
accuracy:

1) Prevention of write-write conflicts in asynchronous con-
stituent updates

2) Maintenance of overall execution order in the agenda
To ensure the correctness of the probabilistic parsing algo-
rithms, we must respect the max operation used to update
a given A[x, i, k] cell. We accomplish this by replacing our
maxing operation with an atomic compare-and-swap max
which only performs the update if the value is guaranteed to
increase. We manage each update as an agenda item inside of
a BlockingPriorityQueue which provides a concurrent push
and pop access and allows us to use a number of threads for
executing the agenda parsing main loop as seen in algorithm 2.
To achieve parallelism without forfeiting the overall execution
order in the agenda, we pick a limited number of tasks off the
agenda and execute them in parallel. The agenda preserves
global order while the parallel execution in the top items is
not necessarily prioritized according to the agenda. In the

following sections we discuss the two approaches we studied
to parallelize the agenda parser.

B. Task-based work-sharing forall construct

The HJLib forall API provides an easy way to treat
all items in a collection as individual asynchronous tasks
scheduled with an implicit finish barrier at the end. The
implementation creates an async task for each work item
before scheduling for execution. To maintain an approximate
order of the agenda, we capture the top m entries of the agenda
as shown in Listing 1. The naive usage of forall brings both
overheads from creating an async task for each work item and
synchronizing at each implicit finish barrier for every top m
elements.

Listing 1: Habanero forall usage

while (! agenda.isEmpty ()){
Collection <T> taskItems = agenda.slice(0, m);
forall(taskItems , (t)->{ process(t); });
// implicit barrier

}

C. Parallelization with forasyncLazy

To reduce the synchronization overhead, we propose a new
forasyncLazy API to reduce the overheads, and provide a
more versatile execution of the agenda. A simplified imple-
mentation of forasyncLazy is shown in Listing 2. This API
takes three parameters:

1) numTasks, the number of tasks that should collectively
work on the parallel loop

2) next, a thread-safe iterator expression that returns the
next element to be processed

3) body, a lambda expression that performs the desired
computation on the element

Unlike the forall API in which one task is created for every
iteration, the forasyncLazy API creates a fixed number of
async tasks each of which repeatedly performs the computa-
tion body on different tasks returned by the task generator.
In this way, we can approximate the execution order based
on the order returned by task generator by blocking an async
task at the call for next element, while avoiding the cost of
synchronization associated with repeated calls to finish.

Listing 2: Implementation of forasyncLazy

public static <T> void forasyncLazy(. . .) {
finish(() -> {

for (int i=0; i < numTasks; i++) {
async(() ->{

while(taskItems.hasNext ())
body.apply(taskItems.next());

});
}

});
}

D. Alternative approaches

A similarly priority-based approach for fine-grained par-
allelism found in [16] also processes individual items on
the agenda in parallel, but treats each step of expanding the
frontier as a separate agenda item, and has many more pushes
and pops on the shared priority queue structure. The finely
defined task items push more duplicate constituents onto the
agenda, and the multiple copies are consolidated before pops
to reduce interference. This work differs from ours in that
it attempts to consolidate more finely defined items on the
single shared agenda, and involves more synchronization for
an update on the agenda than our strategies described above.

Past work from on fine-grained parallelism also focuses on
partitioning the CKY workload to hardware thread mapping
that involve efficient representation of the probability matrix
and the context-free grammars matrix encoding to allow data
locality [17].

Some modern parsing algorithms use pruning heuristics to
intelligently avoid computing some cells of A[x, i, k]. This
ends up introducing irregularities which on GPUs becomes
problematic when trying to schedule similarly sized work.
However, by using queuing mechanisms, similar non-terminal
expressions can be collected and executed in parallel on a
warp [18], [19].

IV. EXPERIMENTAL RESULTS

Our experiments were all performed by extending the
Bubs [20] [21] code base which consists of multiple imple-
mentations for the parser’s A-matrix and parsing algorithm
(such as CKY and agenda). We ran the experiments on a
2.8GHz Westmere-EP computing node with 12 Intel Xeon
X5660 processor cores and 48 GB of RAM per node with
RHEL 6.5. Each experiment was performed on 25 sentences
with length less than 30 words each, on a grammar with ∼2
million productions. All of our experiments only processed
one sentence at a time using N processor cores concurrently.

Figure 3 shows the average time to parse a single sentence
for different cases of agenda parsing, as a function of the
number of cores used. The first curve (horizontal line) shows
the sequential execution time of the original agenda parser
implementation that we started with.

