
SCHEDULING ���
MACRO-DATAFLOW PROGRAMS ���

ON ���
TASK-PARALLEL RUNTIME SYSTEMS	

SAĞNAK TAŞIRLAR

1	

Thesis	

2	

	
 	
Our thesis is that advances in task parallel runtime
systems can enable a macro-dataflow programming
model, like Concurrent Collections (CnC), to deliver
productivity and performance on modern multicore
processors.	

Approach	

3	

  Macro-dataflow for expressiveness	

 Determinism	

 Race/deadlock freedom	

 Higher level abstraction	

  Task parallel runtimes for performance	

 Portable scalability 	

 Contemporary consensus	

Motivation	

4	

  Parallelism not accessible to those who need it most	

  Imposed serial thinking	

 Parallelism for the masses, not just computer scientists	

  Parallel programming models of today:	

 Hide machine details but expose parallelism details	

 Constrain expressiveness	

Contributions	

5	

  Scheduling CnC on Habanero Java ★	

  Evaluation of scheduling performance for CnC ★	

  Introduction of Data Driven Futures (DDF) construct	

  Implementation of DDF construct	

  Implementation and evaluation of data driven runtime
with DDFs	

★	
Zoran Budimlić, Michael Burke, Vincent Cavé, Kathleen Knobe, Geoff Lowney, Ryan Newton,
Jens Palsberg, David Peixotto, Vivek Sarkar, Frank Schlimbach, Sağnak Taşırlar, “The CnC
Programming Model ”, submitted for publication to the Journal of Supercomputing, 2010	

Outline	

6	

  Background	

  CnC Scheduling	

  Data Driven Futures	

  Results	

  Wrap up	

Dynamic Task Parallelism	

7	

  Properties	

 Over exposure of parallelism	

 Scales up/down with # of cores	

 Scheduling maps sets of tasks to threads at runtime	

  Habanero Java (HJ) employs:	

 Finish/async parallelism	

 Feeds child tasks through lexical scope	

 Work sharing/stealing runtime scheduling	

CnC concepts	

8	

Collection	

Graphical 	

Notation	

Textual	

Notation	

Step	
 (SomeStep)	

Item	
 [SomeItem]	

Tag	
 <Tag>	

[SomeItem]	

<Tag>	

(SomeStep)	

  Step	

  Computation abstraction	

  Side effect free	

  Functional w.r.t. input	

  Special step: Environment	

  Item	

  Dynamic single

assignment	

  Value not storage	

  Tag	

  Data tag to index items	

  Control tag to index steps	

Concurrent Collections model	

9	

  Can be classified as:	

 Declarative	

 Deterministic	

 Dynamic single assignment	

 Macro-dataflow	

 Coordination language	

  Goal: consider only semantic ordering constraints	

  Inherent in the application not the implementation	

 Will be described by the CnC graph	

Example Program Specification���
10	

“aaa”	

“ff”	

“qqq”	

“mmmmmmm”	

“aaa”	

“qqq”	

“mmmmmmm”	

Input
string	

Sequences of repeated
characters	

Filtered
sequences	

  Break up an input string	

 Sequences of repeated single characters	

  Filter allowing only	

 Sequences of odd length	

“aaaffqqqmmmmmmm”	

11	

[input: 1] = “aaaffqqqmmmmmmm”	

[input: 2] = “rrhhhhxxx”	

…	

[input: j]	
 [results: j, s]	
(createSpan: j)	
 (processSpan: j, s)	

<stringTag: j>	
 <spanTag: j, s>	

[span: j, s]	
 (processSpan: j, s)	
 [results: j, s]	

<stringTag: 1>	

<stringTag: 2>	

…	

[span: 1, 1] = “aaa”	

[span: 1, 2] = “ff”	

[span: 1, 3] = “qqq”	

[span: 1, 4] = “mmmmmmm”	

[results: 1, 1] = “aaa”	

[results: 1, 3] = “qqq”	

[results: 1, 4] = “mmmmmmm”	

<spanTag: 1, 1>	

CnC Implementation of Example
Program	

<spanTag: 1, 2>	

<spanTag: 1, 3>	

<spanTag: 1, 4>	

Collection	
 Graphical 	
 Textual	

Step	
 (…)	

Item	
 […]	

Tag	
 < … >	

[]	

()	

