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Introduction

Motivation

Need for standardized parallelism in C++

1 Hardware concurrency constantly increasing

2 C++ is a high-level language for writing efficient code

Standard solution: futures and async tasks

Benefits of Futures:

1 Synchronization operations cannot introduce data races on future
objects

2 Support an easily maintained and composable functional style

3 Support object-oriented programming

4 Can express other parallel constructs with futures

Jonathan Sharman Exploring Tradeoffs in Parallel Implementations of C++ using FuturesJuly 14, 2017 4 / 57



Introduction

C++ Futures Today

Desired properties:

1 Safe, maintainable, programmable, portable

2 Low-overhead, scalable

Current implementations satisfy first set of criteria but not second
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Introduction

Thesis Statement

A combination of compile-time and run-time approaches is the most
effective means of implementing parallel futures in C++.
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Introduction

Contributions

1 Parallel C++ futures implementation: Fibertures

2 Source-to-source compiler transformations to facilitate code migration

3 A quantitative comparison of several implementations of parallel
futures in C++
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Background

Async Tasks and Futures in the C++ Standard Template
Library

Contained in header <future>

std::promise<T>: placeholder for a value of type T

std::future<T>: represents a future value of type T

std::async(): executes a task asynchronously, returns future return
value
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Background

Future Synchronization Operations

A future references the shared state of a promise object

Wait for a future to be ready using

get()

wait()

wait for()

wait until()

Can only call get() once unless future is converted to a shared future
with share()
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Background

Example: Promise and Future

std::promise <int > int_promise;

std::future <int > int_future = int_promise.get_future ();

// int_future.get();

int_promise.set_value (14);

std::cout << int_future.get();
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Background

Example: Async Tasks and Futures

int square(int n) { return n * n; }

int main() {

std::future <int > square_future = std:: async(square , 3);

std::future <int > cube_future = std:: async ([]( int n) {

return n * n * n;

}, 2);

std::cout << (square_future.get() + cube_future.get());

}
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Background

Async Task Launch Policy

User may specify a launch policy for an async task:

std::launch::async

std::launch::deferred

std::launch::async | std::launch::deferred

A task marked async is invoked in a new thread

A task marked deferred is invoked the first time its value is used (lazy
evaluation)

We are interested only in the parallel overloads
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Background

Pitfalls of std::async() and std::future

Threads have high overhead for creation and context-switching

Synchronization is blocking
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Background

HClib (https://github.com/habanero-rice/hclib)

A high-level, lightweight, task-based programming model for
intra-node parallelism in C and C++

Uses a cooperative work-stealing strategy, implemented using Boost
Context

API includes a variety of parallel constructs, including async tasks
with futures

Supports integration of task parallelism with multiple distributed
runtimes, including MPI, UPC++, and OpenSHMEM

Supports data-driven futures (DDFs) and data-driven tasks (DDTs)
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Background

Example: Parallel Recursive Fibonacci Function using
HClib

uint64_t fibonacci(uint64_t n) {

if (n < 2) return n;

hclib ::future_t <uint64_t > n1 = hclib:: async_future ([] {

return fibonacci(n - 1);

});

hclib ::future_t <uint64_t > n2 = hclib:: async_future ([] {

return fibonacci(n - 2);

});

return n1.get() + n2.get();

}

int main(int argc , char* argv []) {

hclib :: launch ([]() {

std::cout << fib (10) << ’\n’;

};

}
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Our Approach: Fibertures

Problem Statement

Pthreads are inefficient for applications using many tasks with
possibly varying run time

Want to utilize the programmability and portability of std::future
while enabling scalable parallel performance

Several implementations of C++ futures exist, using a variety of
compiler- and library-based approaches

We implemented Fibertures on top of the libfib runtime library

We compare these approaches to C++ futures by programmability,
portability, and efficiency
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Our Approach: Fibertures

Swapstack Calling Convention

Swapstack:

A calling convention used for switching between continuations

Calls exchange the current stack for that of the invoked continuation

Saves the address where execution should continue when the calling
continuation resumes
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Our Approach: Fibertures

libfib (https://github.com/stedolan/libfib)

A cooperative work-stealing runtime scheduler for C++ built using
Swapstack

Spawn lightweight tasks (fibers)

Rapidly context-switch between fibers

Cooperatively yield a fiber’s worker thread for another fiber to use
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Our Approach: Fibertures

Our Extension to libfib: Fibertures

libfib supports fibers but not futures

Same safety and programmability downsides of using STL threads

Fibertures

Defines an async task function that returns std::futures, uses fibers
Modifies libfib scheduler to support improved future synchronization
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Our Approach: Fibertures

Fibertures Task Type

// in namespace fibertures

struct Task {

// The callback function.

std::function <result_t ()> f;

// The promise used to create and set the future.

std::promise <result_t > p;

// Constructor.

Task(std::function <function_t >&& f, args_t ... args)

: f{std::bind(f, args ...)}

{}

};
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Our Approach: Fibertures

Replacement for std::async(): fibertures::async()

// in namespace fibertures

std::future <result_t > async(function_t && f, args_t ... args)

{

auto task = new Task{move(f), forward <args_t >(args)...};

std:: size_t task_address = (std:: size_t)task;

auto fiber_lambda = []( std:: size_t task_address) {

auto task = (Task <function_t , args_t >*) task_address;

auto value = task ->f();

task ->p.set_value(std::move(value));

delete task;

};

auto future_result = task ->p.get_future ();

worker :: current ().new_fiber(fiber_lambda , task_address);

return future_result;

}
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Our Approach: Fibertures

Capturing and Passing Parameters with Fibertures

Cannot pass lambdas and multiple arguments directly to libfib

Supports a limited number of parameters (just one, in our port)

Does not support lambdas with captures

Solution

Capture parameters and store callback in a new fibertures::Task

Convert task address to an integer type

Pass task address into a capture-less lambda inside
fibertures::async()

During task execution, convert task address back into a task pointer
and invoke the original callback
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Our Approach: Fibertures

Source-to-source Transformations

Designed to make using Fibertures with existing standard C++ trivial

Currently applied manually but could be automated
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Our Approach: Fibertures

Runtime Library Inclusion and Initialization

Include the header "fibertures.h" in each source file containing a
parallel async task

In main(), initialize runtime with
worker::spawn workers(nworkers)

nworkers could be determined based on hardware concurrency or
chosen by the user
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Our Approach: Fibertures

Asynchronous Call Transformations

Transform calls to the parallel overloads of std::async() to calls to
fibertures::async()

Same function signature and return type as std::async()

fibertures::async() does not support deferred evaluation

Must not apply if tasks uses thread-local data
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Our Approach: Fibertures

Asynchronous Call Transformations

Source Code

std::future <T> fut = std:: async(f, ...);

std::future <T> fut = std:: async(std:: launch ::async , f, ...);

std::future <T> fut = std:: async

(std:: launch ::async | std:: launch ::deferred , f, ...);

Transformed Code

std::future <T> fut = fibertures :: async(f, ...);
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Our Approach: Fibertures

Synchronization Transformations

Need to prevent synchronization operations from blocking

While future is not ready, yield current fiber and look for more work

No worker thread is ever blocked unless there is no work to be done
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Our Approach: Fibertures

Task Scheduling with Yield-loops

Worker threads should perform useful work when available

Want to avoid staying in the yield-loop waiting for a future to become
unblocked

libfib scheduler prioritizes doing local work over stealing

Problem: A worker thread that generates a yield-loop never steals

Solution: Modified libfib scheduler to prioritize stealing work
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Our Approach: Fibertures

get() Transformation

Source Code

T val = fut.get();

Transformed Code

while (fut.wait_for(std:: chrono :: seconds (0))

!= std:: future_status ::ready) {

worker :: current ().yield ();

}

T val = fut.get();
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Our Approach: Fibertures

wait() transformation.