The “standard forall” curve shows the average execution
time to parse a single sentence with the naı̈ve forall ap-
proach. The experiment shows promising scalability benefits
before leveling off at around 8 workers. The forasyncLazy
approach shows overall smaller execution times than for a
single sentence, while displaying similar trends in scalability.
The forasyncLazy approach improves performance relative
to the “standard forall” by eliminating the synchroniza-
tion overhead from finish barriers during parsing. Both
approaches display the same level of accuracy as the serial
reference implementation.

V. FUTURE WORK

In this paper we have explored different approaches to
fine-grained parallelism in agenda based parsing by extending

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

12

14

16

#HJ Workers

A
ve

ra
ge

T
im

e
P
er

Se
nt

en
ce

(s
) single-core seq.

with standard forall

with forasyncLazy

allow write-write conflict

using 2Nlock without atomic

Fig. 3. Results obtained with a 12 processor core, 2.84GHz node with 48GBs
of RAM. The y-axis is average execution time of the parser for a single
sentence. The x-axis is the number of HJWorkers used in the experiment. The
single core sequential plot shows a reference execution time of the original
sequential agenda parser on a single thread.

Habanero-Java, and shows substantial performance improve-
ments in experimental results. The methods in this paper are
not limited to probabilistic context free grammar parsing, but
can also be applied to other dynamic programming schemes.
The Dyna programming language [9] allows easy high-
level specification of such schemes via a Prolog-like pattern-
matching notation for defining named values in terms of other
named values. This work serves as a preamble to our long-
term goal of building on the Habanero infrastructure to support
the compilation of arbitrary Dyna programs (see Section II-B)
into parallel Java bytecode using both the parallelization of
agenda-based strategy and further optimization opportunities
in more flexible strategies [22].

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Collaborative Grants No. 1629564
and 1629459 and in part supported by the Data Analysis
and Visualization Cyberinfrastructure funded by NSF under
grant OCI-0959097 and Rice University. We thank Tim Vieira,
Nathaniel Filardo and Rishi Surendran for their assistance with
this project.

REFERENCES

[1] F. C. N. Pereira and D. H. D. Warren, “Parsing as deduction,” in
Proceedings of the 21st Meeting of the Association for Computational
Linguistics, 1983, pp. 137–144.

[2] J. Eisner, E. Goldlust, and N. A. Smith, “Compiling comp
ling: Weighted dynamic programming and the Dyna language,” in
Proceedings of HLT-EMNLP, 2005, pp. 281–290. [Online]. Available:
http://cs.jhu.edu/∼jason/papers/#emnlp05-dyna

[3] J. K. Kummerfeld, D. Hall, J. R. Curran, and D. Klein, “Parser
showdown at the wall street corral: An empirical investigation of error
types in parser output,” in Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing and Computational
Natural Language Learning. Jeju Island, South Korea: Association

for Computational Linguistics, July 2012, pp. 1048–1059. [Online].
Available: http://www.aclweb.org/anthology/D12-1096

[4] L. Torczon and K. Cooper, Engineering A Compiler, 2nd ed. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2011.

[5] M. Kay, “Algorithm schemata and data structures in syntactic pro-
cessing,” in Readings in Natural Language Processing, B. J. Grosz,
K. Sparck Jones, and B. L. Webber, Eds. Kaufmann, 1986, pp. 35–70.

[6] D. Klein and C. D. Manning, “Parsing and hypergraphs,” in Proceedings
of the International Workshop on Parsing Technologies (IWPT), 2001.

[7] M.-J. Nederhof, “Weighted deductive parsing and Knuth’s algorithm,”
Computational Linguistics, vol. 29, no. 1, pp. 135–143, 2003.

[8] D. E. Knuth, “A generalization of Dijkstra’s algorithm.” Information
Processing Letters, vol. 6, no. 1, pp. 1–5, 1977.

[9] J. Eisner and N. W. Filardo, “Dyna: Extending Datalog for modern
AI,” in Datalog Reloaded, ser. Lecture Notes in Computer Science,
O. de Moor, G. Gottlob, T. Furche, and A. Sellers, Eds. Springer,
2011, vol. 6702, pp. 181–220, longer version available as tech report.
[Online]. Available: http://cs.jhu.edu/∼jason/papers/#eisner-filardo-2011

[10] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar, “Habanero-java: The
new adventures of old x10,” in Proceedings of the 9th International
Conference on Principles and Practice of Programming in Java, ser.
PPPJ ’11. New York, NY, USA: ACM, 2011, pp. 51–61. [Online].
Available: http://doi.acm.org/10.1145/2093157.2093165

[11] Y. Guo, R. Barik, R. Raman, and V. Sarkar, “Work-first and help-
first scheduling policies for async-finish task parallelism,” in IPDPS
’09: Proceedings of the 2009 IEEE International Symposium on Paral-
lel&Distributed Processing. Washington, DC, USA: IEEE Computer
Society, May 2009, pp. 1–12.