<>	

CnC-Habanero Java build model	

12	

Code to invoke the graph	

Code to put initial values in graph	

Code to implement abstract steps	

Abstract classes for all steps	

Definitions for all collections	

Graph definition and initialization	

Concurrent
Collections

Library	

Habanero Java
Runtime
Library	

Concurrent Collections
Textual Graph	

Habanero Java
source files	

Habanero Java
source files	

.class files	

JAR Builder	

Java application	

User specified	

CnC compiler	
CnC Translator	

CnC Components	

Outline	

13	

  Background	

  CnC Scheduling	

  Data Driven Futures	

  Results	

  Wrap up	

CnC Scheduling Challenges	

14	

  Control & data dependences are first level constructs	

 Task parallel frameworks have them coupled	

  Step instances have multiple predecessors	

 Need to wait for all predecessors	

 Layered readiness concepts	

 Control dependence satisfied	

 Data dependence satisfied	

 Schedulable / Ready	

Eager scheduling	

15	

  Assume control dependence satisfaction is readiness	

 Conforms to task parallel runtime assumption	

  Wait till data dependences satisfaction for safety	

 Block on data prematurely tried to be read	

 Discard task reading prematurely, replay when data arrive	

  Use Java wait/notify for premature data access	

  Blocking granularity	

  Instance level vs Collection level	

  Blocked task blocks whole thread	

 Deadlock possibility	

 Need to create more threads as threads block	

Blocking Eager CnC Schedulers	

16	

ThreadΕ	

step1	

Get (data-tagγ)	

ItemCollectionΘ	

data-tagα	

data-tagβ	
 valueβ	

valueα	

wait	

ThreadΔ	

step2	
Put(data-tagγ,valueγ)	

notify	

time	

data-tagγ	
 placeHolderγ	
valueγ	

  Alternative eager scheduling	

  Blocking scheduler suffers from	

 Expensive recovery from premature read	

 Blocks whole thread	

 Creates new thread	

 Switch context to the new thread on every failure	

  Inform item instance on failed task and discard task	

 Throw an exception to unwind failed task	

 Catch by runtime and continue with another ready task	

 Recreate task when needed item arrives	

Data Driven Rollback & Replay	

17	

Data Driven Rollback & Replay	

18	

ThreadΕ	

step1	

Get (data-tagγ)	

ItemCollectionΘ	

data-tagα	

data-tagβ	
 valueβ	

valueα	

ThreadΔ	

step2	

Put(data-tagγ,valueγ)	

waitlistα	

waitlistβ	

data-tagγ	
 empty	
 waitlistγ	

Insert step1 to
waitlistγ 	

Throw exception to
unwind	

step3	

Recreate steps on
waitlistγ 	

step1	

Get (data-tagγ)	

Get (data-tagδ)	

valueγ	

  Do not create tasks until data dependences satisfied	

 No failure, no recovery	

 Restrict computation frontier to ready tasks	

  Evaluation of data readiness condition	

 Busy waiting on data (delayed async scheduling)	

 Dataflow like readiness (data driven scheduling)	

 Register tasks on data	

 Data notifies consumer tasks when created	

Data Driven Scheduling	

19	

  Delayed async handling for work stealing scheduler	

  Guarded execution construct for HJ	

 Promote to async when guard evaluates to true	

Delayed Asyncs	

20	

Work Sharing Ready Task Queue	

asyncA	

asyncB	

asyncZ	

Delayed?	

Pop a Task	

Assign to thread	

Yes	

No	

Evaluate guard	

Is true?	

Yes	

Requeue	

No	

  Every CnC step is a guarded execution	

 Guard condition is the availability of items to consume	

 Task still created eagerly when provided control	

 Promotes to ready when data provided	

Delayed Async Scheduling	

21	

Outline	

22	

  Background	

  CnC Scheduling	

  Data Driven Futures	

  Results	

  Wrap up	

  Task parallel synchronization construct 	

 Acts as a reference to single assignment value	

  Creation	

 Create a dangling reference object	

  Resolution (Put)	

 Resolve what value a DDF is referring to	

  Registration (Await)	

 A task provides a consume list of DDFs on declaration	

 A task can only read DDFs that it is registered to	

Data Driven Futures (DDFs)	

23	

Data Driven Futures (DDFs)	

24	

DataDrivenFuture leftChild = new DataDrivenFuture();	

DataDrivenFuture rightChild = new DataDrivenFuture();	

finish {	

 async leftChild.put(leftChildCreator());	

 async rightChild.put(rightChildCreator());	

 async await (leftChild) useLeftChild(leftChild);	

 async await (rightChild) useRightChild(rightChild);	

 async await (leftChild, rightChild) 	

