
Accelerating Habanero-Java Programs
with OpenCL Generation

Akihiro Hayashi
Department of Computer Science

Rice University
Houston, TX, USA
ahayashi@rice.edu

Max Grossman
Department of Computer Science

Rice University
Houston, TX, USA

jmg3@rice.edu

Jisheng Zhao
Department of Computer Science

Rice University
Houston, TX, USA

jisheng.zhao@rice.edu

Jun Shirako
Department of Computer Science

Rice University
Houston, TX, USA
shirako@rice.edu

Vivek Sarkar
Department of Computer Science

Rice University
Houston, TX, USA
vsarkar@rice.edu

Abstract
The initial wave of programming models for general-purpose com-
puting on GPUs, led by CUDA and OpenCL, has provided experts
with low-level constructs to obtain significant performance and en-
ergy improvements on GPUs. However, these programming models
are characterized by a challenging learning curve for non-experts
due to their complex and low-level APIs. Looking to the future, im-
proving the accessibility of GPUs and accelerators for mainstream
software developers is crucial to bringing the benefits of these het-
erogeneous architectures to a broader set of application domains.
A key challenge in doing so is that mainstream developers are ac-
customed to working with high-level managed languages, such as
Java, rather than lower-level native languages such as C, CUDA,
and OpenCL.

The OpenCL standard enables portable execution of SIMD ker-
nels across a wide range of platforms, including multi-core CPUs,
many-core GPUs, and FPGAs. However, using OpenCL from Java
to program multi-architecture systems is difficult and error-prone.
Programmers are required to explicitly perform a number of low-
level operations, such as (1) managing data transfers between the
host system and the GPU, (2) writing kernels in the OpenCL kernel
language, (3) compiling kernels & performing other OpenCL ini-
tialization, and (4) using the Java Native Interface (JNI) to access
the C/C++ APIs for OpenCL.

In this paper, we present compile-time and run-time techniques
for accelerating programs written in Java using automatic gener-
ation of OpenCL as a foundation. Our approach includes (1) au-
tomatic generation of OpenCL kernels and JNI glue code from
a parallel-for construct (forall) available in the Habanero-Java

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPPJ’13, September 11–13, 2013, Stuttgart, Germany.
Copyright c© 2013 ACM 978-1-4503-2111-2/13/09. . . $15.00.
http://dx.doi.org/10.1145/2500828.2500840

(HJ) language, (2) leveraging HJ’s array view language con-
struct to efficiently support rectangular, multi-dimensional arrays
on OpenCL devices, and (3) implementing HJ’s phaser (next) con-
struct for all-to-all barrier synchronization in automatically gener-
ated OpenCL kernels. Our approach is named HJ-OpenCL. Con-
trasting with past approaches to generating CUDA or OpenCL
from high-level languages, the HJ-OpenCL approach helps the pro-
grammer preserve Java exception semantics by generating both
exception-safe and unsafe code regions. The execution of one or
the other is selected at runtime based on the safe language con-
struct introduced in this paper.

We use a set of ten Java benchmarks to evaluate our approach,
and observe performance improvements due to both native OpenCL
execution and parallelism. On an AMD APU, our results show
speedups of up to 36.7× relative to sequential Java when executing
on the host 4-core CPU, and of up to 55.0× on the integrated GPU.
For a system with an Intel Xeon CPU and a discrete NVIDIA Fermi
GPU, the speedups relative to sequential Java are 35.7× for the 12-
core CPU and 324.0× for the GPU. Further, we find that different
applications perform optimally in JVM execution, in OpenCL CPU
execution, and in OpenCL GPU execution. The language features,
compiler extensions, and runtime extensions included in this work
enable portability, rapid prototyping, and transparent execution of
JVM applications across all OpenCL platforms.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel Programming

General Terms Languages, Design

Keywords GPGPU, OpenCL, Java, Habanero-Java

1. Introduction
While the performance and energy benefits of heterogeneous com-
puting are now well established, the adoption of heterogeneous
computing has still been slow in many domains that can benefit
significantly from the use of accelerators. The primary reason for
this is the high complexity of developing and maintaining software
for heterogeneous systems.

The two leading programming models for heterogeneous com-
puting, OpenCL [15] and CUDA [18], give software developers

fine-grain control over the hardware platform, transfer of data, and
execution of kernels. The verbosity of the OpenCL and CUDA
APIs allows HPC specialists to use advanced, hardware-specific
tuning techniques. However, this fine-grained control is a double-
edged sword and adds a non-trivial amount of application code to
write, maintain, and optimize across multiple architectures. While
OpenCL offers functional portability, it is often the case that differ-
ent OpenCL variants of the same kernel have to be written to obtain
the best performance on different hardware devices.

As a result, much attention has been given to using OpenCL
and CUDA as foundations for higher level programming models.
For instance, consider OpenACC [9]. OpenACC uses OpenMP-like
compiler directives to identify parallel regions of code that should
be offloaded to an accelerator. It supports a number of directives
related to data motion and kernel execution, but is only accessible
from C and Fortran, two low-level languages. Additionally, while
OpenACC minimizes the code changes required to add heterogene-
ity to a program, it also reduces the control a programmer has in
optimizing that heterogeneous execution, reduces the flexibility of
the system for arbitrary kernels, and hides a number of important
features from the application developer which often impact perfor-
mance significantly.

On the other hand, using high-level managed languages, such
as Java, often has many benefits. These benefits include a high-
level syntax, massive library support, and garbage collection. How-
ever, the performance of an application can often suffer when inter-
preted, garbage-collected languages are used. Using heterogeneous
systems to accelerate applications in these high-level languages is
also a difficult and error-prone task. Accessing OpenCL’s C/C++
API from Java requires the use of the Java Native Interface (JNI)
API, immediately removing many of the programmability benefits
of Java software development.

In this work, we use language features of the Habanero-Java
(HJ) [4] parallel programming language to support implicit hetero-
geneous execution from the JVM using OpenCL. Habanero-Java
with OpenCL generation (HJ-OpenCL) is an extension to the par-
allel Habanero Java programming language which enables execu-
tion of parallel forall loops on any heterogeneous processor in
an OpenCL platform without any code change to the original HJ
source. In addition, the programmer may use the next language
construct for all-to-all barrier synchronization, and the safe lan-
guage construct to preserve Java exception semantics. These exten-
sions do not interfere with existing HJ constructs for other types of
parallelism, such as asynchronous tasks, futures and actors, but are
instead intended to complement them. As a result, an application
can be written entirely in the high-level HJ programming language
and take advantage of existing Java libraries, frameworks, and tools
while accelerating computationally-intensive parallel loops using
the multi-threaded HJ runtime or many-threaded OpenCL kernels.
The main contributions of this work include:

1. Auto-utilization of multi-core CPUs and many-core GPUs us-
ing OpenCL from the Habanero-Java language, while main-
taining Java exception semantics with the safe construct in-
troduced in this paper.

2. Auto-generation of bridge code between the JVM and OpenCL.
This includes OpenCL device discovery, OpenCL platform ini-
tialization, data movement between the JVM and OpenCL de-
vices, OpenCL kernel execution, and barrier synchronization
within kernels.

3. Auto-generation of OpenCL kernels from Java bytecode with
extensions to the APARAPI [1] open-source translation frame-
work.

