Integrating Task Parallelism with Actors

Shams Imam

Rice University
shams@rice.edu

Abstract

This paper introduces a unified concurrent programming
model combining the previously developed Actor Model
(AM) and the task-parallel Async-Finish Model (AFM).
With the advent of multi-core computers, there is a renewed
interest in programming models that can support a wide
range of parallel programming patterns. The proposed uni-
fied model shows how the divide-and-conquer approach of
the AFM and the no-shared mutable state and event-driven
philosophy of the AM can be combined to solve certain
classes of problems more efficiently and productively than
either of the aforementioned models individually. The uni-
fied model adds actor creation and coordination to the AFM,
while also enabling parallelization within actors. This paper
describes two implementations of the unified model as ex-
tensions of Habanero-Java and Habanero-Scala. The unified
model adds to the foundations of parallel programs, and to
the tools available for the programmer to aid in productivity
and performance while developing parallel software.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming—Parallel program-
ming

General Terms Design, Languages, Performance

Keywords Parallel Programming, Actor Model, Fork-Join
Model, Async-Finish Model, Habanero-Java, Habanero-
Scala

1. Introduction

Current mainstream programming languages provide lim-
ited support for expressing parallelism. Programmers need
parallel programming models and constructs that can pro-
ductively support a wide range of parallel programming pat-
terns. This has led to a renewed interest in parallel program-
ming models in the research community. Programs exhibit

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’12, October 19-26, 2012, Tucson, Arizona, USA.

Copyright © 2012 ACM 978-1-4503-1561-6/12/10. .. $15.00

Vivek Sarkar

Rice University
vsarkar@rice.edu

varying degrees of task, data, and pipeline parallelism [9]
and extensions thereof e.g., event-driven parallelism as an
extension of pipeline parallelism. In this paper, we focus on
two such models:

* The Async-Finish Model (AFM), as exemplified by the
async and finish constructs [4, 5] and the data-driven
future extension [28], which is well-suited to exploit task
parallelism in divide-and-conquer style and loop-style
programs.

* The Actor Model (AM) which promotes the no-shared
mutable state and an event-driven philosophy.

We introduce a unified parallel programming model that
integrates the previously developed Async-Finish Model [5]
and Actor Model [1, 12]. This integration not only adds
actors as a new coordination construct in the AFM, but
also enables parallelization of message-processing within
actors'. It also simplifies detecting termination and man-
aging synchronous operations in actors. We developed two
reference implementations of this unified model by extend-
ing Habanero-Java (HJ) [4] and Habanero-Scala (HS) [1412.
Both HJ and HS include an implementation of unified ac-
tors using data-driven controls (explained in Section 6.2.1)
which we call light actors. Habanero-Scala also includes a
heavy actor implementation that extends the standard Scala
actor library [10] which uses exceptions for control flow.
The proposed unified model shows how the AFM and the
AM can be combined to solve certain classes of problems
more productively than either of the aforementioned mod-
els individually. In our performance evaluation, we include a
summary of application characteristics that can be more effi-
ciently solved using the unified model compared to the AFM
or AM and show that benchmarks exhibiting such character-
istics can execute up to 30% faster using constructs from the
unified model in our implementations relative to the AFM or
AM.

The paper is organized as follows: in Section 2 we give a
brief description of the AFM and the AM and some limita-

! This subsumes the parallelization (while processing different messages)
offered by the become primitive [1] and enables parallelization while pro-
cessing a single message in actors.

2 Previous versions of HJ and HS supported only the async-finish style
computations without support for actors.

tions of the two models. Section 3 summarizes the syntax of
some of the parallel constructs from these models used in the
rest of the paper. We introduce the proposed unified model
in Section 4, which defines how actors and async-finish
tasks can be integrated. Section 5 presents some of the new
capabilities in the unified model including parallelization of
message processing. In Section 6, we describe our reference
implementations and compare them with implementations of
other JVM based actor frameworks in Section 7. Section 8
discusses related work and we summarize our conclusions
and future work in Section 9.

2. Background
2.1 The Async-Finish Model (AFM)

The AFM is a task parallel model and a variant of the Fork-
Join Model. The central features of any AFM implementa-
tion on multicore architectures include the abilities to cre-
ate lightweight tasks and to efficiently manage the synchro-
nization constraints among tasks. In the AFM, a parent task
can fork (async) multiple child tasks which can execute in
parallel. In addition, these child tasks can recursively fork
even more tasks. A parent/ancestor task can selectively join
(finish) on a subset of child/descendent tasks. The task
executing the join has to wait for all tasks created in the
finish scope to terminate before it can proceed. This is the
primary form of synchronization among tasks in the AFM.
The child tasks are said to execute in the finish scope rep-
resented by the aforementioned join. In the AFM, each task
is guaranteed to have a unique dynamic Immediately Enclos-
ing Finish (IEF) which may be the implicit £ inish construct
for the entire program. An example AFM program is dis-
cussed later in Figure 2.

2.1.1 Desirable Properties

Async-finish style computations are guaranteed to be dead-
lock free [5]. In addition, in the absence of data races, these
programs also have the extremely desirable property that
they are deterministic [21]. Two well-known manifestations
of the AFM can be found in the X10 [5] and Habanero-
Java [4] languages. The new task-parallel constructs in
OpenMP 3.0 [19] also represent a variant of the AFM.

2.2 The Actor Model

The Actor Model (AM) was first defined in 1973 by Carl He-
witt et al. during their research on Artificial Intelligent (AI)
agents [12]. It was designed to address the problems that
arise while writing distributed applications. Further work by
Henry Baker [13], Gul Agha [1], and others added to the
theoretical development of the AM. The AM is different
from task parallelism in that it is primarily an asynchronous
message-based concurrency model. An actor is the central
entity in the AM that defines how computation proceeds.
The key idea is to encapsulate mutable state and use asyn-
chronous messaging to coordinate activities among actors.

An actor is defined as an object that has the capability to
process incoming messages. It has a well-defined life cycle
and restrictions on the actions it performs in the different
states. During its life cycle an actor is in one of the following
three states:

* new: An instance of the actor has been created; however,
the actor is not yet ready to receive or process messages.

* started: An actor moves to this state from the new state
when it has been started using the start operation. It can
now receive asynchronous messages and process them
one at a time. While processing a message, the actor
should continually receive any messages sent to it with-
out blocking the sender.

* terminated: The actor moves to this state from the started
state when it has been terminated and will not process
any messages in its mailbox or new messages sent to it.
An actor signals termination by using the exit operation
on itself while processing some message.

Typically, the actor has a mailbox to store its incoming
messages. Other actors act as producers for messages that go
into the mailbox. An actor also maintains local state which
is initialized during creation. After creation, the actor is only
allowed to update its local state using data from the mes-
sages it receives and from the intermediate results it com-
putes while processing the message. The actor is restricted to
process at most one message at a time. There is no restriction
on the order in which the actor decides to process incom-
ing messages, thereby leading to non-determinism in actor
systems. As an actor processes a message, it is allowed to
change its state and behavior affecting how it processes the
subsequent messages. While processing a message, an actor
may perform a finite combination of the following steps:

1. Asynchronously send a message to another actor whose
address is known;

2. Create a new actor providing all the parameters required
for initialization,;
3. Become another actor, which specifies the replacement

behavior to use while processing the subsequent mes-
sages [20].

2.2.1 Desirable Properties

The only way an actor conveys its internal state to other ac-
tors is explicitly via messages and responses to messages.
This property obtains benefits similar to encapsulation in
object-oriented programming and encourages modularity.
The encapsulation of the local state also helps prevent data
races because only the actor can modify its local state. Due
to the asynchronous mode of communication, the lack of
restriction on the order of processing messages sent from
different actors, and the absence of synchronization via en-
capsulation of local data, actors expose inherent concurrency
and can work in parallel with other actors.

2.3 Limitations of the AFM and the AM

The AFM is well-suited to exploit parallelism from de-
terministic interaction patterns; however many algorithms
and applications involve interaction patterns that are non-
deterministic. For example, in producer-consumer appli-
cations the production or consumption of an individual
item may exhibit deterministic parallelism; however in-
teractions between multiple producers and consumers are
non-deterministic in general. Another example is Quick-
sort which exhibits both deterministic (creating the left and
right fragments around the partition element) and nonde-
terministic (availability of sorted left and right fragments)
forms of task parallelism. General AFM implementations
(e.g. CnC [3], DDFs [28]) cannot exploit the inherent non-
determinism in the arrival of results from the subtasks (see
Figure 3 for an example). The AM can exploit this nonde-
terminism in the arrival of results from subtasks as well as
guarantee synchronized access while computing partial re-
sults. The unified model can be used to exploit both forms
of parallelism fairly simply by creating relatively inexpen-
sive asyncs when required and using actors to manage the
non-determinism in the availability of partial results.

In the AM, simulating non-blocking synchronous replies
requires some amount of effort mainly due to the lack of a
guarantee of when a given message will be processed and the
need to temporarily disable processing of other messages at
the actor waiting for the reply. Similarly, achieving global
consensus among a group of actors is a non-trivial task; for
example, one approach requires implementing coordinator
actors (which can become a sequential bottleneck) for track-
ing the flow of messages in the coordinated actors. Such co-
ordination patterns are simple in the AFM, for example by
using finish to wrap asyncs or by using phasers [26] as
communication barriers. Additionally, these AFM constructs
are implemented in a scalable manner to avoid bottlenecks.

As another example, the pipeline pattern is a natural fit
with the AM since each stage can be represented as an ac-
tor. The single-message-processing rule ensures that each
stage/actor processes one message at a time before hand-
ing it off to the next actor in the pipeline. However, the
amount of concurrency (parallelism) in a full pipeline is lim-
ited by the number of stages. One way to increase the avail-
able parallelism, apart from creating more stages, is to in-
troduce parallelism within the stage, achieved in the unified
model by spawning asyncs. The slowest stage is usually the
bottleneck in a pipeline, increasing the parallelism can help
speed up the slowest stage in the pipeline and improve per-
formance. An example for such a pipeline is the Filterbank
benchmark (from Streamlt [30]) in which the finite impulse
response (FIR) stage is the slowest stage and is discussed
further in Section 3.4.

