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Thesis	
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Our thesis is that advances in task parallel runtime 
systems can enable a macro-dataflow programming 
model, like Concurrent Collections (CnC), to deliver 
productivity and performance on modern multicore 
processors.	





Approach	
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  Macro-dataflow for expressiveness	


 Determinism	


 Race/deadlock freedom	


 Higher level abstraction	



  Task parallel runtimes for performance	


 Portable scalability 	



 Contemporary consensus	





Motivation	
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  Parallelism not accessible to those who need it most	


  Imposed serial thinking	


 Parallelism for the masses, not just computer scientists	



  Parallel programming models of today:	


 Hide machine details but expose parallelism details	


 Constrain expressiveness	





Contributions	
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  Scheduling CnC on Habanero Java ★	



  Evaluation of scheduling performance for CnC ★	



  Introduction of Data Driven Futures (DDF) construct	



  Implementation of DDF construct	



  Implementation and evaluation of data driven runtime 
with DDFs	



★	

Zoran Budimlić, Michael Burke, Vincent Cavé, Kathleen Knobe, Geoff Lowney, Ryan Newton, 
Jens Palsberg, David Peixotto, Vivek Sarkar, Frank Schlimbach, Sağnak Taşırlar, “The CnC 
Programming Model ”, submitted for publication to the Journal of Supercomputing, 2010	





Outline	
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  Background	



  CnC Scheduling	



  Data Driven Futures	



  Results	



  Wrap up	





Dynamic Task Parallelism	
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  Properties	


 Over exposure of parallelism	


 Scales up/down with # of cores	


 Scheduling maps sets of tasks to threads at runtime	



  Habanero Java (HJ) employs:	


 Finish/async parallelism	



 Feeds child tasks through lexical scope	



 Work sharing/stealing runtime scheduling	





CnC concepts	
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Collection	


Graphical 	


Notation	



Textual	


Notation	



Step	

 (SomeStep)	



Item	

 [SomeItem]	



Tag	

 <Tag>	



[SomeItem]	



<Tag>	



(SomeStep)	



  Step	


  Computation abstraction	


  Side effect free	


  Functional w.r.t. input	


  Special step: Environment	



  Item	


  Dynamic single 

assignment	


  Value not storage	



  Tag	


  Data tag to index items	


  Control tag to index steps	





Concurrent Collections model	
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  Can be classified as:	


 Declarative	


 Deterministic	


 Dynamic single assignment	


 Macro-dataflow	



 Coordination language	



  Goal: consider only semantic ordering constraints	


  Inherent in the application not the implementation	


 Will be described by the CnC graph	





Example Program Specification���
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“aaa”	


“ff”	



“qqq”	


“mmmmmmm”	



“aaa”	



“qqq”	


“mmmmmmm”	



Input 
string	



Sequences of repeated 
characters	



Filtered 
sequences	



  Break up an input string	


 Sequences of repeated single characters	



  Filter allowing only	


 Sequences of odd length	



“aaaffqqqmmmmmmm”	
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[input: 1] = “aaaffqqqmmmmmmm”	


[input: 2] = “rrhhhhxxx”	


…	



[input: j]	

 [results: j, s]	

(createSpan: j)	

 (processSpan: j, s)	



<stringTag: j>	

 <spanTag: j, s>	



[span: j, s]	

 (processSpan: j, s)	

 [results: j, s]	



<stringTag: 1>	


<stringTag: 2>	


…	



[span: 1, 1] = “aaa”	



[span: 1, 2] = “ff”	



[span: 1, 3] = “qqq”	



[span: 1, 4] = “mmmmmmm”	



[results: 1, 1] = “aaa”	



[results: 1, 3] = “qqq”	


[results: 1, 4] = “mmmmmmm”	



<spanTag: 1, 1>	



CnC Implementation of Example 
Program	



<spanTag: 1, 2>	


<spanTag: 1, 3>	


<spanTag: 1, 4>	



Collection	

 Graphical 	

 Textual	



Step	

 ( … )	



Item	

 [ … ]	



Tag	

 < … >	



[ ]	



( )	



<>	





CnC-Habanero Java build model	
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Code to invoke the graph	



