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Thesis	
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Our thesis is that advances in task parallel runtime 
systems can enable a macro-dataflow programming 
model, like Concurrent Collections (CnC), to deliver 
productivity and performance on modern multicore 
processors.	




Approach	
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  Macro-dataflow for expressiveness	

 Determinism	

 Race/deadlock freedom	

 Higher level abstraction	


  Task parallel runtimes for performance	

 Portable scalability 	


 Contemporary consensus	




Motivation	
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  Parallelism not accessible to those who need it most	

  Imposed serial thinking	

 Parallelism for the masses, not just computer scientists	


  Parallel programming models of today:	

 Hide machine details but expose parallelism details	

 Constrain expressiveness	




Contributions	
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  Scheduling CnC on Habanero Java ★	


  Evaluation of scheduling performance for CnC ★	


  Introduction of Data Driven Futures (DDF) construct	


  Implementation of DDF construct	


  Implementation and evaluation of data driven runtime 
with DDFs	


★	
Zoran Budimlić, Michael Burke, Vincent Cavé, Kathleen Knobe, Geoff Lowney, Ryan Newton, 
Jens Palsberg, David Peixotto, Vivek Sarkar, Frank Schlimbach, Sağnak Taşırlar, “The CnC 
Programming Model ”, submitted for publication to the Journal of Supercomputing, 2010	




Outline	
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  Background	


  CnC Scheduling	


  Data Driven Futures	


  Results	


  Wrap up	




Dynamic Task Parallelism	
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  Properties	

 Over exposure of parallelism	

 Scales up/down with # of cores	

 Scheduling maps sets of tasks to threads at runtime	


  Habanero Java (HJ) employs:	

 Finish/async parallelism	


 Feeds child tasks through lexical scope	


 Work sharing/stealing runtime scheduling	




CnC concepts	
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Collection	

Graphical 	

Notation	


Textual	

Notation	


Step	
 (SomeStep)	


Item	
 [SomeItem]	


Tag	
 <Tag>	


[SomeItem]	


<Tag>	


(SomeStep)	


  Step	

  Computation abstraction	

  Side effect free	

  Functional w.r.t. input	

  Special step: Environment	


  Item	

  Dynamic single 

assignment	

  Value not storage	


  Tag	

  Data tag to index items	

  Control tag to index steps	




Concurrent Collections model	
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  Can be classified as:	

 Declarative	

 Deterministic	

 Dynamic single assignment	

 Macro-dataflow	


 Coordination language	


  Goal: consider only semantic ordering constraints	

  Inherent in the application not the implementation	

 Will be described by the CnC graph	




Example Program Specification���
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“aaa”	

“ff”	


“qqq”	

“mmmmmmm”	


“aaa”	


“qqq”	

“mmmmmmm”	


Input 
string	


Sequences of repeated 
characters	


Filtered 
sequences	


  Break up an input string	

 Sequences of repeated single characters	


  Filter allowing only	

 Sequences of odd length	


“aaaffqqqmmmmmmm”	
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[input: 1] = “aaaffqqqmmmmmmm”	

[input: 2] = “rrhhhhxxx”	

…	


[input: j]	
 [results: j, s]	
(createSpan: j)	
 (processSpan: j, s)	


<stringTag: j>	
 <spanTag: j, s>	


[span: j, s]	
 (processSpan: j, s)	
 [results: j, s]	


<stringTag: 1>	

<stringTag: 2>	

…	


[span: 1, 1] = “aaa”	


[span: 1, 2] = “ff”	


[span: 1, 3] = “qqq”	


[span: 1, 4] = “mmmmmmm”	


[results: 1, 1] = “aaa”	


[results: 1, 3] = “qqq”	

[results: 1, 4] = “mmmmmmm”	


<spanTag: 1, 1>	


CnC Implementation of Example 
Program	


<spanTag: 1, 2>	

<spanTag: 1, 3>	

<spanTag: 1, 4>	


Collection	
 Graphical 	
 Textual	


Step	
 ( … )	


Item	
 [ … ]	


Tag	
 < … >	


[ ]	


( )	


<>	




CnC-Habanero Java build model	
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Code to invoke the graph	


Code to put initial values in graph	

Code to implement abstract steps	


Abstract classes for all steps	


Definitions for all collections	

Graph definition and initialization	


Concurrent 
Collections 

Library	


Habanero Java 
Runtime 
Library	


Concurrent Collections 
Textual Graph	


Habanero Java 
source files	


Habanero Java 
source files	


.class files	


JAR Builder	


Java application	

User specified	


CnC compiler	
CnC Translator	


CnC Components	




Outline	
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  Background	


  CnC Scheduling	


  Data Driven Futures	


  Results	


  Wrap up	




CnC Scheduling Challenges	
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  Control & data dependences are first level constructs	