3. Overview of Parallel Constructs

In this section, we briefly summarize the syntax (in Habanero-
Java and Habanero-Scala) of the parallel constructs we use
in the following sections to explain various features of the
unified model. The three main constructs are:

* async and finish,
* data-driven futures, and

* actors.

In the unified model, each of these constructs has first-class
status and can be arbitrarily composed with the others. We
end this section with a motivating example displaying a
composition of these constructs.

3.1 asyncand finish

In the unified model (and the AFM), tasks are created at
fork points using the async keyword. The statement async
(stmt) causes the parent task to create a new child task to
execute (stmt) (logically) in parallel with the parent task [4].
The scheduling of tasks created by asyncs on actual threads
is done by the runtime and is transparent to the user and to
the tasks in the program.

| TASK-A }

—

2B L Task-C O

Figure 1: Fork-Join Parallelism achieved by forking
new tasks and joining before proceeding. Note that un-
til all forked tasks (Task A, Task B, Task BIl, and Task
B2) reach the join point, Task C cannot be executed.
[source=http://www.coopsoft.com/ar/ForkJoinArticle.html].

I /#%% Habanero—Java code s/

> public class ForkJoinPrimer {

3 // An implicit global finish wraps main() which

4 // must wait for all nested tasks to terminate
public static void main(String args[]) {

6 System.out.println(”Task O”); // Task—O

finish {
8 async { // Task—A
9 System.out.println(”Task A”);

1 async { // Task-B

12 System.out.println(”Task B");

13 async { // Task—Bl created by Task—B
14 System.out.println(”Task B17);

16 async { // Task—B2 created by Task—B

17 System.out.println(”Task B27);

18 } } }// Wait for tasks A, B, Bl and B2 to finish
19 System.out.println(”Task C”); // Task—C

Figure 2: HJ version of the Fork-Join program from Figure 1

The finish keyword is used to represent a join opera-
tion. The task executing finish (sfmf) has to wait for all
child tasks created inside (stmt) to terminate before it can
proceed. A program is allowed to terminate when all tasks
nested inside the global finish terminate. Figure 2 shows
an example HJ program using the async and finish con-
structs to represent the fork and join constraints of tasks in
Figure 1.

3.2 Data-Driven Futures (DDFs)

DDFs are an extension to futures to support the dataflow
model [28]. They support a single assignment property in
which each DDF must have at most one producer and any
async can register on a DDF as a consumer causing the ex-
ecution of the async to be delayed until a value becomes
available in the DDF. There are three main operations al-
lowed on a DDF:

* put (some-value): associates a value with the DDF.
Only a single put () is allowed on the DDF during the
execution of the program.

* await (): used by asyncs to delay their execution until
some other task has put () a value into the DDF.

* get(): used to retrieve the value stored in the DDF.
It can legally be invoked by a task that was previously
awaiting on the DDF. This guarantees that if such a task
is now executing, there was already a put () and the DDF
is now associated with a value.

The exact syntax for an async waiting on DDFs is as fol-
lows: asyncAwait(ddf1, ., ddfN) (stmt). Figure 3
shows the implementation of Quicksort using asyncs and
DDFs.

3.3 Actors

In the unified model, actors are defined by extending an ac-
tor base class. Concrete sub-classes are required to imple-
ment the method used to process messages’. Actors are like
other objects and can be created by a new operation on con-
crete classes. An actor is activated by the start () method,
after which the runtime ensures that the actor’s message pro-
cessing method is called for each message sent to the ac-
tor’s mailbox. The actor can terminate itself by calling the
exit () method while processing a message. Messages can
be sent to actors from actor code or non-actor code by in-
voking the actor’s send () method using a call as follows,
someActor.send(aMessage). A send () operation is non-
blocking and the recipient actor processes the message asyn-
chronously. As in the AM, there are no guarantees on the
order of message delivery in the unified model. However, in
our implementations (HJ and HS) the runtime preserves the
order of messages with the same sender task and receiver ac-
tor, but messages from different senders may be interleaved

3 This method is named process() in HJ light actors while it is named
act () and behavior () in HS heavy and light actors, respectively.

1 /++% Habanero—Scala code s/

> object QuicksortApp extends HabaneroApp {
val input: ListBuffer[Int] = ...

4 val resDdf = ddf[ListBuffer[Int]]()

s finish {

6 asyncAwait(resultDdf) {

7 val sortedList = resDdf.get()

10 quicksort (input, resDdf)

o}
private def quicksort(data, resultDdf) = {
14 if (data.length < 1) {
15 resultDdf. put(data)
16 } else {
17 val pivot = ...
18 val (ddfL, ddfR) = (ddf(), ddf())
19 async { // asynchronously sort left fragment
20 quicksort(filter(<, data, pivot), ddfL)
21
22 async { // asynchronously sort right fragment
23 quicksort(filter(>, data, pivot), ddfR)
24
25 val eqs = filter(==, data, pivot)
26 asyncAwait(ddfL, ddfR) {
27 // wait for both left and right to complete
28 val res = ddfL.get() ++ eqs ++ ddfR.get()
29 resultDdf . put(res)
B

Figure 3: HS version of Quicksort using DDFs. The async at
line 26 is triggered only after a value is put into both the DDFs
(at line 15 or line 29 by the recursive calls) it is awaiting on. As
mentioned in Section 2.3, we cannot nondeterministically precom-
pute partial results depending on whether the left or right fragments
are available early.

in an arbitrary order. This is similar to the message order-
ing provided by ABCL [35]. Figure 4 shows a HelloWorld
example using HJ actors.

I /#+% Habanero—Java code s/
> public class HelloWorld {
public static void main(final String[] args) {
4 final UnifiedActor printActor = new PrintActor();
5 finish {
6 printActor.start();
7 printActor.send (" Hello™);
8 printActor.send ("World™);
9 actor.send (PrintActor.STOP_MSG);
10 } // wait until actor terminates
1 System.out.println(”PrintActor has terminated”);

2})

14 class PrintActor extends UnifiedActor {

15 static final Object STOP_MSG = new Object();
16 protected void process(final Object msg) {
17 if (STOP_MSG.equals(msg)) {

18 exit();

19 } else {

20 System.out.println(msg);

BERE!

Figure 4: HelloWorld using HJ actors. We are guaranteed or-
dered sends, i.e. though Hello and World will be processed asyn-
chronously, they will be processed in that order.

1 /#+% Habanero—Scala code s/
> object FilterBankApp extends HabaneroApp {
finish {

4
val sampler = ...
6 val fir = new FirFilter (...,

9!

9 class FirFilter (..., nextStage: UnifiedActor)
10 extends UnifiedActor {

1
12 def behavior() = {

13 case FirItemMessage(value, coeffs) =>
14

sampler).start ()

15 val numHelpers = ... // number of helper tasks
16 /] allocate the DDFs to use

17 val stores = Array.tabulate(numHelpers) {

18 index => ddf[Double]() }

19 finish {

20 // compute the sum using divide—and—conquer
21 (0 until numHelpers) foreach { helperId =>
2 val myDdf = stores(helperId)
async {
24 val (start, end) = ...
25 var sum: Double = 0.0
26 start until end foreach { index =>
sum += buffer(index) * coeffs(index)

29 myDdf . put(sum)

by

/! wait for the partial results
asyncAwait(stores) {

34 // propagate the sum down the pipeline
35 val sum = stores.foldLeft(0.0) {

36 (acc, loopDdf) => acc + loopDdf.get()

38 nextStage.send(DataltemMessage(sum))

Figure 5: HS version of the FIR stage in the Filter Bank pipeline.
In this example, the computation of the dot product between the
coefficients and a local buffer has been parallelized to speedup this
stage in the application.

3.4 Composing the constructs

We now discuss an example application in which these
constructs can be composed in ways that cannot easily be
achieved with current programming models. This example,
shown in Figure 5, is the FIR stage of the Filter Bank appli-
cation. The application represents a pipeline and each of the
stages can be represented using actors. The FIR stage is the
slowest stage in the pipeline and limits the pipeline rate, the
performance can be improved by speeding up this stage by
parallelizing it. We do so by partitioning the computation of
the dot product using asyncs (line 23 in the example). Each
async computes the dot product of a partition before writ-
ing back the result into its assigned DDF (line 29), avoiding
the possibility of a data races. The async at line 33 awaits
on the results in the DDFs to be available before computing
the final result and propagating the value to the next stage in
pipeline. All the spawned asyncs between line 22 and line
39 join to their IEF, the finish at line 19. This ensures the
FIR stage does not start processing the next message until it
has completed processing the current message and has prop-

agated values to the next stage in the pipeline. While such
parallelism in the FIR stage could be simulated in the AM,
it requires distributing the logic among multiple actors and
significantly complicates the code as the actor representing
the FIR stage needs to maintain additional state to track the
arrival of partial results and maintain the order of values it
passes along the pipeline (the AM does not guarantee the
order in which messages will be serviced). In addition, there
will be overhead associated with the data copying required
to send the data fragments to the helper actors. Compar-
atively, the use of asyncs and finish avoids such draw-
backs making the code easier to maintain and helping with
productivity.

4. The Unified Model

Although both the AFM and AM have existed as indepen-
dent parallel programming models for a while now, we are
unaware of previous efforts to systematically combine these
two models. We integrate the AFM and the AM so as to get
the benefits of actor coordination construct in the AFM and
also of parallelizing message-processing within actors. In
this section, we describe how actor message processing and
async-finish tasks can be integrated in the unified model
and the benefits of this integration.

4.1 Coordination of Actors in the Unified Model

Integrating actors and tasks requires understanding how the
actor life cycle interacts with task creation and termination
events. The creation of an actor is a simple operation and
can be performed synchronously inside the task executing
the action. Similarly, terminating the actor is a synchronous
operation that can be effected by an actor on itself while it
is processing a message. Once an actor enters the terminated
state, it avoids processing any messages sent to it without
blocking the sender (such messages are effectively no-ops
and do not need to be placed in the mailbox). Since tasks
always execute inside an enclosing finish scope, both these
operations are easily mapped to the AFM. The more interest-
ing case is handling the actions of the actor while it is active
in the started state and processing messages.

Starting an actor activates it and allows it to continu-
ously receive messages and to process these messages one
at a time. This operation can hence be represented as an
asynchronous task whose body is a long-running loop which
keeps processing one message at a time from its mailbox un-
til it is terminated. This newly spawned asynchronous task
inherits the IEF (as per normal async-finish semantics) of
the task which started the actor. The long-running loop in
the task enforces the IEF to block until all actors started in-
side it terminate. In Section 6.1 we present the lingering task
technique which avoids having to explicitly use the long-
running loop mentioned above (with its accompanying over-
heads when the mailbox is empty).