Code to put initial values in graph	


Code to implement abstract steps	



Abstract classes for all steps	



Definitions for all collections	


Graph definition and initialization	



Concurrent 
Collections 

Library	



Habanero Java 
Runtime 
Library	



Concurrent Collections 
Textual Graph	



Habanero Java 
source files	



Habanero Java 
source files	



.class files	



JAR Builder	



Java application	


User specified	



CnC compiler	

CnC Translator	



CnC Components	





Outline	
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  Background	



  CnC Scheduling	



  Data Driven Futures	



  Results	



  Wrap up	





CnC Scheduling Challenges	
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  Control & data dependences are first level constructs	


 Task parallel frameworks have them coupled	



  Step instances have multiple predecessors	


 Need to wait for all predecessors	


 Layered readiness concepts	



 Control dependence satisfied	


 Data dependence satisfied	


 Schedulable / Ready	





Eager scheduling	
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  Assume control dependence satisfaction is readiness	


 Conforms to task parallel runtime assumption	



  Wait till data dependences satisfaction for safety	


 Block on data prematurely tried to be read	


 Discard task reading prematurely, replay when data arrive	





  Use Java wait/notify for premature data access	


  Blocking granularity	



  Instance level vs Collection level	



  Blocked task blocks whole thread	


 Deadlock possibility	


 Need to create more threads as threads block	



Blocking Eager CnC Schedulers	
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ThreadΕ	



step1	



Get (data-tagγ)	


ItemCollectionΘ	



data-tagα	


data-tagβ	

 valueβ	



valueα	


wait	



ThreadΔ	



step2	

Put(data-tagγ,valueγ)	


notify	



time	



data-tagγ	

 placeHolderγ	

valueγ	





  Alternative eager scheduling	



  Blocking scheduler suffers from	


 Expensive recovery from premature read	



 Blocks whole thread	


 Creates new thread	


 Switch context to the new thread on every failure	



  Inform item instance on failed task and discard task	


 Throw an exception to unwind failed task	



 Catch by runtime and continue with another ready task	


 Recreate task when needed item arrives	



Data Driven Rollback & Replay	
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Data Driven Rollback & Replay	
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ThreadΕ	



step1	



Get (data-tagγ)	


ItemCollectionΘ	



data-tagα	


data-tagβ	

 valueβ	



valueα	



ThreadΔ	



step2	


Put(data-tagγ,valueγ)	



waitlistα	


waitlistβ	



data-tagγ	

 empty	

 waitlistγ	



Insert step1 to 
waitlistγ 	



Throw exception to 
unwind	



step3	



Recreate steps on 
waitlistγ  	



step1	



Get (data-tagγ)	



Get (data-tagδ)	



valueγ	





  Do not create tasks until data dependences satisfied	


 No failure, no recovery	


 Restrict computation frontier to ready tasks	



  Evaluation of data readiness condition	


 Busy waiting on data (delayed async scheduling)	


 Dataflow like readiness (data driven scheduling)	



 Register tasks on data	


 Data notifies consumer tasks when created	



Data Driven Scheduling	
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  Delayed async handling for work stealing scheduler	



  Guarded execution construct for HJ	


 Promote to async when guard evaluates to true	



Delayed Asyncs	
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Work Sharing Ready Task Queue	



asyncA	



asyncB	



asyncZ	



Delayed?	



Pop a Task	



Assign to thread	



Yes	



No	



Evaluate guard	



Is true?	



Yes	



Requeue	



No	





  Every CnC step is a guarded execution	


 Guard condition is the availability of items to consume	


 Task still created eagerly when provided control	


 Promotes to ready when data provided	



Delayed Async Scheduling	
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Outline	
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  Background	



  CnC Scheduling	



  Data Driven Futures	



  Results	



  Wrap up	





  Task parallel synchronization construct 	


 Acts as a reference to single assignment value	



  Creation	


 Create a dangling reference object	



  Resolution ( Put )	


 Resolve what value a DDF is referring to	



  Registration ( Await )	


 A task provides a consume list of DDFs on declaration	


 A task can only read DDFs that it is registered to	



Data Driven Futures (DDFs)	
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Data Driven Futures (DDFs)	
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DataDrivenFuture leftChild = new DataDrivenFuture();	


DataDrivenFuture rightChild = new DataDrivenFuture();	


finish {	


    async leftChild.put(leftChildCreator());	


    async rightChild.put(rightChildCreator());	


    async await ( leftChild ) useLeftChild(leftChild);	


    async await ( rightChild ) useRightChild(rightChild);	


    async await ( leftChild, rightChild ) 	