1 p u b l i c c l a s s ArraySum {
2 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
3 i n t [] [] a r r a y s = new i n t [N] [M] ;
4 i n t [] r e s u l t = new i n t [N] ;
5 . . . a r r a y s i n i t i a l i z a t i o n . . .
6 f o r (i n t i =0 ; i < N; i ++) {
7 r e s u l t [i] = 0 ;
8 f o r (i n t j =0 ; j < M; j ++) {
9 r e s u l t [i] += a r r a y s [i] [j] ;

10 }
11 }
12 }
13 }

Figure 1: Original Array-Sum Java Code. Note that while this code
is short and simple, it is also O(N*M) where N is the number of
arrays to sum and M is the length of each array.

4. Performance evaluation of HJ-OpenCL on multiple hetero-
geneous platforms with performance comparison between
sequential Java, sequential HJ, multi-threaded HJ, and HJ-
OpenCL on multi-core CPUs and many-core GPUs.

2. Background
A well-known approach from past work on accelerating Java pro-
grams with heterogeneous accelerators is exemplified in the Root-
beer system [23]. Rootbeer is built on top of CUDA. It uses mul-
tiple threads and reflection to rapidly serialize Java objects to a
native format compatible with CUDA’s C/C++ API, a translation
framework to auto-generate CUDA kernels from Java bytecode at
compile-time, and a runtime to manage execution of CUDA ker-
nels and the transfer of input and output data. Rootbeer supports
“all features of the Java Programming Language except dynamic
method invocation, reflection, and native methods” [23]. In this
section we will study Java, Rootbeer, and HJ-OpenCL implemen-
tations of an application similar to the Array-Sum example in [23].

The Array-Sum example studied in this section takes as input
a matrix of size N × M (arrays), and returns a vector of size
N (result) for which the ith element is the sum of the elements
contained in row i of the input matrix. This is a data-parallel
application which we would expect to perform well on GPUs for
large input sizes. Consider the sequential Java implementation in
Figure 1. Nested for-loops are used to sum each input array into its
corresponding output element. While the implementation is simple,
it is single-threaded and takes O(N ×M) time.

Now, consider the Rootbeer implementation of Array-Sum in
Figure 2. In Rootbeer, any computation to be executed on a CUDA
device must be encapsulated in a class which implements Root-
beer’s Kernel interface. This interface contains a method called
gpuMethod(), which is used as the entry point for the computa-
tion kernel and is executed by each CUDA thread. The work to be
performed by CUDA in a Rootbeer program is specified by passing
a vector of Kernel objects to a Rootbeer object’s runAll method.
Each of these Kernel objects represents a thread of execution to be
run on the CUDA device.

While Rootbeer provides impressive support for executing Java
programs on CUDA devices, the programming model significantly
decreases programmability relative to the original sequential Java
implementation. It is clear that using Rootbeer dramatically in-
creases code length (approximately 2x) and decreases readabil-
ity by separating the computational kernels from the application
code. The parallelism in this program is not readily apparent,
hidden by a sequential loop that adds Kernel objects to the jobs
list. It is also important to note that Rootbeer ignores Java ex-
ception semantics during GPU execution, and exceptions such

1 p u b l i c c l a s s ArraySum {
2 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
3 i n t [] [] a r r a y s = new i n t [N] [M] ;
4 i n t [] r e s u l t = new i n t [N] ;
5 . . . a r r a y s i n i t i a l i z a t i o n . . .
6 L i s t<Kernel> j o b s =
7 new A r r a y L i s t<Kernel >() ;
8 f o r (i n t i = 0 ; i < N; i ++) {
9 j o b s . add (new ArraySumKernel (a r r a y s [i] ,

10 r e s u l t , i) ;
11 }
12 R o o t b e e r r o o t b e e r = new R o o t b e e r () ;
13 r o o t b e e r . r u n A l l (j o b s) ;
14 }
15 }
16
17 c l a s s ArraySumKernel implements K er ne l {
18 p r i v a t e i n t [] s o u r c e ;
19 p r i v a t e i n t [] r e t ;
20 p r i v a t e i n t i n d e x ;
21 p u b l i c ArraySumKernel (i n t [] sou rce ,
22 i n t [] r e t , i n t i) {
23 t h i s . s o u r c e = s o u r c e ;
24 t h i s . r e t = r e t ; t h i s . i n d e x = i ;
25 }
26 p u b l i c vo id gpuMethod () {
27 i n t sum = 0 ;
28 f o r (i n t i = 0 ; i < s o u r c e . l e n g t h ; i ++) {
29 sum += s o u r c e [i] ;
30 }
31 r e t [i n d e x] = sum ;
32 }
33 }

Figure 2: Rootbeer Implementation.

as IndexOutOfBoundsException and NullPointerException
may not be reported.

Finally, we compare the Java and Rootbeer implementations
to the HJ-OpenCL implementation in Figure 3. The nested for-
loop structure in the Java sequential version is retained in the HJ-
OpenCL benchmark, without the added encapsulation and separa-
tion required for Rootbeer. In the HJ-OpenCL implementation, the
outer for loop is replaced by a parallel HJ forall loop which exe-
cutes every iteration in parallel. There are other two modifications
from the Java sequential version. First, an HJ array view object
arrays is declared at line 6. This array view object provides two-
dimensional indexing (e.g., arrays[i,j]) into a one-dimensional
“base” array (base). The use of a one-dimensional base array
results in more efficient serialization when communicating with
OpenCL devices. The second change, the addition of a safe block
in line 8, enables the programmer to preserve Java exception se-
mantics. A safe statement takes a boolean condition, and asserts
that no exception will be thrown inside the body of that block if
that condition is true. The compiler then generates exception-safe
and unsafe versions of the same block that can be selected for exe-
cution based on the evaluation of the condition. These HJ language
constructs will be covered in more detail later in Section 3.

It is important to note that the implementation in Figure 3 can be
executed without modification on the multi-threaded HJ runtime, in
native threads on a multi-core CPU, or in native threads on a many-
core GPU.

3. Habanero Java Language
This section describes features of the Habanero-Java (HJ) paral-
lel programming language which are added or supported by HJ-
OpenCL.

1 p u b l i c c l a s s ArraySum {
2 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
3 i n t [] ba se = new i n t [N∗M] ;
4 i n t [] r e s u l t = new i n t [N] ;
5 i n t [.] a r r a y s = new a r rayView (base , 0 ,
6 [0 : N−1 ,0:M−1]) ;
7 . . . i n i t i a l i z a t i o n . . .
8 boolean i s S a f e = . . . ;
9 s a f e (i s S a f e) {

10 f o r a l l (p o i n t [i] : [0 : N−1]) {
11 r e s u l t [i] = 0 ;
12 f o r (i n t j =0 ; j<M; j ++) {
13 r e s u l t [i] += a r r a y s [i , j] ;
14 }
15 }
16 }
17 }
18 }

Figure 3: HJ-OpenCL Implementation.

3.1 Overview of HJ language
The Habanero Java (HJ) parallel programming language [4] pro-
vides an execution model for multicore processors that builds on
four orthogonal constructs:

1. Lightweight dynamic task creation and termination using async
and finish constructs [10].

2. Locality control with task and data distributions using the place
construct [5].

3. Mutual exclusion and isolation among tasks using the isolated
construct [16].

4. Collective and point-to-point synchronization using the phasers
construct [26].

Since HJ is based on Java, the use of certain primitives from the
Java Concurrency Utilities [21] is also permitted in HJ programs.