I /% +% Habanero—Java code s/
> public class HelloWorld2 {
public static void main(final String[] args) {

4 final UnifiedActor printActor = new PrintActor ()<
5 async {

6 finish { // F1, IEF for printActor

8 printActor.start(); // similar to an async
9

10 }

11 System.out.println(” PrintActor terminated”);
1

13 async {

14 finish { // F2

15

16 /l task T2

17 printActor.send (" Hello”);

18 printActor.send (”"World”);

19 printActor.send (PrintActor.STOP_MSG);

. !

System.out.println(”Done sending messages”);

send(“Hello”)

Figure 6: HelloWorld example with printActor, executing in
finish scope F1, receiving messages from a different finish
scope, F2.

We now discuss the actions to be performed after the ac-
tor has started and is receiving and processing messages. By
definition, actors process the messages they receive asyn-
chronously. This translates to the creation of a new task
that processes the message and runs in parallel with the task
that initiated the send of the message. Under normal async-
finish semantics, this means that both these tasks share the
same IEF. Now, consider the case where an actor is receiv-
ing messages from a task/actor executing in a different IEF,
as shown in Figure 6. Under normal async-finish seman-
tics, when T2 sends a message to printActor it places the
message in printActor’s mailbox and creates a new task,
say T3, to process this message. This causes F2 to unneces-
sarily (and incorrectly) block until T3 completes. Since the
message will end up in printActor’s mailbox, the process-
ing of the message is done by printActor and semantically
T3 should have F1 as its IEF as opposed to F2. Hence, when
T2 sends a message to printActor, the new asynchronous
task must be spawned in the finish scope of printActor.
In the unified model, this generalizes to all asynchronous
tasks spawned to process a message inheriting the IEF of

the recipient actor. Note that this ability to attach a different
finish scope while spawning a task is a feature of the uni-
fied model which is unavailable in the general AFM. The use
of newly spawned tasks to send messages is also facilitated
by the fact that no message-ordering restrictions apply in the
AM and these spawned tasks can thus be executed in any or-
der. In addition, since the new task inherits the £inish scope
of the recipient actor, it allows the sender to be any arbitrary
task executing under the unified model.

Mapping the entire life cycle of actors into the AFM
provides a clean and transparent mechanism to detect the
termination of actors. Some actor implementations on the
Java VM (JVM) (e.g., Scala Actors library [10], Kilim [27],
Jetlang [23]) require the user to write explicit code to detect
whether an actor has terminated before proceeding with the
rest of the code in the control flow. A common pattern is
to explicitly use countdown latches and wait on the latch
until the count reaches zero. In programs written using the
AFM, a similar effect is achieved by joining tasks inside
their £inish scope without the programmer having to worry
about low-level synchronization constructs such as latches.
Consequently, mapping actors to a finish scope provides
a transparent mechanism to detect actor termination and
relieves the user from writing boiler plate code.

Figure 7 shows a simple PingPong example using the
unified actors and the £inish construct to detect termination
easily. The Scala version (7a) needs to maintain a 1atch and
pass it around to the different actors, while the main thread
waits on the latch. In addition, actors need additional logic
to decrement the count on the latch. The use of such shared
latches breaks the pure actor model by not encapsulating
state. On the other hand, the unified model example (7b)
benefits from the finish construct. Terminating the actor
using the call to exit notifies the IEF that the actor has
terminated and the statements following the £ inish are free
to proceed (when all other spawned tasks inside the finish
scope have also completed). The actor no longer worries
about the cross-cutting concern of invoking methods on a
latch.

4.2 Desirable Properties

Actors in the unified model continue to encapsulate their lo-
cal state and process one message at a time. Thus the benefits
of modularity are still preserved. Similarly, the data locality
properties of the AM continue to hold. Actors also introduce
a means of a new coordination construct in the AFM in ad-
dition to the existing constructs such as futures, DDFs, and
phasers. With actors inside the AFM, it is now possible to
create arbitrary computation DAGs impossible in the pure
AFM. Since actors have been integrated into the AFM, ac-
tors can co-exist with any of the other constructs in the AFM,
and they can be arbitrarily nested. The implementation of the
receive operation using DDFs (mentioned in Section 5.2)
is an example of this.

I /#%% Scala code w#xx/
> object ScalaActorApp extends App {

3 val latch = new CountDownLatch(2)

4 val pong = new PongActor(latch).start()

5 val ping = new PingActor(msgs, pong, latch).start()
6 ping ! StartMsg

7 latch .await ()

§ println(”Both actors terminated™)

10 // class PingActor not displayed
i1 class PongActor(latch: CountDownLatch) extends Actor {
12 var pongCount = 0

13 def act() {

14 loop { react {

15 case PingMessage =>

16 sender ! PongMessage

17 pongCount = pongCount + 1
18 case StopMessage =>

19 latch .countDown ()
20 exit('stop)

arr ot}
(a) Actor Model (Scala)

| /=++ Habanero—Scala code =/
> object LightActorApp extends HabaneroApp {
finish
4 val pong = new PongActor().start ()
val ping = new PingActor(msgs, pong).start ()
6 ping.send(StartMessage())

§ println(”Both actors terminated™)

10 // class PingActor not displayed

11 class PongActor extends UnifiedActor {
12 var pongCount = 0

13 override def behavior() = {

14 case PingMessage(sender) =>

15 sender.send (PongMessage ())

16 pongCount = pongCount + 1

17 case StopMessage =>

18 exit ()

0} }
(b) Unified Model (Habanero-Scala)

Figure 7: Implicit actor termination detection using finish in the
unified model (Figure 7b). Note the elegant syntax for Habanero-
Scala with pattern matching as opposed to the use of instanceof
which are required in Habanero-Java.

5. New Capabilities in the Unified Model

With the unified model in place, there are a number of
constructs that can now be supported in the AFM. The key
to each of these constructs is the ability to reason about the
enclosing finish under which the actors execute. Some of
these constructs are presented below.

5.1 Parallelization inside Actors

The requirement that the actor must process at most one
message at a time is often misunderstood to mean that the
processing must be done via sequential execution. In fact,
there can be parallelism exposed even while processing mes-
sages as long as the invariant of processing at most one mes-
sage at a time is maintained. One advantage of integrating
the AFM and the AM is that it allows us to use async-
finish constructs inside the message-processing code to
expose this parallelism. There are two main ways in which
this is achieved, discussed below:

* Using finish constructs during message processing and

* Allowing escaping async tasks.

5.1.1 Using finish during message processing

The traditional actor model already ensures that the actor
processes one message at a time. Since no additional restric-
tions are placed on the message-processing body (MPB),
we can achieve parallelism by creating new async-finish
constructs inside the MPB. In this approach, we can spawn
new tasks to achieve the parallelism at the cost of block-
ing the original message-processing task at the new finish.
Since the main message-processing task only returns after
all spawned tasks inside the finish have completed, the
invariant that only one message is processed at a time is
maintained. Figure 8 shows an example code snippet that
achieves this. Note that there is no restriction on the con-
structs used inside the newly constructed finish. As such,
all the async-finish compliant coordination constructs can
also be used.

e

Habanero—Scala code s/

> class ParallelizedActor() extends UnifiedActor {
override def behavior() = {

4 case msg: SomeMessage =>

5 // optional preprocessing of the message

6 finish { // ensures spawned tasks complete

7 async { ... /% processing in parallel =/ }

8 async { ... /x more parallel processing =/ }

9

10 // optional post processing after finish

11

I

Figure 8: An actor exploiting the async-f inish parallelism inside
actors message-processing body. The nested finish ensures no
spawned tasks escape, thereby ensuring that an actor does not
process multiple messages at a time.

5.1.2 Allowing escaping asyncs during message
processing

Requiring all spawned asyncs to be contained in a single
MPB instance is too restrictive. This constraint can be re-
laxed based on the observation that the ar most one message-
processing rule is required to ensure there are no internal
state changes of an actor being affected by two or more
message-processing tasks of the same actor. As long as this
rule is obeyed, escaping asyncs (tasks) can be allowed in-
side the MPB. We can achieve this invariant by introducing
a paused state in the actor life cycle and by adding two new
operations: pause and resume. In the paused state, the ac-
tor is not processing any messages from its mailbox. The
actor is simply idle as in the new state; however, the actor
can continue receiving messages from other actors. The ac-
tor will resume processing its messages, at most one at a
time, when it returns to the started state. The pause oper-
ation takes the actor from a started state to a paused state
while the resume operation achieves the reverse. The actor

is also allowed to terminate from the paused state using the
exit operation. The pause and resume operations are sim-
ilar to the wait and notify operations in Java threads for
coordination. Similar to the restriction that thread coordina-
tion operations can only be executed by the thread owning
the monitor, pause and resume operations on an actor can
only be executed in tasks spawned within an actor either ex-
plicitly by the user or implicitly by the runtime to process
messages (e.g., the MPB task). However, unlike the thread
coordination operations neither the pause nor the resume
operations are blocking, they only affect the internal state of
the actor that coordinates when messages are processed from
the actor’s mailbox.

exit

TERMINATED

exit

start

STARTED

pause resume

PAUSED

Figure 9: Actor life cycle extended with a paused state. The actor
can now continually switch between the started and paused states
using the pause and resume operations.

With the two new operations, we can now allow spawned
tasks to escape the MPB task. These spawned tasks are safe
to run in parallel with the next message-processing task of
the same actor as long as they are not concurrently affecting
the internal state of the actor. The actor can be suspended
in a paused state while these spawned tasks are executing
and can be signaled to resume processing messages once the
spawned tasks determine they will no longer be modifying
the internal state of the actor and hence not violating the
one message-processing rule. Figure 10 shows an example in
which the pause and resume operations are used to achieve
parallelism inside the MPB while delaying the processing of
the next message in the actor’s mailbox.

| /#%% Habanero—Scala code %/

> class EscapingAsyncsActor () extends UnifiedActor {
override def behavior() = {

! case msg: SomeMessage =>

5 async { /= do some processing in parallel =/ }

6 /! preprocess the message
pause () // delay processing the next message
8 // pause/resume is not thread blocking
9 async {
10 // do some more processing in parallel
§ // safe to resume processing other messages
12 resume ()
13 // some more processing

15} }

Figure 10: An actor exploiting parallelism via asyncs while avoid-
ing an enclosing finish. The asyncs escape the MPB, but the
pause and resume operations control processing of subsequent
messages by the actor.