	

 	

 	

useBothChildren( leftChild, rightChild );	



}	





Contributions of DDFs	



  Non-series-parallel task 
dependency graphs 
support	



  Memory footprint 
reduction	


  Exposes only ready parts of 

the execution frontier	


 Not global lifetime	


 Creator: 	



  feeds consumers	


  gives access to producer	



  Lifetime restricted to	


  Creator lifetime	


  Resolver lifetime	


  Consumers lifetimes	



 Can be garbage collected 
on a managed runtime	
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TaskA	



TaskC	



TaskD	



TaskB	



TaskE	



TaskF	





Data Driven Scheduling	
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  Steps register self to items wrapped into DDFs	


TaskM	



PlaceHolderβ	



DDFβ	


DDFα	



TaskN	



DDFα	


Valueα	



DDFβ	

 DDFδ	



✕	



DDFδ	


✕	



create DDFα, DDFβ,  DDFδ 	


TaskC	



create TaskA resolving DDFα	


create TaskM reading DDFα, DDFβ	



create TaskN reading DDFβ,  DDFδ 	



PlaceHolderα	



PlaceHolderδ	



✕	

 DDFβ	



TaskA	



resolve DDFα 	



create TaskD resolving DDFδ	

 TaskD	



resolve DDFδ 	

create TaskB resolving DDFβ	



Valueδ	



TaskA	



ready queue	


TaskD	

 TaskB	



TaskB	



resolve DDFβ 	



Valueβ	



TaskM	

 TaskN	





Outline	
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  Background	



  CnC Scheduling	



  Data Driven Futures	



  Results	



  Wrap up	





Performance Evaluation Legend	
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  Coarse Grain Blocking	


  Eager blocking scheduling on item collections for CnC-HJ	



  Fine Grain Blocking	


  Eager blocking scheduling on item instances for CnC-HJ	



  Delayed Async	


 Data Driven scheduling via HJ delayed asyncs for CnC-HJ	



  Data Driven Rollback & Replay	


  Eager scheduling with replay and notifications for CnC-HJ	



  Data Driven Futures	


 Hand coded CnC application equivalent on HJ with DDFs	





Cholesky Decomposition Introduction	
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  Dense linear algebra kernel	



  Three inherent kernels	


 Need to be pipelined for best performance	


 Loop parallelism within some kernels	


 Data parallelism within some kernels	



  CnC shown to beat optimized libraries, like IntelMKL	





Cholesky Decomposition on Xeon	
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Minimum execution times of 30 runs of single threaded and 16-threaded executions for 
blocked Cholesky decomposition CnC application with Habanero-Java steps on Xeon 
with input matrix size 2000 × 2000 and with tile size 125 × 125	
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Cholesky Decomposition on Xeon	
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Average execution times and 90% confidence interval of 30 runs of single threaded and 16-
threaded executions for blocked Cholesky decomposition CnC application with Habanero-
Java steps on Xeon with input matrix size 2000 × 2000 and with tile size 125 × 125	
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Cholesky Decomposition with MKL on Xeon	
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Minimum execution times of 30 runs of single threaded and 16-threaded executions for 
blocked Cholesky decomposition CnC application with Habanero-Java and Intel MKL 
steps on Xeon with input matrix size 2000 × 2000 and with tile size 125 × 125	
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Cholesky Decomposition with MKL on Xeon	
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Average execution times and 90% confidence interval of 30 runs of single threaded and 16-
threaded executions for blocked Cholesky decomposition CnC application with Habanero Java 
and Intel MKL steps on Xeon with input matrix size 2000 × 2000 and with tile size 125 × 125	
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Cholesky Decomposition on UltraSPARC T2	
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Minimum execution times of 30 runs of single threaded and 64-threaded executions for 
blocked Cholesky decomposition CnC application with Habanero-Java steps on 
UltraSPARC T2 with input matrix size 2000 × 2000 and with tile size 125 × 125	
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Cholesky Decomposition on UltraSPARC T2	
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Average execution times and 90% confidence interval of 30 runs of single threaded and 64-
threaded executions for blocked Cholesky decomposition CnC application with Habanero-
Java steps on UltraSPARC T2 with input matrix size 2000 × 2000 and with tile size 125 × 125	
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Black-Scholes formula	
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  Only one step	