HJ-OpenCL only supports OpenCL execution for a subset of
the parallel language features of Habanero-Java, though the full HJ
language can still be used on multiple CPU cores within the JVM.
Work to date on HJ-OpenCL has focused on supporting forall

parallel loops and next barrier statements for OpenCL execution:

1. forall: The statement “forall(point p : region) 〈stmt〉” in-
dicates a parallel loop whose iteration space is defined by a
region. The region can be one- or multi-dimensional space,
e.g., [0:M-1,0:N-1] for a 2-D iteration space. Each iteration
instance executes the loop body 〈stmt〉 given a different point
in the iteration space, i.e., region. All forall loops end with an
implicit barrier (finish scope).

2. next: The statement next represents an all-to-all barrier syn-
chronization1 point with both signal and wait semantics in a
parallel forall loop.

3.2 The safe Construct
We propose the addition of a safe language construct to Habanero-
Java. Programmers can use the safe language feature to assert
conditions which ensure no exception will be thrown in a code
region. The “safe (boolean cond) 〈stmt〉” construct indicates that
〈stmt〉 is asserted to not throw an exception if cond is true.

To illustrate this, let us again consider the ArraySum example
from Section 2. To check the non-nullness of result, arrays, and
arrayViews, a programmer would put isSafe = (result != null &&

1 HJ-OpenCL only supports the all-to-all barrier synchronization in phasers
due to OpenCL constraints. (See Section 4.2.)

HJ
Program

HJ Compiler

OpenCLKernel.class
(bytecode)

.class files on JVM
(bytecode)

APARAPI
Translator

OpenCL Kernel
Kernel.c(text file)

OpenCL_hjstub.c
(JNI glue code)

C
Compiler

native library
(.so, .dll, .dylib)

 1)

 3)

 2)

JVM

Host

Device
(multicore, GPU)

JNI

Opencl
Runtime

input compilation
Section 3 Section 4

runtime

Figure 4: Compilation Flow and Runtime

arrays != null && arraysView != null). It would also be neces-
sary to add N - 1 ≤ result.length && N*M-1 ≤ arrays.length for
array bounds checking. The schema for this approach is shown in
Figure 3. The HJ-OpenCL compiler and runtime can then use these
conditions to safely generate and execute code on OpenCL devices.
Section 4.1 describes the detail of code generation for the safe
constructs. Note that this approach can be used to accelerate per-
formance both on CPUs and on GPUs due to the use of OpenCL
instead of Java, while still preserving exception semantics.

3.3 Support for Rectangular Multi-Dimensional Arrays
The OpenCL specification [14] does not support the use of Java-
style and C-style multi-dimensional arrays in OpenCL kernels.
However, computationally intensive Java programs often use rect-
angular multi-dimensional arrays as a basic data structure. There-
fore, it is important to provide software developers with language
support in HJ-OpenCL for rectangular multi-dimensional arrays
while enabling efficient translation and transfer of those arrays for
use in OpenCL kernels.

In the HJ-OpenCL language, HJ’s array views are used to pro-
vide the software developer with what syntactically appears to be
a multi-dimensional array but which is actually backed by a one-
dimensional array at the Java level. The statement “dataType[.] v

= new arrayView(baseArr,offset,region)” declares a view v on a
one-dimensional array baseArr with starting offset offset. The cre-
ated view v can then be referenced with a Fortran-like comma-
separate multi-dimensional array syntax, with bounds defined by
region. The details of supporting array views at compile- and run-
time in HJ-OpenCL are discussed in Section 4.3.

4. OpenCL Generation
While HJ-OpenCL provides language features which allow the
programmer to identify parallel loop kernels in their Java code,
mapping these kernels to OpenCL devices requires compile-time
and run-time support. This section introduces the code generation
techniques used at compile-time to take JVM bytecode as input
and produce OpenCL kernels and the required glue code (i.e. the
JNI stub).

The HJ-OpenCL compiler leverages APARAPI [1], a compre-
hensive, open-source framework for executing computational ker-
nels from Java applications on OpenCL devices. For this work we
extended the APARAPI component that generates OpenCL code
from Java bytecode. Our major extension to APARAPI has been to
enable static translation from Java bytecode to OpenCL, whereas
the publicly available APARAPI framework works in a dynamic
compilation mode.

1 p u b l i c c l a s s ArraySum {
2 s t a t i c { System . l o a d L i b r a r y (” l i b C a l c ”) ; }
3 p u b l i c s t a t i c n a t i v e void openCL Kernel0 (. . .) ;
4 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
5 . . .
6 i s S a f e = . . . ;
7 i f (i s S a f e) {
8 /∗ S a f e Region ∗ /
9 openCL Kernel0 (a r r a y s , r e s u l t) ; / / JNI c a l l

10 } e l s e {
11 /∗ Unsafe Region , run i n JVM ∗ /
12 f o r a l l (p o i n t [i] : [0 : N−1]) {
13 r e s u l t [i] = 0 ;
14 f o r (i n t j =0 ; j<M; j ++) {
15 r e s u l t [i] += a r r a y s V i e w [i , j] ;
16 }
17 }
18 }
19 }

Figure 5: Generated code by the HJ compiler

In addition to OpenCL kernels, glue code must be automatically
generated to transfer execution and data from the JVM to the
OpenCL device and back. This functionality is provided internally
by the HJ-OpenCL compiler, and includes the generation of JNI
functions, OpenCL API calls, and transformed bytecode.

The rest of this Section is organized as follows: Section 4.1
introduces the code generation steps. Section 4.2 discusses the
solution to barrier synchronization support. Section 4.3 discusses
the HJ array view construct which enables efficient support of
multi-dimensional arrays in parallel loops translated to OpenCL.

4.1 Compilation Flow
Figure 4 illustrates the compilation flow and how the compiler
interacts with the HJ-OpenCL runtime. The HJ-OpenCL compiler
takes an HJ program (see Section 3) as input, and produces the
following outputs:

1. Java CLASS files intended for execution in the JVM.

2. JNI glue code between the JVM and OpenCL kernels, contained
in the file OpenCL hjstub.c.

3. A Java CLASS file named OpenCLKernel.class which contains
all the bytecode to be translated to OpenCL kernels by the
APARAPI bytecode translator.