Source Code

fut.wait();

Transformed Code

while (fut.wait_for(std:: chrono :: seconds (0))

!= std:: future_status ::ready) {

worker :: current ().yield ();

}
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Our Approach: Fibertures

wait for() transformation.

Source Code

future_status status = fut.wait_for(duration);

Transformed Code

future_status status = future_status :: ready;

{ auto start = high_resolution_clock ::now();

while (fut.wait_for(std:: chrono :: seconds (0))

!= future_status ::ready) {

if (high_resolution_clock ::now() - start > duration) {

status = future_status :: timeout; break;

}

worker :: current ().yield ();

} }
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Our Approach: Fibertures

wait until() Transformation

Source Code

future_status status = fut.wait_until(time_point);

Transformed Code

future_status status = std:: future_status :: ready;

while (fut.wait_for(std:: chrono :: seconds (0))

!= future_status ::ready) {

if (time_point ::clock ::now() >= time_point) {

status = future_status :: timeout;

break;

}

worker :: current ().yield ();

}
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Our Approach: Fibertures

Handling Return Values

Three cases:

If the return value is assigned to a variable in the source code, do the
same in the transformed code

If the return value of a synchronization operation is unused, omit the
assignment

If the return value is used in a temporary expression, introduce a new
variable with an unused name
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Our Approach: Fibertures

Transformation Example: Source Program

#include <future >

int f(); // Some lengthy computation

int main() {

// Spawn a new thread to compute f().

std::future <int > fut = std:: async(std:: launch ::async , f);

// Wait for the spawned thread to finish.

fut.wait();

return 0;

}
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Our Approach: Fibertures

Transformation Example: Transformed Program

#include <future >

#include "fibertures.h"

int f(); // Some lengthy computation

int main() {

// Spawn 8 worker threads.

worker :: spawn_workers (8);

// Spawn a new fiber to compute f().

std::future <int > fut = fibertures :: async(f);

// Wait for the spawned fiber to finish.

while (fut.wait_for(std:: chrono :: seconds (0))

!= std:: future_status ::ready) {

worker :: current ().yield ();

}

return 0;

}
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Micro-benchmark Results

Micro-benchmark Results
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Micro-benchmark Results

Micro-benchmark: Task Creation Overhead

Measure the cost of std::thread and libfib fiber creation

constexpr int nthreads = 100000;

for (int i = 0; i < nthreads; ++i) {

std:: thread {[] {}}. detach ();

}

constexpr int nthreads = 100000;

for (int i = 0; i < nthreads; ++i) {

worker :: current ().new_fiber ([]( size_t) {}, 0);

}
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Micro-benchmark Results

Experimental Setup

All performance results obtained on Intel Ivy Bridge architecture

8 GB of memory

Intel Core i7-3770K processor

Four cores and eight hardware threads

Default optimization level

Jonathan Sharman Exploring Tradeoffs in Parallel Implementations of C++ using FuturesJuly 14, 2017 40 / 57



Micro-benchmark Results

Task Creation Time for STL Threads and libfib Fibers

Task Type Mean Task Creation Time (ns)

STL thread 3,230

libfib fiber

2 threads 185
4 threads 262
8 threads 332

16 threads 655
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Micro-benchmark Results

Micro-benchmark: Parallel Recursive Fibonacci Function

Creates an extremely large number of asynchronous tasks

Not a realistic problem

Good stress test for parallel runtime systems
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Micro-benchmark Results

Time to Compute the N th Fibonacci Number using STL
and Fibertures, Log Scale
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Case Study: Local Sequence Alignment using Smith-Waterman

Case Study: Local Sequence Alignment using
Smith-Waterman
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Case Study: Local Sequence Alignment using Smith-Waterman

Local Sequence Alignment using Smith-Waterman

Identifies the maximally homologous subsequences between two input
gene sequences

Constructs a rectangular scoring matrix

Non-border cells computed as a function of left, upper-left, and upper
neighbors

High degree of ideal parallelism
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Case Study: Local Sequence Alignment using Smith-Waterman

Smith-Waterman Inter-cell Data Dependence Graph

c(0,0) c(0,1) · · · c(0,m−2) c(0,m−1)

c(1,0) c(1,1) · · · c(1,m−2) c(1,m−1)

...
...