[12] S. Imam, J. Zhao, and V. Sarkar, “A composable deadlock-free approach
to object-based isolation,” in Euro-Par 2015: Parallel Processing, ser.
Lecture Notes in Computer Science, J. L. Trff, S. Hunold, and F. Versaci,
Eds. Springer, 2015, vol. 9233, pp. 426–437.

[13] A. Chatterjee, B. Gvoka, B. Xue, Z. Budimlic, S. Imam, and V. Sarkar,
“A distributed selectors runtime system for java applications,” in
Proceedings of the 13th International Conference on Principles
and Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools, ser. PPPJ ’16. New York,
NY, USA: ACM, 2016, pp. 3:1–3:11. [Online]. Available: http:
//doi.acm.org/10.1145/2972206.2972215

[14] S. M. Imam and V. Sarkar, “Selectors: Actors with multiple guarded
mailboxes,” in Proceedings of the 4th International Workshop on
Programming Based on Actors Agents and Decentralized Control, ser.
AGERE! ’14. New York, NY, USA: ACM, 2014, pp. 1–14. [Online].
Available: http://doi.acm.org/10.1145/2687357.2687360

[15] S. Imam and V. Sarkar, “Habanero-java library: A java 8 framework
for multicore programming,” in Proceedings of the 2014 International
Conference on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools, ser. PPPJ ’14.
ACM, 2014, pp. 75–86. [Online]. Available: http://doi.acm.org/10.1145/
2647508.2647514

[16] R. Grishman and M. Chitrao, “Evaluation of a parallel chart parser,”
Austin-Marriott at the Capitol, Austin, Texas, USA, 1988, pp. 71–76.

[17] A. Dunlop, N. Bodenstab, and B. Roark, “Efficient matrix-encoded
grammars and low latency parallelization strategies for cyk,” in In IWPT
11, 2011.

[18] D. Hall, T. Berg-Kirkpatrick, J. Canny, and D. Klein, “Sparser, better,
faster gpu parsing,” in ACL, 2014.

[19] J. Canny, D. Hall, and D. Klein, “A multi-teraflop constituency
parser using GPUs,” in EMNLP, 2013. [Online]. Available: http:
//www.aclweb.org/anthology/D13-1195

[20] N. Bodenstab, A. Dunlop, K. Hall, and B. Roark, “Beam-width predic-
tion for efficient context-free parsing,” in Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics. Portland,
Oregon: Association for Computational Linguistics, June 2011.

[21] ——, “bubs-parser.” [Online]. Available: https://code.google.com/
archive/p/bubs-parser/

[22] N. W. Filardo and J. Eisner, “A flexible solver for finite arithmetic
circuits,” in Technical Communications of the 28th International
Conference on Logic Programming, ICLP 2012, ser. Leibniz
International Proceedings in Informatics (LIPIcs), A. Dovier and
V. S. Costa, Eds., vol. 17, Budapest, Sep. 2012, pp. 425–438. [Online].
Available: http://cs.jhu.edu/∼jason/papers/#filardo-eisner-2012-iclp

http://cs.jhu.edu/~jason/papers/#emnlp05-dyna
http://www.aclweb.org/anthology/D12-1096
http://cs.jhu.edu/~jason/papers/#eisner-filardo-2011
http://doi.acm.org/10.1145/2093157.2093165
http://doi.acm.org/10.1145/2972206.2972215
http://doi.acm.org/10.1145/2972206.2972215
http://doi.acm.org/10.1145/2687357.2687360
http://doi.acm.org/10.1145/2647508.2647514
http://doi.acm.org/10.1145/2647508.2647514
http://www.aclweb.org/anthology/D13-1195
http://www.aclweb.org/anthology/D13-1195
https://code.google.com/archive/p/bubs-parser/
https://code.google.com/archive/p/bubs-parser/
http://cs.jhu.edu/~jason/papers/#filardo-eisner-2012-iclp

	Introduction
	Background
	Probabilistic parsing
	Agenda parsing
	Habanero Java

	Parallelization Approaches
	Parallel agenda parsing
	Task-based work-sharing forall construct
	Parallelization with forasyncLazy
	Alternative approaches

	Experimental Results
	Future Work
	References