To explain the compilation work flow, let us again consider
the ArraySum example from Section 2. The ArraySum imple-
mentation from Figure 3 is translated to the Java code shown

1 c l c o n t e x t c o n t e x t ;
2 c l command queue command queue ;
3 JNIEXPORT void JNICALL Java ArraySum in i tGPU (JNIEnv ∗ env , j c l a s s c l s) {
4 c l i n t r e t ;
5 /∗ Get Dev ice ∗ /
6 c l G e t P l a t f o r m I D s (. . .) ;
7 c l G e t D e v i c e I D s (. . .) ;
8 /∗ OpenCL c r e a t e C o n t e x t and Queue ∗ /
9 c o n t e x t = c l C r e a t e C o n t e x t (NULL, 1 , &d e v i c e i d , NULL, NULL, &r e t) ;

10 command queue = clCreateCommandQueue (c o n t e x t , d e v i c e i d , 0 , &r e t) ;
11 }
12 e x t e r n char ∗HjKerne l0 ; / / f rom Ke rn e l . c
13 JNIEXPORT void JNICALL Java ArraySum openCL 1Kerne l0 (JNIEnv ∗ env , j c l a s s c l s , j i n t A r r a y a r r a y s , j i n t A r r a y r e s u l t ,

. . .) {
14 void ∗ a p t r = (env)−>G e t P r i m i t i v e A r r a y C r i t i c a l (a r r a y s , 0) ;
15 void ∗ r p t r = (env)−>G e t P r i m i t i v e A r r a y C r i t i c a l (r e s u l t , 0) ;
16 . . .
17 /∗ Cr ea t e B u f f e r ∗ /
18 cl mem Aobj = c l C r e a t e B u f f e r (c o n t e x t , . . .) ;
19 cl mem Robj = c l C r e a t e B u f f e r (c o n t e x t , . . .) ;
20 /∗ Host t o Dev ice Communicat ion ∗ /
21 c l E n q u e u e W r i t e B u f f e r (command queue , Aobj , . . . , a p t r , . . .) ; / / t r a n s f e r a p t r
22 c l E n q u e u e W r i t e B u f f e r (command queue , Robj , . . . , r p t r , . . .) ; / / t r a n s f e r r p t r
23 /∗ Ke rn e l C o m p i l a t i o n ∗ /
24 c l C r e a t e P r o g r a m W i t h S o u r c e (c o n t e x t , 1 , (c o n s t char ∗∗) &HjKernel0 , . . .) ;
25 c l C r e a t e K e r n e l () ;
26 c l S e t K e r n e l A r g (. . .) ;
27 /∗ I n v o k e Ke rn e l ∗ /
28 clEnqueueNDRangeKernel (command queue) ;
29 /∗ Device t o Host Communicat ion ∗ /
30 c lE n q ue u eR e a dB u f f e r (command queue) ; / / t r a n s f e r r p t r
31 /∗ Clean up ∗ /
32 c l F i n i s h (command queue) ;
33 . . .
34 (env)−>R e l e a s e P r i m i t i v e A r r a y C r i t i c a l (a r r a y s , a p t r , 0) ;
35 (env)−>R e l e a s e P r i m i t i v e A r r a y C r i t i c a l (r e s u l t , r p t r , 0) ;
36 }

Figure 6: Generated JNI and OpenCL code (OpenCL hjstub.c)

in Figure 5. During code generation, the HJ-OpenCL compiler
identifies the input and output data relationships of the forall

loop, and replaces the original forall loop with a native method
named openCL Kernel0() (line 9). This native method invokes the
OpenCL API to execute computations on an OpenCL device. Its
definition is contained in a library, libCalc (line 2). These transfor-
mations translate the original HJ program with forall constructs
to JVM bytecode with JNI stubs for OpenCL kernel invocation.

A powerful feature of Java is runtime exceptions, thrown when
some safety constraints are violated. For example, the array access
result[i] = 0; in Figure 3 might throw IndexOutOfBoundsException
or NullPointerException. Running natively in OpenCL re-
moves all safety guarantees from Java exceptions. HJ-OpenCL
code generation maintains Java exception semantics by generat-
ing two versions of the same forall loop: one to run when the
programmer guarantees no exceptions will be thrown, and one to
run when the exception-safe conditions do not hold. The code re-
gion to generate these two versions from is specified by the safe
language construct, which takes user-specified conditions as input
(see Section 3.2). If these conditions hold at runtime, HJ-OpenCL
assumes no exception will be thrown inside the safe block. For
example, in Figure 3 the programmer has set the value of isSafe.
This definition is kept unchanged through to the transformed ver-
sion in Figure 5. If the exception-safe condition is met, the runtime
uses openCL Kernel0() to launch OpenCL execution. Otherwise
the computation is conservatively run in the JVM on the HJ run-
time to preserve Java exception semantics. These changes are only
visible in the emitted bytecode. In the case that programmers do
not provide a safe region around a parallel loop but have provided

compiler flags indicating that OpenCL execution is desired, the
HJ-OpenCL compiler and runtime assumes that no exception is
thrown.

OpenCL hjstub.c in Figure 6 is the auto-generated bridge be-
tween the JVM and OpenCL devices. It uses JNI to invoke the
OpenCL API to initialize the OpenCL device, transfer data, com-
pile and launch the OpenCL kernel, and return data and control
to the JVM. OpenCL hjstub.c and Kernel.c, which contains the
OpenCL kernels translated from HJ forall loops, are generated by
the HJ-OpenCL compiler and built into a library which the JVM
links to at runtime.

The first function in Figure 6, Java ArraySum initGPU, checks
for OpenCL devices and creates an OpenCL context and command
queue. The HJ-OpenCL compiler inserts an asynchronous invoca-
tion of this function at the very beginning of the input HJ program
to reduce the overhead of OpenCL device initialization.

The second function, Java ArraySum openCL 1Kernel0, per-
forms the following steps to run the ArraySum example in OpenCL:

1. The JNI call GetPrimitiveArrayCritical is used to retrieve a bare
pointer to the contents of Java arrays (line 14, 15).

2. The OpenCL API is invoked to transfer scalar and vector inputs
from the JVM into the OpenCL address space (line 17 - 22).

3. The ArraySum kernel is compiled and executed on an OpenCL
device (line 23-28).

4. The OpenCL API is invoked to retrieve results from the device
if they are marked as output (line 29-32).

1 p u b l i c c l a s s OpenCLKernel
2 ex tends com . amd . a p a r a p i . K e r n e l {
3 i n t [] r e s u l t , a r r a y ;
4 i n t OpEnCl s ize ;
5 p u b l i c OpenCLKernel () ;
6 p u b l i c vo id run () {
7 i n t g i d = t h i s . g e t g l o b a l i d (0) ;
8 i f (g i d >= OpEnCl s ize) { re turn ; }
9 f o r (i n t j = 0 ; j < M; j ++) {

10 r e s u l t [g i d] += a r r a y [g i d∗M + j] ;
11 }
12 }
13 }

Figure 7: Example code of OpenCLKernel.class

5. The JNI call ReleasePrimitiveArrayCritical is used to release
access to the Java arrays after copying the results into them and
before returning to JVM execution (line 34, 35).

The paragraphs above have covered the generation of all byte-
code and JNI stubs intended for execution in the host system.
To generate the OpenCL kernel code, the APARAPI translator is
passed a single CLASS file, OpenCLKernel.class. The HJ-OpenCL
compiler generates OpenCLKernel.class by extracting the body of
parallel forall loops and translating them into a format which
the APARAPI translator can process. Figure 7 shows the equiva-
lent Java of the bytecode generated in OpenCLKernel.class. Line 1
shows that OpenCLKernel extends com.amd.aparapi.Kernel, as re-
quired by the APARAPI translator. The body of the original forall
loop is placed in the run method (lines 6-11). The APARAPI
translator automatically identifies the run method of any class ex-
tending com.amd.aparapi.Kernel as the entry point of an OpenCL
kernel, and can be used to emit an equivalent OpenCL kernel.
The generated OpenCL kernel is expressed as array of charac-
ters(HjKernel0) which is stored in Kernel.c and later compiled with
OpenCL hjstub.c(see line 12, 24 in Figure 6).