	
 	
 	
useBothChildren(leftChild, rightChild);	

}	

Contributions of DDFs	

  Non-series-parallel task
dependency graphs
support	

  Memory footprint
reduction	

  Exposes only ready parts of

the execution frontier	

 Not global lifetime	

 Creator: 	

  feeds consumers	

  gives access to producer	

  Lifetime restricted to	

  Creator lifetime	

  Resolver lifetime	

  Consumers lifetimes	

 Can be garbage collected
on a managed runtime	

25	

TaskA	

TaskC	

TaskD	

TaskB	

TaskE	

TaskF	

Data Driven Scheduling	

26	

  Steps register self to items wrapped into DDFs	

TaskM	

PlaceHolderβ	

DDFβ	

DDFα	

TaskN	

DDFα	

Valueα	

DDFβ	
 DDFδ	

✕	

DDFδ	

✕	

create DDFα, DDFβ, DDFδ 	

TaskC	

create TaskA resolving DDFα	

create TaskM reading DDFα, DDFβ	

create TaskN reading DDFβ, DDFδ 	

PlaceHolderα	

PlaceHolderδ	

✕	
 DDFβ	

TaskA	

resolve DDFα 	

create TaskD resolving DDFδ	
 TaskD	

resolve DDFδ 	
create TaskB resolving DDFβ	

Valueδ	

TaskA	

ready queue	

TaskD	
 TaskB	

TaskB	

resolve DDFβ 	

Valueβ	

TaskM	
 TaskN	

Outline	

27	

  Background	

  CnC Scheduling	

  Data Driven Futures	

  Results	

  Wrap up	

Performance Evaluation Legend	

28	

  Coarse Grain Blocking	

  Eager blocking scheduling on item collections for CnC-HJ	

  Fine Grain Blocking	

  Eager blocking scheduling on item instances for CnC-HJ	

  Delayed Async	

 Data Driven scheduling via HJ delayed asyncs for CnC-HJ	

  Data Driven Rollback & Replay	

  Eager scheduling with replay and notifications for CnC-HJ	

  Data Driven Futures	

 Hand coded CnC application equivalent on HJ with DDFs	

Cholesky Decomposition Introduction	

29	

  Dense linear algebra kernel	

  Three inherent kernels	

 Need to be pipelined for best performance	

 Loop parallelism within some kernels	

 Data parallelism within some kernels	

  CnC shown to beat optimized libraries, like IntelMKL	

Cholesky Decomposition on Xeon	

30	

7,861	
 7,730	

8,818	
 8,789	

7,199	

1,890	

949	

593	
 663	
 578	

0	

1,000	

2,000	

3,000	

4,000	

5,000	

6,000	

7,000	

8,000	

9,000	

Coarse Grain
Blocking	

Fine Grain
Blocking	

Delayed Async	
 Data Driven
Rollback&Replay	

Data Driven
Futures	

E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	

1-Worker	
 16-Workers	

✕12.4	

Minimum execution times of 30 runs of single threaded and 16-threaded executions for
blocked Cholesky decomposition CnC application with Habanero-Java steps on Xeon
with input matrix size 2000 × 2000 and with tile size 125 × 125	

✕14.8	
 ✕13.2	

Cholesky Decomposition on Xeon	

31	

10,081	
 10,010	
 10,305	
 10,309	

8,748	

2,472	

1,197	
 979	
 853	
 790	

0	

2,000	

4,000	

6,000	

8,000	

10,000	

12,000	

Coarse Grain
Blocking	

Fine Grain
Blocking	

Delayed Async	
 Data Driven
Rollback&Replay	

Data Driven
Futures	

E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	

1-Worker	
 16-Workers	

Average execution times and 90% confidence interval of 30 runs of single threaded and 16-
threaded executions for blocked Cholesky decomposition CnC application with Habanero-
Java steps on Xeon with input matrix size 2000 × 2000 and with tile size 125 × 125	

✕10.5	
 ✕12.1	
 ✕11.1	

Cholesky Decomposition with MKL on Xeon	

32	

1,782	
 1,766	

1,834	
 1,821	

1,723	

484	

187	
 156	
 157	
 134	

0	

200	

400	

600	

800	

1,000	

1,200	

1,400	

1,600	

1,800	

2,000	

Coarse Grain
Blocking	

Fine Grain
Blocking	

Delayed Async	
 Data Driven
Rollback&Replay	

Data Driven
Futures	

E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	

1-Worker	
 16-Workers	

Minimum execution times of 30 runs of single threaded and 16-threaded executions for
blocked Cholesky decomposition CnC application with Habanero-Java and Intel MKL
steps on Xeon with input matrix size 2000 × 2000 and with tile size 125 × 125	