Unfortunately, the ability to spawn new tasks inside the
actor’s MPB creates the potential to introduce data races,

since multiple tasks can be working on the actor’s local data.
In fact, data races are also possible in AM implementations
which do not guarantee data isolation. We plan on extending
the Scalable Parallel Dynamic Datarace Detection (SPD3)
algorithm [22] for the AFM to the unified model for data race
detection. Introducing the pause and resume operations
also increases the possibility of reaching deadlocks. If an
actor is never resumed after it has been paused, the actor will
never terminate and hence the IEF will block indefinitely.
Like the AM, under the unified model it is required that
every actor terminate, e.g., by a call to exit. Terminating
actors explicitly is required so that the IEF for an actor does
not block indefinitely.

5.2 Non-blocking receive operations

Implementing the synchronous receive operation* often in-
volves blocking and can limit scalability in virtual machines
that do not allow explicit call stack management and con-
tinuations. For example, the implementation of receive in
the Scala actor library involves blocking the currently exe-
cuting thread and degrades performance. The alternate ap-
proach requires use of exceptions to unwind the stack and
maintain control flow, as in Scala’s react construct, and is
also relatively expensive.

I /##++ Habanero—Scala code %/

> class ActorPerformingReceive extends UnifiedActor {
override def behavior() = {

4 case msg: SomeMessage =>

6 val theDdf = ddf[ValueType]()

7 anotherActor ! new Message(theDdf)

8 pause () // delay processing next message

9 asyncAwait(theDdf) {

10 val responseVal = theDdf.get ()

11 // process the current message

12

13 resume () // enable next message processing

14 }

15 // return in paused state
6})

Figure 11: An actor in the unified model that uses Data-Driven Fu-
tures (DDFs) to perform the receive operation without blocking.
The actor that processes the message needs to perform a put of a
value on the DDF to trigger the waiting async (in asyncAwait).
When the async is triggered, the actor processes the value in the
DDF and performs the resume operation to continue processing
subsequent messages.

With the support for pause and resume, the receive op-
eration can now be implemented in the unified model with-
out blocking threads or using exceptions. This requires sup-
port of the DDF coordination construct. DDFs allow the ex-
ecution of the async to be delayed until a value is avail-
able in the DDF. A DDF can be passed along to the actor
which fills the result on the DDF when it is ready. Mean-
while the actor that sent the DDF can pause and create an
async which waits for the DDF to be filled with a value

4 Synchronous receives are called now type messages in ABCL [35].

and can resume itself. Figure 11 shows an example of a
non-blocking receive implementation. This presents an in-
stance of the sender and the recipient actors coordinating
with each other without explicit message-passing and thus
violates the pure AM. Non-blocking receives present an
excellent case in which constructs from the two different
models, AFM and AM, can work together to ease the im-
plementation of other nontrivial constructs. Figure 16 intro-
duces syntactic sugar that can be used to implement the syn-
chronous receive operation.

5.3 Stateless Actors

Stateless actors can process multiple messages simultane-
ously since they maintain no mutable internal state. It is
easy to create such actors in the unified model using escap-
ing asyncs as shown in Figure 12. There is no need to use
the pause operation, and the escaping async tasks can pro-
cess multiple messages to the same actor in parallel. State-
less actors can be used to implement concurrent reads in a
data structure which would not be possible in most actor im-
plementations since the message-processing would be com-
pletely serialized.

1 /#%+x Habanero—Scala code /
> class StatelessActor() extends ParallelActor {
override def behavior() = {

1 case msg: SomeMessage =>
5 async { processMessage(msg) }
6 if (enoughMessagesProcessed) { exit() }
// return immediately to process next message
s} }

Figure 12: A simple stateless actor created using the unified model.
The message processing body spawns a new task to process the cur-
rent message and returns immediately to process the next message.
Because the async tasks are allowed to escape, the actor may be
processing multiple messages simultaneously.

6. Implementation

We developed two implementations of the unified model
described in Section 4, namely Habanero-Java (HJ) and
Habanero-Scala (HS). We extended both HJ and HS to in-
clude the unified actor coordination construct. In our imple-
mentations, any of the AFM compliant constructs can be ar-
bitrarily nested with these unified actors and vice versa. Both
the actor implementations rely on the use of lingering tasks
to integrate actors into the AFM. We explain the lingering
tasks technique before introducing the two implementations.

6.1 Lingering Tasks

Section 4.1 explained how to map actors to tasks. There
starting an actor was likened to a long-running asynchronous
task processing one message at a time. However, such a
long-running task would waste resources as it would be
involved in some sort of busy waiting mode until a message
arrives. The purpose of this long-running task is to attach the

actor’s MPB to an IEF; a more efficient technique is to use a
lingering task.

A lingering task is a task with an empty body that attaches
itself to an IEF like a normal asynchronous task spawned
inside a finish scope. Thus, the finish scope is aware of
the existence of this task and will block until the task is
scheduled and executed. However, the lingering task does
not make itself available for scheduling immediately (unlike
normal asynchronous tasks) and thus forces the IEF to block
under the constraints of the AFM>. At some later point in
time, the lingering task will be scheduled and executed,
allowing the finish scope to complete execution and move
ahead.

The lingering task provides a hook into its finish scope
that may be used to spawn more tasks. All these spawned
tasks execute under the same IEF as the lingering task. When
a unified actor is started, a lingering task is created by the
runtime and stored in the actor. This allows the actor to con-
tinue spawning subsequent tasks under the same IEF when it
asynchronously processes messages sent to it. When the ac-
tor terminates, the runtime schedules the lingering task for
execution. Once the lingering task has been scheduled, the
actor stops creating any further asynchronous tasks realiz-
ing that the IEF may no longer be available to spawn tasks.
This is consistent with the notion that termination of an actor
is a stable property, and the actor is not allowed to process
messages once it terminates. Any messages sent to a termi-
nated actor are ignored and no task is created to process the
message.

6.2 Habanero-Java

Habanero-Java (HJ) already provides AFM constructs, we
extended HJ with an actor coordination construct which we
refer to as light actors. Light actors support all the features
in the unified model discussed in Section 5. Light actors are
started using a call to start() and the MPB is triggered
only on the messages they receive. Light actors do not use
exceptions to manage the control flow and require the user
to implement a process () method to determine the steps
to execute while processing a message. If any uncaught ex-
ception is thrown by process(), then the actor terminates
itself by calling exit () and the exception is collected by its
enclosing finish scope which then throws a MultiExcep-
tion [5]. An actor can explicitly terminate itself by calling
exit () while processing a message.

The implementation of light actors relies on the use of
data-driven controls to implement the mailbox. The mailbox
supports a push-based implementation where asyncs are
created without the runtime having to poll (i.e. pull-based)
the actor’s mailbox to decide when to launch an async to
process messages.

3 A finish scope can only complete after all its transitively spawned tasks
have completed.

6.2.1 Data-Driven Controls (DDCs)

A Data-Driven Control (DDC) lazily binds a value and a
block of code called the execution body (EB). When both
these are available a task that executes the EB using the value
is scheduled. Both the value and the EB follow the dynamic
single assignment property ensuring data-race freedom. Un-
til both fields are available, the scheduler is unaware of the
existence of the task. Figure 13 shows a simplified imple-
mentation of a DDC excluding synchronization constructs.
The DDC may be implemented using an asynchronous or
a synchronous scheduler. Light actors use both forms of
DDCs: asynchronous execution of the task by involving the
Habanero scheduler and synchronous execution of the EB.

I /#%% Habanero—Java code s/
> class DataDrivenControl {
private ValueType value = null;
4 private ExecBody execBody = null;

6 void addValue(ValueType theValue) {
] if (!valueAvailable()) {

8 value = theValue;
9 // resume awaiting task
10 if (execBody != null) {

11 execBody.scheduleWith(value);

EE N

14 void addResumable(ExecBody theBody) {

if (valueAvailable()) {

16 // value is available , execute immediately
17 theBody.scheduleWith(value);

18 } else {

19 /! need to wait for the value

20 execBody = theBody;

2} 1}

@

Figure 13: Simplified implementation of a DDC not including syn-
chronization constructs or validations. Both the value and the exe-
cution body can be lazily attached. The execution body determines
whether scheduling happens synchronously or asynchronously.

DDCs differ from Tagirlar’s DDFs [28] in that only a
single task may be associated with a value at a time. DDFs
apply the dynamic single assignment property only to the
value and allow multiple tasks to be waiting for the value.
In addition, the scheduler is aware of the existence of these
data-driven tasks (DDTs) and causes the finish scopes of
the tasks to block until the DDTs are scheduled. In contrast,
with DDCs the scheduler is unaware of the existence of the
task until it is scheduled, and only then will it schedule and
execute the task. This may lead to issues with the finish
scope of the activity in the asynchronous scheduler, but we
will see below that coupling the DDC with the lifespan of
the lingering task avoids the potential problem.

6.2.2 The Mailbox: Linked List of DDCs

The mailbox for the light actors is implemented as a linked
list of DDCs (Figure 14). As messages are sent to the actor,
the chain of DDCs are built with each message populating
the value field of a DDC. The linked list is concurrent and
multiple messages can be sent to an actor safely. Light actors

guarantee that the order of the messages sent from the same
actor will be preserved in the mailbox. No guarantee is pro-
vided for the order of messages in the mailbox for messages
sent from different actors.

Iy I Inl

W

body head

message head

J

H_

Figure 14: The actor mailbox is represented as a linked list of
DDCs. The message head determines where the next message is
stored, while the body head determines which message is being
processed currently.