4.2 Barrier Synchronization
HJ-OpenCL also supports all-to-all barrier synchronization across
parallel iterations of a forall loop. The programmers can specify
synchronization points in a loop using the next statement.

Consider the HJ-OpenCL barrier example in Fig 8. Each iter-
ation of the forall loop calls method1 and method2. Following
execution of method1(i, j) or method2(i, j) each forall iteration
is blocked until all other iterations also complete the correspond-
ing calls in their own execution streams. Because OpenCL does
not support all-to-all barrier synchronization as a kernel language
feature, the HJ-OpenCL compiler partitions the forall loop body
into blocks separated by synchronization points. Rather than per-
forming a single kernel invocation for a single forall loop in
OpenCL hjstub.c, the HJ-OpenCL compiler must enqueue multi-
ple kernels for execution, where each kernel implements a dif-
ferent block of the original forall loop body. This takes advan-
tage of OpenCL’s implicit all-to-all synchronization between kernel
launches in the same command queue.

Fig 9 shows the Java equivalent of the generated bytecode in
OpenCLKernel.class for the example in Figure 8, which will even-
tually be translated to an OpenCL kernel. OpenCLKernel.class de-
clares passId, which identifies a block of the body of the original
forall loop. Fig 10 shows the sequence of OpenCL API calls for
this barrier example. Note that the value of passId passed to the
OpenCL kernel is incremented before each kernel launch, leading
to execution of a different block of code for each kernel invocation
as the kernel progresses through synchronization points.

1 f o r a l l (p o i n t [i] : [0 : n−1]) {
2 method1 (i , j) ;
3 / / s y n c h r o n i z a t i o n p o i n t 1
4 next ;
5 method2 (i , j) ;
6 / / s y n c h r o n i z a t i o n p o i n t 2
7 next ;
8 }

Figure 8: HJ-OpenCL Barrier Example.

1 p u b l i c c l a s s OpenCLKernel
2 ex tends com . amd . a p a r a p i . K e r n e l {
3 . . .
4 i n t p a s s I d ;
5 p u b l i c vo id run () {
6 / / For s y n c h r o n i z a t i o n p o i n t 1
7 i f (p a s s I d == 0) {
8 method1 (gid , j) ;
9 }

10 / / For s y n c h r o n i z a t i o n p o i n t 2
11 i f (p a s s I d == 1) {
12 method2 (gid , j) ;
13 }
14 }
15 }

Figure 9: Barrier Example in OpenCLKernel.class

1 c l i n t p a s s i d ;
2 / / For method1
3 p a s s i d = 0 ;
4 r e t = c l S e t K e r n e l A r g (. . . , (void ∗) &p a s s i d) ;
5 r e t = clEnqueueNDRangeKernel (. . .) ;
6 c l E n q u e u e B a r r i e r (command queue) ;
7 / / For method2
8 p a s s i d = 1 ;
9 r e t = c l S e t K e r n e l A r g (. . . , (void ∗) &p a s s i d) ;

10 r e t = clEnqueueNDRangeKernel (. . .) ;
11 c l E n q u e u e B a r r i e r (command queue) ;

Figure 10: Generated kernel invocation code of barrier example by
the HJ-Compiler

4.3 Multidimensional Array Issues
In Java, a multi-dimensional array is represented as an array of
arrays. This permits irregularly shaped arrays where elements at
the same dimension have different lengths. This implies that, given
an array int[10][10] A = new int[10][10], it would be nec-
essary to perform 10 calls to OpenCL’s transfer functions, clEn-
queueWriteBuffer and clEnqueueReadBuffer, for transferring A to
and from an OpenCL device. This leads to the high communication
overheads between host and device.

As discussed in Section 3.3, we instead use HJ array-views[13]
to provide multi-dimensional syntax backed by a single-dimensional
array. In Figure 3, line 3 shows the declaration of a one-dimensional
array. Line 6 in Figure 3 shows the declaration of an array-
view arraysView which maps a two-dimensional region of size
[0:N-1,0:M-1] to the one-dimensional arrayarrays. The array-
view arraysView is referenced with multi-dimensional syntax
in the body of forall as shown in line 12. The HJ compiler in-
ternally transforms arraysView[i, j] into arrays[i*M + j].

Benckmark Summary Data Size ArrayView? Next?
Blackscholes Data-parallel financial application which calculates the price of European

put and call options
16,777,216 virtual options No No

Crypt Cryptographic application from the Java Grande Benchmarks [12] Size C with N= 50,000,000 No No
MatMult A standard dense matrix multiplication: C = A.B 1024×1024 Yes No
Doitgen Multi-resolution analysis kernel from PolyBench [22], ported to Java 128×128×128 Yes No
MRIQ Three-dimensional medical benchmark from Parboil [20], ported to Java large size(64×64×64) No No
Syrk Symmetric rank-1 computation: C = α.A.AT +β.C from PolyBench [22],

ported to Java
2048×2048 Yes No

Jacobi 1-D Jacobi stencil computation from PolyBench [22], ported to Java T = 50 and N = 134,217,728 No No
SparseMatmult Sparse matrix multiplication from the Java Grande Benchmarks [12] Size C with N = 500,000 No No
Spectral-norm Eigenvalue computation using the power method from the Computer Lan-

guage Benchmarks Game
N = 2,000 No Yes

SOR Successive over relaxation from the Java Grande Benchmarks [12] Size C with N = 2,000 Yes Yes

Table 1: Details on the benchmarks used to evaluate HJ-OpenCL

1 boolean i s S a f e = t rue ;
2 i f (M >= row . l e n g t h) i s S a f e = f a l s e ;
3 i f (i s S a f e) {
4 f o r (i n t i d = 0 ; i d < M; i d ++) {
5 i n t r o w b e g i n = row [i d] ;
6 i n t row end = row [i d + 1] ;
7 f o r (i n t i =0 ; i < (row end−r o w b e g i n) ; i ++) {
8 i f (r o w b e g i n + i < 0 | | r o w b e g i n + i >= v a l .

l e n g t h | |
9 r o w b e g i n + i < 0 | | r o w b e g i n + i >= c o l .

l e n g t h | |
10 c o l [r o w b e g i n + i] < 0 | | c o l [r o w b e g i n + i] >=

x . l e n g t h) {
11 i s S a f e = f a l s e ;
12 break ;
13 }
14 }
15 i f (! i s S a f e) break ;
16 }
17 }

Figure 11: Array Bounds Checking Code for SparseMatmult

APARAPI is then able to translate this statement to an OpenCL
kernel. APARAPI does not support multi-dimensional arrays.

5. Performance Evaluation
This section presents experimental results for HJ-OpenCL on two
platforms.

The first platform is an AMD A10-5800K APU. This APU in-
cludes an AMD Radeon HD 7660D GPU with 6 Streaming Mul-
tiprocessors(SMs). The CPU of the A10-5800K includes 4 cores,
16KB of L1 cache per core, and 32MB of L2 cache. Each SM in
the GPU has exclusive access to 32 KB of local scratchpad memory.
The CPU and GPU can each directly access system memory, but
share bandwidth. While physical memory is shared, it is partitioned
between devices such that the CPU has 6GB and the GPU has
2GB. We conducted all experiments on this system using the Java
SE Runtime Environment (build 1.6.0 21-b06) with Java HotSpot
64-Bit Server VM (build 17.0-b16, mixed mode).