 Task parallel frameworks have them coupled	


  Step instances have multiple predecessors	

 Need to wait for all predecessors	

 Layered readiness concepts	


 Control dependence satisfied	

 Data dependence satisfied	

 Schedulable / Ready	




Eager scheduling	
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  Assume control dependence satisfaction is readiness	

 Conforms to task parallel runtime assumption	


  Wait till data dependences satisfaction for safety	

 Block on data prematurely tried to be read	

 Discard task reading prematurely, replay when data arrive	




  Use Java wait/notify for premature data access	

  Blocking granularity	


  Instance level vs Collection level	


  Blocked task blocks whole thread	

 Deadlock possibility	

 Need to create more threads as threads block	


Blocking Eager CnC Schedulers	

16	


ThreadΕ	


step1	


Get (data-tagγ)	

ItemCollectionΘ	


data-tagα	

data-tagβ	
 valueβ	


valueα	

wait	


ThreadΔ	


step2	
Put(data-tagγ,valueγ)	

notify	


time	


data-tagγ	
 placeHolderγ	
valueγ	




  Alternative eager scheduling	


  Blocking scheduler suffers from	

 Expensive recovery from premature read	


 Blocks whole thread	

 Creates new thread	

 Switch context to the new thread on every failure	


  Inform item instance on failed task and discard task	

 Throw an exception to unwind failed task	


 Catch by runtime and continue with another ready task	

 Recreate task when needed item arrives	


Data Driven Rollback & Replay	
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Data Driven Rollback & Replay	
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ThreadΕ	


step1	


Get (data-tagγ)	

ItemCollectionΘ	


data-tagα	

data-tagβ	
 valueβ	


valueα	


ThreadΔ	


step2	

Put(data-tagγ,valueγ)	


waitlistα	

waitlistβ	


data-tagγ	
 empty	
 waitlistγ	


Insert step1 to 
waitlistγ 	


Throw exception to 
unwind	


step3	


Recreate steps on 
waitlistγ  	


step1	


Get (data-tagγ)	


Get (data-tagδ)	


valueγ	




  Do not create tasks until data dependences satisfied	

 No failure, no recovery	

 Restrict computation frontier to ready tasks	


  Evaluation of data readiness condition	

 Busy waiting on data (delayed async scheduling)	

 Dataflow like readiness (data driven scheduling)	


 Register tasks on data	

 Data notifies consumer tasks when created	


Data Driven Scheduling	
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  Delayed async handling for work stealing scheduler	


  Guarded execution construct for HJ	

 Promote to async when guard evaluates to true	


Delayed Asyncs	
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Work Sharing Ready Task Queue	


asyncA	


asyncB	


asyncZ	


Delayed?	


Pop a Task	


Assign to thread	


Yes	


No	


Evaluate guard	


Is true?	


Yes	


Requeue	


No	




  Every CnC step is a guarded execution	

 Guard condition is the availability of items to consume	

 Task still created eagerly when provided control	

 Promotes to ready when data provided	


Delayed Async Scheduling	
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Outline	
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  Background	


  CnC Scheduling	


  Data Driven Futures	


  Results	


  Wrap up	




  Task parallel synchronization construct 	

 Acts as a reference to single assignment value	


  Creation	

 Create a dangling reference object	


  Resolution ( Put )	

 Resolve what value a DDF is referring to	


  Registration ( Await )	

 A task provides a consume list of DDFs on declaration	

 A task can only read DDFs that it is registered to	


Data Driven Futures (DDFs)	
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Data Driven Futures (DDFs)	
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DataDrivenFuture leftChild = new DataDrivenFuture();	

DataDrivenFuture rightChild = new DataDrivenFuture();	

finish {	

    async leftChild.put(leftChildCreator());	

    async rightChild.put(rightChildCreator());	

    async await ( leftChild ) useLeftChild(leftChild);	

    async await ( rightChild ) useRightChild(rightChild);	

    async await ( leftChild, rightChild ) 	

	
 	
 	
useBothChildren( leftChild, rightChild );	


}	




Contributions of DDFs	


  Non-series-parallel task 
dependency graphs 
support	


  Memory footprint 
reduction	

  Exposes only ready parts of 

the execution frontier	

 Not global lifetime	

 Creator: 	


  feeds consumers	

  gives access to producer	


  Lifetime restricted to	

  Creator lifetime	

  Resolver lifetime	

  Consumers lifetimes	


 Can be garbage collected 
on a managed runtime	
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TaskA	