. . .
...

...

c(n−2,0) c(n−2,1) · · · c(n−2,m−2) c(n−2,m−1)

c(n−1,0) c(n−1,1) · · · c(n−1,m−2) c(n−1,m−1)
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Case Study: Local Sequence Alignment using Smith-Waterman

Execution Times of Smith-Waterman by Runtime System

Runtime System
Execution Time (ms)

Number of Tiles
Mean Std. Dev.

Sequential STL 26,335 34 N/A

STL with Parallel Futures 6,349 18 552

HClib

1 thread 26,650 17

2,208
2 threads 13,540 40
4 threads 7,113 83
8 threads 6,463 58

16 threads 7,126 221

Fibertures

1 thread 25,510 11

552
2 threads 13,153 64
4 threads 7,284 34
8 threads 6,218 26

16 threads 6,780 74
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Case Study: Local Sequence Alignment using Smith-Waterman

Execution times of Smith-Waterman by Runtime System,
2,208 tiles

Runtime System
Execution Time (ms)
Mean Std. Dev.

Sequential STL 26,335 34

Parallel STL N/A N/A

HClib

1 thread 26,650 17
2 threads 13,540 40
4 threads 7,113 83
8 threads 6,463 58

16 threads 7,126 221

Fibertures

1 thread 25,534 10
2 threads 13,461 45
4 threads 7,615 36
8 threads 6,343 26

16 threads 6,319 32
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Related Work

Related Work
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Related Work

Qthreads (http://www.cs.sandia.gov/qthreads/)

Provides support for lightweight tasks in C, comparable to fibers

Support the use of full/empty bits (FEBs) for synchronization

Does not support futures but could be used as a building block for
futures
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Related Work

Folly Futures (https://github.com/facebook/folly/
tree/master/folly/futures)

Promise and future library for C++11

Supports callback chaining with then() and onError()

The C++ standard does not currently support callback chaining;
however, the Concurrency TS does support chaining

Different API from <future>

Requires user-specified Executor for async tasks

Offers more control over execution policy but requires more manual
effort
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Related Work

Boost Fiber (http://www.boost.org/doc/libs/1_64_
0/libs/fiber/doc/html/fiber/overview.html)

A fiber runtime that supports futures

Future synchronization does not block the worker thread

Different future type from std::future, but APIs are similar

User can specify scheduler (defaults to round-robin)

Provides moderate level of compatibility with existing STL-only code
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Related Work

HPX (https://github.com/STEllAR-GROUP/hpx)

Distributed and intra-node parallel runtime library for C++

High level of compatibility with STL and Boost

Extends futures with continuation chaining and locality awareness

Relatively easy to translate existing code to HPX
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Conclusions and Future Work

Conclusions

C++ must support expressive and efficient means of expressing
parallelism

C++ futures confer programmability and safety benefits but can have
significant performance drawbacks

Drawbacks particularly apparent in applications requiring large
numbers of async tasks

Third-party libraries using compiler transformations and/or a runtime
scheduler can effectively solve these problems

We implemented Fibertures to improve the performance of parallel
futures in C++ through use of fibers

Performs well compared to the STL and other futures libraries in some
benchmarks
Easy transition from STL to Fibertures due to matching APIs and
source-to-source transformations
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Conclusions and Future Work

Future Work

Fix libfib to support compilation under higher optimization levels and
reevaluate performance of libraries

Integrate dependences directly into fibers

Automate source-to-source transformations using a compiler tool such
as LibTooling

Explore ways to infer the best stack size automatically, perhaps per
call rather than per program
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