The second platform has two hexacore Intel X5660 CPUs and
two NVIDIA Tesla M2050 discrete GPUs connected over PCIe.
There are 4GB of RAM per CPU core, with a total 48GB of ran
inside a single node. Each GPU also has approximately 2.5GB of
global memory. Only 1 of the 2 available GPUs was used at a time
to evaluate this work. In this platform, we used the Java SE Runtime
Environment (build 1.6.0 25-b06) with Java HotSpot 64-Bit Server
VM (build 20.0-b11, mixed mode).

The ten benchmarks shown in Table 1 were used in our experi-
ments. Four of these benchmarks use array views to perform multi-
dimensional array accesses, and two of these benchmarks use the
next construct for synchronization.
Each benchmark was tested in the following execution modes:
sequential Java, sequential HJ, and parallel HJ. The sequential HJ
version is equivalent to the Java version except for the use of array
views for multi-dimensional array accesses. This is intended as a
test of any overhead from the HJ environment. The parallel HJ
version employs the forall construct to mark parallel loops which
can be run in the HJ runtime or on OpenCL devices. The parallel
HJ version was executed on three different platforms: 1) on HJ’s
parallel work-sharing runtime in the JVM using HJ’s standard code
generation for SMP multicore, 2) on OpenCL CPUs using HJ-
OpenCL’s code generation and runtime, and 3) on OpenCL GPUs
using HJ-OpenCL’s code generation and runtime. In the following
sections, these three variants are referred to as HJ parallel, HJ
OpenCL CPU, and HJ OpenCL GPU, respectively.

Performance is measured by retrieving elapsed nanoseconds
from the start of a parallel loop to the completion of all iterations of
that loop. The Java system call System.nanoTime() was used. This
measurement includes the overhead of task spawning and joining
for parallel HJ. For OpenCL execution, this includes the overhead
of evaluating the safe condition and any overhead from JNI or
OpenCL API calls, such as communicating data to and from the
device. Thus, any performance difference between HJ OpenCL
execution and a completely native C++/OpenCL implementation
would be from overheads incurred to pass through JNI, which are
negligible. Our measurements do not include OpenCL initialization
time for creation of OpenCL contexts and command queues.

5.1 Performance on A10-5800K
Figure 12 shows the speedup numbers on the AMD A10-5800K
APU relative to the sequential Java version. On the AMD APU sys-
tem, Blackscholes, Crypt, MRIQ and Jacobi performed as expected
across all versions and platforms. By expected, we mean that we
see performance improvements for these data-parallel benchmarks
from sequential, to parallel HJ, to native OpenCL CPU, to native
OpenCL GPU. The result shows speedup of up to 36.71 × for HJ
OpenCL CPU and 55.01 × for HJ OpenCL GPU for Jacobi, rel-
ative to sequential Java2. Doitgen, Syrk, Spectral-norm, and SOR
each experience slowdown on HJ OpenCL GPU relative to sequen-
tial Java and sequential HJ. Due to runtime overhead of array views
sequential HJ is slower than sequential Java for MatMult and Doit-

2 Some result shows super linear speedups because running natively in
OpenCL incurs lower overhead than executing inside the JVM.

0.99	
 1	

0.21	

0.78	

1.01	
 0.99	
 0.96	
 0.98	
 1.01	
 1.06	

2.06	
 1.99	

0.4	

1.35	

2.02	
 1.92	
 1.88	
 1.88	

2.34	

1.2	

4.75	

3.01	

0.72	

2.89	

6.28	

2.07	

36.71	

2.43	

2.06	

1.19	

8.88	

3.59	

12.91	

0.19	

21.19	

0.69	

55.01	

2.08	

0.86	

0.21	

0.1	

1	

10	

100	

Black-­‐Scholes	
 Crypt	
 MatMult	
 Doitgen	
 MRIQ	
 Syrk	
 Jacobi	
 SparseMatMult	
 Spectral-­‐norm	
 SOR	

Sp
ee
du

p	

re
la
*
ve
	
 to

	
 S
eq

ue
n*

al
	
 Ja

va
	

Benchmarks	

SequenKal	
 HJ	

Parallel	
 HJ	

HJ	
 OpenCL	
 CPU	

HJ	
 OpenCL	
 GPU	

Figure 12: Performance improvements over sequential Java on A10-5800K

Platform Blacksholes Crypt MatMult Doitgen MRIQ Syrk Jacobi SparseMatmult Spectral-Norm SOR
HJ OpenCL CPU 0.99 0.99 1.00 1.04 1.03 0.99 1.00 0.94 0.98 0.98
HJ OpenCL GPU 1.02 0.99 1.00 1.00 1.00 1.00 0.97 0.91 1.00 1.00

Table 2: Slowdown for exception checking on the A10-5800K

Platform Sectral-Norm SOR
HJ OpenCL CPU 0.10 0.08
HJ OpenCL GPU 0.19 0.29

Table 3: Slowdown for without next construct on the A10-5800K

gen, both of which contain multi-dimensional array accesses. Ta-
ble 2 shows the performance of each benchmark with exception
checking using safe relative to without checking (not using safe)
on the A10-5800K. Some benchmarks shows performance differ-
ence between with checking and without checking due to the over-
head of evaluating the safe condition. For example, SparseMat-
Mult demonstrates the largest overheads from performing excep-
tion checking on both HJ OpenCL CPU (0.94×) and HJ OpenCL
GPU (0.91×) due to indirect array accesses in its kernel. Indirect
accesses require checking all index values contained in arrays to
guarantee no out-of-bounds array accesses. To illustrate this point,
Figure 11 shows the programmer-written array bounds checking
code for SparseMatmult.

Spectral-norm and SOR both make use of next constructs. Both
benchmarks were written in the style shown in Figure 8, a forall

loop containing barriers. However, an alternative to using all-to-

1 f o r (i n t j = 0 ; j < i t e r ; j ++) {
2 f o r a l l (p o i n t [i] : [0 : n−1]) {
3 method1 (i , j) ;
4 }
5 / / s y n c h r o n i z a t i o n p o i n t 1
6 f o r a l l (p o i n t [i] : [0 : n−1]) {
7 method2 (i , j) ;
8 }
9 / / s y n c h r o n o z a t i o n p o i n t 2

10 }

Figure 13: HJ-OpenCL Barrier Example without next construct

all barrier synchronizations in this style would be to use multiple
forall loops and have the implicit barrier at the end of each take
the place of next, as shown in Figure 13. However, this approach

1.02	
 0.98	

1.62	

0.99	
 1.01	
 1.04	
 1	
 0.97	
 0.97	
 0.97	

6.22	
 5.64	

6.88	

5.06	

6.1	
 6.26	

2.96	

4.86	

10.16	

3.18	

18.62	

4.73	

9.98	

5.91	

29.26	

3.55	

35.68	

1.68	

10.22	

2.93	

37.2	

13.91	

43.56	

2.82	

324.22	

1.17	

36.62	

6.63	

28.13	

1.22	

0.1	

1	

10	

100	

1000	

Black-­‐Scholes	
 Crypt-­‐C	
 MatMult	
 Doitgen	
 MRIQ	
 Syrk	
 Jacobi	
 SparseMatMult	
 Spectral-­‐norm	
 SOR	