TaskC	


TaskD	


TaskB	


TaskE	


TaskF	




Data Driven Scheduling	
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  Steps register self to items wrapped into DDFs	

TaskM	


PlaceHolderβ	


DDFβ	

DDFα	


TaskN	


DDFα	

Valueα	


DDFβ	
 DDFδ	


✕	


DDFδ	

✕	


create DDFα, DDFβ,  DDFδ 	

TaskC	


create TaskA resolving DDFα	

create TaskM reading DDFα, DDFβ	


create TaskN reading DDFβ,  DDFδ 	


PlaceHolderα	


PlaceHolderδ	


✕	
 DDFβ	


TaskA	


resolve DDFα 	


create TaskD resolving DDFδ	
 TaskD	


resolve DDFδ 	
create TaskB resolving DDFβ	


Valueδ	


TaskA	


ready queue	

TaskD	
 TaskB	


TaskB	


resolve DDFβ 	


Valueβ	


TaskM	
 TaskN	




Outline	
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  Background	


  CnC Scheduling	


  Data Driven Futures	


  Results	


  Wrap up	




Performance Evaluation Legend	
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  Coarse Grain Blocking	

  Eager blocking scheduling on item collections for CnC-HJ	


  Fine Grain Blocking	

  Eager blocking scheduling on item instances for CnC-HJ	


  Delayed Async	

 Data Driven scheduling via HJ delayed asyncs for CnC-HJ	


  Data Driven Rollback & Replay	

  Eager scheduling with replay and notifications for CnC-HJ	


  Data Driven Futures	

 Hand coded CnC application equivalent on HJ with DDFs	




Cholesky Decomposition Introduction	
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  Dense linear algebra kernel	


  Three inherent kernels	

 Need to be pipelined for best performance	

 Loop parallelism within some kernels	

 Data parallelism within some kernels	


  CnC shown to beat optimized libraries, like IntelMKL	




Cholesky Decomposition on Xeon	

30	


7,861	
 7,730	


8,818	
 8,789	


7,199	


1,890	


949	

593	
 663	
 578	


0	


1,000	


2,000	


3,000	


4,000	


5,000	


6,000	


7,000	


8,000	


9,000	


Coarse Grain 
Blocking	


Fine Grain 
Blocking	


Delayed Async	
 Data Driven 
Rollback&Replay	


Data Driven 
Futures	


E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	


1-Worker	
 16-Workers	


✕12.4	


Minimum execution times of 30 runs of single threaded and 16-threaded executions for 
blocked Cholesky decomposition CnC application with Habanero-Java steps on Xeon 
with input matrix size 2000 × 2000 and with tile size 125 × 125	


✕14.8	
 ✕13.2	




Cholesky Decomposition on Xeon	
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Average execution times and 90% confidence interval of 30 runs of single threaded and 16-
threaded executions for blocked Cholesky decomposition CnC application with Habanero-
Java steps on Xeon with input matrix size 2000 × 2000 and with tile size 125 × 125	


✕10.5	
 ✕12.1	
 ✕11.1	




Cholesky Decomposition with MKL on Xeon	
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Minimum execution times of 30 runs of single threaded and 16-threaded executions for 
blocked Cholesky decomposition CnC application with Habanero-Java and Intel MKL 
steps on Xeon with input matrix size 2000 × 2000 and with tile size 125 × 125	


✕11.7	
 ✕11.5	
 ✕12.8	




Cholesky Decomposition with MKL on Xeon	
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Average execution times and 90% confidence interval of 30 runs of single threaded and 16-
threaded executions for blocked Cholesky decomposition CnC application with Habanero Java 
and Intel MKL steps on Xeon with input matrix size 2000 × 2000 and with tile size 125 × 125	


✕8.63	
 ✕10.1	
 ✕11.4	




Cholesky Decomposition on UltraSPARC T2	
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Minimum execution times of 30 runs of single threaded and 64-threaded executions for 
blocked Cholesky decomposition CnC application with Habanero-Java steps on 
UltraSPARC T2 with input matrix size 2000 × 2000 and with tile size 125 × 125	


✕17.8	
 ✕19.6	
 ✕19.5	




Cholesky Decomposition on UltraSPARC T2	
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Average execution times and 90% confidence interval of 30 runs of single threaded and 64-
threaded executions for blocked Cholesky decomposition CnC application with Habanero-
Java steps on UltraSPARC T2 with input matrix size 2000 × 2000 and with tile size 125 × 125	


✕15.0	
 ✕16.8	
 ✕17.4	




Black-Scholes formula	
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  Only one step	