 The Black-Scholes formula	



  Embarrassingly parallel	



  Good indicator of scheduling overhead	





Black-Scholes on Xeon	
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Minimum execution times of 30 runs of single threaded and 16-threaded executions for 
blocked Black-Scholes CnC application with Habanero-Java steps on Xeon with input size 
1,000,000 and with tile size 62,500	



✕8.1	
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Black-Scholes on Xeon	
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Average execution times and 90% confidence interval of 30 runs of single threaded and 
16-threaded executions for blocked Black-Scholes CnC application with Habanero-Java 
steps on Xeon with input size 1,000,000 and with tile size 62,500	
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Black-Scholes on UltraSPARC T2	
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Minimum execution times of 30 runs of single threaded and 64-threaded executions for 
blocked Black-Scholes CnC application with Habanero-Java steps on UltraSPARC T2 with 
input size 1,000,000 and with tile size 15,625	
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Black-Scholes on UltraSPARC T2	
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Average execution times and 90% confidence interval of 30 runs of single threaded and 
64-threaded executions for blocked Black-Scholes CnC application with Habanero-Java 
steps on UltraSPARC T2 with input size 1,000,000 and with tile size 15,625	
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Rician Denoising	
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  Image processing algorithm	


 More than 4 kernels	



 Mostly stencil computations	



 Non trivial dependency graph	


 Fixed point algorithm	



  Enormous data size	


 CnC schedulers needed explicit memory management	


 DDFs took advantage of garbage collection	





Rician Denoising on Xeon	
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Minimum execution times of 30 runs of single threaded and 16-threaded executions for 
blocked Rician Denoising CnC application with Habanero-Java steps on Xeon with input 
image size 2937 × 3872 and with tile size 267 × 484	
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Rician Denoising on Xeon	
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Average execution times and 90% confidence interval of 30 runs of single threaded and 
16-threaded executions for blocked Rician Denoising CnC application with Habanero-Java 
steps on Xeon with input image size 2937 × 3872 and with tile size 267 × 484	
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Rician Denoising on UltraSPARC T2	
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Minimum execution times of 30 runs of single threaded and 64-threaded executions for 
blocked Rician Denoising CnC application with Habanero-Java steps on UltraSPARC T2 
with input image size 2937 × 3872 and with tile size 267 × 484	



✕10.3	

 ✕24.0	

 ✕22.5	
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Average execution times and 90% confidence interval of 30 runs of single threaded and 
64-threaded executions for blocked Rician Denoising CnC application with Habanero-Java 
steps on UltraSPARC T2 with input image size 2937 × 3872 and with tile size 267 × 484	
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Heart Wall Tracking	



  Medical imaging application	


 Nested kernels	



 First level embarrassingly parallel	


 Second level with intricate dependency graph	



  Memory management	


 Many failures on eager schedulers	



 Blocking schedulers ran out of memory	





Heart Wall Tracking on Xeon	
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Minimum execution times of 13 runs of single threaded and 16-threaded executions for 
Heart Wall Tracking CnC application with C steps on Xeon with 104 frames	



✕3.4	

 ✕14.2	
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Heart Wall Tracking on Xeon	
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Average execution times and 90% confidence interval of 13 runs of single threaded and 
16-threaded executions for Heart Wall Tracking CnC application with C steps on Xeon 
with 104 frames	



✕3.3	

 ✕13.9	

 ✕15.5	





Outline	
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  Background	



  CnC Scheduling	



  Data Driven Futures	



  Results	



  Wrap up	





Related work	
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  Alternative parallel programming models:	


 Either too verbose or constrained parallelism	



  Alternative futures, promises	


 Creation and resolution are coupled	


 Either lazy or blocking execution semantics	



  Support for unstructured parallelism	


 Nabbit library for Cilk++ allows arbitrary task graphs	



  Immediate successor atomic counter update for notification	


 Does not differentiate between data, control dependences	





Conclusions	
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  Macro-dataflow is a viable parallelism model	


 Provides expressiveness hiding parallelism concerns	



  Macro-dataflow can perform competitively	


 Taking advantage of modern task parallel models	





Future Work	
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  Compiling CnC to the Data Driven Runtime	


 Currently hand-ported	


 Need finer grain dependency analysis via tag functions	



  Data Driven Future support for Work Stealing	



  Compiler support for automatic DDF registration	



  Hierarchical DDFs	



  Locality aware scheduling support for DDFs	
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