Sp
ee
du

p	

re
la
*
ve
	
 to

	
 S
eq

ue
n*

al
	
 Ja

va
	

Benchmarks	

SequenKal	
 HJ	

Parallel	
 HJ	

HJ	
 OpenCL	
 CPU	

HJ	
 OpenCL	
 GPU	

Figure 14: Performance improvements over sequential Java on Westmere

Platform Blacksholes Crypt MatMult Doitgen MRIQ Syrk Jacobi SparseMatmult Sectral-norm SOR
HJ OpenCL CPU 0.98 0.98 0.98 0.99 1.00 1.00 1.00 0.97 1.00 1.02
HJ OpenCL GPU 0.95 0.94 0.99 1.00 0.98 1.00 0.99 0.68 0.99 1.00

Table 4: Slowdown for exception checking on the Westmere

Platform Sectral-Norm SOR
HJ OpenCL CPU 0.14 0.06
HJ OpenCL GPU 0.35 0.19

Table 5: Slowdown for without next construct on the Westmere

leads to high overhead when using HJ-OpenCL. Multiple forall

loops would also require multiple calls into JNI. Each call to JNI
includes compilation of the OpenCL kernel, transfer of data to
and from the device, and execution of the kernel. On the other
hand, using next rather than multiple forall loops only incurs the
overhead of additional kernel launches. As part of our investigation,
we implemented Spectral-norm and SOR in this alternative style.
Table 3 shows the relative performance of Spectral-norm and SOR
without the next relative to with the next on the A10-5800K. Both
benchmarks without next are significantly slower (3.4 × - 12.5 ×)
than with next.

5.2 Performance on Westmere
Figure 14 shows the speedups on the Westmere platform with two
NVIDIA Tesla GPUs and two hexacore Intel CPUs. For our eval-
uation on the Intel-NVIDIA system, Blackscholes, Crypt, Mat-

Mult, MRIQ, Jacobi and Spectral-norm show expected perfor-
mance across all versions and platforms. The results show speedup
of up to 35.68 × for HJ OpenCL CPU on Jacobi and 324.22 ×
for HJ OpenCL GPU on MRIQ relative to sequential Java. For the
benchmarks Doitgen, Syrk, and SOR HJ OpenCL GPU is slower
than HJ OpenCL CPU due to insufficient parallelism.

Table 4 shows the performance of each benchmark with excep-
tion checking with the safe construct relative to without check-
ing on Westmere. Like the previous results on the AMD APU,
all benchmarks except SparseMatMult demonstrate low overhead
from exception checking using safe.

Table 5 shows the performance of Spectral-norm and SOR with-
out the next construct relative to with the next construct on the
Westmere. Like the previous results on the AMD APU, both bench-
marks demonstrate high overhead when not using next.

One obvious conclusion from these results is that benchmarks
show very different performance across different platforms due to
the architectural features of those platforms. As an example, con-
sider the results on the AMD APU system. Of the ten benchmarks,
two perform best on parallel HJ, four perform best on HJ OpenCL
CPU, and four perform best on HJ OpenCL GPU. Parallel HJ pro-
vides a load-balancing runtime and avoids added overheads in-
curred when running in OpenCL. HJ OpenCL CPU has the advan-
tage of native execution and the flexibility of the CPUs architec-
ture. HJ OpenCL GPU also provides native execution, as well as
the massive parallelism of GPUs. It is important to note that the HJ
application code requires no modifications to switch between these
platforms. This enables rapid prototyping and testing across a wider
variety of platforms than existing programming models support.

6. Related Work
6.1 GPU code generation from high-level language
GPU code generation is supported by several high-level language
compilation systems.

Lime [8] is a JVM compatible language which generates
OpenCL code automatically. Lime provides language extensions
to Java which express coarse grain tasks and SIMD parallelism. Its
compiler generates Java bytecode, JNI glue code, and OpenCL ker-
nels. To enable barrier synchronization, Lime users must partition
tasks at each synchronization point.

RootBeer [23] compiles Java bytecode to CUDA by including a
data-parallel code region in a method named gpuMethod declared
inside a class which implements Kernel. The RootBeer compiler
translates the gpuMethod() method to a CUDA kernel (details of
this translation has been discussed in Section 2). Similar to Lime,
the programmer must partition their kernel to enable barrier syn-
chronization.

X10 [7] and Chapel [6] extend their locality controls to target
the GPU. Their compilers generate CUDA code when the user
explicitly specifies a task is to be scheduled on a GPU node.

Sponge [11] generates highly optimized CUDA code from the
data flow streaming language StreamIt [27]. Once an application is
written, programmers can delegate non-trivial optimizations for a
wide variety of GPU targets to the compiler.

Firepile [19] performs runtime translation of JVM bytecode
from Scala programs to OpenCL kernels. It does this by gener-
ating syntax trees from bytecode inspection at runtime, produc-
ing OpenCL kernels from traversing these trees similar to how
APARAPI performs OpenCL code generation. Firepile is also a
library-oriented approach which does not require a special-purpose
compiler to perform GPU code generation.

Clyther [25] is similar to APARAPI, but is used from Python.
It performs runtime GPU code generation for specially annotated
Clyther functions which only use a subset of the Python language
via a library-oriented approach.

6.2 Exception semantics in Java
For those programming models which enable hybrid JVM and
GPU execution (i.e. Lime, RootBeer, JCUDA), preserving Java
exception semantics is an important challenge which has largely
been ignored up to this point. Some previous work focused on
eliminating redundant checks for null pointers and out-of-bounds
accesses, enabling optimized or native execution without breaking
Java exception semantics.

RootBeer [23] supports CUDA code generation for user-thrown
exceptions, and in the absence of a try..catch block bubbles execu-
tion up the stack until one is found or the kernel exits. However,
no support is provided for catching the runtime exceptions which
HJ-OpenCL focuses on.

Artigas et al. [2] and Moreira et al. [17] achieve MATMULT
Java performance which is at least 80% of the peak Fortran perfor-
mance using these optimizations. This work generates exception-
safe and -unsafe regions of code. In exception-safe regions the com-
piler can perform aggressive loop optimization such as loop tiling
without breaking exception semantics.

Würthinger et al. [28] proposes an algorithm on Static Single
Assignment(SSA) form for the JIT compiler which eliminates un-
necessary bounds checking.

In ABCD [3], Bodik et. al provides an array bounds checking
elimination algorithm, which is based on graph traversal on an
extended SSA form.

Jeffery et al. [24] proposed a static annotation framework to
reduce the overhead of dynamic checking in the JIT compiler.

7. Conclusions
In this paper, we presented Habanero-Java with OpenCL generation
(HJ-OpenCL). HJ-OpenCL facilitates OpenCL utilization from a
parallel JVM program. The HJ-OpenCL language and compiler
enable:

1. Automatic generation of OpenCL kernels and JNI glue code
from a Java parallel-for construct, (forall).

2. Efficient access to regular, multi-dimensional arrays in Java
kernels intended for OpenCL execution using the array view
construct.

3. Support for all-to-all barriers in OpenCL kernels using the next
language construct.

Unlike previous work, our approach also preserves Java excep-
tion semantics by generating code with exception-safe and unsafe
regions using the safe language construct.