 The Black-Scholes formula	


  Embarrassingly parallel	


  Good indicator of scheduling overhead	




Black-Scholes on Xeon	
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Minimum execution times of 30 runs of single threaded and 16-threaded executions for 
blocked Black-Scholes CnC application with Habanero-Java steps on Xeon with input size 
1,000,000 and with tile size 62,500	


✕8.1	
 ✕8.1	
 ✕16.0	




Black-Scholes on Xeon	

38	


33,871	
 33,966	
 34,311	
 34,121	
 34,729	


4,300	
 4,309	
 4,279	

5,061	


2,353	


0	


5,000	


10,000	


15,000	


20,000	


25,000	


30,000	


35,000	


40,000	


Coarse Grain 
Blocking	


Fine Grain 
Blocking	


Delayed Async	
 Data Driven 
Rollback&Replay	


Data Driven 
Futures	


E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	


1-Worker	
 16-Workers	


Average execution times and 90% confidence interval of 30 runs of single threaded and 
16-threaded executions for blocked Black-Scholes CnC application with Habanero-Java 
steps on Xeon with input size 1,000,000 and with tile size 62,500	


✕8.0	
 ✕6.7	
 ✕14.7	




Black-Scholes on UltraSPARC T2	
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Minimum execution times of 30 runs of single threaded and 64-threaded executions for 
blocked Black-Scholes CnC application with Habanero-Java steps on UltraSPARC T2 with 
input size 1,000,000 and with tile size 15,625	


✕29.9	
 ✕30.3	
 ✕40.7	
✕27.2	
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Black-Scholes on UltraSPARC T2	
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steps on UltraSPARC T2 with input size 1,000,000 and with tile size 15,625	


✕34.6	
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Rician Denoising	
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  Image processing algorithm	

 More than 4 kernels	


 Mostly stencil computations	


 Non trivial dependency graph	

 Fixed point algorithm	


  Enormous data size	

 CnC schedulers needed explicit memory management	

 DDFs took advantage of garbage collection	




Rician Denoising on Xeon	
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Minimum execution times of 30 runs of single threaded and 16-threaded executions for 
blocked Rician Denoising CnC application with Habanero-Java steps on Xeon with input 
image size 2937 × 3872 and with tile size 267 × 484	


✕8.7	
 ✕8.9	
 ✕6.6	




Rician Denoising on Xeon	
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Average execution times and 90% confidence interval of 30 runs of single threaded and 
16-threaded executions for blocked Rician Denoising CnC application with Habanero-Java 
steps on Xeon with input image size 2937 × 3872 and with tile size 267 × 484	


✕8.6	
 ✕9.0	
 ✕6.5	




Rician Denoising on UltraSPARC T2	
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Minimum execution times of 30 runs of single threaded and 64-threaded executions for 
blocked Rician Denoising CnC application with Habanero-Java steps on UltraSPARC T2 
with input image size 2937 × 3872 and with tile size 267 × 484	


✕10.3	
 ✕24.0	
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Rician Denoising on UltraSPARC T2	
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Heart Wall Tracking	


  Medical imaging application	

 Nested kernels	


 First level embarrassingly parallel	

 Second level with intricate dependency graph	


  Memory management	

 Many failures on eager schedulers	


 Blocking schedulers ran out of memory	




Heart Wall Tracking on Xeon	
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Minimum execution times of 13 runs of single threaded and 16-threaded executions for 
Heart Wall Tracking CnC application with C steps on Xeon with 104 frames	


✕3.4	
 ✕14.2	
 ✕15.8	




Heart Wall Tracking on Xeon	
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Average execution times and 90% confidence interval of 13 runs of single threaded and 
16-threaded executions for Heart Wall Tracking CnC application with C steps on Xeon 
with 104 frames	


✕3.3	
 ✕13.9	
 ✕15.5	
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  Background	


  CnC Scheduling	


  Data Driven Futures	


  Results	


  Wrap up	
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  Alternative parallel programming models:	

 Either too verbose or constrained parallelism	


  Alternative futures, promises	

 Creation and resolution are coupled	

 Either lazy or blocking execution semantics	


  Support for unstructured parallelism	

 Nabbit library for Cilk++ allows arbitrary task graphs	


  Immediate successor atomic counter update for notification	

 Does not differentiate between data, control dependences	
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  Macro-dataflow is a viable parallelism model	

 Provides expressiveness hiding parallelism concerns	


  Macro-dataflow can perform competitively	

 Taking advantage of modern task parallel models	
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  Compiling CnC to the Data Driven Runtime	

 Currently hand-ported	

 Need finer grain dependency analysis via tag functions	


  Data Driven Future support for Work Stealing	


  Compiler support for automatic DDF registration	


  Hierarchical DDFs	


  Locality aware scheduling support for DDFs	
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