✕11.7	
 ✕11.5	
 ✕12.8	

Cholesky Decomposition with MKL on Xeon	

33	

1,999	
 1,983	
 1,993	
 1,949	

1,775	

616	

250	
 231	
 194	
 156	

0	

200	

400	

600	

800	

1,000	

1,200	

1,400	

1,600	

1,800	

2,000	

2,200	

Coarse Grain
Blocking	

Fine Grain
Blocking	

Delayed Async	
 Data Driven
Rollback&Replay	

Data Driven
Futures	

E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	

1-Worker	
 16-Workers	

Average execution times and 90% confidence interval of 30 runs of single threaded and 16-
threaded executions for blocked Cholesky decomposition CnC application with Habanero Java
and Intel MKL steps on Xeon with input matrix size 2000 × 2000 and with tile size 125 × 125	

✕8.63	
 ✕10.1	
 ✕11.4	

Cholesky Decomposition on UltraSPARC T2	

34	

106,883	

103,631	
 100,573	
 103,297	

96,587	

5,489	
 5,388	
 5,651	
 5,259	
 4,950	

0	

10,000	

20,000	

30,000	

40,000	

50,000	

60,000	

70,000	

80,000	

90,000	

100,000	

110,000	

120,000	

Coarse Grain
Blocking	

Fine Grain
Blocking	

Delayed Async	
 Data Driven
Rollback&Replay	

Data Driven
Futures	

E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	

1-Worker	
 64-Workers	

Minimum execution times of 30 runs of single threaded and 64-threaded executions for
blocked Cholesky decomposition CnC application with Habanero-Java steps on
UltraSPARC T2 with input matrix size 2000 × 2000 and with tile size 125 × 125	

✕17.8	
 ✕19.6	
 ✕19.5	

Cholesky Decomposition on UltraSPARC T2	

35	

111,204	
 108,863	

104,185	
 106,695	

99,032	

7,035	
 6,993	
 6,958	
 6,339	
 5,681	

0	

10,000	

20,000	

30,000	

40,000	

50,000	

60,000	

70,000	

80,000	

90,000	

100,000	

110,000	

120,000	

Coarse Grain
Blocking	

Fine Grain
Blocking	

Delayed Async	
 Data Driven
Rollback&Replay	

Data Driven
Futures	

E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	

1-Worker	
 64-Workers	

Average execution times and 90% confidence interval of 30 runs of single threaded and 64-
threaded executions for blocked Cholesky decomposition CnC application with Habanero-
Java steps on UltraSPARC T2 with input matrix size 2000 × 2000 and with tile size 125 × 125	

✕15.0	
 ✕16.8	
 ✕17.4	

Black-Scholes formula	

36	

  Only one step	

 The Black-Scholes formula	

  Embarrassingly parallel	

  Good indicator of scheduling overhead	

Black-Scholes on Xeon	

37	

33,688	
 33,762	
 34,214	
 33,788	
 34,634	

4,148	
 4,155	
 4,216	
 4,145	

2,164	

0	

5,000	

10,000	

15,000	

20,000	

25,000	

30,000	

35,000	

40,000	

Coarse Grain
Blocking	

Fine Grain
Blocking	

Delayed Async	
 Data Driven
Rollback&Replay	

Data Driven
Futures	

E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	

1-Worker	
 16-Workers	

Minimum execution times of 30 runs of single threaded and 16-threaded executions for
blocked Black-Scholes CnC application with Habanero-Java steps on Xeon with input size
1,000,000 and with tile size 62,500	

✕8.1	
 ✕8.1	
 ✕16.0	

Black-Scholes on Xeon	

38	

33,871	
 33,966	
 34,311	
 34,121	
 34,729	

4,300	
 4,309	
 4,279	

5,061	

2,353	

0	

5,000	

10,000	

15,000	

20,000	

25,000	

30,000	

35,000	

40,000	

Coarse Grain
Blocking	

Fine Grain
Blocking	

Delayed Async	
 Data Driven
Rollback&Replay	

Data Driven
Futures	

E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	

1-Worker	
 16-Workers	

Average execution times and 90% confidence interval of 30 runs of single threaded and
16-threaded executions for blocked Black-Scholes CnC application with Habanero-Java
steps on Xeon with input size 1,000,000 and with tile size 62,500	