Performance evaluation on multiple heterogeneous platforms
demonstrated the advantages of flexibly executing a single Java ap-
plication across multiple execution modes. On an AMD APU ac-
cessed from OpenCL, our results show speedups of up to 36.7×
relative to sequential Java on the host 4-core CPU, and of up to
55.0× on an integrated GPU. For a system with an Intel Xeon CPU
and a discrete NVIDIA Fermi GPU, OpenCL execution demon-
strates performance improvement up to 35.7× for the 12-core CPU
and 324.0× for the GPU, relative to sequential Java. However, it is
also important to note that some benchmarks tested performed best
when executed on the HJ runtime due to OpenCL overheads and
the benefits of load-balancing in the HJ runtime.

This work combines the best of managed and native execu-
tion. Using managed languages like Java, programmers gain pro-
grammability, portability, extensive libraries, and high-level lan-
guage features. However, this work and others have demonstrated
lackluster performance in the JVM for computationally heavy
workloads. On the other hand, native execution in OpenCL not
only uses native threads to eliminate overheads from managed ex-
ecution but also facilitates execution on a variety of architectures.
HJ-OpenCL combines the parallel HJ programming language, a
multi-threaded JVM runtime, and OpenCL execution to enable
complete portability, rapid prototyping, and transparent execution
of Java applications across all OpenCL platforms.

Acknowledgements
We would like to thank members of the Habanero group at Rice
University for valuable discussions related to this work. The West-
emere results in this paper were obtained on the Rice DAVinCI
system, which was supported in part by the Data Analysis and Vi-
sualization Cyberinfrastructure award funded by NSF under grant
OCI-0959097.

References
[1] APARAPI. API for Data Parallel Java.

http://code.google.com/p/aparapi/.

[2] Pedro V. Artigas, Manish Gupta, Samuel P. Midkiff, and José E. Mor-
eira. Automatic loop transformations and parallelization for java. In
Proceedings of the 14th international conference on Supercomputing,
ICS ’00, pages 1–10, New York, NY, USA, 2000. ACM.

[3] Rastislav Bodı́k, Rajiv Gupta, and Vivek Sarkar. Abcd: eliminating
array bounds checks on demand. SIGPLAN Not., 35(5):321–333, May
2000.

[4] Vincent Cavé et al. Habanero-Java: the New Adventures of Old
X10. In PPPJ’11: Proceedings of 9th International Conference on
the Principles and Practice of Programming in Java, 2011.

[5] Satish Chandra et al. Type inference for locality analysis of distributed
data structures. In PPoPP ’08: Proceedings of the 13th ACM SIG-
PLAN Symposium on Principles and practice of parallel program-
ming, pages 11–22, New York, NY, USA, 2008. ACM.

[6] Chapel. The Chapel language specification version 0.4, February
2005.

[7] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher
Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and
Vivek Sarkar. X10: an object-oriented approach to non-uniform clus-
ter computing. In Proceedings of the 20th annual ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages, and ap-
plications, OOPSLA ’05, pages 519–538, New York, NY, USA, 2005.
ACM.

[8] Christophe Dubach, Perry Cheng, Rodric Rabbah, David F. Bacon,
and Stephen J. Fink. Compiling a high-level language for gpus: (via
language support for architectures and compilers). In Proceedings
of the 33rd ACM SIGPLAN conference on Programming Language
Design and Implementation, PLDI ’12, pages 1–12, New York, NY,
USA, 2012. ACM.

[9] OpenACC Directives for accelerators. Openacc. http://www.openacc-
standard.org/.

[10] Yi Guo et al. Work-First and Help-First Scheduling Policies for
Async-Finish Task Parallelism. In IPDPS ’09: International Parallel
and Distributed Processing Symposium, 2009.

[11] Amir H. Hormati, Mehrzad Samadi, Mark Woh, Trevor Mudge, and
Scott Mahlke. Sponge: portable stream programming on graphics
engines. SIGPLAN Not., 46(3):381–392, March 2011.

[12] JGF. The Java Grande Forum benchmark suite.
http://www.epcc.ed.ac.uk/javagrande/javag.html.

[13] Mackale Joyner, Zoran Budimlić, and Vivek Sarkar. Subregion anal-
ysis and bounds check elimination for high level arrays. In Proceed-
ings of the 20th international conference on Compiler construction:
part of the joint European conferences on theory and practice of soft-
ware, CC’11/ETAPS’11, pages 246–265, Berlin, Heidelberg, 2011.
Springer-Verlag.

[14] Khronos OpenCL Working Group. The OpenCL Specification v1.2.
2012.

[15] khronos.org. Opencl. http://www.khronos.org/opencl/.

[16] Roberto Lublinerman et al. Delegated Isolation. In OOPSLA ’11:
Proceeding of the 26th ACM SIGPLAN conference on Object oriented
programming systems languages and applications, 2011.

[17] José E. Moreira, Samuel P. Midkiff, and Manish Gupta. From flop to
megaflops: Java for technical computing. ACM Trans. Program. Lang.
Syst., 22(2):265–295, March 2000.

[18] Nvidia. NVidia CUDA Programming Guide version 1.0.
http://developer.download.nvidia.com/compute/cuda/
1 0/NVIDIA CUDA Programming Guide 1.0.pdf, 2007.

[19] Nathaniel Nystrom, Derek White, and Kishen Das. Firepile: run-time
compilation for gpus in scala. SIGPLAN Not., 47(3):107–116, October
2011.

[20] Parboil. Parboil benchmarks. http://impact.crhc.illinois.edu/parboil.aspx.

[21] Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea,
and David Holmes. Java concurrency in practice. Addison-Wesley
Professional, 2005.

[22] PolyBench. The polyhedral benchmark suite. http://www.cse.ohio-
state.edu/ pouchet/software/polybench.

[23] P.C. Pratt-Szeliga, J.W. Fawcett, and R.D. Welch. Rootbeer: Seam-
lessly using gpus from java. In High Performance Computing and
Communication 2012 IEEE 9th International Conference on Embed-
ded Software and Systems (HPCC-ICESS), 2012 IEEE 14th Interna-
tional Conference on, pages 375–380, June.

[24] Jeffery Von Ronne, Andreas Gampe, David Niedzielski, and Kleanthis
Psarris. Safe bounds check annotations. In Concurrency and Compu-
tations: Practice and Experience, Vol. 21, No. 1, 2009.

[25] Sean Ross-Ross. Clyther: a python just-in-time specialialization en-
gine for OpenCL.

[26] Jun Shirako, David M. Peixotto, Vivek Sarkar, and William N. Scherer.
Phasers: a unified deadlock-free construct for collective and point-to-
point synchronization. In Proceedings of the 22nd annual interna-
tional conference on Supercomputing, ICS ’08, pages 277–288, New
York, NY, USA, 2008. ACM.

[27] William Thies, Michal Karczmarek, and Saman P. Amarasinghe.
Streamit: A language for streaming applications. In Proceedings of
the 11th International Conference on Compiler Construction, CC ’02,
pages 179–196, London, UK, UK, 2002. Springer-Verlag.

[28] Thomas Würthinger, Christian Wimmer, and Hanspeter Mössenböck.
Array bounds check elimination for the java hotspot client compiler.
In Proceedings of the 5th international symposium on Principles and
practice of programming in Java, PPPJ ’07, pages 125–133, New
York, NY, USA, 2007. ACM.