Once the actor has started (via the call to start()), it
proceeds to traverse the messages in the mailbox, one at
a time, lazily attaching some execution logic as the EB of
the DDC. As each EB executes it attaches new execution
logic to the next DDC in the list. Since at any time only
one DDC is actively executed, the guarantee that only one
message is processed at a time is provided. Attempts are
made to synchronously execute the EB when messages are
available in the DDC. If a message is unavailable at the DDC
pointed by the body head (Figure 14), the EB is set up to
execute asynchronously in a task when a message arrives.
The lingering activity gains access to the finish scope
to which this asynchronous task needs to join. When the
asynchronous task is ultimately scheduled and executed, the
body head of the mailbox is moved ahead and the next DDC
processed. If the actor was terminated via a call to exit ()
in the EB of the DDC the actor stops processing messages
from its mailbox, no more asynchronous tasks are scheduled
by the actor, the lingering task is scheduled and subsequent
messages sent to the actor are ignored.

6.2.3 Supporting pause and resume with DDCs

Light actors support the pause and resume operations ex-
plained in Section 5.1.2 using synchronous DDCs. A call
to pause () changes the state of the actor to paused. Be-
fore processing the next message in the mailbox, we check
whether the actor is in a paused state. If so, the next message
from the mailbox is not processed. Instead, a block of code
to process the next message from the mailbox is created and
set as the EB of a pause-resume DDC. When resume () is
called, the state of the actor is reset, and the pause-resume
DDC is provided a value to synchronously trigger the exe-
cution of the EB.

6.3 Habanero-Scala

Habanero-Scala (HS) is an extension of the Scala lan-
guage [18] with AFM compliant constructs. In HS, the AFM

constructs were added as a library and an existing actor im-
plementation (standard Scala actors) extended to support the
unified model. We refer to these unified actors as heavy ac-
tors. Heavy actors provide support the operations presented
in the unified model excluding the pause and resume op-
erations. In addition, we have also ported the light actor
implementation into HS.

An important reason to choose Scala is its support for
powerful abstractions to express various programming con-
structs. One such construct, pattern-matching, is an elegant
way to write actor code since the MPB needs to pattern-
match on the messages received by the actor. Scala also has
a relatively lenient constraint on the naming of methods,
which coupled with its expressiveness makes it extremely
easy to create domain-specific languages. This allows for
easy transition of HJ constructs into Scala without the need
to build a front-end compiler. Most of the Habanero work-
sharing runtime can be reused in HS since both HJ and Scala
run on the Java Virtual Machine.

6.3.1 Heavy Actors

Heavy actors are an extension of the standard Scala actors.
These are called heavy actors since their implementation
involves more overhead than the light actors presented in
Section 6.2. To support operations like receive (called
react for event-based Scala actors) and to avoid blocking,
Scala actors throw exceptions to roll back the call stack and
to allow the underlying thread to process messages of other
actors. The need to throw and then ultimately catch these
exceptions, even without the overhead of building the stack
trace, is relatively expensive compared to an implementation
that does not rely on the use of exceptions for control flow.

I /#%% Habanero—Scala code
> package edu.rice.habanero

i trait HabaneroActor extends Actor {

6 /1 custom scheduler to create asynchronous

7 // tasks under IEF of lingering activity

8§ var lingeringActivity: HabaneroActivity = null
9 val habaneroExecutor =

10 override def scheduler = habaneroExecutor

12 override def start() = {

13 // activity causes the IEF to wait on this actor
14 lingeringActivity =

15 // delegate to the parent implementation

16 super.start ()

18 override def exit(): Nothing = {
19 /! schedule activity allowing IEF to terminate

20 resumeWaitingActivity(lingeringActivity)
21 // delegate to the parent implementation
2 super.exit ()

Figure 15: Heavy actors in HS extend the standard Scala Actor
trait. The start and exit events are used to maintain some book-
keeping for the heavy actors and to interact with the Habanero
runtime to schedule and execute tasks. The lingering activity is
explained in Section 6.1.

The heavy actor in HS is implemented as a trait that
extends the standard Scala Actor trait (Figure 15). HS heavy
actors do not support the pause and resume operations
explained in Section 5.1.2. However, they support all the
other AFM compliant constructs inside the MPB including
finish, async, futures, etc. HS heavy actors still need to
rely on exceptions for control flow and explicit management
of the actor continuations, both implemented in the standard
actors, and are thus more expensive to operate than the
corresponding light actors.

6.3.2 Light Actors

HS also includes an implementation of light actors. They
extend the features of HJ light actors by using Scala’s pat-
tern matching construct to represent the message processing
body. While the pattern matching construct is more elegant
it also entails a performance penalty compared to using sim-
ple instanceof checks used in the HJ actor implementa-
tion. Pattern matching also allows us to abstract away the
synchronous reply operation (Section 5.2) so that the user
does not have to manually manage the calls to pause () and
resume () as shown in Figure 16.

I /#%% Habanero—Scala code %/

> abstract class HabaneroReactor extends Actor[Any] {
// updated as each reply message is processed

4 private var replyDdf: DataDrivenFuture[Any] = null

s def reply(msg: Any): Unit = {

6 if (replyDdf ne null) {

7 replyDdf . put(msg)

8 } else {

9 // report error

0} 3}

1 def awaitReply(receiver: HabaneroReactor, msg:Any,

12 handler: PartialFunction[Any, Unit]): Unit = {

13 // create DDF and message to send to the actor

14 val replyMsg = new ReplyMessage(msg, ddf[Any]())

15 // disable processing messages from the mailbox
16 receiver.send (replyMsg); pause()

17 // await reply from the receiver actor

18 asyncAwait(replyMsg.replyDdf) {

19 // process the response message

20 handler (replyDdf. get())

21 // continue processing further messages
2 resume ()

I

Figure 16: Light actors in HS abstract away the synchronous reply
operation, end-users use the awaitReply () and reply () method
invocations in their actor code.

HS light actors also support the become and unbecome
operations. The become primitive specifies the behavior that
will be used by the actor to process the next message allow-
ing the actor to dynamically change its behavior at runtime.
If no replacement behavior is specified, the current behavior
will be used to process the next message. In the pure AM,
actors are functional and the become operation provides the
ability for the actor to maintain local state by creating a new
actor and becoming this new actor. In Scala, the same ef-
fect can be achieved by having dynamic pattern matching

constructs which work in conjunction with mutable member
variables.

HS light actors support the become and unbecome opera-
tions to allow the actor to change its behavior as it processes
messages. In addition, the light actor is required to define
the behavior () operation that provides a default behavior
to use while processing messages. All these behaviors are
presented as partial functions which Scala provides native
support for. The behavior history is maintained in a stack and
the old behavior can be retrieved by an unbecome operation.
The support for become and unbecome is an improvement
over the standard Scala actors in which the user has to rely
on manipulation of local state or explicit management of be-
haviors to simulate the same operations. If at any point, the
current behavior cannot process a message (i.e. the partial
function is not defined for the message), that actor terminates
and throws an exception by default; users can customize this
and avoid throwing exceptions and terminating.

7. Experimental Results

The actor frameworks used for comparison with our imple-
mentations all run on the JVM and include Jetlang [23],
Kilim [27], Scala actors [10], and Akka [31]. Jetlang pro-
vides a low-level messaging API in Java that can be used
to build actors with the onus of ensuring the single message
processing rule delegated to the user. The use of batching
while processing actor messages instead of creating a new
asynchronous task to process each message in our imple-
mentation of /ight actors is inspired by Jetlang. Kilim is an
actor implementation that ensures data isolation as required
in the AM. Our actor implementations, however, do not sup-
port data isolation in messages. Scala includes an actor li-
brary that provides event-based actors which allow multiple
actors to run on a thread. Our actor API is inspired from
Scala’s event-based actors, however we do not use excep-
tions to maintain control flow and use a push-based imple-
mentation using DDCs for light actors. Akka is a framework
for building event-driven applications on the JVM and has
support for highly performant lightweight actors. We chose
not to include Erlang [34] since it does not run on the JVM,
but has already been shown to have performance competitive
to Kilim and Jetlang [15].

7.1 Experimental Setup

The benchmarks were run on a 12-core (two hex-cores)
2.8 GHz Intel Westmere SMP node with 48 GB of RAM
per node (4 GB per core), running Red Hat Linux (RHEL
6.0). Each core had a 32 kB L1 cache and a 256 kB L2
cache. The software stack includes a Java Hotspot JDK 1.7,
Habanero-Java 1.3.1, Habanero-Scala 0.1.3, and Scala 2.9.1-
1. Each benchmark used the same JVM configuration flags
(-Xmx8192m -XX:MaxPermSize=256m -XX:+UseParallelGC

-XX:+UseParallel01dGC -XX:-UseGCOverheadLimit) and
was run for ten iterations in ten separate JVM invocations,

the arithmetic mean of thirty execution times (last three
from each invocation) are reported. This method is inspired
from [8] and the last three execution times are used to ap-
proximate the steady state behavior. In the bar charts, the
error bars represent one standard deviation. All actor im-
plementations of a benchmark use the same algorithm and
mostly involved renaming the parent class of the actors (in
the Scala and Habanero-Scala versions) to switch from one
implementation to the other.

7.2 Microbenchmarks comparing Actor frameworks

150

100

50 |-

Average Execution Time (in secs)

Number of pings (in millions)

—0— Jetlang —m— Kilim —— Akka
—&— Standard Scala —a— HS heavy —e— HS light

(a) Scala versions which use pattern matching.

20 |- N

10 |- -

Average Execution Time (in secs)

Number of pings (in millions)

—o— Jetlang —m— Kilim
—o— Akka —e— HJ light

(b) Java versions which use instanceof operator.

Figure 17: The PingPong benchmark exposes the throughput and
latency while delivering messages. There is no parallelism to be
exploited in the application.

The first benchmark (Figure 17) is the PingPong bench-
mark in which two processes send each other messages back
and forth. The benchmark was configured to run using two

workers since there are two concurrent actors. This bench-
mark tests the overheads in the message delivery implemen-
tation for actors. The original version of the code was ob-
tained from [29] and ported to use each of the different ac-
tor frameworks. Scala actors and HS heavy actors have the
same underlying messaging implementation but use differ-
ent schedulers. The HS heavy actors benefit from the thread
binding support in the Habanero runtime. HS light actors
perform better than Scala and HS heavy actors because it
avoids the use of exceptions to maintain control flow (as dis-
cussed in Section 6.3.1). Both the Scala and Java versions
of Kilim, Jetlang, Akka and light actors benefit from avoid-
ing generating exceptions to maintain control flow. The Java
versions follow the same pattern with Akka and light actors
performing the best. In general, the Akka and /ight actor ver-
sions benefit from the use of fork-join schedulers as opposed
to threadpool schedulers available in standard implementa-
tions of Kilim and Jetlang actors. Jetlang’s Scala version is
much slower than the Java version as the Scala implementa-
tion pays the overhead for pattern matching twice as opposed
to once in Kilim, Akka and light actors.