✕8.0	
 ✕6.7	
 ✕14.7	

Black-Scholes on UltraSPARC T2	

39	

164,252	
 166,342	

179,427	
 181,089	

163,639	

6,032	
 5,944	
 6,006	
 5,973	
 4,019	

0	

20,000	

40,000	

60,000	

80,000	

100,000	

120,000	

140,000	

160,000	

180,000	

200,000	

Coarse Grain
Blocking	

Fine Grain
Blocking	

Delayed Async	
 Data Driven
Rollback&Replay	

Data Driven
Futures	

E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	

1-Worker	
 64-Workers	

Minimum execution times of 30 runs of single threaded and 64-threaded executions for
blocked Black-Scholes CnC application with Habanero-Java steps on UltraSPARC T2 with
input size 1,000,000 and with tile size 15,625	

✕29.9	
 ✕30.3	
 ✕40.7	
✕27.2	
 ✕28.0	

Black-Scholes on UltraSPARC T2	

40	

165,473	

207,079	
 212,870	
 215,636	

164,545	

6,179	
 6,159	
 6,149	
 6,145	
 4,296	

0	

50,000	

100,000	

150,000	

200,000	

250,000	

Coarse Grain
Blocking	

Fine Grain
Blocking	

Delayed Async	
 Data Driven
Rollback&Replay	

Data Driven
Futures	

E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	

1-Worker	
 64-Workers	

Average execution times and 90% confidence interval of 30 runs of single threaded and
64-threaded executions for blocked Black-Scholes CnC application with Habanero-Java
steps on UltraSPARC T2 with input size 1,000,000 and with tile size 15,625	

✕34.6	
 ✕35.1	
 ✕38.3	
✕26.8	
 ✕33.6	

Rician Denoising	

41	

  Image processing algorithm	

 More than 4 kernels	

 Mostly stencil computations	

 Non trivial dependency graph	

 Fixed point algorithm	

  Enormous data size	

 CnC schedulers needed explicit memory management	

 DDFs took advantage of garbage collection	

Rician Denoising on Xeon	

42	

470,394	

495,089	

459,328	

345,531	

78,630	

56,892	
 51,632	
 52,208	

0	

100,000	

200,000	

300,000	

400,000	

500,000	

600,000	

Coarse Grain Blocking *	
Fine Grain Blocking *	
 Delayed Async *	
 Data Driven Futures	

E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	

1-Worker	
 16-Workers	

Minimum execution times of 30 runs of single threaded and 16-threaded executions for
blocked Rician Denoising CnC application with Habanero-Java steps on Xeon with input
image size 2937 × 3872 and with tile size 267 × 484	

✕8.7	
 ✕8.9	
 ✕6.6	

Rician Denoising on Xeon	

43	

498,776	
 499,666	
 483,770	

349,051	

81,502	

58,313	
 53,569	
 53,817	

0	

100,000	

200,000	

300,000	

400,000	

500,000	

600,000	

Coarse Grain Blocking *	
Fine Grain Blocking *	
 Delayed Async *	
 Data Driven Futures	

E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	

1-Worker	
 16-Workers	

Average execution times and 90% confidence interval of 30 runs of single threaded and
16-threaded executions for blocked Rician Denoising CnC application with Habanero-Java
steps on Xeon with input image size 2937 × 3872 and with tile size 267 × 484	

✕8.6	
 ✕9.0	
 ✕6.5	

Rician Denoising on UltraSPARC T2	

44	

1,979,340	
 1,932,078	
 1,932,488	

1,273,583	

189,444	
 188,134	

80,458	
 56,621	

0	

500,000	

1,000,000	

1,500,000	

2,000,000	

2,500,000	

Coarse Grain Blocking *	
Fine Grain Blocking *	
 Delayed Async *	
 Data Driven Futures	

E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	

1-Worker	
 64-Workers	

Minimum execution times of 30 runs of single threaded and 64-threaded executions for
blocked Rician Denoising CnC application with Habanero-Java steps on UltraSPARC T2
with input image size 2937 × 3872 and with tile size 267 × 484	

✕10.3	
 ✕24.0	
 ✕22.5	

Rician Denoising on UltraSPARC T2	

45	

1,988,894	
 1,939,976	
 1,943,861	

1,282,031	

192,451	
 190,600	

81,707	
 58,017	

0	

500,000	

1,000,000	

1,500,000	

2,000,000	

2,500,000	

Coarse Grain Blocking *	
Fine Grain Blocking *	
 Delayed Async *	
 Data Driven Futures	

E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	

1-Worker	
 64-Workers	

Average execution times and 90% confidence interval of 30 runs of single threaded and
64-threaded executions for blocked Rician Denoising CnC application with Habanero-Java
steps on UltraSPARC T2 with input image size 2937 × 3872 and with tile size 267 × 484	

✕10.2	
 ✕23.8	
 ✕22.1	

Heart Wall Tracking	

  Medical imaging application	

 Nested kernels	

 First level embarrassingly parallel	

 Second level with intricate dependency graph	

  Memory management	

 Many failures on eager schedulers	

 Blocking schedulers ran out of memory	

Heart Wall Tracking on Xeon	

47	

162,248	
 157,554	
 156,159	

47,989	

11,076	
 9,897	

0	

20,000	

40,000	

60,000	

80,000	

100,000	

120,000	

140,000	

160,000	

180,000	

Delayed Async	
 Data Driven Rollback&Replay	
 Data Driven Futures	

E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	

1-Worker	
 16-Workers	

Minimum execution times of 13 runs of single threaded and 16-threaded executions for
Heart Wall Tracking CnC application with C steps on Xeon with 104 frames	

✕3.4	
 ✕14.2	
 ✕15.8	

Heart Wall Tracking on Xeon	

48	

164,806	

158,224	
 156,635	

50,287	

11,351	
 10,097	

0	

20,000	

40,000	

60,000	

80,000	

100,000	

120,000	

140,000	

160,000	

180,000	

Delayed Async	
 Data Driven Rollback&Replay	
 Data Driven Futures	

E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	

1-Worker	
 16-Workers	

Average execution times and 90% confidence interval of 13 runs of single threaded and
16-threaded executions for Heart Wall Tracking CnC application with C steps on Xeon
with 104 frames	

✕3.3	
 ✕13.9	
 ✕15.5	

Outline	

49	

  Background	

  CnC Scheduling	

  Data Driven Futures	

  Results	

  Wrap up	

Related work	

50	

  Alternative parallel programming models:	

 Either too verbose or constrained parallelism	

  Alternative futures, promises	

 Creation and resolution are coupled	

 Either lazy or blocking execution semantics	

  Support for unstructured parallelism	

 Nabbit library for Cilk++ allows arbitrary task graphs	

  Immediate successor atomic counter update for notification	

 Does not differentiate between data, control dependences	

Conclusions	

51	

  Macro-dataflow is a viable parallelism model	

 Provides expressiveness hiding parallelism concerns	

  Macro-dataflow can perform competitively	

 Taking advantage of modern task parallel models	

Future Work	

52	

  Compiling CnC to the Data Driven Runtime	

 Currently hand-ported	

 Need finer grain dependency analysis via tag functions	

  Data Driven Future support for Work Stealing	

  Compiler support for automatic DDF registration	

  Hierarchical DDFs	

  Locality aware scheduling support for DDFs	

Acknowledgments	

53	

  Committee	

  Zoran Budimlić, Keith D. Cooper, Vivek Sarkar, Lin Zhong	

  Journal of Supercomputing co-authors	

  Zoran Budimlić, Michael Burke, Vincent Cavé, Kathleen Knobe, Geoff P. Lowney, Ryan R.

Newton, Jens Palsberg, David Peixotto, Vivek Sarkar, Frank Schlimbach
  Habanero multicore software research project team-members	

  Zoran Budimlić, Vincent Cavé, Philippe Charles, Vivek Sarkar, Alina Simion Sbîrlea,
Dragoș Sbîrlea, Jisheng Zhao

  Intel Technology Pathfinding and Innovation Software and Services Group	

  Mark Hampton, Kathleen Knobe, Geoff P. Lowney, Ryan R. Newton, Frank Schlimbach

  Benchmarks	

  Aparna Chandramowlishwaran (Georgia Tech.), Zoran Budimlić(Rice) for Cholesky Decomposition
  Yu-Ting Chen (UCLA) for Rician Denoising
  David Peixotto (Rice) for Black-Scholes Formula
  Alina Simion Sbîrlea (Rice) for Heart Wall Tracking

Feedback and clarifications	

54	

  Thanks for your attention	