The Chameneos benchmark, shown in Figure 18, tests the
effects of contention on shared resources (the mailbox im-
plementation) while processing messages. The Scala imple-
mentation was obtained from the public Scala SVN reposi-
tory [11]. The other actor versions were obtained in a man-
ner similar to the PingPong benchmark. The benchmark
was run with 500 chameneos (actors) constantly arriving
at a mall (another actor) and it was configured to run us-
ing twelve workers. The mailbox implementation of the mall
serves as a point for contention. In this benchmark, the bene-
fits of thread binding are neutralized since the contention on
the mailbox is the dominating factor and since both the Scala
and HS heavy actors share the same implementation they
show similar performance. Both the Scala and Java versions
of Kilim, Jetlang, Akka and light actors benefit from batch-
processing messages inside tasks and from avoiding generat-
ing exceptions to maintain control flow. The light actor im-
plementations that uses DDCs (Section 6.2.1) outperforms
the linked list implementation in actors. Jetlang, which uses
iterative batch-processing of messages sent to the mall, is in
general faster than the light actor implementation which uses
recursive batch processing of messages.

The Java Grande Forum Fork-Join benchmark [7],
shown in Figure 19, measures the time taken to create and
destroy actor instances. Each actor does a minimal amount
of work processing one message before it terminates. The
Akka implementation is noticeably slower while the Jetlang
implementation quickly runs out of memory as it uses an
ArrayList to maintain the work queue. The heavy actor
implementation again benefits from thread binding support
compared to standard Scala actors. The light actor imple-
mentation which uses lightweight async tasks to implement
actors performs best.

Py
2 100 |- —
2
8
Q
£
=
5
= 50 [1
=
Q
o
]
4]
5]
[T}
<
=
2
< o |
| | | | |

2 4 6 8 10

Number of meetings (in millions)

—m— Kilim —— Akka
—&— Standard Scala —a— heavy —@— HS light

—o— Jetlang

(a) Scala versions which use pattern matching.

40 |- N

20 |- -

Average Execution Time (in secs)

| | | | |
2 4 6 8 10

Number of meetings (in millions)

—o— Jetlang —m— Kilim
—— Akka —e— HJ light

(b) Java versions which use instanceof operator.

Figure 18: The Chameneos benchmark exposes the effects of con-
tention on shared resources. The Chameneos benchmark involves
all chameneos constantly sending messages to a mall actor that co-
ordinates which two chameneos get to meet. Adding messages into
the mall actor’s mailbox serves as a contention point.

200 3

150 |-

100 -

50 |-

Average Execution Time (in secs)

| | | | |
2 4 6 8 10

Number of tasks forked (in millions)

—0— Jetlang —m— Kilim —— Akka
—&— Standard Scala —a— HS heavy —e— HS light

(a) Scala versions which use pattern matching.

150 [- ‘ ‘]

100 - n

Average Execution Time (in secs)

| | | | |
2 4 6 8 10

Number of tasks forked (in millions)

—o— Jetlang —m— Kilim
—o— Akka —e— HJ light

(b) Java versions which use instanceof operator.

Figure 19: The Java Grande Forum Fork-Join benchmark ported
for actors. Individual invocations were configured to run using
twelve workers. Both Jetlang versions run out of memory on larger
problem sizes.

7.3 Application Benchmarks

In this section, we compare the performance of the actor
frameworks on applications displaying different parallel pat-
terns. We also analyze the benefits of parallelizing the actor
message processing in the unified model in some applica-
tions. Each application benchmark was run with the sched-
ulers set up to use 12 worker threads.

7.3.1 General Applications Compared

Figure 20 displays results of running different applications
using the different actor frameworks. The first two applica-
tions, Sudoku Constraint Satisfaction (Sudoku-CS) and Pi

Precision (PiPrec), represent master-worker style actor pro-
grams where the master incrementally discovers work to be
done and allocates work fragments to the workers. Work-
ers only have at most one message pending in their mail-
box and there is no scope for batch processing messages.
The master is the central bottleneck in such applications and
all frameworks perform similarly. The next application, All-
Pairs Shortest Path (APSP), represents a phased computation
where all actor effectively join on a barrier in each iteration
of the outermost loop in Floyd-Warshall’s algorithm before
proceeding to the next iteration. In each iteration the slow-
est actor dominates the computation and as a result we see
similar execution times for all the frameworks.

The next three applications have relatively larger mem-
ory footprints and we see the benefits of thread binding as
well as efficient implementation for throughput. HS heavy
is faster than standard Scala actors. Similarly the light and
Akka actors outperform the other actor frameworks. The ac-
tor implementation of Successive Over-Relaxation (SOR)
represents a 4-point stencil computation and was ported
from SOTER [32]. The next two applications, Concurrent
Sorted Linked-List (CSLL) and Prime Sieve (PSieve), use
a pipeline pattern to expose some parallelism. CSLL mea-
sures the performance of adding elements, removing ele-
ments, and performing collective operations on a linked-list.
The implementation maintains a list of helper actors with
each actor responsible for handling request for a given value
range for individual element operations. Collective oper-
ations, such as length or sum, are implemented using a
pipeline starting from the head of the list of the helper actors
and only the tail actor returning a response to the requester.
There are multiple request actors requesting various oper-
ations on the linked-list and non-conflicting requests are
processed in parallel. The PSieve application represents a
dynamic pipeline in which a fixed number of local primes
are buffered in each stage. Every time the buffer overflows,
a new stage is created and linked to the pipeline, thus grow-
ing the pipeline dynamically. There is overhead in filling
and draining items in the pipeline for each stage and thus
a buffered solution with multiple primes per stage performs
better.

In summary, the geometric means of the execution times
in seconds for the different actor frameworks in sorted or-
der are as follows: HS light (8.47), Akka (9.51), HS heavy
(14.35), Kilim (15.99), Jetlang (16.64), and standard Scala
(21.59). The HS light is more than 10% faster than Akka
and more than 33% faster than the other actor frameworks
while using sequential message processing in actors.

7.3.2 Quicksort

Quicksort lends itself to divide-and-conquer strategy and is
a good fit for the AFM, however as mentioned in Section 2.3
it exposes some amount of non-determinism in availability
of partial results which cannot entirely be captured by the
AFM. Figure 21 compares the unified actor implementations

Sudoku-CS
|
T

| [Ha7s
H 31.93

i

[
LLtiiiii 31 . 91
W W W W W .

PiPrec
|
T

|1IiliiiiiiIiIiiiiiiiiiiiiiiiiiiiIiiiiiiiiiiiiiiiiiiiIiiiiiiiiiiIiIiliiiiiiiiiiliiiiiiiiiiiiiiiilﬁi 31.97

1107070700700 700700700700770770770770770770770770770777772777277 31.19
nsTsnhisiiiiiiiiiiiiiiviioiiiiiiiioiiiiioivoiioiipiioipoiipipoipoinpnponnaa, .

LT A O TTTITITITIN 29-65

APSP
!

T
100000000000000000000000000 19,46
A A

NS
NN
NN
NN
NN
NN
NN
N
N
N
N
N
NN
NN
NN
NN
NN
NN
N
NN
N
NN
N
NN
NN
N
NN
N
NN
NN
NN

SOR
!

LT T T T TVITITITITITN 28-09

i j 23.71

CSLL
!
ot
T

PSieve

Y1177 7777777777777 7777 7
27077727727272727222227227

7777777777777777277777727772727777772777777,
A 14.55

N
N
N
N
N
N
N
N

N

0 5 10 15 20 25 30 35 40 45
Average Execution Time (in secs)

17 Jetlang = Kilim [Akka Standard Scala HS heavy

HS light

* Sudoku-CS: Sudoku Constraint Satisfaction * SOR: Successive Over Relaxation
* PiPrec: Pi Precision * CSLL: Concurrent Sorted Linked List
* APSP: All-Pairs Shortest Path (Floyd-Warshall) * PSieve: Prime Sieve

Figure 20: Comparison of implementations of some applications using different JVM actor frameworks (Scala version).

CLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL LT
LLL 14.91
CLLUCLLLLULCULLLCLLLLLLLLLLLLLLLLLLLLLLLD .
LL,

11 million

77777777772777272277222227272227227727

0 5 10 15
11 Jetlang E= Kilim
I Akka Standard Scala
[1HJ DDFs HS heavy (sequential)

HS heavy (parallel) HS light (sequential)
HS light (parallel)

Figure 21: Results of the Quicksort benchmark on input of length
11 million.

in HJ with previously existing async-finish extensions
such as isolated and DDFs. Pure actor implementations in
HJ involve sequential message-processing. The light actor
implementation is faster than the DDF-based implementa-
tion as it can make progress computing the partial result from
fragments. In the unified model, parallelization inside the ac-
tor is achieved by performing the left and right splits around
the partition in parallel for arrays with sizes larger than a
configured threshold. The parallelized unified actor imple-
mentations perform better than the implementation that use
sequential message processing by around 10% and 14% for
light and heavy actors, respectively. The HS light (parallel)
actor is the best-performing and is around 10% faster than
other actor implementations and more than 23% faster than
DDF implementation.

7.3.3 Filter Bank for multirate signal processing

Filter Bank has been ported from the Streamlt [30] set of
benchmarks. It is used to perform multirate signal processing
and consists of multiple pipeline branches. On each branch
the pipeline involves multiple stages including multiple de-
lay stages, multiple FIR filter stages, and sampling. Since
Filter Bank represents a pipeline, it can easily be imple-
mented using actors. The FIR filter stage is stateful, appears
early in the pipeline, and is a bottleneck in the pipeline. Par-
allelizing the computation of the weighted sum to pass down
the pipeline in this FIR stage shortens the critical length of

T T

’ l* 26.22

[|

g ; 43.54
=
<
2 | FLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL i
-
3
= —
s ﬁ::

1550000000000 1724
! ! ! !
0 10 20 30 40 50

Average Execution Time (in secs)

[Jetlang E=Kilim
I Akka Standard Scala

HS light Parallel

Figure 22: Filter Bank benchmark results configured to use three
branches.

the pipeline and helps speed up the application. Figure 22
compares the performance of the actor implementations of
the Filter Bank benchmark with a unified implementation
which parallelizes the FIR stage. The HS light parallel ver-
sion is at least 30% faster than the other actor implementa-
tions.

7.3.4 Online Hierarchical Facility Location

Facility Location algorithms are used to decide when and
where to open facilities in order to minimize the cost of
opening a facility and the cost of servicing customers. In
the online version, the locations of customers are not known
beforehand and the algorithm needs to make these decisions
on-the-fly. One algorithm for this problem is the Online Hi-
erarchical Facility Location [2]. The algorithm exposes a hi-
erarchical tree structure (quadrants in the algorithm) while
performing the computation. Information in the form of cus-
tomer locations initially flows down the tree. In the algo-
rithm, each node maintains a list of customers it plans to
service and this list is partitioned at decision points to form
new child nodes. In addition, the decision to create child
nodes needs to be propagated up the tree and to selected sib-
lings. A speculatively parallel version of this algorithm can
be mapped to use actors. Each actor represents a quadrant
and are arranged in a tree structure. Each quadrant maintains
a cost value as it receives customers. When the threshold is
exceeded, the customers are partitioned and transferred to
newly formed child quadrants. In the unified model async-
finish additional parallelism is achieved while partition-
ing the customers to prepare the child nodes. The pure AM
variants do not support such parallelism while processing a
message and need to split the child nodes sequentially.

I
’ 85.35
i
[
[
[

AR A A A A A AR A A
CbbbbbbbbbbbbEbEEEbEE bbb EEEEEEEE) 08.42 -
CbbbbbbbbbbbbbbbtttbtbbbbbbbbbbbbbbbbbbEEE

3 g
[
[
[

Facility Location
|

| | | | | |
0 20 40 60 80 100 120

Average Execution Time (in secs)

[Jetlang E= Kilim

I Akka Standard Scala

HS heavy Sequential HS light Sequential
HS light Parallel

Figure 23: Online Hierarchical Facility Location benchmark re-
sults. Results displayed for 6 million customers and an alpha value
of 5.

Figure 23 compares the performance of the actor imple-
mentations of the Facility Location benchmark with a uni-
fied implementation. In Online Hierarchical Facility Loca-
tion, parallelism from the unified model is used when a quad-
rant (actor) splits and creates its four children. The split hap-
pens based on a threshold determined by the value of al-
pha, which is an input to the program. A smaller value of
alpha means there are larger number of splits and the tree
is deeper. The performance of the HS light with parallelized
splits is better than the HS light actor implementation by
about 27% and is comfortably better than Jetlang, Kilim,
Akka, and Scala.

8. Related Work

Schifer et al. have proposed the notion of Parallel Actor
Monitors (PAM) [25] to extend the actor model with support
for intra-actor parallelization. In PAM, the end user speci-
fies schedulers, separate from the actor’s message process-
ing body (MPB), that control when an actor is able to pro-
cess multiple messages safely. For example, a scheduler in
PAM might allow an actor to process multiple messages for
read requests in parallel but only allow a single message for a
write request to be in flight by an actor. Similarly, it is trivial
to express stateless actors in PAM by writing a scheduler that
allows all messages to be processed in parallel. In the actor
model, only one message for an actor would be in flight at
a time. Our approach allows us to specify similar intra-actor
parallelism constraints by allowing escaping asyncs but cur-
rently requires modification of the actor’s MPB. Addition-
ally, our model allows expressing parallelization inside the

actor’s MPB, for example, exploiting data parallelism while
processing a message as seen in the Filterbank example in
Figure 5. Such parallelism cannot be expressed with PAM.

The CoBox model [24] proposed by Schafer et al. is in-
spired by the actor model and exposes parallelism among
asynchronously communicating objects. Objects are parti-
tioned into separate concurrently executing CoBoxes and al-
located dynamically but never leave their host CoBox. A
task performs synchronous operations on co-located objects.
CoBoxes can have multiple ready tasks, but actively exe-
cute a single task at a time thus ensuring data race free-
dom. An active task can cooperatively decide to suspend
itself and activate another task in the same CoBox when it
discovers some condition which prevents its progress. This
notion of isolating data into different partitions and coop-
erative execution has also been used by Lublinerman et al.
in the Chorus programming model [16]. Chorus is used for
applications with irregular data parallelism where the parti-
tions, called Object Assemblies, can merge or split dynam-
ically when new data isolation constraints are discovered in
synchronously communicating objects. Our approach differs
from these models in that we can expose parallelism inside
the MPB which would be equivalent to multiple tasks ex-
ecuting simultaneously in a CoBox/Object Assembly, but at
the cost of possible data races. We are planning on extending
the SPD3 algorithm [22] for HJ’s finish, async and isolated
constructs to also detect races in our combination of actor
and task parallelism.

Non-blocking receive operations between actors are avail-
able in the E language [17] under the form of promises to
futures. These are created every time a message is asyn-
chronously sent to an actor. Actions can be registered to the
promise using the when clause; these actions are triggered
when the promise resolves, i.e. when the message sent to
the actor is processed. This is similar to how DDFs work
with the asyncAwait clause. The difference is that in our
model DDFs need to resolved explicitly by putting values
into the DDF, though this resolution could be done automat-
ically by a runtime system in response to certain events such
as when an actor processes a message. AmbientTalk [6], in-
spired from E, also supports creation of futures on message
sends and requires explicit resolution of future values. In ad-
dition to the use of DDFs, the pause and resume operations
in our model allow us to implement non-blocking receive
operations while preventing the next message in an actor’s
mailbox from being processed.

SALSA [33] also supports non-blocking receive opera-
tions using the notion of tokens (similar to implicit futures)
whose resolved value gets passed automatically to registered
actions; the tokens themselves cannot be passed in messages
to other actors. As mentioned previously, in our model DDFs
are resolved explicitly and can be passed around in messages
to other actors. SALSA also support join tokens which can
register an action to execute only after all messages sent in-

side the join token has been processed. In our model we can
achieve this by registering on multiple DDFs. The join block
is also similar to the £inish construct in our model, the dif-
ference being that a statement following a finish may not
execute until all nested async tasks have completed execu-
tion. In SALSA, the join token only delays the execution of
the action registered on the token.

9. Conclusions and Future Work

This paper focuses on a unified model that integrates the
Async-Finish model (AFM) and the Actor model (AM). To
the best of our knowledge, this is the first effort to system-
atically combine these two models. The unified model al-
lows for parallelism inside actors while also making termi-
nation detection easier in actor programs. It also allows ar-
bitrary coordination patterns among tasks in the AFM, in
an arguably more productive manner than other extensions,
such as phasers and DDFs. The unified model allows for eas-
ier implementation of certain constructs: for example, the
normally blocking receive can be implemented in a non-
blocking manner in the unified model. The paper also studies
properties of applications that can benefit from the unified
model.

We also present two implementations of this unified
model in Habanero-Java (HJ) and Habanero-Scala (HS). HJ
is a mature AFM implementation which we extend with
support for the unified actors. On the other hand, HS is an
extension of Scala in which we ported AFM constructs and
modified the existing actor implementation to work under
the unified model. In addition, HS provides a faster actor
implementation than the standard Scala actor library. These
implementations served as tools to run experiments that cor-
roborate the claim that unified solutions to certain problems
are more efficient than solutions that exclusively use the
AFM or the AM.

The unified model suffers from the possibility of data
races when the message processing inside actors is paral-
lelized. In fact, data races can also exist in many actor im-
plementations on the JVM as they do not enforce data isola-
tion. Data race detection in the unified actors is an interesting
area for future research and we plan to extend the SPD3 al-
gorithm [22] for data race detection in the unified model.

Availability

Public distributions of Habanero-Java and Habanero-Scala,
including code examples, are available for download at
http://habanero.rice.edu/hj.html and
http://habanero-scala.rice.edu/, respectively.

Acknowledgments

We are grateful to Vincent Cavé, Dragos Sbirlea and Sagnak
Tagirlar for discussions on the Habanero Java runtime sys-
tem, phasers and DDFs, respectively. We thank Carlos
Varela and Travis Desell for feedback on an earlier draft

of this paper, and for general discussions on designing and
implementing actor languages and runtimes as well as spe-
cific details on the SALSA language. We also thank Philipp
Haller for his feedback on an earlier draft of this paper. Fi-
nally, we are grateful to Jill Delsigne at Rice University for
her assistance with proof-reading an earlier draft of this pa-
per. This work was supported in part by the U.S. National
Science Foundation through awards 0926127 and 0964520.

References

[1] G. Agha. Actors: a model of concurrent computation in
distributed systems. MIT Press, Cambridge, MA, USA, 1986.
ISBN 0-262-01092-5.

[2] A. Anagnostopoulos, R. Bent, E. Upfal, and P. V. Hentenryck.
A simple and deterministic competitive algorithm for online
facility location. Inf. Comput., 194:175-202, November 2004.
ISSN 0890-5401.

[3] Z. Budimli¢, M. Burke, V. Cavé, K. Knobe, G. Lowney,
R. Newton, J. Palsberg, D. Peixotto, V. Sarkar, F. Schlimbach,
and S. Tagirlar. Concurrent Collections. Sci. Program., 18:
203-217, August 2010. ISSN 1058-9244.

[4] V. Cavé, J. Zhao, Y. Guo, and V. Sarkar. Habanero-Java: the
New Adventures of Old X10. 9th International Conference on
the Principles and Practice of Programming in Java (PPPJ),
August 2011.

[5] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An Object-
Oriented Approach to Non-uniform Cluster Computing. SIG-
PLAN Not., 40:519-538, Oct. 2005. ISSN 0362-1340. doi:
10.1145/1094811.1094852.

[6] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D'Hondt,
and W. De Meuter. Ambient-Oriented Programming in Am-
bientTalk. In Proceedings of the 20th European Conference
on Object-Oriented Programming, ECOOP’06, pages 230-
254, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3-540-
35726-2, 978-3-540-35726-1. doi: 10.1007/11785477_16.
URL http://dx.doi.org/10.1007/11785477_16.

[71 EPCC. The Java Grande Forum Multi-threaded Bench-
marks. URL http://www2.epcc.ed.ac.uk/computing/
research_activities/java_grande/threads/
slcontents.html.

[8] A. Georges, D. Buytaert, and L. Eeckhout. Statistically Rigor-
ous Java Performance Evaluation. In Proceedings of the 22nd
annual ACM SIGPLAN conference on Object-oriented pro-
gramming systems and applications, OOPSLA °07, pages 57—
76, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-
786-5.

[9] M. 1. Gordon, W. Thies, and S. Amarasinghe. Exploit-
ing Coarse-Grained Task, Data, and Pipeline Parallelism in
Stream Programs. SIGOPS Oper. Syst. Rev., 40:151-162, Oc-
tober 2006. ISSN 0163-5980.

[10] P. Haller and M. Odersky. Scala Actors: Unifying
thread-based and event-based programming. Theo-
retical Computer Science, 410(2-3):202-220, 2009.
ISSN 0304-3975. doi: 10.1016/.tcs.2008.09.019. URL
http://www.sciencedirect.com/science/article/

http://habanero.rice.edu/hj.html
http://habanero-scala.rice.edu/
http://dx.doi.org/10.1007/11785477_16
http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/threads/s1contents.html
http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/threads/s1contents.html
http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/threads/s1contents.html
http://www.sciencedirect.com/science/article/pii/S0304397508006695

pii/S0304397508006695. Distributed Computing Tech-
niques.

[11] Haller, Philipp. chameneos-redux.scala — Fish-
Eye: browsing scala-svn, 2011. URL https:
//codereview.scala-lang.org/fisheye/browse/
scala-svn/scala/branches/translucent/docs/
examples/actors/chameneos-redux.scala?hb=true.

[12] C. Hewitt, P. Bishop, and R. Steiger. Artificial Intelligence A
Universal Modular ACTOR Formalism for Artificial Intelli-
gence. Proceedings of the 3rd International Joint Conference
on Artificial Intelligence, Stanford, CA, August 1973.

[13] Hewitt, Carl and Baker, Henry G. Actors and Continu-
ous Functionals. Technical report, Massachusetts Institute of
Technology, Cambridge, MA, USA, February 1978.

[14] Imam, Shams and Sarkar, Vivek. Habanero-Scala: Async-
Finish Programming in Scala. In The Third Scala Workshop
(Scala Days 2012), April 2012.

[15] R. K. Karmani, A. Shali, and G. Agha. Actor Frameworks
for the JVM Platform: A Comparative Analysis. In Proceed-
ings of the 7th International Conference on Principles and
Practice of Programming in Java, PPPJ 09, pages 11-20,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-598-
7. doi: 10.1145/1596655.1596658. URL http://doi.acm.
org/10.1145/1596655.1596658.

[16] R. Lublinerman, S. Chaudhuri, and P. Cerny. Parallel Pro-
gramming with Object Assemblies. In Proceedings of the 24th
ACM SIGPLAN conference on Object oriented programming
systems languages and applications, OOPSLA °(09, pages 61—
80, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-
766-0. doi: 10.1145/1640089.1640095. URL http://doi.
acm.org/10.1145/1640089.1640095.

[17] M. S. Miller, E. D. Tribble, and J. Shapiro. Concurrency
Among Strangers: Programming in E as Plan Coordination. In
Proceedings of the 1st International Conference on Trustwor-
thy Global Computing, TGC’05, pages 195-229, Berlin, Hei-
delberg, 2005. Springer-Verlag. ISBN 3-540-30007-4, 978-3-
540-30007-6. URL http://dl.acm.org/citation.cfm?
id=1986262.1986274.

[18] M. Odersky, P. Altherr, V. Cremet, I. Dragos, G. Dubochet,
B. Emir, S. Mcdirmid, S. Micheloud, N. Mihaylov, M. Schinz,
and et al. An Overview of the Scala Programming Language
Second Edition. System, (Section 2):15-30, 2006.

[19] OpenMP Architecture Review Board. OpenMP Applica-
tion Program Interface - Version 3.0 May 2008. URL www.
openmp . org/mp-documents/spec30. pdf.

[20] N. Raja and R. K. Shyamasundar. Actors as a Coordinating
Model of Computation. In Proceedings of the 2nd Interna-
tional Andrei Ershov Memorial Conference on Perspectives
of System Informatics, pages 191-202. Springer-Verlag, 2004.
ISBN 3-540-62064-8.

[21] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav. Ef-
ficient Data Race Detection for Async-Finish Parallelism. In
Proceedings of the First international conference on Runtime

verification, RV’ 10, pages 368-383, Berlin, Heidelberg, 2010.
Springer-Verlag. ISBN 3-642-16611-3, 978-3-642-16611-2.

[22] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav. Scal-
able and Precise Dynamic Data Race Detection for Structured
Parallelism. In PLDI, 2012.

[23] Rettig, Mike. jetlang: Message based concurrency for Java.
URL http://code.google.com/p/jetlang/.

[24] J. Schifer and A. Poetzsch-Heffter. JCoBox: Generalizing
Active Objects to Concurrent Components. In Proceedings
of the 24th European conference on Object-oriented pro-
gramming, ECOOP’10, pages 275-299, Berlin, Heidelberg,
2010. Springer-Verlag. ISBN 3-642-14106-4, 978-3-642-
14106-5. URL http://dl.acm.org/citation.cfm?id=
1883978.1883996.

[25] C. Scholliers, E. Tanter, and W. D. Meuter. Parallel Actor
Monitors. In I14th Brazilian Symposium on Programming
Languages, 2010.

[26] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer.
Phasers: a Unified Deadlock-Free Construct for Collective
and Point-to-Point Synchronization. In Proceedings of the
22nd annual international conference on Supercomputing,
ICS 08, pages 277-288, New York, NY, USA, 2008. ACM.
ISBN 978-1-60558-158-3.

[27] S. Srinivasan and A. Mycroft. Kilim: Isolation-Typed Ac-
tors for Java (A Million Actors, Safe Zero-Copy Communica-

tion). European Conference on Object Oriented Programming
ECOOP 2008, 5142/2008:104—128, 2008.

[28] S. Tasirlar and V. Sarkar. Data-Driven Tasks and their Imple-
mentation. In Proceedings of the International Conference on
Parallel Processing (ICPP) 2011, September 2011.

[29] The Scala Programming Language. pingpong.scala. URL
http://wuw.scala-lang.org/node/54.

[30] W. Thies, M. Karczmarek, and S. P. Amarasinghe. Streamlt:
A Language for Streaming Applications. In Computational
Complexity, pages 179-196, 2002.

[31] Typesafe Inc. Akka. URL http://akka.io/.

[32] UIUC. SOTER project. URL http://osl.cs.uiuc.edu/
soter/.

[33] C. Varela and G. Agha. Programming Dynamically Re-
configurable Open Systems with SALSA. ACM SIGPLAN
Notices, 36(12):20-34, Dec. 2001. ISSN 0362-1340. doi:
10.1145/583960.583964. URL http://doi.acm.org/10.
1145/583960.583964.

[34] R. Virding, C. Wikstrom, M. Williams, and J. Armstrong.
Concurrent programming in ERLANG (2nd ed.). Prentice Hall
International (UK) Ltd., Hertfordshire, UK, UK, 1996. ISBN
0-13-508301-X.

[35] A. Yonezawa, J. Briot, and E. Shibayama. Object-Oriented
Concurrent Programming in ABCL/1. In Conference pro-
ceedings on Object-oriented programming systems, languages
and applications, OOPLSA 86, pages 258-268, New York,
NY, USA, 1986. ACM. ISBN 0-89791-204-7. doi: 10.
1145/28697.28722. URL http://doi.acm.org/10.1145/
28697 .28722.

http://www.sciencedirect.com/science/article/pii/S0304397508006695
https://codereview.scala-lang.org/fisheye/browse/scala-svn/scala/branches/translucent/docs/examples/actors/chameneos-redux.scala?hb=true
https://codereview.scala-lang.org/fisheye/browse/scala-svn/scala/branches/translucent/docs/examples/actors/chameneos-redux.scala?hb=true
https://codereview.scala-lang.org/fisheye/browse/scala-svn/scala/branches/translucent/docs/examples/actors/chameneos-redux.scala?hb=true
https://codereview.scala-lang.org/fisheye/browse/scala-svn/scala/branches/translucent/docs/examples/actors/chameneos-redux.scala?hb=true
http://doi.acm.org/10.1145/1596655.1596658
http://doi.acm.org/10.1145/1596655.1596658
http://doi.acm.org/10.1145/1640089.1640095
http://doi.acm.org/10.1145/1640089.1640095
http://dl.acm.org/citation.cfm?id=1986262.1986274
http://dl.acm.org/citation.cfm?id=1986262.1986274
www.openmp.org/mp-documents/spec30.pdf
www.openmp.org/mp-documents/spec30.pdf
http://code.google.com/p/jetlang/
http://dl.acm.org/citation.cfm?id=1883978.1883996
http://dl.acm.org/citation.cfm?id=1883978.1883996
http://www.scala-lang.org/node/54
http://akka.io/
http://osl.cs.uiuc.edu/soter/
http://osl.cs.uiuc.edu/soter/
http://doi.acm.org/10.1145/583960.583964
http://doi.acm.org/10.1145/583960.583964
http://doi.acm.org/10.1145/28697.28722
http://doi.acm.org/10.1145/28697.28722

	Introduction
	Background
	The Async-Finish Model (AFM)
	Desirable Properties

	The Actor Model
	Desirable Properties

	Limitations of the AFM and the AM

	Overview of Parallel Constructs
	async and finish
	Data-Driven Futures (DDFs)
	Actors
	Composing the constructs

	The Unified Model
	Coordination of Actors in the Unified Model
	Desirable Properties

	New Capabilities in the Unified Model
	Parallelization inside Actors
	Using finish during message processing
	Allowing escaping asyncs during message processing

	Non-blocking receive operations
	Stateless Actors

	Implementation
	Lingering Tasks
	Habanero-Java
	Data-Driven Controls (DDCs)
	The Mailbox: Linked List of DDCs
	Supporting pause and resume with DDCs

	Habanero-Scala
	Heavy Actors
	Light Actors

	Experimental Results
	Experimental Setup
	Microbenchmarks comparing Actor frameworks
	Application Benchmarks
	General Applications Compared
	Quicksort
	Filter Bank for multirate signal processing
	Online Hierarchical Facility Location

	Related Work
	Conclusions and Future Work

